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Abstract—Multimodal problems such as caption generation
advances AI as a whole since they require integration of several
key domains such as computer vision, NLP and knowledge
representation. In this paper, we develop a new approach to
evaluate captioning models by verifying them using Markov
Logic Networks (MLNs). Specifically, we compile an MLN from
training data and perform probabilistic inference to estimate
uncertainty in a generated caption. To reify the caption, we
leverage advances in Natural Language Inference (NLI) models
and convert a caption into a query for the MLN. Further, we add
visual context into the MLN distribution using an attention-based
Multiple Instance Learning model and evaluate a caption based
on this augmented distribution. We perform experiments using
MSCOCO on several state-of-the-art benchmarks and show that
our approach can evaluate captioning models just as effectively
as methods that require human-generated captions.

Index Terms—Visual Captioning, Markov Logic Networks,
Attention, probabilistic theorem proving

I. INTRODUCTION

Visual captioning has emerged as a prototypical multi-
modal problem that requires integration of natural language
understanding, computer vision and knowledge representation.

Typical caption evaluation methods rely on human judge-
ment [20] or automated comparison to reference captions [14]
to evaluate the quality of generated captions. However, these
approaches are less scalable since in some cases they require
several captions for the same image in order to measure if
the generated caption is similar to human consensus. More
recently, there has been a push towards techniques that do
not require reference captions for evaluation. For instance,
CLIPScore [6] relies on using a pre-trained deep model to
measure similarity between the image and text. However,
there are limitations to such approaches since the evaluation
method may not be interpretable. In this paper, we propose a
symbolic approach to evaluate captions. Specifically, similar
to verification using automated theorem proving, here, we
develop a verification method using probabilistic theorem
proving [4] in Markov Logic Networks (MLNs) [2] - the
equivalent of proving entailment in logical knowledge bases -
to quantify uncertainty in generated captions. Fig. 1 illustrates
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Fig. 1: An example to visualize the probabilities in the MLN
distribution. The MLN for the image consists of weighted
formulas. For the first caption, the atoms Drinkfrom(Bottle,
Child) and Liquid(Milk) and In(Milk, Bottle) all follow
from the caption. For the second caption, Hold(Child, Bottle)
and Frontof(Child, Bottle) follow from the caption. The
visualization shows the probabilities of all possible worlds in
the MLN distribution (each pixel in the image corresponds to
probability of a world). The marked circles show the worlds
where atoms that follow from the caption are true. Summing
over them yields a measure of uncertainty of the caption in
the MLN distribution.

our main idea. Assume that we have compiled an MLN as
shown in the figure, where first-order formulas in the MLN
represent relations observed in the data and the weights on
formulas parameterize a probability distribution induced by
the MLN. Given a test caption, we compute the likelihood
of the caption in the MLN distribution. This is in general
a weighted model counting or discrete integration problem
where we sum probabilities over possible worlds. A world
in this example denotes the presence/absence of key relations
(such as Hold(Child,Bottle), Frontof(Child, Bottle), etc.) in
a possible caption that can be generated for the image. Thus,
if the generated caption occurs in high-probability worlds, it
is more likely to be in agreement with the distribution of the
compiled MLN and thus has smaller uncertainty. As an illus-
tration of this, the probabilities of the worlds corresponding
two example captions are visualized in Fig. 1.

In our verification model, we compile MLNs by connecting978-1-6654-8045-1/22/$31.00 ©2022 IEEE



triplets extracted from training data into a first-order represen-
tation which are then parameterized through Max-likelihood
estimation. However, a challenging problem with compiling
such an MLN for verification is that typically, the weights in
an MLN are static. This is problematic since we would ideally
want the MLN weights to dynamically change depending
upon the visual context observed in a test image. Therefore,
during verification/inference, we augment the compiled MLN
based on visual features. Specifically, we learn an attention-
based Deep Multiple Instance Learning (MIL) [8] model that
pools lower level visual artifacts (such as object vectors) to
learn a representation for higher level concepts (relationships
between objects). We then augment the distribution of the
MLN based on outputs of the MIL model. Thus, the distri-
bution of the MLN dynamically changes to reflect the visual
context of the relation mentions in the generated captions. To
estimate the likelihood of a caption in this distribution, we
reify the caption to represent a query in the compiled MLN.
Specifically, we use a pre-trained Natural Language Inference
(NLI) model that reifies the caption based on relations that
entail/contradict/remain-neutral given the caption. We compute
the likelihood of the reified caption as a measure of uncertainty
of the captioning model.

