
KheOps: Cost-e�ective Repeatability, Reproducibility, and
Replicability of Edge-to-Cloud Experiments

Daniel Rosendo
daniel.rosendo@inria.fr

Univ Rennes, Inria, CNRS, , IRISA
Rennes, France

Kate Keahey
keahey@mcs.anl.gov

Argonne National Laboratory
Chicago, USA

Alexandru Costan
alexandru.costan@inria.fr

Univ Rennes, Inria, CNRS, IRISA
Rennes, France

Matthieu Simonin
matthieu.simonin@inria.fr

Univ Rennes, Inria, CNRS, IRISA
Rennes, France

Patrick Valduriez
patrick.valduriez@inria.fr

Univ Montpellier, Inria, CNRS,
LIRMM

Montpellier, France

Gabriel Antoniu
gabriel.antoniu@inria.fr

Univ Rennes, Inria, CNRS, IRISA
Rennes, France

ABSTRACT

Distributed infrastructures for computation and analytics are now
evolving towards an interconnected ecosystem allowing complex
scienti�c work�ows to be executed across hybrid systems spanning
from IoT Edge devices to Clouds, and sometimes to supercomput-
ers (the Computing Continuum). Understanding the performance
trade-o�s of large-scale work�ows deployed on such complex Edge-
to-Cloud Continuum is challenging. To achieve this, one needs to
systematically perform experiments, to enable their reproducibility
and allow other researchers to replicate the study and the obtained
conclusions on di�erent infrastructures. This breaks down to the
tedious process of reconciling the numerous experimental require-
ments and constraints with low-level infrastructure design choices.

To address the limitations of themain state-of-the-art approaches
for distributed, collaborative experimentation, such as Google Co-
lab, Kaggle, and Code Ocean, we propose KheOps, a collaborative
environment speci�cally designed to enable cost-e�ective repro-
ducibility and replicability of Edge-to-Cloud experiments. KheOps
is composed of three core elements: (1) an experiment repository;
(2) a notebook environment; and (3) a multi-platform experiment
methodology.

We illustrate KheOps with a real-life Edge-to-Cloud application.
The evaluations explore the point of view of the authors of an exper-
iment described in an article (who aim to make their experiments
reproducible) and the perspective of their readers (who aim to repli-
cate the experiment). The results show how KheOps helps authors
to systematically perform repeatable and reproducible experiments
on the Grid5000 + FIT IoT LAB testbeds. Furthermore, KheOps
helps readers to cost-e�ectively replicate authors experiments in
di�erent infrastructures such as Chameleon Cloud + CHI@Edge
testbeds, and obtain the same conclusions with high accuracies
(>88% for all performance metrics).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0176-4/23/06. . . $15.00
https://doi.org/10.1145/3589806.3600032

CCS CONCEPTS

•Computingmethodologies→Distributed computingmethod-

ologies; • General and reference → Experimentation; Mea-

surement;

KEYWORDS

Reproducibility, Replicability, Repeatability, Computing Continuum,
Work�ows, Edge Computing, Cloud Computing

ACM Reference Format:

Daniel Rosendo, Kate Keahey, Alexandru Costan, Matthieu Simonin, Patrick

Valduriez, and Gabriel Antoniu. 2023. KheOps: Cost-e�ective Repeatability,

Reproducibility, and Replicability of Edge-to-Cloud Experiments. In 2023

ACM Conference on Reproducibility and Replicability (ACM REP ’23), June

27–29, 2023, Santa Cruz, CA, USA. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3589806.3600032

1 INTRODUCTION

Modern scienti�c work�ows require hybrid infrastructures, com-
bining resources and services executed on the IoT/Edge with other
resources and services running on Clouds or on HPC systems (the
Computing Continuum [39]) to enable their optimized execution.
Due to the complexity of application deployments on such highly
distributed and heterogeneous Edge-to-Cloud infrastructures, re-
alizing the Computing Continuum vision in practice remains bur-
densome.

