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A B S T R A C T

The causal relationship between urban form, in particular density, and travel demand is subject to debate.
Here, we investigate this relationship using a structured regression approach applied to a large-scale layered
dataset of travel patterns and urban form. We find that residents of the densest urban areas use 80% less energy
for transportation than residents of rural areas and explore the causal factors influencing this relationship. We
find that the primary driver of the density–energy use relationship is the larger number of nearby destinations
available to urban dwellers, followed by differences in road network properties and public transit infrastructure.
The energy benefits of urban dwelling are weakened when there are more destinations available 10–100 km
away due to urban sprawl. While these causal factors are correlated with density, urban form can substantially
affect travel energy use even within a given density bracket. We also show that urban form predominantly
influences how and where people travel, rather than how often and how long. These results outline pathways
for cities and communities to reduce the environmental impact of travel while increasing access to relevant
destinations.

1. Introduction

Personal mobility accounts for a substantial fraction of urban green-
house gas and air pollutant emissions [1], including in the United
States [2]. Travel patterns and energy demand of travel have been
found to correlate with certain aspects of the built environment, in par-
ticular density [3,4]. As a result, land use and urban design policies may
contribute to energy consumption reduction and emissions mitigation
strategies [5].

The built environment influences travel behavior differently at dif-
ferent distance scales. At the macro scale, residents of larger cities
have been found to travel further each day than those of smaller
cities [6,7]. At the intermediate or meso scale, some of the strongest
effects have consistently been found [8–11], including factors such as
density and land use diversity (land use entropy). At the micro scale,
local urban design can affect modal choice, in particular the likelihood
of someone to walk [9,12]. Effects at the meso- and micro-scale have
been dubbed the ‘‘3 Ds’’ of travel demand: density, (land use) diversity,
and design [9]. This is what we define to be ‘urban form’ here: the
physical characteristics of the built environment that can affect travel
behavior, including the density, size, and configuration of settlements
and their transport network.
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The observed magnitude of the causal relationship between urban
form and travel demand at different scales is contested (e.g. [13,14])
and can vary substantially based on study design [4,15]. Differences
among existing studies include how urban form and travel behavior
are measured. For example, most existing studies focus on vehicle
miles traveled (VMT), often per household and year (e.g. [9,16]). Such
analysis does not explicitly reflect travel on non-automotive modes,
limiting insights on aggregate travel demand and substitutions between
modes. More direct measures of travel energy use have been rare.

Studies also differ in whether they measure urban form through den-
sity as a proxy, or explicitly through concepts such as access (e.g., the
typical distance or travel time to key destinations). Some consider both,
thus potentially confounding the two (e.g. [3,17]). Further differences
exist in whether and how residential self-selection and other forms
of endogeneity are treated, a commonly discussed issue in existing
literature [4,18–20]. Finally, most existing studies focus on a specific
city or set of neighborhoods within a city [4], thus not capturing the full
set and magnitude of differences that can exist between different areas.
We include a tabularized comparison between key existing studies
and this work in Table S1. In summary, existing studies have often
limited in their geographical scope and the comprehensiveness in which
they represent urban form and travel demand. In this work, we aim

https://doi.org/10.1016/j.apenergy.2023.120883
Received 28 November 2022; Received in revised form 10 February 2023; Accepted 19 February 2023

https://www.elsevier.com/locate/apenergy
http://www.elsevier.com/locate/apenergy
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
https://doi.org/10.5061/dryad.bvq83bkd4
mailto:mmiotti@stanford.edu
https://doi.org/10.1016/j.apenergy.2023.120883


Applied Energy 339 (2023) 120883

2

M. Miotti et al.

Fig. 1. Correlation between density (residential population and jobs, in people-equivalents, measured at the household location) and travel demand, based on the 2017 U.S.
National Household Travel Survey [21]. Rural, suburban, and urban brackets are defined in Table 1. Confidence intervals show the bootstrapped 95% range of the daily totals.
Shaded areas reflect the range between people living within large (population >3M) metropolitan areas and people living in a small or no metro area. Default sample weights
were used. n = 245,431 people.

to address these gaps by analyzing data at the national scale and
combining it with information from other sources.

Initial insights on the correlation between travel across all land-
based modes and urban form at a national scale can be obtained from
the National Household Travel Survey (NHTS, [21]). The NHTS con-
tains information on travel behavior and demographic characteristics of
129,696 sampled households, spanning the entire United States. Each
household was randomly assigned a specific travel day during which
each person of the household compiled a detailed travel diary. Sample
weights allow to correct for sampling and response biases. This data can
be used to compile aggregate travel statistics. In this work, we measure
travel using cumulative daily statistics, as opposed to per-trip statistics,
allowing us to consider shifts between modes (e.g., is a reduction in
the number of trips made by car per person and day directly correlated
with a corresponding increase in walking trips?) and evaluate patterns
in terms of total time spent traveling and total number of trips made per
day (e.g., if higher density causes trips to be shorter, do people make
more trips instead?).