We perform experiments using the well-known MSCOCO
dataset [11] and compare the performance of state-of-the-
art captioning systems such as SGAE [21] and attention-
on attention transformer models (AoANet) [7]. Through de-
tailed experiments and user studies, we demonstrate that our
approach evaluates captions similar to metrics that require
reference captions.

II. BACKGROUND

A. Markov Logic Networks

An MLN is a set of pairs (f, wf ) where f is a formula
in first-order logic and wf is a real number. We ground the
formulas by substituting variables with constants/objects from
its domain. MLNs assume Herbrand semantics, i.e., there is
a finite number of objects in the domain. The ground MLN
represents a probability distribution over possible worlds (a
world ω is a True/False or 0/1 assignment to all possible
ground atoms in the MLN) as a log-linear model. Specifically,

P (ω) =
1

Z
exp

∑
f

wfni(ω)

 (1)

where ni(ω) is the number of groundings of f that evaluate
to TRUE given ω and Z is the normalization constant.

B. Related Work

The standard evaluation metrics used for captioning are
typically based on comparing generated sentences to refer-
ence sentences. Since measuring semantic similarity between
sentences is typically a challenging problem by itself, many of
the evaluation methods such as ROGUE [17] and BLEU [14]
are borrowed from NLP-evaluation in related tasks (e.g. sum-
marization). Other methods such as METEOR [1] aim to

develop metrics that are more correlated with human consen-
sus. CIDEr [20] measures the generated sentence with human
consensus on how best to describe an image. However, this
requires each image to have several descriptions related to the
same image in order to reliably measure consensus. Metrics
that do not need human-annotated captions have also been
explored recently. Madhyastha et al. [12] developed VIFIDEL,
an evaluation metric that measures visual fidelity. Specifically,
this metric compares a representation of the generated caption
with the visual content. That is, if the caption misses out
some details in the image then it is penalized and rewarded
when it describes all aspects (e.g. objects) present in the
image. However, one drawback with this approach is that
often in images it is not necessary to represent all details, i.e.,
humans tend to focus on key aspects of an image to describe
it. Therefore, the scores generated through VIFIDEL had
lower correlations with human-based scores. Hessel et al. [6]
developed an approach called CLIPScore which does not use
reference captions for evaluation. For evaluation, CLIPScore
presents the image and generated caption to a pre-trained
cross-modal model and measures similarity between the two.
Thus, the representation learned by the model helps determine
the alignment between the image features and the language
features in the caption. On the other hand, since our approach
is symbolic, it is easier for a user to interpret our scoring.
Thus, using the compiled MLN for validation does not require
the step of generating a representation (using a deep network)
which may not always be easy to interpret. More recently,
THUMB [10] proposed rubrics for human-evaluation protocol
in image captioning focused on transparency of evaluation.
Our approach using symbolic AI models for evaluation is a
step along this direction.

III. MLN LEARNING

We learn the MLN structure from captions in the training
data. Specifically, we use bottom-up structure learning [13] to
learn formulas from triplets (subject, object and predicate) ex-
tracted from captions using the textual scene graph parser [18].
A gliteral (ground literal) is a triplet extracted from the parser.
We constrain connections between gliterals as follows. A
connection between two gliterals exists if and only if there
is an object (or constant) shared between them. For example,
On(Bike, Person) and On(Street, Light) are non-shared glit-
erals, but On(Bike, Person) and Near(Person, Light) are
connected since they share a common object. Thus, we can
form a connected chain of gliterals of size k by connecting
the k-th gliteral to the k − 1-th gliteral.

