KheOps: Cost-effective Repeatability, Reproducibility, and
Replicability of Edge-to-Cloud Experiments

Daniel Rosendo
daniel.rosendo@inria.fr
Univ Rennes, Inria, CNRS, , IRISA
Rennes, France

Matthieu Simonin
matthieu.simonin@inria.fr
Univ Rennes, Inria, CNRS, IRISA
Rennes, France

Kate Keahey
keahey@mcs.anl.gov
Argonne National Laboratory
Chicago, USA

Patrick Valduriez
patrick.valduriez@inria.fr
Univ Montpellier, Inria, CNRS,
LIRMM

Alexandru Costan
alexandru.costan@inria.fr
Univ Rennes, Inria, CNRS, IRISA
Rennes, France

Gabriel Antoniu
gabriel.antoniu@inria.fr
Univ Rennes, Inria, CNRS, IRISA
Rennes, France

Montpellier, France

ABSTRACT

Distributed infrastructures for computation and analytics are now
evolving towards an interconnected ecosystem allowing complex
scientific workflows to be executed across hybrid systems spanning
from IoT Edge devices to Clouds, and sometimes to supercomput-
ers (the Computing Continuum). Understanding the performance
trade-offs of large-scale workflows deployed on such complex Edge-
to-Cloud Continuum is challenging. To achieve this, one needs to
systematically perform experiments, to enable their reproducibility
and allow other researchers to replicate the study and the obtained
conclusions on different infrastructures. This breaks down to the
tedious process of reconciling the numerous experimental require-
ments and constraints with low-level infrastructure design choices.

To address the limitations of the main state-of-the-art approaches
for distributed, collaborative experimentation, such as Google Co-
lab, Kaggle, and Code Ocean, we propose KheOps, a collaborative
environment specifically designed to enable cost-effective repro-
ducibility and replicability of Edge-to-Cloud experiments. KheOps
is composed of three core elements: (1) an experiment repository;
(2) a notebook environment; and (3) a multi-platform experiment
methodology.

We illustrate KheOps with a real-life Edge-to-Cloud application.
The evaluations explore the point of view of the authors of an exper-
iment described in an article (who aim to make their experiments
reproducible) and the perspective of their readers (who aim to repli-
cate the experiment). The results show how KheOps helps authors
to systematically perform repeatable and reproducible experiments
on the Grid5000 + FIT IoT LAB testbeds. Furthermore, KheOps
helps readers to cost-effectively replicate authors experiments in
different infrastructures such as Chameleon Cloud + CHI@Edge
testbeds, and obtain the same conclusions with high accuracies
(>88% for all performance metrics).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACM REP °23, June 27-29, 2023, Santa Cruz, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0176-4/23/06....$15.00
https://doi.org/10.1145/3589806.3600032

CCS CONCEPTS

« Computing methodologies — Distributed computing method-
ologies; « General and reference — Experimentation; Mea-
surement;

KEYWORDS

Reproducibility, Replicability, Repeatability, Computing Continuum,
Workflows, Edge Computing, Cloud Computing

ACM Reference Format:

Daniel Rosendo, Kate Keahey, Alexandru Costan, Matthieu Simonin, Patrick
Valduriez, and Gabriel Antoniu. 2023. KheOps: Cost-effective Repeatability,
Reproducibility, and Replicability of Edge-to-Cloud Experiments. In 2023
ACM Conference on Reproducibility and Replicability (ACM REP ’23), June
27-29, 2023, Santa Cruz, CA, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3589806.3600032

1 INTRODUCTION

Modern scientific workflows require hybrid infrastructures, com-
bining resources and services executed on the IoT/Edge with other
resources and services running on Clouds or on HPC systems (the
Computing Continuum [39]) to enable their optimized execution.
Due to the complexity of application deployments on such highly
distributed and heterogeneous Edge-to-Cloud infrastructures, re-
alizing the Computing Continuum vision in practice remains bur-
densome.