One challenge stems from systematically performing experi-
ments on the continuum. In particular, the processes enabling their
reproducibility, as well as the replication of the performance trade-
o�s are inherently di�cult [41]. Figure 1 illustrates such processes.
Let us consider the case of a group of researchers who execute their
experiments on French scienti�c testbeds such as Grid’5000 [35]
(providing Cloud/HPC servers) and FIT IoT LAB [32] (providing
IoT/Edge devices), and want to publish their results in an article.
Next, the readers want to replicate the experiments on American
testbeds such as the Chameleon Cloud [44] and CHI@Edge [43].

These processes compel a lot of e�ort, are time-consuming, and
bring many technical challenges for both sides. For instance, also
depicted in Figure 1, they require: (1) following methodologies to
systematically design the experiments and to reconcile many appli-
cation requirements or constraints in terms of energy consumption,
network e�ciency, and hardware resource usage; (2) con�guring

KheOps: Cost-e�ective Repeatability, Reproducibility, and Replicability of Edge-to-Cloud Experiments ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA

Table 1: ACM Digital Library Terminology Version 1.1 [1]

R
e
p
e
a
ta
b
il
it
y

Same team, same experimental setup: the measurement can

be obtained with stated precision by the same team using the

same measurement procedure, the same measuring system,

under the same operating conditions, in the same location on

multiple trials. For computational experiments, this means

that a researcher can reliably repeat their own computation.

R
e
p
ro
d
u
ci
b
il
it
y

Di�erent team, same experimental setup: the measurement

can be obtained with stated precision by a di�erent team using

the same measurement procedure, the same measuring system,

under the same operating conditions, in the same or a di�erent

location on multiple trials. For computational experiments, this

means that an independent group can obtain the same result

using the author’s own artifacts.

R
e
p
li
ca
b
il
it
y

Di�erent team, di�erent experimental setup: the measurement

can be obtained with stated precision by a di�erent team, a

di�erent measuring system, in a di�erent location on multiple

trials. For computational experiments, this means that an

independent group can obtain the same result using artifacts

which they develop completely independently.

2 BACKGROUND

In this section, we start by de�ning the terms repeatability, re-
producibility, and replicability (Section 2.1). Next, we explore the
following research question from the Computing Continuum per-
spective: What would a good collaborative system look like?

In our vision, it should: (1) allow users to share research artifacts
in a public and safe repository (Section 2.2); (2) provide an envi-
ronment for setting up and describing experiments step-by-step
(Section 2.3); (3) provide experimental methodologies to leverage
heterogeneous Edge-to-Cloud computing resources from various
scienti�c testbeds, at large-scale (Section 2.4).

2.1 Repeatability, Reproducibility, Replicability

An important requirement for researchers from various communi-
ties is that the scienti�c claims be veri�able by others (i.e., building
upon published results). As illustrated in Figure 2, such requirement
is hardly satis�ed in the context of Computing Continuum experi-
ments. This can be achieved through repeatability, reproducibility,
and replicability (3Rs) [34, 56]. There are many non-uniform de�ni-
tions of the 3Rs in literature. In this work, we follow the terminol-
ogy proposed by the ACM Digital Library [1] (Artifact Review and
Badging version 1.1), as presented in Table 1.

Achieving repeatability means that one can reliably repeat
the experiments and obtain precise measurements (e.g., Edge to
Cloud processing latency, memory consumption, among others)
by using the same methodology and artifacts (i.e., same testbed,
same physical machines, same libraries/framework, same network
con�guration). Executing multiple experiments allows us to explore
di�erent scenario settings (e.g., varying the number of Edge devices)
and explore the impact of various parameters (e.g., the network

con�guration between Edge devices and the Cloud server) on the
performance metrics.

Reproducibility means that external researchers having access
to the original methodology (e.g., con�guration of physical ma-
chines, network and systems, scenario descriptions) and using their
own artifacts (i.e., data sets, scripts, AI frameworks, etc.) can obtain
precise measurements of the application processing latency and
throughput, for instance.

Replicability refers to independent researchers (i.e., the read-
ers of an article that was published by a di�erent team) having
access to the original methodology and artifacts (e.g., con�guration
of physical machines, processing steps, network setup, etc.) and
performing the experiments in di�erent testbeds. The goal is that
independent researchers can obtain precise results and conclusions
consistent with the original study.