We learn the MLN structure by iterating over each
instance in the training data and extracting the glit-
eral chains of size at most k. Once we have extracted
the chains from the training data, we form conjunc-
tive first-order formulas from these gliteral chains. For
example, On(Bike, Person) ∧ Ride(Person,Bike) and
On(Horse, Person) ∧ Ride(Person,Horse) share the same
first-order logic structure and the candidate MLN formula that
act as a template for them is On(x, y) ∧ Ride(y, x). As is



the case in MLNs, we assume Herbrand semantics where we
restrict the domain of each variable to a finite set. In our case,
for example, if we consider Ride(y, x), the domain of x, ∆x

is restricted to be the set of objects that are observed in the
training data, i.e., X ∈ ∆x if there exists some Y ∈ ∆y such
that Y rides X . Note that in theory, we can use other logical
connectives to connect the literals (such as ⇒). However,
it has been shown in MLNs that it is often better to use
conjunctions to make weight learning more robust [2] as
compared to implications that are more common in logical
knowledge bases.

Once we form the set of conjunctive formulas, we learn
their weights using pseudo-log likelihood (PLL) learning.
Specifically, we start with a weight initialization of the ratio
of the number of times a formula is satisfied by the training
data and the total number of possible ground instantiations of
the formula. For instance, if On(x, y) ∧ Ride(y, x) is satisfied
m times in the data, its weight is initialized to m/(|∆x||∆y|)
since there are a total of |∆x||∆y| of possible groundings
of the formula. We learn the weights of the formulas by
maximizing the PLL which is an efficient learning approach.
Specifically, let X denote all the possible ground atoms in the
MLN and let x be the assignment (either 1/0) to these atoms
based on the triplets in the training data. We maximize PLL
of X given by the following equation.

logPw(X = x) =
n∑

l=1

logPw(Xl = xl|MB(Xl)) (2)

where Xl represents a single ground atom, MB(Xl) is the
Markov blanket of Xl, i.e., all atoms that occur in at least one
formula that Xl occurs in, Xl = xl is an assignment (0/1)
to the atom Xl. Thus, the PLL computes the probability of
each atom conditioned on assignments to all other atoms. The
weight update can be carried out efficiently since the gradient
of the PLL function is given by,

∂P

∂wi
=

n∑
l=1

ni(x)− Pw(Xl = 0|MB(Xl))ni(x[Xl=0])

−Pw(Xl = 1|MB(Xl))ni(x[Xl=1]) (3)

where wi is the weight of the i-th formula, ni(x) is the number
of groundings of the i-th formula that are true (in the training
data), ni(x[Xl=0]) is the number of groundings of the i-th
formula that are true when the assignment to Xl is equal to 0
and the other assignments are unchanged. Thus, to obtain the
gradient, we compute the difference between the number of
true groundings and the expected number of true groundings
for the current weights. To maximize the PLL, we update the
i-th weight in iteration t as,

w
(t+1)
i = w

(t)
i + ϵ

∂P

∂wi

where ϵ is the learning rate. We continue updating all the
weights until we reach a fixed point. Note that since the
values ni(x[Xl=0]), ni(x[Xl=1]) and ni(x) do not change
as the weights are changing, they can be pre-computed in

advance and therefore, PLL learning is a highly efficient
weight learning approach for MLNs.

IV. ATTENTION-BASED MULTIPLE INSTANCE LEARNING

One of the limitations in MLNs is that the weight for a
ground formula is fixed at a single value. However, in our case,
the same formula in the context of different images can have
varying degrees of importance. For example, a grounding such
as On(Person,Bike) ∧ Ride(Bike, Person) can be very
important if we are captioning an image where the rider and
the vehicle are prominently seen but less important when they
are obscured from view. To address this limitation, we augment
the MLN with visual context from the image. Specifically,
we learn an attention-based Multiple Instance Learning (MIL)
model that pools information from the visual context and
relates it to atoms in the MLN.

To train our model, we use relation mentions in the caption
to weakly relate feature vectors extracted from the image. For
example, the features corresponding to Bike and Person can
be related through the Ride relation if the caption mentions
this relation. However, the labeling might not be exact since
the object extraction can be noisy and the relation mention in
the caption may be referencing other objects in the image. To
address this, similar to the approaches in [8], we use weak
supervision and predict a label over bags of instances instead
of individual instances.