The NHTS data indicate that density, spanning rural environments
to dense urban areas, is strongly correlated with travel demand (Fig. 1).
People living in the densest urban areas (with a density of 12,000
people per km2) travel 50% less far per day and spend 70% less energy
doing so than people living in rural areas. People in urban areas also
spend more time traveling each day, on average, than people living in
rural to suburban areas. The average number of trips made per person
and day is relatively constant. At the same time, people living in large
metropolitan areas travel further and longer each day, but with fewer
trips, than people living outside of metropolitan areas but in a similarly
dense environment.

While valuable as a starting point, these insights obtained directly
from travel survey data leave many questions unanswered. Where does
the strong effect of density on travel behavior come from and how
much is it confounded by other aspects of urban form that correlate
with density? How much is the effect confounded by demographic char-
acteristics and residential self-selection (i.e., people with an inherent
preference toward certain travel characteristics choosing to live in an
environment that enables those preferences)? And is the increase in
average daily travel time in higher density areas the result of decreased
car travel speeds (and correspondingly longer typical travel times for
trips made by car), or the result of an increase in public transit and
walk mode share?

To address these types of questions, we extend a restricted (i.e., non-
public) version of the 2017 NHTS data that contains the approximate
location (the census tract) of each traveler’s household by matching
that household location with additional information from the Smart
Location database [22], OpenStreetMap (accessed using OSMnx [23]),

and the Typical Meteorological Year [24]. We then apply a path anal-
ysis to this comprehensive dataset that enables us to explain which
aspects of urban form affect travel behavior and how they are corre-
lated with density while controlling for residential self-selection and
other characteristics (Fig. 2). While it has previously been used to study
the relationship between the built environment and travel (e.g. [11,
16,25,26]), the lack of detailed contextual data on urban form has
been limiting its use. Our combined dataset allows us to investigate
this relationship using a large, weighted sample that representatively
spans the entire United States while considering detailed information
on urban form at the local level.

Our work reveals the quantitative relationship between different
aspects of urban form and daily travel demand. It also contributes
meaningfully to the discussion of how urban form can be effectively
measured and quantified in the context of mobility, and how various
features of urban form relate to each other. Therefore, this work
supports the fundamental understanding of the role that urban planning
and design can play in the decarbonization of our cities. In doing so
it uncovers specific, actionable policy measures that can contribute
to decarbonization goals, as well as quantifying some of the potential
benefits and risks of urban form interventions.

2. Material and methods

We evaluate the relationship between urban form and daily travel
demand per capita while controlling for demographic and other prop-
erties. We implement the model structure shown in Fig. 2 using a path
analysis, a subtype of structural equation models (SEMs) without latent
variables. Similar techniques have previously been used in the context
of travel demand modeling [16,26,27]. All relationships are imple-
mented as linear equations. Full mathematical equations are available
in section 1 of the Supplementary Material.

The model is applied to the weighted National Household Travel
Survey (NHTS) data, consisting of randomly sampled travel days made
by 245,431 people after filtering. This travel survey data is comple-
mented with data from other sources at the census block group (CBG)
level that have been aggregated to the census tract (CT) to enable an
integration with the NHTS data. The average CBG has a population of
about 1500 people, meaning that there are about 220,000 CBGs in the
United States. There are about 3 CBGs per CT. A summary of properties
of all variables used in the analysis is available in Table S3 in the
Supplementary Material. The estimated coefficients, along with their
significance levels, are shown in Tables S4–S7.
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Fig. 2. Schematic of the path analysis. A detailed description of each group and the specific features representing a given indicator is available in the Methods section. Solid
arrows reflect links related to urban form; dotted arrows reflect controls. Arrows labeled ‘Fig. 4’ and ‘Figs. 5/6’ or ‘F5/6’ indicate the figures in which the estimated effect sizes
(results) of those pathways are visualized.

2.1. Measuring mobility demand

Existing analyses of mobility demand in relation to the built envi-
ronment can be grouped along three axes: the modes they consider
(usually either car trips only, or all urban trips), unit of analysis
(individual people, households, or neighborhoods/cities), and the unit
of time over which they measure mobility (annual, daily, or individual
trips). The most common metric to gauge travel demand in the context
of energy use and sustainability is daily or annual household vehicle
miles traveled (VMT; see Table S1 for a list of examples). However,
VMT do not include trips made with other travel modes, making it
difficult to determine whether and how trips are substituted when
they are not made by car. Household VMT are also confounded by
household size and structure. Finally, in many travel surveys, VMT are
self-reported, making the metric prone to noise and potentially response
biases.