2.2 Trovi sharing portal

Collaborative systems should be integrated with public and safe
repositories providing open access to the research artifacts to enable
the reproducibility of experiments. Repositories like Trovi [28],
Kaggle [21], Code Ocean Explorer [9], AI Hub [7], GitHub [4], and
Zenodo [5] allow users to store versioned and citeable (e.g., through
a DOI: Digital Object Identi�er) artifacts such as code, datasets, or
Jupyter notebooks, among others.

In this work, we leverage on the Trovi sharing portal because it
provides a public REST API that facilitates integration with existing
systems. Furthermore, Trovi provides a series of features to manage
research artifacts such as: integration with GitHub and Zenodo;
creating, packaging, and sharing artifacts as Jupyter notebooks with
500MB in total size by default; support for scienti�c testbeds like
Chameleon, which allows users to re-launch the available artifacts
on the testbed.

2.3 Jupyter environment

Another important aspect for reproducible and replicable exper-
iments is that collaborative systems support executable research
packages composed of code, data, environment con�gurations, and
experiment results. The most popular open-source solutions are
Jupyter notebooks [45] and Apache Zeppelin [8]. In this work, we
use Jupyter notebooks for packaging research artifacts due to its
wider compatibility with operating systems and programming lan-
guages, and the community support.

The Jupyter project consists of JupyterHub, JupyterLab, and note-
books. JupyterHub aims to serve Cloud-based Jupyter notebooks for
multiple users. The goal is to provide users a ready-to-use computa-
tional environment with their own workspace on shared resources.
JupyterHub servers are customizable, scalable, and portable on a
variety of infrastructures. It is composed of a Hub that manages the
following sub-services: a proxy that receives requests from clients;
spawners to monitor notebook servers; and an authenticator to
manage how users access the system.

JupyterLab refers to a web-based user interface providing mainly:
notebook, terminal, text editor, �le browser, and rich outputs. It
allows users to con�gure and arrange their experimental work�ows,
as well as adding extensions to expand and enrich functionalities.

KheOps: Cost-e�ective Repeatability, Reproducibility, and Replicability of Edge-to-Cloud Experiments ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA

Table 2: Limitations of Existing Collaborative Environments.

Limitation Google Colab Code Ocean Kaggle

Resource

heterogeneity

CPU, disk, andmemory limits; GPU types

available; no access to IoT/Edge devices;

experiments run on AWS virtual ma-

chines; no access to IoT/Edge devices;

limits CPU, GPU, and TPU access; does

not support IoT/Edge devices;

Large-scale

experiments

limits sessions to 12 hours; paid access to

multiple computing resources.

limits access to 10 compute hours; paid

access to multiple computing resources.

limits execution time to 12 hours; paid

access to Google Cloud Services.

Repeatability,

Reproducibility,

Replicability

hard to repeat and reproduce experi-

ments on the same hardware: resource

availability varies over time and usage

limits �uctuate. Replicability in di�erent

infrastructures (e.g., beyond Google ma-

chines) is not straightforward.

lacks support for the reproducibility of

distributed experiments. Computing and

storage resources are available in AWS

virtual machines in the clients virtual pri-

vate cloud. Hard to replicate experiments

in di�erent infrastructures.

lacks support for the repeatability and re-

producibility of distributed experiments.

Computing resources vary over time and

hence between accesses. Replicability in

di�erent infrastructures is not easy to set

up.

1 environment:

2 g5k: cluster: dahu

3 iotlab: cluster: grenoble

4 layers:

5 - name: cloud

6 services:

7 - name: Server

8 environment: g5k , quantity: 1

9 - name: edge

10 services:

11 - name: Client

12 environment: iotlab , archi: rpi3 , quantity: 5

Listing 1: E2Clab: layers and services con�guration.

Hardware details described in Section 5.1.

(3) repeatability and reproducibility of experiments on the
same hardware setup, and replicability on di�erent in-
frastructures.

In summary, collaborative environments lack support for
providing access to heterogeneous resources (e.g., Edge-to-
Cloud); performing experiments at large-scale; and achieving
the repeatability, reproducibility, and the replicability of ex-
periments in di�erent testbeds. Hence, the need for novel ap-
proaches for reproducible evaluations of work�ows targeting
the characteristics of the Computing Continuum.