Let OI represent the set of object feature-vectors extracted
from I . In our experiments, the objects are identified and
localized using Faster R-CNN [15]. ResNet-101 [5] performs
object detection in the image and the visual features are
extracted from this consisting of region of interest pooling
for each of the bounding boxes. Let < e, e′, p > represent a
triplet extracted from the textual scene graph parser applied to
the caption, where e, e′ are the object mentions and p is the
predicate mention. O⃗ = O⊕O′ is an instance in the positive
bag for p, where O,O′ ∈ OI and O has the label e, O′ has
the label e′. O⃗ = O ⊕ O′ is an instance in the negative bag
for p, where O,O′ ∈ OI and O does not have the label e or
O′ does not have the label e′. As is standard practice in MIL,
we assume that for a positive bag at least one instance in the
bag is positive. In our case, this means that at least one of
the object-pair vectors must be related by the predicate p. For
a negative bag, the assumption is that no instance within the
bag must be positive, i.e., none of the object-pair vectors are
related through p.

Given positive and negative bags for a predicate, the MIL
pooling function learns a representation for the bag. A require-
ment is for the pooling function to be permutation-invariant,
i.e., the bag representation must be invariant to the order of
object-pairs within the bag. The pooling function specified
in [8] is shown to be effective even with a small number of
bags, which fits our case since some predicates occur less
frequently than others in the captions.

Let O(i) be the i-th bag for a predicate. Let the instances in
O(i) be O1 . . . On. The MIL pooling function combines the
representations of O1 . . . On into a representation for the bag



Fig. 2: Illustrative example for attentions in identifying pred-
icates. The left image shows the gated-attentions on ob-
ject pairs and the right image show the regular attention
(brighter the intensity in the box larger is the attention). For
Hold(boy, umbrella), in the gated attention model, the objects
that are relevant to the predicate are attended to more than in
the model that uses regular attentions.

z. In the case of attention-based pooling, the bag representation
is given by the following equation.

z =
n∑

k=1

αkOk

αk =
exp(w⊤tanh(VO⊤

k ))∑n
j=1 exp(w

⊤tanh(VO⊤
j ))

Here, w ∈ RL×1 and V ∈ RL×M are learnable parameters,
where M is the dimensionality of the instances in the bag (the
object-pair features) and L determines the flexibility we have
to represent the bag. The tanh(·) function is an element-wise
non-linearity. In our case, we learn the parameters using a fully
connected layer on top of z which outputs the bag label. αk

encodes the importance of the k-th object pair in determining
the label for that bag. Specifically, the model has a likelihood
given by,

L(θ) =

N∏
i=1

P (y(i)|O(i), θ)

where y(i) is the bag label for the i-th bag. The negative-
log likelihood is optimized by minimizing the negative log-
likelihood as,

ℓ(θ) = −
N∑
i=1

y(i) log(Pθ(O
(i)) + (1− y(i) log(1− Pθ(O

(i))

where Pθ(O
(i)) is the output of the attention-based model

parameterized by θ. In our case, note that we learn a set of
models, where the model parameterized by θr corresponds to
the predicate of type r. The overall loss over all predicates is
simply equal to

∑
r ℓ(θr). For each predicate, we balance the

negative bags with the number of positive bags when training
the model. Given a new bag O, the most likely predicate can
be estimated as r = argmaxr′ Pθr′ (O).

A. Gated Attention

For the attention-based model, we see that the contribution
from each object-pair in the bag is encoded within the opera-
tion tanh(VO⊤

k ). The output vector from this operation (which

is an element-wise operation) is then parameterized with w.
The problem here is that, if the range of values for VO⊤

k is
between -1 and 1, then the tanh(·) function acts like a linear
function. This means that, for a bag, the information passed
on by each of the object-pairs within that bag will only vary
linearly. In the case of complex relationships in an image,
this becomes more problematic. Therefore, in [8], a gating
mechanism is used to control the information that can flow
out of a bag. This is similar to the approach in LSTMs where
gating allows us to ensure that information does not vanish
across distant time steps.