Modal choice studies, on the other hand, often focus on individual
trips. While this mitigates some of the issues associated with measure-
ments of annual household VMT, analysis of individual trips does not
capture unobserved aspects of travel behavior that may be correlated
with the characteristics of individual trips. For example, if higher
density means trips become shorter, do people make more trips instead?

Here, we measure travel behavior in terms travel days. Each travel
day represents the cumulative sum of travel activity (such as travel
distance) made by a given person on a single day. This approach allows
us to combine the benefits of annual travel miles with the benefits
of measuring individual trips. Specifically, we consider four indicators
of travel behavior: daily total (cumulative) travel distance per person,
daily travel energy use per person, daily travel time per person, and
number of individual trips made per person and day. Since energy
consumption is not directly available in the NHTS data, we estimate
the energy use for each trip. For trips made by car, this estimate
is based on the officially rated fuel economy of the corresponding
vehicle, trip distance, and average trip speed. Details are available in
the Supplementary Material.

2.2. Measuring urban form

Early efforts to quantify the impact of urban form on travel demand
often focused on population density. In the late 90’s, the notion of
the ‘‘3 D’s’’ of travel demand (density, land use diversity, and design)
was popularized, based on evidence from travel surveys [9]. The list
of D’s kept expanding, often including measures of access (access to
relevant destinations and/or infrastructure, including public transit
infrastructure). Access as well as street network properties are closely

related to density, however, and may reflect one of the key mecha-
nisms through which density affects travel behavior rather than being
separate factor [4,28].

To preserve the intuitive concept of density but also understand
the relevance of specific aspects of urban form, such as access, land
use diversity, and road network properties, we measure urban form
in two layers. Initially, we consider three high-level urban indicators:
(1) population density; (2) metropolitan area population of the core
statistical area (CSA); and (3) fixed effects for individual metropolitan
areas with sufficient sample sizes. These indicators are readily available
in most travel surveys and are intuitive to understand.

To measure density, we consider the combined and normalized
population and job density at the census tract level, using data from
the smart location database [22]. First, we normalize the number of
jobs across the country to equal the total population:

𝑁𝑗𝑜𝑏𝑠,𝑛𝑜𝑟𝑚,𝑖 = 𝑁𝑗𝑜𝑏𝑠,𝑖

∑

𝑖 𝑁𝑝𝑜𝑝,𝑖
∑

𝑖 𝑁𝑗𝑜𝑏𝑠,𝑖

(1)

where 𝑁𝑗𝑜𝑏𝑠,𝑖 is the number of jobs in census tract 𝑖 and 𝑁𝑝𝑜𝑝,𝑖 is the
population in census tract 𝑖. Then, we calculate the adjusted popu-
lation density as the combination of original population density and
normalized job density, assigning a weight of 50% to each:

𝑑𝑝,𝑎𝑑𝑗,𝑖 =
𝑁𝑝𝑜𝑝,𝑖 +𝑁𝑗𝑜𝑏𝑠,𝑛𝑜𝑟𝑚,𝑖

2𝐴𝑖

(2)

where 𝑑𝑝,𝑎𝑑𝑗,𝑖 is the adjusted population density in census tract 𝑖 and 𝐴

is the area of that tract.
This approach alleviates issues with residential population density

where dense but predominantly commercial or industrial areas would
be considered low-density due to the lack of residents in the area.
Normalizing the adjusted population density to the same scale as the
original population density should the final numbers more intuitively
familiar. We also tested other approaches (e.g. combined household
units and jobs per area), but they resulted in less consistent modeling
results. For example, measuring density in terms of household units is
confounded by the average household size.

To further improve the intuitive understanding of density, we clas-
sify different density brackets into rural, suburban, and urban. These
terms are not standardized, and different approaches to define them
exist (e.g. [29]). The official definition by the U.S. Census Bureau does
not include the term ‘suburban’ and only distinguishes between ‘urban’
and ‘rural’ [29,30]. Some definitions blend the rural–suburban–urban
distinction with metropolitan area size or presence (e.g. [31]). The
geographical resolution (e.g. census tract, zipcode, or even county) at
which areas are defined to be rural, suburban, and urban can vary as
well. Here, we define rural, suburban, and urban at the census tract
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Fig. 3. Illustration of the spatial scale of urban form metrics, showing Los Angeles (CA). The area shaded red in subfigure (a) indicates a census block group (CBG), the adjacent
areas with a red border the rest of the census tract consisting of 3 CBGs total. The red dots in both subfigures represent the centroids of other CBGs. The shade of gray reflects
density. In (a), the 500 m, 2 km, and 5 km radii around the centroid of the red shaded CBG are indicated; in (b) the 5, 10, 20, and 50 km radii. Similar to the density brackets
in Table 1, the radii are approximately equally apart from each other in log-space.