4 KHEOPS DESIGN

This section introduces KheOps, a collaborative environment for
the cost-e�ective reproducibility and replicability of Edge-to-Cloud
experiments. KheOps is designed to meet the experimental require-
ments of both authors and readers as presented in Section 1.

4.1 Architecture and implementation

Figure 4 presents the architecture of KheOps, which consists of
three main components: (i) Trovi sharing portal; (ii) Jupyter en-
vironment (JupyterHub service and JupyterLab server); and (iii)

E2Clab framework (multi-platform experiment methodology). Next,
present the integration details of KheOps three components, and
we brie�y describe their main roles.

4.1.1 Experiment repository. KheOps uses Trovi to share research
artifacts such as packaged experiments. These artifacts may be

1 from e2clab.services import Service

2 import enoslib as en

3
4 class Server(Service):

5 def deploy(self):

6 with en.actions(roles=self.roles) as a:

7 a.shell("pip3 install torchvision torch")

8 a.shell("pip3 install pillow paho -mqtt")

9 return self.register_service(port =[1883])

Listing 2: E2Clab: user-de�ned service for the Cloud server.

publicly available to allow others to recreate and rerun experiments.
Trovi provides a REST API to manage experiment artifacts and
integrate them with other systems. The JupyterHub in KheOps uses
the Trovi REST API to download artifacts and launch them in the
JupyterLab server.

Artifacts hosted in Trovi can also provide references to reposi-
tories like container registries (e.g., DockerHub [2]), multipurpose
repositories (e.g., Zenodo [5]), code repositories (e.g., Github [4]),
and among others.

4.1.2 Notebook environment. Following our previous work [33]
on integrating experiment work�ows with Jupyter notebooks, we
extend JupyterHub to authenticate users and to download (using the
Trovi REST API) the experiment artifacts available at Trovi. We also
extend JupyterLab to allow users to easily share their experiments in
Trovi. Furthermore, JupyterLab is set up with the E2Clab framework
as experimental methodology.

The JupyterLab is packaged with code, data, environment con-
�gurations, and experiment results. Its notebooks (�le extension
.ipynb) allow users to run experiments step-by-step by combining
text (e.g., explaining the reasoning of the experiments: What pa-
rameters? Why these parameters? and How it was set up?) with
executable code. Such notebooks are ready to use (e.g., installed
with required library/software), executed through a browser, and
shared as a Trovi artifact.

4.1.3 Multi-testbed experimentmethodology. KheOps uses the E2Clab
methodology to deploy experiments on large-scale scienti�c testbeds
such as Grid’5000, Chameleon Cloud, CHI@Edge, and FIT IoT LAB.
Notebooks come with three main template �les (e.g., executable
code cells in the notebook, presented in Listings 1 to 4) that users
can bene�t from to easily con�gure and adapt the deployment logic

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA Daniel Rosendo, Kate Keahey, Alexandru Costan, Ma�hieu Simonin, Patrick Valduriez, and Gabriel Antoniu

CHI@Edge is based on Docker [14] containers. Despite that,
the conclusions observed by authors and readers are the same
and present high accuracies.

6 DISCUSSION

KheOps core elements (i.e., Trovi, JupyterLab, E2Clab) exhibit sev-
eral features that make it a promising environment for advancing
Computing Continuum research through reproducible and replica-
ble experiments. We brie�y discuss them here.

6.1 Usability and reusability

KheOps targets usability by allowing users to easily �nd exper-
iment artifacts shared in Trovi and then to launch experiments
in a JupyterLab server in just a few clicks. KheOps abstracts all
the low-level details of de�ning and con�guring the experimental
environment. It provides a high-level abstraction for mapping ap-
plication parts with the Edge and Cloud infrastructures. Besides,
the con�guration �les used to de�ne the whole experimental envi-
ronment are designed to be easy to use and understand.

KheOps also targets reusability of the experiment artifacts. For
instance, readers of an article can reuse the authors artifacts to
replicate the study or build upon the existing artifacts to generate
new results. In addition, through E2ClabUser-De�ned Services, users
can de�ne their own services (e.g., the Edge client and the Cloud
server) with the desired deployment logic (e.g.,mapping the services
to the physical machines/devices; installing required software and
packages; etc.). Such services can be shared in this repository [15].