In our case, we want finer-grained control of the information
the model obtains from each of the instances within a bag.
Particularly, suppose in an image, we have several object-pairs
that are likely to be a related by the same predicate, the gating
mechanism will allow the most relevant object-pair to more
significantly attend to the output bag label. Technically, as
is defined in [8], this is achieved by combining a sigmoid
with the tanh function to define the attention weight for each
instance in a bag in MIL. That is, for each of the object-pairs
in the bag, we perform an element-wise multiplication of the
tanh non-linearity with the output of a sigmoid with learnable
parameters. Specifically,

αk =
exp(w⊤(tanh(VO⊤

k ))
⊙

sigm(UO⊤
k ))∑n

j=1 exp(w
⊤(tanh(VO⊤

j )
⊙

sigm(UO⊤
j )))

(4)

where U ∈ RL×M are learnable parameters for the sigmoid
function. In this case, for each object-pair, we compute a
sigmoid non-linearity with parameters V and a tanh non-
linearity with parameters U and perform an element-wise
multiplication to obtain a vector representing the attention
given to the object-pair. Multiplying this with w yields the
attention value. The effect of the gating mechanism is illus-
trated in Fig. 2. Specifically, the gating mechanism allows
more information to be passed on from each of the object
pairs in a bag. As a result, relevant relationships are likely to
get greater attention in the model. As seen in the figure, the
relationship that is more important to the caption has more
attention when we use the gating mechanism in the MIL model
as compared to the regular attention model.

V. CAPTION VERIFICATION

A. Probabilistic Theorem Proving

Theorem Proving is the fundamental task in logical knowl-
edge bases. The classical Davis-Putnam method uses the
resolution rule to prove that a query Q is entailed by a
knowledge base. However, in the presence of uncertainty, as is
well-known, logical reasoning is brittle. In MLNs, we perform
Probabilistic Theorem Proving (PTP) to estimate uncertainty
in a query. In fact, it can be shown that if the weights of
the MLN are ∞ (also called hard formulas), then PTP is
equivalent to theorem proving in knowledge bases [4].

In PTP, we compute P (Q|M), where Q is a query (logical
statement) and M is the MLN. This is formulated as a
weighted model counting problem. Specifically, for a world



Fig. 3: Illustrating Probabilistic Theorem Proving (PTP) on
an example image. We condition on each atom and each leaf
represents the probability of a possible world.

ω (True or False assignment to all atoms in the MLN), we
compute its weight as exp(

∑
f ni(f)wf ), where f is a formula

in M with weight wf and ni(ω) is the number of satisfied
groundings of f in ω. We sum the weights over all worlds
where Q is True to compute Z(Q|M), similarly the weights
of worlds where Q is False yields Z(¬Q|M) and we can
compute the probability using the ratio, Z(Q|M)

Z(Q|M)+Z(¬Q|M) .
Note that the denominator is also equal to the partition function
of M, i.e., Z(M). Fig. 3 illustrates the PTP-tree for the query
marked in green. As shown here, we branch on each atom,
where a branch indicates that the atom is assigned a True
(1) or False (0) value. The leaf nodes evaluate the weight
of a world and non-leaf nodes sum the weights propagating
them upwards. Efficient strategies based on structure of the
MLN such as decomposition into independent components and
dynamic programming to store intermediate reusable results
can be used to make the evaluation more efficient [4].

B. Reification

To apply PTP to verify a caption, we reify the caption
to convert it into a logical query. Specifically, let CI be the
caption for image I . We ground the MLN M with image I to
obtain the ground MLN MI as follows. For a formula f in M,
let ∆x1

. . .∆xn
be the domains of variables in f . We ground

f with objects X1 ∈ ∆x1
. . . Xn ∈ ∆xn

where X1 . . . Xn

are objects that are detected and localized in I . Essentially
all the other ground formulas in M other than those in MI

are considered to be false for I and thus can be removed to
reduce the number of groundings without affecting the MLN
distribution [2]. Let Q1 . . . Qn be the atoms in MI . The reified
caption is represented as a conjunction over atoms in MI .
Specifically, we want to test if an atom in MI is semantically
equivalent to a relationship specified in CI . We formulate this
as a Natural Language Inference (NLI) problem. Specifically,
we consider the premise P = CI and the hypothesis H
= Qi and infer if H entails/contradicts/is-neutral-given P .
To determine this, we use a pre-trained, state-of-the-art NLI
model such as RoBERTa. Thus, the reified caption is given
by Q = ∧n

i=1tQi , where tQi is a positive literal of Qi if Qi

entails CI , tQi is a negative literal of Qi if Qi contradicts CI

and tQi = ∅ if Qi is undetermined given CI .