Table 1
Definition of ‘rural’, ‘suburban’, and ‘urban’ in this work, compared to Kolko [32]. p𝑎𝑑𝑗
refers to the adjusted population density in Eq. (2). HH refers to (occupied) households.
‘Equivalent to’ refers to the average density in HH/mi2 of the census tracts to the
bracket limits in p𝑎𝑑𝑗 , illustrating that our thresholds are similar to those in Kolko [32].

Kolko [32] This work Equivalent to

Rural <102 HH/mi2 <100 p𝑎𝑑𝑗/km
2 <118 HH/mi2

Suburban 102–2213 HH/mi2 100–2000 p𝑎𝑑𝑗/km
2 118–2204 HH/mi2

Urban >2213 HH/mi2 >2000 p𝑎𝑑𝑗/km
2 >2204 HH/mi2

level, based on the adjusted population density in Eq. (2). Metropolitan
area size is considered separately. We use thresholds similar to [32] (see
Table 1).

In a second step, we tie the high-level indicators (density at the cen-
sus tract level and metropolitan area population) to specific measures
of urban form: the number to destinations available within a certain
distance range (destination density within different distance brackets,
which is strongly related to access), land use diversity or entropy,
access to public transit network, and various street network and road
design properties (see Fig. 2).

Notably, removing this second layer from the model would not
substantially alter the total measured effect of the first-layer urban
indicators on daily travel demand. The purpose of the second layer
is to explain where the total effect of density and metropolitan area
population on travel comes from and which aspects of urban form and
urban design could be leveraged most effectively to reduce daily travel
energy use. In addition, the direct (unexplained) effects from each den-
sity bracket help us identify whether there are non-linear relationships
or missing relationships between the specific measures of urban form
and travel demand. Such relationships would be compensated by the
unexplained effect of certain density brackets.

We measure destination density in 7 distance bands, destination
entropy in 3 distance bands, and other properties within a certain
radius from the census block group of each household (Fig. 3). These
properties are then aggregated (averaged) to the census tract based, and
combined with the NHTS data (whose household location is available
at the tract, not the block group level). More details of how each urban
form characteristic was defined and calculated are available in section
1 of the Supplementary Material.

Through the structure in Fig. 2, we assume that there are no
strong causal links between the individual aspects of urban form mea-
sured here that would need to be included explicitly. We believe
this assumption to be justified, since the different properties can be

planned, designed, and adjusted simultaneously and largely indepen-
dently. Correlations, however, are likely to exist, and need to be
evaluated carefully to avoid over- or underestimation of coefficients
due to strongly correlated predictors. We discuss this further in section
1 of the Supplementary Material.

In a final step of the analysis, we apply the same model to two
subsets of the data: one only containing households living in census
tracts with an adjusted density of <2000 people/km2, and one only
containing households living in census tracts with an adjusted density
of >500 people/km2. These submodels let us evaluate whether the
direction or magnitude of the effect of urban form characteristics on
travel demand varies with density.

2.3. Identification of causal relationships

Causal inferences derived from observational data, such as the ones
used in this study, tend to be more tentative than those drawn from a
randomized study [33,34]. This is an inherent limit to investigating the
impact of aspects of the built environment on behavior or energy use.

Observed relationships between two variables can either be the
result of causation, confounders, or colliders [34,35]. To support causal
claims, confounders therefore need to be addressed. This is achieved by
selecting the right controls. Good controls blocks non-causal paths from
the treatment to the outcome and do not interfere with any mediating
paths from the treatment to the outcome.

However, controlling for the wrong variables can introduce colliders
into the model [35,36]. Specifically, conditioning on the common
outcome of two variables (i.e., a collider) induces a spurious associ-
ation between them. For example, controlling for air travel (which
we do not measure as part of travel demand) would likely intro-
duce bias into the model, since air travel is likely to be partially an
outcome of urban form (our intervention) and the amount of land-
based travel done (our effect). This bias is also called endogenous
selection bias. A related problem is simultaneity, where an explanatory
variable and the dependent variable cause each other [33]. In many
cases, instances of simultaneity can potentially be converted to non-
simultaneous (acyclic) structures by resolving the temporal sequence
of events more granularly [34].

In this study, we control for residential self-selection and three other
confounders (local climate, gasoline price, and day of the week of the
sampled travel day). At the same time, we carefully avoid controlling
for potential colliders. These considerations are discussed in more detail
in the subsequent sections.
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2.4. Residential self-selection and attitude

A potential source for biases in analyzing the relationship between
urban form and travel behavior is residential self-selection: people
with specific attitudes (e.g., preference to walk) may choose to live in
specific areas (e.g., dense urban areas), meaning that the built environ-
ment does not necessarily cause the choice to walk [37]. Self-selection
preferences are sometimes measured by some form of attitude. Prior
evidence suggests that urban form does affect travel behavior even
when attitude is controlled for [12,18,37,38]. While these previous
studies include a measure of attitude towards travel to account for self-
selection, the NHTS data used here does not contain sufficient data to
evaluate inherent attitude towards travel.