6.2 Analyzing other real-life applications

The KheOps approach is generic in terms of deployment and anal-
ysis of other applications. We highlight that, despite our evalu-
ations focusing on the African savanna use-case, KheOps can be
easily used in other contexts. Supporting new applications can be
achieved by describing and implementing their logic in the User-
De�ned Services con�guration �le.

6.3 Integration with other scienti�c testbeds

The KheOps approach is generic with respect to the deployment

testbeds. KheOps allows users to analyze application work�ows
on various large-scale scienti�c testbeds, beyond the four testbeds
used in this work. The de�nition of the experimental environment
through E2Clab con�guration �les (e.g., layer_services.yaml, net-

work.yaml, and work�ow.yaml) is tesbed agnostic, meaning that a
deployment on the Grid’5000 testbed can be easily replicated in
Chameleon (if the required computing resources are available).

6.4 Reproducibility and artifact availability

The experimental evaluations presented in this work follow a rig-
orous methodology [53] to support reproducible Edge-to-Cloud
experiments on large-scale scienti�c testbeds. All the experiment
artifacts are publicly available [16] at the Trovi sharing portal and
the results are also publicly available [17] in our GitLab repository.

6.5 KheOps limitations

Next, we discuss future research under the KheOps approach to
help with experiment reproducibility.

Provenance data capture. It may assist in the processes of repro-
ducing complex Edge-to-Cloud work�ows [47]. Typically, users
have to execute and repeat various experiments. The output of this
process generates hundreds of data related to the experimental
setup (e.g., hardware, software, code, data set, etc.) and application
work�ow execution. Analyzing such data is only possible with the
help of provenance data capture [54].

Abstract hardware description. The hardware con�guration is
a signi�cant barrier to reproducibility [27], especially in complex
Edge-to-Cloud deployments comprising heterogeneous comput-
ing resources. The description of resources should be in terms of
hardware requirements to execute the experiments (e.g., CPU, GPU,
memory, disk, and network). The goal is to abstract the hardware re-
source description among various testbeds, preventing independent
researchers from knowing about the infrastructure of the original
experimental environment.

7 RELATED WORK

We have not found in the literature related work proposing collabo-
rative environments with a focus on the Edge-to-Cloud Continuum.
Closer solutions to KheOps, but without focusing on the Com-
puting Continuum, are Google Colab [18], Kaggle [21], and Code
Ocean [37] as presented in Section 3.

KheOps di�ers from Google Colab, Kaggle, and Code Ocean
mainly regarding the features presented in Table 2 (limitations)
such as the access to heterogeneous Edge-to-Cloud resources; ac-
cess to large-scale infrastructures; and supporting the experiment
repeatability and reproducibility on the same hardware setup and
replicability in di�erent infrastructures. In addition, KheOps relies
on open scienti�c testbeds (e.g., Grid5000, FIT IoT LAB, Chameleon,
and CHI@Edge) that are highly recon�gurable and controllable
and designed to support reproducible experiments.

8 CONCLUSION

KheOps is, to the best of our knowledge, the �rst collaborative
environment supporting the cost-e�ective reproducibility of appli-
cations on the Edge-to-Cloud Continuum. It provides simpli�ed
abstractions for systematically de�ning and explaining the exper-
imental environment through Jupyter notebooks (e.g., infrastruc-
tures, services, network, and work�ow execution); provides access
to heterogeneous computing resources from the IoT/Edge to the
Cloud/HPC; and allows researchers to easily �nd and share the
experiment artifacts in the Trovi portal.

The experimental validation shows that KheOps helps authors
to make their experiments repeatable and reproducible on the
Grid5000 and FIT IoT LAB testbeds. Furthermore, KheOps helps
readers to cost-e�ectively replicate authors experiments in di�erent
infrastructures such as Chameleon Cloud + CHI@Edge testbeds,
and obtain the same conclusions with accuracies >88% for all per-
formance metrics.