C. Inference

In general, computing P (Q|MI) exactly is intractable since
to compute the normalization constant in the probability dis-
tribution, we need to sum over all possible worlds (a problem
that is #P -complete). Instead, we use Gibbs sampling [3] to
estimate this probability. Further, we augment the distribution
with outputs of the MIL model to add visual context into
the distribution. Specifically, we associate each atom with
a Bernoulli distribution with p equal to the probability of
that atom as inferred from the MIL model. Thus, the MIL-
augmented distribution becomes, P (Q|MI)

∏n
i=1 Pθ(Qi),

where Pθ(Qi) is the probability inferred for Qi using the
MIL model. To sample from this distribution, we start with
an assignment to all atoms in MI . In each iteration, we select
an atom Q and sample its assignment from the conditional
distribution, P (Q|Q−,MI)

∏n
i=1 Pθ(Qi) , where Q− is an

assignment to all atoms other than Q. This distribution is
computationally easy to sample from as follows. First, we
consider Q = True and for all ground formulas in M̂I

satisfied by the assignments (Q−, Q = True), we sum their
exponentiated weights. For all ground formulas unsatisfied by
the assignments to the atoms, we sum exp(0) (i.e. they have
0 weight). The total sum yields the conditional probability
P (Q|Q−,MI). We multiply this by the Bernoulli probability
densities for each atom in the set {Q−, Q}. Similarly, we
compute the conditional probability for ¬Q and then sample
Q from its conditional distribution. We repeat this process over
several iterations and it can be shown that after a period called
the burn-in of the sampler (time to forget the starting state),
we will be sampling from the target distribution. We can now
estimate the P̂ (Q|M̂I) by a simple Monte-Carlo estimate.
That is, we count the number of samples that are consistent
with Q and normalize it with the total number of samples.
The estimate is unbiased, i.e., as we increase the number of
samples the estimated P̂ (Q|MI)

∏n
i=1 Pθ(Qi) approaches the

true distribution.

VI. EXPERIMENTS

A. Setup

We used the MSCOCO image captioning benchmark dataset
with Karpathy’s train, test, validation split [9] in our eval-
uation. The training data consists of 113K images with 5K
images in validation set and 5K images in test set. The number
of captions per image is equal to 5. We compared the follow-
ing state-of-the-art approaches in our evaluation. SGAE [21],
AoANet [7] and WeakVRD [19]. Further, we also added
another approach based on gated attentions which we denote
as Gated. In the Gated model, we augment the SGAE model
with the relation with maximum probability that is output
from the gated attention model. In each of the captioning
systems, the final captions are generated from LSTMs using
two well-known standard approaches. One uses cross-entropy
loss (we refer to this as MLE) and the other optimizes the



Validation Set Test Set
Human-Annotated Evaluation MLN-based Evaluation Human-Annotated Evaluation MLN-based Evaluation

B1 B4 ME RG CD SP Log-Prob Var B1 B4 ME RG CD SP Log-Prob Var
SGAE-mle 77.0 36.6 27.6 56.8 113.6 20.6 -0.295 0.094 77.4 36.6 27.7 56.9 114.5 20.8 -0.283 0.092
WVRD-mle 78.1 38.4 28.2 58.0 119.0 21.1 -0.256 0.088 78.0 37.4 28.2 58.0 119.0 21.1 -0.250 0.087
AoANet-mle 78.0 37.2 28.4 57.4 116.6 21.3 -0.279 0.092 77.2 36.9 28.4 57.2 116.6 21.6 -0.278 0.091
Gated-mle 78.0 38.9 28.4 57.9 116.6 21.7 -0.262 0.090 78.0 38.9 28.1 57.5 116.4 21.2 -0.252 0.087
SGAE-rl 79.5 36.6 27.9 57.8 122.9 21.3 -0.272 0.091 79.6 36.6 27.9 57.8 123.9 21.4 -0.273 0.090
WVRD-rl 80.8 38.9 28.8 58.7 129.6 22.3 -0.244 0.085 80.8 37.1 28.8 58.7 129.6 22.3 -0.238 0.084
AoANet-rl 80.2 38.9 29.2 58.8 127.7 22.4 -0.268 0.090 80.2 38.9 29.2 58.8 128.9 22.4 -0.273 0.089
Gated-rl 80.6 38.4 28.4 58.7 126.3 21.9 -0.250 0.087 80.7 38.6 28.4 58.7 127.0 22.0 -0.249 0.0858