However, attitude itself can be shaped by the built environment [18,
20,38,39], implying that a direct inclusion of attitude into the model
may lead to underestimations of the effect of urban form on travel.
This is because if attitude is the result of urban form travel behavior,
controlling for it introduces a collider into the model.

Here, we control for residential self-selection by incorporating a
wide variety of demographic characteristics that cannot be or are very
unlikely to be altered by urban form or travel behavior. We allow these
characteristics to moderate the link between the urban indicators and
travel demand through the included endogenous variables, as well as
the final travel demand itself (see Fig. 2). Despite this, however, a
certain overestimation of the causal links between measured aspects of
urban form and travel demand cannot be ruled out in the final model.
The results presented here should be considered evidence for, but not
proof of, the magnitude of causal relationships.

2.5. Additional potential sources of endogeneity

Residential self-selection is not the only aspect that can introduce
endogeneity into the model when controlling for it in a certain man-
ner. For example, it might be tempting to include some measure of
effective travel speed or congestion. However, effective travel speed
is jointly determined by the built environment (the treatment) and by
travel demand (the dependent variable). In addition, travel speeds are
inherently linked to travel distance: shorter trips may have inherently
lower travel speeds and higher levels of congestion because they take
place in denser areas, but that does not mean that low travel speeds
or congestion caused a trip to be shorter than it otherwise would have
been.

Similarly, it might seem tempting to measure the population density
at the origin and destination of each trip instead of at the traveler’s
household location, yielding a more accurate picture of the urban
environment in which the trips took place. However, relating urban
form to individual trips can introduce bias. For example, we may find
that if both trip origin and trip destination are located in a high-density
area, trips are shorter than if only the origin is located in a high-density
area. However, this could simply be the result of the fact that two high-
density areas are inherently more likely to be close to each other than
a randomly chosen high-density and a randomly chosen low-density
area. Once again, the variable in question (population density at the
origin and destination of a given trip) is both the result of the treatment
(urban form) and effect (revealed travel behavior).

For these reasons, we measure all properties of urban form at and
around the traveler’s household, rather than the origin or destination
of each trip. We exclude direct measures of trip speed or congestion
in favor or measured properties of the built environment that may
affect these characteristics, but are not immediately affected by travel
demand, such as road capacity and speed limits. Further details on the
method, including equations and detailed descriptions of each included
variable, can be found in section 1 of the Supplementary Material.

3. Results

Explaining the relationship between density and travel through urban form

We confirm the previous observation (see Fig. 1) that population
density has a substantial impact on daily travel demand, now control-
ling for demographics and other factors (Fig. 4a,b). Compared to rural
areas, dense urban areas (>12,000 p𝑎𝑑𝑗/km

2) show a reduction of 72%1

in daily average travel distance and a reduction of 78% in daily travel
energy use. While a larger fraction of the population travels on a given
day in dense urban areas (+8.1%, Fig. 4e), fewer travelers make any
motorized trips (−16.8%, Fig. 4f). Combining these probabilities with
the reduction in energy consumption of people who do make at least
one motorized trip (Fig. 4b), the densest urban areas cause a reduction
in daily travel energy use of 80% as compared to the least dense rural
areas.

Figures S8 and S9 in the Supplementary Material add further insight
into why demographic factors do not substantially affect the previ-
ously identified relationship between density and travel demand: while
demographic factors explain a large fraction of daily travel demand,
they are barely correlated with specific characteristics of urban form
such as destination density, road network properties, and public transit
infrastructure.

Of the total effect of density on travel demand, a large portion (40%
in terms of daily travel distance, 28% in terms of daily travel energy
use given that at least one motorized trip was made) can be attributed
to the correlation between density and access to locations no more
than 2 km away. The combination of different road network properties
have a similarly large effect. The remaining impact can be explained by
public transit infrastructure, road capacity per capita, and destination
density at a distance of 2–10 km. Land use entropy does not mediate
the relationship between density and travel demand. As we will show
in the next section, this is because entropy is barely correlated with
density (but is correlated with travel demand).

We also confirm that the size of a metropolitan area has a con-
siderable effect on daily travel distance, energy use, and travel time
(Fig. 4a–c). People living in large cities (with a metropolitan area
population of 3 million or more) travel 28% further each day, for 23%
more time, than people living outside of a metropolitan area, all else
being equal. This is predominantly the result of an increased number
of possible destinations at least 10 km away.