KheOps: Cost-e�ective Repeatability, Reproducibility, and Replicability of Edge-to-Cloud Experiments ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA

ACKNOWLEDGMENTS

This work was funded by Inria through the HPC-BigData Inria
Challenge (IPL) and through the UNIFY Associate Team joint in the
framework of the JLESC international lab and the HPDeSc associate
team with Brazil. It was co-funded by the French ANR OverFlow
project (ANR-15- CE25-0003). Experiments presented in this paper
were carried out using the Chameleon Cloud, CHI@Edge, Grid’5000,
and FIT IoT LAB testbeds, supported by a scienti�c interest group
hosted by several Universities. We also would like to thank Argonne
National Laboratory for supporting this work. This material is based
upon work supported by the U.S. Department of Energy, O�ce of
Science, under contract number DE-AC02-06CH11357 as well as by
the NSF award 2130889 and NIFA award 2021-67021-33775.

REFERENCES
[1] [n. d.]. Artifact Review and Badging Version 1.1. https://www.acm.org/

publications/policies/artifact-review-and-badging-current
[2] [n. d.]. What is Docker Hub? Retrieved Jun 1, 2023 from https://www.docker.

com/products/docker-hub/
[3] 2018. Dool (Dstat) monitoring. Retrieved Jan 14, 2023 from https://github.com/

scottchiefbaker/dool
[4] 2018. GitHub. Retrieved Jan 14, 2023 from https://github.com/
[5] 2018. Zenodo. Retrieved Jan 14, 2023 from https://zenodo.org/
[6] 2019. E2Clab source code. Retrieved Jan 14, 2023 from https://gitlab.inria.fr/

E2Clab/e2clab
[7] 2023. AI Hub. Retrieved Jan 14, 2023 from https://aihub.cloud.google.com/
[8] 2023. Apache Zeppelin. Retrieved Jan 15, 2023 from https://zeppelin.apache.org/
[9] 2023. Code Ocean Explore: Open Science Library. Retrieved Jan 19, 2023 from

https://codeocean.com/explore
[10] 2023. Colab: Cloud Storage from the command line. Retrieved Jan 18, 2023 from

https://cloud.google.com/storage/docs/gsutil
[11] 2023. Colab: Google Spreadsheets. Retrieved Jan 18, 2023 from https://github.

com/burnash/gspread#more-examples
[12] 2023. Compute skylake cluster at CHI@TACC. Retrieved Feb 16,

2023 from https://www.chameleoncloud.org/hardware/node/sites/tacc/clusters/
chameleon/nodes/0b0bceb9-14bf-423e-890f-3ef187511d71/

[13] 2023. Dahu cluster. Retrieved Feb 16, 2023 from https://www.grid5000.fr/w/
Grenoble:Hardware#dahu

[14] 2023. Docker. Retrieved Jan 18, 2023 from https://www.docker.com/
[15] 2023. E2Clab User De�ned Services. Retrieved Feb 8, 2023 from https://gitlab.

inria.fr/E2Clab/user-de�ned-services
[16] 2023. Experiment artifacts. Retrieved Feb 8, 2023 from https:

//www.chameleoncloud.org/experiment/share/347adbf3-7c14-4834-b802-
b45fdd0d9564

[17] 2023. Experiment results. Retrieved Jan 14, 2023 from https://gitlab.inria.fr/
E2Clab/Paper-Artifacts

[18] 2023. Google Colab. Retrieved Jan 17, 2023 from https://colab.research.google.
com/

[19] 2023. Google Colab: Frequently Asked Questions. Retrieved Jan 18, 2023 from
https://research.google.com/colaboratory/faq.html

[20] 2023. Google Colab vs Kaggle. Retrieved Jan 20, 2023 from https://
datasciencenotebook.org/compare/colab/kaggle

[21] 2023. Kaggle community. Retrieved Jan 19, 2023 from https://www.kaggle.com/
[22] 2023. Kaggle datasets. Retrieved Jan 20, 2023 from https://www.kaggle.com/

datasets
[23] 2023. MQTT: The Standard for IoT Messaging. Retrieved Feb 16, 2023 from

https://mqtt.org/
[24] 2023. Python zlib. Retrieved Feb 16, 2023 from https://docs.python.org/3/library/

zlib.html
[25] 2023. Raspberry Pi 3 Model B. Retrieved Feb 16, 2023 from https://www.iot-

lab.info/docs/boards/raspberry-pi-3/
[26] 2023. Raspberry Pi 4. Retrieved Feb 16, 2023 from https://chameleoncloud.org/

experiment/chiedge/hardware-info/
[27] 2023. SC: The largest Reproducibility Laboratory. Retrieved Feb 8,