TABLE I: Comparison Results for the MSCOCO dataset for Karpathy split. B1, B4, ME, RG, CD, and SP denote BLEU-1,
BLEU-4, METEOR, ROUGE, CIDEr-D and SPICE scores respectively.
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Fig. 4: Comparing the average ranking (using 6 metrics that
compare generated and human-annotated captions) of a model
with the average negative log-probabilities computed from the
compiled MLNs for the generated captions. Error bars indicate
variance in the estimated probabilities. As we go to the top
left, it indicates better model performance. (a) shows results
are shown for the validation split and (b) for test split.

CiderD metric [20] within a reinforcement learning framework
performed using self-critical sequence learning [16] (we refer
to this as RL). To learn the MLN model, we use 200 predicates
based on the most frequently occurring triplets in captions
in the training data extracted using the textual scene graph
parser [18]. In all, we learned around 6K rules in the MLN. For
the gated attention-based MIL model, we used the open-source
implementation from [8] with the following configuration. We
set the dimensionality for the bag representation as 500 and
the hidden layer size as 128. For the Gibbs-sampler, we set the
burn-in as 500 samples and measured convergence through the
Gelman-Rubin statistic to reach a stopping point. For caption
reification, we used the open-source, pre-trained RoBERTa
model for NLI. We performed our experiments on a 62.5 GiB
RAM, 64-bit Intel® Core™ i9-10885H CPU @ 2.40GHz ×
16 processor with a NVIDIA Quadro GPU with 16GB RAM.
Our code and data is available here1.

B. Results

Through our evaluation, we want to answer the following
questions, i) what is the correlation between metrics computed
with human-labeled captions and our approach which does not
require human-generated captions? ii) are there some types of
concepts on which models exhibit larger/smaller uncertainty

1https://github.com/Monikshah/MLNCaptionVerification

in captioning? and iii) do humans explain images in a manner
that is consistent with our model?

1) Uncertainty Scores: We computed the accuracy based
on 6 standard caption evaluation metrics that compare im-
age captions written by humans with those generated by
the model [21]; BLEU, METEOR, ROUGE, CIDEr-D and
SPICE. For a fair evaluation, we ran each of the models in
our own configuration and computed these metrics over the
validation and test sets. These scores are shown in Table I. For
each model, we estimate the log-probability from the Gibbs
sampler. We show the average log-probability over all images
in the validation and test sets along with the variance.

To get a broader view, we compute the ranking of a method
based on its position according to each metric and then
compute average of all rankings. A larger average ranking
indicates that the method scored well over all metrics that
require human-annotations. Fig. 4 plots this average ranking
against the average negative log-probability generated by the
MLN. Thus, a high-rank and low negative log-probability
indicates that the model did well in both evaluations. As we
see from the figure, the two evaluations are largely correlated,
i.e., as the average-rank decreases, the uncertainty of the model
increases as shown in Figs. 4 (a) and (b). The performance
of the models over the test and validation splits are mostly
similar. However, in the case of AoANet, the uncertainty
score was lower but the average-rank was high. One of the
reasons for this is the architecture of AoANet adds more
specificity into its captions. Specifically, in one of their human
evaluations, their captions were considered more descriptive
than other captions. However, the added specificity also means
that more general relationships may not always entail the
caption. Thus the uncertainty over such captions will be higher
since the distribution learned from the training captions may
not encode the same level of specificity.