Daily average travel time and in particular the number of trips
per day are affected less by density than daily travel distance and
travel energy use, even when controlling for demographics (Fig. 4c–
d; note the y-axis scale). Increased access to public transit in dense
urban areas does lead to an overall increase in typical daily travel
times, which acts opposition to the correlation between density and the
presence to nearby destinations. This increased access to public transit
in combination with an increase in destination density between 10 and
100 km, associated with large metropolitan areas, causes the observed
increase in average daily travel time in dense areas in Fig. 1.

Notably, the direct or unexplained effect of density and metropoli-
tan area size is small for all travel metrics, in particular for daily travel
distance and energy use (Fig. 4a–f). This implies that the measures of
urban form that we include comprehensively cover the mechanisms
through which density reduces daily travel distance and energy use. It
also indicates that the identified relationships in their sum are unlikely
to be strongly under- or overestimated, or non-linear. If they were, the
free coefficients for the unexplained effect would need to correct an
overestimated effect for some, but not all, density or metropolitan area
size brackets.

1 𝑒−1.39+0.12 − 1 = −0.72; see section on coefficient interpretation in section
1 of the Supplementary Material.
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Fig. 4. Estimated effects of density (reflecting residents and jobs) and metropolitan area size on travel demand, mediated through specific aspects of urban form (see Fig. 2). The
baseline (0.0) reflects a household located in an area with <100 p𝑎𝑑𝑗/km

2 and outside of metropolitan area. The percentage impacts shown are calculated using 𝑝 = exp(−𝑣) − 1,
where 𝑣 is the original y-axis value. The black diamond markers show the net effect size. Supplementary results for the fixed effects of 8 metropolitan area codes (see Fig. 2, top
left) are shown in Figure S10.

Investigating specific aspects of urban form

Next, we explore individual measures of urban form and their
impact on daily travel energy use, daily travel time, and the probability
of making at least one motorized trip during a given day (results for the
other three indicators are shown in Figure S5). Contrary to the results
in the previous section, where aspects of urban form were evaluated in
the context of density and metropolitan area population size, the results
of this section are independent of the extent to which individual aspect
of urban form are correlated with these high-level indicators.

We find that destination density less than 10 km away (whose
individual effects are cumulative) has the largest impact on daily
energy use, closely followed by rail station access and the fraction of
1-way streets (Fig. 5). We suspect that the latter is closely correlated
with limited parking availability and pedestrian-friendly street design.
Increased entropy does lead to a decrease in daily average travel energy
use. Part of the benefit of increased entropy (more convenient access
to a variety of destinations nearby), however, is already captured by
access to nearby destinations.

In our formulation, urban form can impact travel demand directly,
or it can impact vehicle ownership, which in turn impacts travel

demand. We find that most of the effect of urban form on travel demand
is direct, but that vehicle ownership still plays a substantial role. This
suggests that the choice to walk or take public transit is less tied to the
lack of availability of a car than it is to the availability of destinations
that are accessible by these alternative modes. Similarly, it may suggest
that policies leading to marginal changes to car ownership, when
isolated from other impacts on urban form, are unlikely to effectively
reduce (or increase) travel energy demand. The two features more
directly tied to car ownership rates are public transit access and the
fraction of 1-way streets. The latter may be strongly correlated with
street parking availability.

Changes in observed daily travel time can result from changes to
daily travel distance, from passengers switching from one mode to a
faster or slower one, or from changes to the travel speed associated with
a given mode (in particular, from roadway congestion). Destination
entropy (land use diversity) and access to destinations less than 500 m
away (within walking distance) are both associated with decreases in
typical average daily travel time, implying that they allow travelers to
take shorter-distance trips and spend less time traveling overall. On the
other hand, increased rail station access is associated with increased
daily travel time through changes in mode split, and an increase in
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Fig. 5. Estimated effect size of individual aspects of urban form on three key travel indicators (see Fig. 2). Results for the other three indicators are shown in Figure S8. All
features are normalized to a range between 0 and 1, meaning that the shown effect size indicate the maximum effect. For a version of this figure showing the average contribution
of each indicator to the variation in the travel indicator instead, see Figure S6.

destinations 10–100 km away is associated with an increase in daily
travel time through longer trips. Overall, however, average daily travel
time is less affected by different aspects of urban form than daily travel
energy use.

From rural to suburban to urban: assessing effect heterogeneity

For this part of the analysis, we separately consider the transition
from rural to suburban and from suburban to urban spaces, as defined
in Table 1, using two submodels. We also show the mean average
deviation (how much each aspect varies across the United States) and
correlation (how much each aspect is correlated with density) for
additional context.

From rural to suburban areas, access to destinations less than 10
km away, higher intersection density, and lower road capacity per
capita dominate the reduction in energy use. Urban sprawl, through a
corresponding increase in destination availability between 10 and 100
km, partially cancels out those reductions.