2023 from https://www.chameleoncloud.org/blog/2023/02/20/sc-the-largest-
reproducibility-laboratory/

[28] 2023. Trovi: Practical Open Reproducibility. Retrieved Jan 20, 2023 from https:
//chameleoncloud.gitbook.io/trovi/

[29] 2023. Yocto Project. Retrieved Jan 14, 2023 from https://www.yoctoproject.org/
[30] 2023. Zooniverse dataset. Retrieved Feb 16, 2023 from https://www.zooniverse.

org/organizations/meredithspalmer/snapshot-safari
[31] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je�rey

Dean, Matthieu Devin, Sanjay Ghemawat, Geo�rey Irving, Michael Isard, et al.

2016. Tensor�ow: A system for large-scale machine learning. In 12th {USENIX}
symposium on operating systems design and implementation ({OSDI} 16). 265–283.

[32] Cedric Adjih, Emmanuel Baccelli, Eric Fleury, Gaetan Harter, Nathalie Mitton,
Thomas Noel, Roger Pissard-Gibollet, Frederic Saint-Marcel, Guillaume Schreiner,
Julien Vandaele, et al. 2015. FIT IoT-LAB: A large scale open experimental IoT
testbed. In 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT). IEEE,
459–464.

[33] Jason Anderson and Kate Keahey. 2019. A case for integrating experimental con-
tainers with notebooks. In 2019 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). IEEE, 151–158.

[34] L. A. Barba and G. K. Thiruvathukal. 2017. Reproducible Research for Computing
in Science Engineering. Computing in Science Engineering 19, 6 (2017), 85–87.

[35] Raphaël Bolze, Franck Cappello, Eddy Caron, Michel Dayde, Frédéric Desprez,
Emmanuel Jeannot, Yvon Jégou, Stephane Lanteri, Julien Leduc, NouredineMelab,
Guillaume Mornet, Raymond Namyst, Pascale Primet, Benjamin Quétier, Olivier
Richard, El-Ghazali Talbi, and Iréa Touche. 2006. Grid’5000: A Large Scale And
Highly Recon�gurable Experimental Grid Testbed. International Journal of High
Performance Computing Applications 20, 4 (2006), 481–494. https://doi.org/10.
1177/1094342006070078

[36] Ronan-Alexandre Cherrueau, Marie Delavergne, Alexandre Van Kempen, Adrien
Lebre, Dimitri Pertin, Javier Rojas Balderrama, Anthony Simonet, and Matthieu
Simonin. 2021. Enoslib: A library for experiment-driven research in distributed
computing. IEEE Transactions on Parallel and Distributed Systems 33, 6 (2021),
1464–1477.

[37] April Clyburne-Sherin, Xu Fei, and Seth Ariel Green. 2019. Computational
reproducibility via containers in psychology. Meta-psychology 3 (2019).

[38] Geo� Cumming, Fiona Fidler, and David L Vaux. 2007. Error bars in experimental
biology. The Journal of cell biology 177, 1 (2007), 7–11.

[39] ETP4HPC. April 29, 2020. ETP4HPC Strategic Research Agenda. https://www.
etp4hpc.eu/sra.html.

[40] Odd Erik Gundersen, Yolanda Gil, and David W Aha. 2018. On reproducible
AI: Towards reproducible research, open science, and digital scholarship in AI
publications. AI magazine 39, 3 (2018), 56–68.

[41] Benjamin Haibe-Kains, George Alexandru Adam, Ahmed Hosny, Farnoosh Kho-
dakarami, Massive Analysis Quality Control (MAQC) Society Board of Direc-
tors Shraddha Thakkar 35 Kusko Rebecca 36 Sansone Susanna-Assunta 37 Tong
Weida 35Wol�nger Russ D. 38 Mason Christopher E. 39 Jones Wendell 40 Dopazo
Joaquin 41 Furlanello Cesare 42, Levi Waldron, Bo Wang, Chris McIntosh, Anna
Goldenberg, Anshul Kundaje, et al. 2020. Transparency and reproducibility in
arti�cial intelligence. Nature 586, 7829 (2020), E14–E16.