One challenge stems from systematically performing experi-
ments on the continuum. In particular, the processes enabling their
reproducibility, as well as the replication of the performance trade-
offs are inherently difficult [41]. Figure 1 illustrates such processes.
Let us consider the case of a group of researchers who execute their
experiments on French scientific testbeds such as Grid’5000 [35]
(providing Cloud/HPC servers) and FIT IoT LAB [32] (providing
IoT/Edge devices), and want to publish their results in an article.
Next, the readers want to replicate the experiments on American
testbeds such as the Chameleon Cloud [44] and CHI@Edge [43].

These processes compel a lot of effort, are time-consuming, and
bring many technical challenges for both sides. For instance, also
depicted in Figure 1, they require: (1) following methodologies to
systematically design the experiments and to reconcile many appli-
cation requirements or constraints in terms of energy consumption,
network efficiency, and hardware resource usage; (2) configuring

ACM REP ’23, June 27-29, 2023, Santa Cruz, CA, USA

(1) Author P‘;\l:'.s:'ed
E\ Bl sriv ce
— — 10T-LAB
9§ LE | ==

==
Bob
C.‘umeleon _— (2) Readt;r
- CHI@Edge pmee
I
Replicate =g =X+
Results Experiments Alice
A,
r N

° Deployment

C g D

Experiment Analysis &
Design Publication

= Eale
w2 J

o Open Access to Artifacts

Figure 1: Processes for reproducing and replicating experi-
ments regarding the authors and readers point of view.

systems and networks, and deploying applications on testbeds for
large-scale evaluations; (3) analyzing, repeating experiments, and
publishing results; and (4) finally, providing open access to the
experiment artifacts in a public and safe repository.

Given such complexities, researchers end up not following rigor-
ous methodologies for supporting the reproducibility of the experi-
ments, as observed in our previous survey [52] and summarized in
Figure 2. As a consequence, it makes it hard for other researchers
to replicate the published studies [46].

Let us sum up the associated requirements in this context [40, 55].
To enable reproducible experiments on the Edge-to-Cloud contin-
uum, the requirements (a-REQ) of the authors of the experiments
can be described as follows:

a-REQ 1. Execute experiments on heterogeneous computing resources

(e.g., IoT/Edge and Cloud/HPC infrastructures).

a-REQ 2. Systematically describe and explain the experimental pro-

cesses and their reasoning.

a-REQ 3. Efficiently configure the experimental infrastructure and

express topologies in repeatable ways.

a-REQ 4. Easily share the experiment artifacts in a public and safe

repository.
At the same time, to enable the replicability of the experiments,
the readers of an article describing those experiments have the
following requirements (r-REQ):

r-REQ 1. Find and access the experiment as simply as finding and

reading its paper.

r-REQ 2. Perform the experiment, not just read about it.
r-REQ 3. Answer not just to the “What” question (What the experi-

ment does?), but also the “Why” (Why did authors set up that

Daniel Rosendo, Kate Keahey, Alexandru Costan, Matthieu Simonin, Patrick Valduriez, and Gabriel Antoniu

Support to Reproducibility
® Yes = Partially m No

100%
75%
50%
25%
0%
Accessto Experimental Access to
artifacts setup results

Figure 2: Support to the reproducibility of Edge-to-Cloud
experiments provided by the 34 studies in our survey [52].

way?) and “How” (How did authors connect machines/de-
vices?)

r-REQ 4. Efficiently configure the experimental infrastructure to re-

duce the time spent satisfying all the experiment require-
ments.

In this paper, we study the challenges of reproducing and repli-
cating Edge-to-Cloud experiments in cost-effective ways. Cost-
effective means to allow authors and readers to easily fulfill their
experimental requirements as previously described. This calls for
practical solutions beyond the state-of-the-art.

Our main objective is to provide a collaborative environment
and methodology that supports reproducible Edge-to-Coud experi-
mentation between different open testbeds such as Grid’5000, FIT
IoT LAB, Chameleon, etc., equipped to deal with IoT/Edge and
Cloud/HPC resources which are fundamental to reproducibility [42].
We propose the following main contributions:

(1) A study of the characteristics of the main state-of-the-
art collaborative environments (e.g., Google Colab, Kag-
gle, and Code Ocean) for enabling reproducible experiments.
Their main limitations in the context of Computing
Continuum research are discussed in Section 3.