2) Concept Uncertainty: We asked Amazon Mechanical
Turk (AMT) workers to label a concept that best describes
an image. We used 3 workers for each image in the test data
and instructed each worker to choose exactly one out of 10
different concepts: Sit, Eat, Stand, Walk, Play, Fly,
Ride, On, In and Hold. We also added an option of choosing
Other in case none of the concepts were perceived to be
applicable to the image. We selected the dominant concept for
an image based on what 2 or more workers selected (in case
of a tie we inspected the image and selected the most relevant
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Fig. 5: (a) shows the distribution of concepts over test images as labeled by AMT workers. (b) shows the negative log-
probabilities (smaller values are better) of each of the models (we only show results for the RL variants of models here) for
each of the concepts. (c) The x-axis shows the correlation between human rankings and those obtained using MLNs. The
y-axis shows the number of AMT workers whose rankings had the correlations specified in the x-axis.

Fig. 6: Illustrative examples showing captions with high (red) and low (green) uncertainty. Key relations are shown above each
image. In the top row of images, these relations are entailed by the caption and in the bottom row they are not entailed (shown
as grey).

concept manually). The distribution of concepts is shown in
Fig. 5 (a). Fig. 5 (b) shows the results obtained for images
corresponding to each category. As shown here, some types
of concepts have smaller uncertainty due to the nature of the
concept. In particular, we observed that play and eat have the
smallest uncertainty. One possible reasoning is that an action
such as sit is generic and can also imply other actions such as
read/watch/etc., whereas an action such as eat is much more
specific and thus has smaller uncertainty.

3) Human Explanation: We ran a second AMT user study
to evaluate if the MLN distribution yields probabilities that
are explainable by humans. Specifically, for an image I , we
showed the user a query Q = {Qi}ki=1, where each Qi is an

atom in the MLN grounded on I , i.e., MI (we converted the
atom to a natural language sentence to make it more readable).
We asked the user to rank each Qi ∈ Q by order of importance
in describing/explaining the image. Thus, an atom that is less
relevant to I was ranked lower than the atom that is more
relevant to I . Then, we computed the probability of Q in
MI , i.e., we computed P (Q1) . . . P (Qk) and ranked the
atoms according to their probabilities, i.e., lower probability
atoms were ranked lower than high probability atoms. We then
measured the correlation between the two rankings to verify
how closely the distribution induce by the MLN matched
human interpretation of the image. We ran this study for
around 1500 test images and had 2 workers perform the task



for each image (to account for noise). In Fig. 5 (c), we plot
the histogram of the Person’s correlation coefficients obtained
when we correlate the human ranking with the probabilities.
As shown in the figure, the correlations for majority of the
images were quite high and only a small number of cases
showed low or negative correlations. This indicates that the
distribution learned is consistent with human perception.

4) Qualitative Analysis: In Fig. 6 we show example cap-
tions and for each one, we mark whether the caption has high
(red) or low (green) uncertainty. We also indicate the dominant
atom, i.e., the one that had highest probability (measured
using Gibbs sampling) and whether or not that atom was
entailed/not by the caption (non-entailed atoms are shown
in grey color). As seen by the examples, this allows us to
explain the uncertainty score assigned to the caption. As seen
here, in most cases since the dominant atom captures the
most important relationship in the image, captions that entail
it have low uncertainty and those don’t entail this have higher
uncertainty. On the other hand, there are some cases where the
dominant atom is not as accurate. For instance, consider the
example that shows the bear on the book. The dominant atom
here was not the most important aspect of this image and
in this case, though the caption is a reasonable description,
the uncertainty is high for this caption. This happens when
the caption is off-distribution, i.e., different from the typical
distribution that we learn from the training data. We plan to
explore these cases in future work.

VII. CONCLUSION

In this paper, we developed a new approach to evaluate
captioning models based on Markov Logic Networks (MLNs)
by estimating the uncertainty in a caption based on the rela-
tionships specified in it. To do this, we reified a caption using
pre-trained NLI models and performed probabilistic inference
to evaluate captions from several state-of-the-art models. We
showed that our results approximates evaluations that require
human-generated captions. In future, we plan to extend our
approach to other multi-model problems such as VQA.
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