[42] Kate Keahey. 2020. The Silver Lining. IEEE Internet Computing 24, 4 (2020),
55–59.

[43] Kate Keahey, Jason Anderson, Michael Sherman, Zhuo Zhen, Mark Powers, Isabel
Brunkan, and Adam Cooper. 2021. Chameleon@Edge Community Workshop
Report.

[44] Kate Keahey, JasonAnderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan Stanzione,
Mert Cevik, Jacob Colleran, Haryadi S Gunawi, Cody Hammock, et al. 2020.
Lessons learned from the chameleon testbed. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). 219–233.

[45] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason
Grout, Sylvain Corlay, et al. 2016. Jupyter Notebooks-a publishing format for
reproducible computational work�ows. Vol. 2016.

[46] Matthew S Krafczyk, A Shi, Adhithya Bhaskar, D Marinov, and Victoria Stod-
den. 2021. Learning from reproducing computational results: introducing three
principles and the Reproduction Package. Philosophical Transactions of the Royal
Society A 379, 2197 (2021), 20200069.

[47] Ling Liu and M Tamer Özsu. 2009. Encyclopedia of database systems. Vol. 6.
Springer.

[48] Engineering National Academies of Sciences, Medicine, et al. 2019. Reproducibility
and replicability in science. National Academies Press.

[49] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019), 8026–8037.

[50] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[51] Daniel Rosendo, Alexandru Costan, Gabriel Antoniu, Matthieu Simonin, Jean-
Christophe Lombardo, Alexis Joly, and Patrick Valduriez. 2021. Reproducible
Performance Optimization of Complex Applications on the Edge-to-Cloud Con-
tinuum. In Cluster 2021 - IEEE International Conference on Cluster Computing. Port-
land, OR, United States, 23–34. https://doi.org/10.1109/Cluster48925.2021.00043

[52] Daniel Rosendo, Alexandru Costan, Patrick Valduriez, and Gabriel Antoniu. 2022.
Distributed intelligence on the Edge-to-Cloud Continuum: A systematic literature
review. Journal of Parallel and Distributed Computing 166 (Aug. 2022), 71–94.

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA Daniel Rosendo, Kate Keahey, Alexandru Costan, Ma�hieu Simonin, Patrick Valduriez, and Gabriel Antoniu

https://doi.org/10.1016/j.jpdc.2022.04.004
[53] Daniel Rosendo, Pedro Silva, Matthieu Simonin, Alexandru Costan, and Gabriel

Antoniu. 2020. E2Clab: Exploring the Computing Continuum through Repeatable,
Replicable and Reproducible Edge-to-Cloud Experiments. In Cluster 2020 - IEEE
International Conference on Cluster Computing. Kobe, Japan, 1–11. https://doi.
org/10.1109/CLUSTER49012.2020.00028

[54] Renan Souza, Vítor Silva, Jose J. Camata, Alvaro L. G. A. Coutinho, Patrick
Valduriez, and Marta Mattoso. 2019. Keeping Track of User Steering Actions in
Dynamic Work�ows. Future Generation Computer Systems 99 (2019), 624–643.
https://doi.org/10.1016/j.future.2019.05.011

[55] Victoria Stodden, Marcia McNutt, David H Bailey, Ewa Deelman, Yolanda Gil,
Brooks Hanson, Michael A Heroux, John PA Ioannidis, and Michela Taufer. 2016.

Enhancing reproducibility for computational methods. Science 354, 6317 (2016),
1240–1241.

[56] Victoria Stodden and Sheila Miguez. 2014. Best Practices for Computational
Science: Software Infrastructure and Environments for Reproducible and Ex-
tensible Research. Journal of Open Research Software (Jul 2014). https:
//openresearchsoftware.metajnl.com/articles/10.5334/jors.ay

[57] Mark DWilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Apple-
ton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino
da Silva Santos, Philip E Bourne, et al. 2016. The FAIR Guiding Principles for
scienti�c data management and stewardship. Scienti�c data 3, 1 (2016), 1–9.