(2) A novel collaborative environment to enable repro-
ducible Edge-to-Cloud experiments (Section 4). This ap-
proach, named KheOps, allows researchers to reproduce and
replicate Edge-to-Cloud workflows cost-effectively. KheOps
core elements are: (1) a portal for sharing experiment arti-
facts; (2) a notebook environment for packaging code, data,
environment, and results; and (3) a multi-platform ex-
perimental methodology for deploying experiments on het-
erogeneous resources from the IoT/Edge (FIT IoT LAB and
CHI@Edge) to the Cloud/HPC Continuum (Grid5000 and
Chameleon). We highlight that KheOps may be integrated
with other large-scale scientific testbeds.

(3) An experimental validation of the proposed approach
with a real-world use case deployed on real-life IoT/Edge
devices and Cloud/HPC systems. The evaluations show
that KheOps helps: (1) authors to perform reproducible ex-
periments on the Grid5000 + FIT IoT LAB testbeds, and (2)
readers to cost-effectively replicate authors experiments on
the Chameleon Cloud + CHI@Edge testbeds, and obtain
the same conclusions with high accuracies, >88% for all
performance metrics (Section 5).

KheOps: Cost-effective Repeatability, Reproducibility, and Replicability of Edge-to-Cloud Experiments

Table 1: ACM Digital Library Terminology Version 1.1 [1]

Same team, same experimental setup: the measurement can
be obtained with stated precision by the same team using the
same measurement procedure, the same measuring system,
under the same operating conditions, in the same location on
multiple trials. For computational experiments, this means

Repeatability

that a researcher can reliably repeat their own computation.

Different team, same experimental setup: the measurement

can be obtained with stated precision by a different team using
the same measurement procedure, the same measuring system,
under the same operating conditions, in the same or a different
location on multiple trials. For computational experiments, this

Reproducibility

means that an independent group can obtain the same result

using the author’s own artifacts.

Different team, different experimental setup: the measurement
can be obtained with stated precision by a different team, a
different measuring system, in a different location on multiple
trials. For computational experiments, this means that an
independent group can obtain the same result using artifacts

Replicability

which they develop completely independently.

2 BACKGROUND

In this section, we start by defining the terms repeatability, re-
producibility, and replicability (Section 2.1). Next, we explore the
following research question from the Computing Continuum per-
spective: What would a good collaborative system look like?
In our vision, it should: (1) allow users to share research artifacts
in a public and safe repository (Section 2.2); (2) provide an envi-
ronment for setting up and describing experiments step-by-step
(Section 2.3); (3) provide experimental methodologies to leverage
heterogeneous Edge-to-Cloud computing resources from various
scientific testbeds, at large-scale (Section 2.4).

2.1 Repeatability, Reproducibility, Replicability

An important requirement for researchers from various communi-
ties is that the scientific claims be verifiable by others (i.e., building
upon published results). As illustrated in Figure 2, such requirement
is hardly satisfied in the context of Computing Continuum experi-
ments. This can be achieved through repeatability, reproducibility,
and replicability (3Rs) [34, 56]. There are many non-uniform defini-
tions of the 3Rs in literature. In this work, we follow the terminol-
ogy proposed by the ACM Digital Library [1] (Artifact Review and
Badging version 1.1), as presented in Table 1.

Achieving repeatability means that one can reliably repeat
the experiments and obtain precise measurements (e.g., Edge to
Cloud processing latency, memory consumption, among others)
by using the same methodology and artifacts (i.e., same testbed,
same physical machines, same libraries/framework, same network
configuration). Executing multiple experiments allows us to explore
different scenario settings (e.g., varying the number of Edge devices)
and explore the impact of various parameters (e.g., the network

ACM REP 23, June 27-29, 2023, Santa Cruz, CA, USA

configuration between Edge devices and the Cloud server) on the
performance metrics.