From suburban to urban areas, the effects become more varied.
Public transit presence and the fraction of one-way streets, which were
excluded from the rural to suburban model due to their low variance,
become substantially more relevant. In addition, we note that it is
predominantly the availability of destinations less than 2 km away that
is driving a decrease in travel demand, with destination density at the
5–10 km interval being associated with an increase in motorized travel.

Notably, rail station access and the fraction of 1-way streets, two of
the aspects with the largest individual impact on daily energy use, vary
little across the country (column ‘MAD’ in Fig. 6) because they are often
close to 0. At the same time, they are both strongly correlated with
density (column ‘Corr’). Destination entropy is not strongly correlated
with density, especially in suburban to urban environments, which is
why its effect is small in Fig. 4, even though it can affect daily travel
energy use and travel time considerably.

If you build it, they will come

Road capacity per capita is strongly correlated with daily travel
energy use when transitioning from suburban to urban areas (Fig. 6).

In particular, increased road capacity may enable access to destinations
10–100 km away (whose presence drives overall energy demand), and
appears to disincentivize travelers from using non-motorized modes.
This finding is consistent with the expected impacts of induced demand—
a phenomenon that takes place when roadway congestion is acting as
a binding constraint on demand for car travel, and by which increasing
roadway capacity leads to more car travel. Were induced demand to
be unimportant, one would expect increases in roadway capacity to be
associated with decreases in travel time owing to reduced congestion,
suggesting that the travel-inducing impacts of increases in roadway
capacity outweigh the congestion-mitigating ones.

Increases in roadway capacity are associated with more car trips,
more energy use, and more travel time. The observed effect of auto-
motive road capacity (where pedestrians are not allowed) is smaller
than that of pedestrian-accessible roads. This is likely because we only
measure road capacity around the traveler’s household in a radius of
3 km, not around each trip origin or destination, thus only partially
capturing the effect of automobile road capacity on the prevalence of
longer car trips. We discuss this modeling choice more extensively in
section 1 of the Supplementary Material.

Evidence for induced demand can also be found elsewhere. In
particular, urban form characteristics associated with faster or easier
driving do not tend to lead to overall reductions in travel time. For
instance, an increase in the average speed limit can be expected to
be associated with an increase in typical travel speeds for car trips,
but higher speed limits lead to no net decrease in travel time, sug-
gesting that travel speed increases due to higher speed limits (and the
associated higher-speed roadway design) are entirely counteracted by
increases in congestion and longer distance trips. A smaller share of
one-way streets and a lower intersection density (e.g. longer blocks)
increase the likelihood of taking at least one car trip, appearing to make
car travel more, and non-motorized travel potentially less convenient.
Fewer four way intersections (associated with a suburban rather than a
typical urban street layout) are not associated with the same increase in
car trips, but these factors all lead to an increase in daily travel energy
use while hardly affecting daily travel time, suggesting that car-friendly
urban form leads to either more or longer-distance car trips.
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Fig. 6. As Fig. 5, but for two separate submodels: one for rural to suburban areas (up to 2000 p𝑎𝑑𝑗/km
2), and one for suburban to urban areas (above 500 p𝑎𝑑𝑗/km

2). The bracket
from 500 to 2000 p𝑎𝑑𝑗/km

2 is overlapping. In addition, column ‘MAD’ indicates the mean average deviation of each aspect and column ‘Corr’ indicates the correlation coefficient
between each aspect and density (natural logarithm). For a version of this figure where each coefficient has been weighted by the corresponding MAD, showing the average instead
the maximum effect size, see Figure S7.

Discussion

Our results suggest that higher density does indeed lead to sub-
stantially less travel energy use, in a large part due to increased
access to nearby destinations less than 10 km away, and in particu-
lar destinations less than 2 km away. Part of the benefit of denser
areas, however, is offset by the fact that most dense areas are lo-
cated in large metropolitan areas. Combining these observations, our
work suggests that promoting many urban centers no more than about
2–4 km apart from each other, to build ‘cities within a city’, may
mitigate the demand-increasing effect of large cities while maximizing
the demand-decreasing effect of local access.

While density is a good overall predictor of travel demand, proper-
ties of the local street network contribute as well. And while density
and access to nearby destinations are correlated, they are not identical:
an area with a given density can still have better or worse overall access
to a variety of destinations closeby. For a given population density,
lowest private vehicle travel energy use is therefore found in areas with
strong local access, a highly connected street network, and low road
capacity per capita (Fig. 7). These examples also illustrate that there
are measures that can be taken to reduce travel energy use without
having to increase density, accommodating people who prefer to live
in lower-density areas.

Efforts to reduce travel energy use should not come at a cost of
reduced access to opportunities for the population. Lowering road
capacity for cars, for example, should be complemented by increasing
walking access to nearby and public transit and cycling access to
destinations further away (conversely, any increases to road capacity
should be complemented by policies aimed at discouraging new, long-
distance trips). Critically, our work indicates that providing access
to a variety of destinations for all communities throughout a city is
symbiotic with lowering energy consumption if all key measures are
implemented simultaneously.

While in line with existing literature overall, our results indicate
a stronger relationship between urban form and travel demand than

some existing work [4] and appear to contradict certain previous
findings that the impact of the built environment on travel is strongly
confounded by demographic characteristics and attitude (e.g. [20,40]).
While we observe that demographic factors indeed explain a large
fraction of the variance in daily travel demand, they are weakly cor-
related with specific characteristics of urban form (see Figures S10 and
S11). This means that the only attitudes that could cause the observed
relationship between the built environment and travel demand are
those that are entirely uncorrelated with any demographic control
variable used in this study.

Instead, we postulate that there are two major drivers that distin-
guish our findings and those previous observations. First, we consider
the most rural all the way to the densest urban areas, while incorporat-
ing detailed information on urban form for each location. Studies that
attribute a strong confounding effect to attitude have predominantly
compared individual, nearby neighborhoods (e.g. [18,40]). This design
makes it more likely that differences in travel behavior are attributed
to attitude, especially when those neighborhoods are relatively similar
in terms of urban form, but distinct in terms of demographic char-
acteristics. Second, attitudes themselves may be affected by the built
environment over time (e.g. [18,20,38,39])—in fact, attitudes may
exemplify a key mechanism through which urban form can affect travel
demand: by modifying the perceived attractiveness of certain modes
and destinations compared to other options.

Our work also reaffirms that the daily travel time budget is rel-
atively constant across very different urban environments [41,42],
although we observe an even higher regularity for the average number
of trips made per day. As such, our findings add to current literature
on the underlying regularity of human travel patterns (e.g. [43]). These
observations are closely related to induced demand: if the time spent
traveling per day is constant for a given individual, then an increase
in travel speed will lead to higher daily travel distance and energy use
through longer trips and/or modal shifts. This indicates that the urban
environment can influence how people travel and where, but not how
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Fig. 7. Examples of areas with higher and lower predicted energy use while controlling for density and access to nearby destinations, for medium density (left two columns) and
high density (right two columns). The percentages indicate the estimated difference in per-capita mobility energy use compared to the corresponding urban area to the left due to
differences in the category of the corresponding row. This illustrates that population density is a reasonable but not definitive predictor of travel energy use, and that there are
measures that can be taken to reduce travel energy use without having to increase density. Each map shows an area of 3 × 3 km. Public transit access, which also was found to
have an impact on travel energy demand (see Figs. 4 and 5), is not shown. Plotted using network data from OpenStreetMap (accessed through OSMnx [23]).

often and for how long. Therefore, the former should be the focus of fu-
ture policy and planning decisions aimed at decarbonization. Similarly,
since travel patterns are largely derived from the built environment, we
should plan for the patterns we want there to be, not for those that we
project based on historical data.

A limitation of our study is the resolution and accuracy of certain
measures of urban form. Since all data is collected at the census block
group level, we are not able to investigate micro-scale effects of urban
form on travel behavior. In addition, while we do identify an impact of
land use entropy on travel demand, our measure of entropy is relatively
coarse (see Methods). Finally, for street network properties, certain
data had to be imputed, possibly mitigating the resulting effect size.
Improvements in these measures would be unlikely to alter any of our
key conclusions, but could improve our understanding of the relative
importance of specific aspects of urban form in different contexts,
especially for walking trips.

Future work could therefore improve how urban form is measured
and find ways to integrate information on urban form measured at
the origins and destinations of each trip, rather than just around the
location of each traveler’s household, and information on travel speed
and congestion, without introducing simultaneity or other forms of
endogeneity. Another key avenue for future work will be to achieve
an increase in the spatial resolution of the analysis. Analyses based on
travel survey data, such as ours, could be combined with crowd-sourced
mobility pattern data to verify and further investigate the observations
made here [44]. This increase in spatial resolution could be accompa-
nied by additional measures of urban form. Image processing of satellite
and street view images may assist in these measures, similarly to recent
efforts for building energy modeling [45]. More sophisticated methods
could also be used to include the impacts of climate, including urban
microclimates, on travel.

Conclusion

Our work provides evidence for a strong causal link between proper-
ties of urban form and daily travel demand and energy use. Distributed
urban centers that provide local access to a variety of destinations to
a large part of the population, connected streets with low capacity
for motorized vehicles, and public transit infrastructure should be
prioritized in order to lower the energy consumption of travel. Notably,
many of these measures can be implemented without requiring a sub-
stantially increase in density throughout existing built environments.
This outlines a pathway for cities and communities to reduce the energy
demand and traffic of personal mobility while maximizing access to
destinations for all communities.
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