Reproducibility means that external researchers having access
to the original methodology (e.g., configuration of physical ma-
chines, network and systems, scenario descriptions) and using their
own artifacts (i.e., data sets, scripts, Al frameworks, etc.) can obtain
precise measurements of the application processing latency and
throughput, for instance.

Replicability refers to independent researchers (i.e., the read-
ers of an article that was published by a different team) having
access to the original methodology and artifacts (e.g., configuration
of physical machines, processing steps, network setup, etc.) and
performing the experiments in different testbeds. The goal is that
independent researchers can obtain precise results and conclusions
consistent with the original study.

2.2 Trovi sharing portal

Collaborative systems should be integrated with public and safe
repositories providing open access to the research artifacts to enable
the reproducibility of experiments. Repositories like Trovi [28],
Kaggle [21], Code Ocean Explorer [9], AI Hub [7], GitHub [4], and
Zenodo [5] allow users to store versioned and citeable (e.g., through
a DOI: Digital Object Identifier) artifacts such as code, datasets, or
Jupyter notebooks, among others.

In this work, we leverage on the Trovi sharing portal because it
provides a public REST API that facilitates integration with existing
systems. Furthermore, Trovi provides a series of features to manage
research artifacts such as: integration with GitHub and Zenodo;
creating, packaging, and sharing artifacts as Jupyter notebooks with
500MB in total size by default; support for scientific testbeds like
Chameleon, which allows users to re-launch the available artifacts
on the testbed.

2.3 Jupyter environment

Another important aspect for reproducible and replicable exper-
iments is that collaborative systems support executable research
packages composed of code, data, environment configurations, and
experiment results. The most popular open-source solutions are
Jupyter notebooks [45] and Apache Zeppelin [8]. In this work, we
use Jupyter notebooks for packaging research artifacts due to its
wider compatibility with operating systems and programming lan-
guages, and the community support.

The Jupyter project consists of JupyterHub, JupyterLab, and note-
books. JupyterHub aims to serve Cloud-based Jupyter notebooks for
multiple users. The goal is to provide users a ready-to-use computa-
tional environment with their own workspace on shared resources.
JupyterHub servers are customizable, scalable, and portable on a
variety of infrastructures. It is composed of a Hub that manages the
following sub-services: a proxy that receives requests from clients;
spawners to monitor notebook servers; and an authenticator to
manage how users access the system.

JupyterLab refers to a web-based user interface providing mainly:
notebook, terminal, text editor, file browser, and rich outputs. It
allows users to configure and arrange their experimental workflows,
as well as adding extensions to expand and enrich functionalities.

ACM REP 23, June 27-29, 2023, Santa Cruz, CA, USA

&
oo
[Ft

Public Metrics & Optimal
repository Monitoring

Configuration Visualization

Services Services Services

Define
workflow

Services Services Services

Services Services Services

Services Services Services

Services Services Services

Services Services Services

Define
layers &
SeWiCES Services
Services

Services Services Services

Services Services

Define Experimental Environment

Services Services

Provide =
access to % @é“

artifacts Public Software, experiment
algorithms. configs.

repository

Figure 3: E2Clab experiment methodology [53].

Finally, notebooks allow users to create programming documents
combining: (1) formatted text (e.g., prospective data that explains
each step of an experiment workflow); (2) executable code with the
respective outputs (e.g., retrospective data derived by the execution);
and (3) experimental results with visualizations and various sorts
of rich media, such as images and videos.

2.4 E2Clab experimental methodology

Understanding and optimizing workflow performance requires exe-
cuting and reproducing complex experiments at large scale. Several
existing environments aid users to run such experiments. Their lim-
itations are discussed in the next section and summarized in Table 2.
Based on these findings and the specific Computing Continuum
requirements, in this work we leverage the E2Clab methodology.
E2Clab [53] is an open-source framework (available at [6]) that
implements a rigorous methodology (illustrated in Figure 3) for
designing experiments with real-world workloads on the Edge-to-
Cloud Continuum. It allows researchers to reproduce the applica-
tion behavior in a controlled environment in order to understand
and optimize performance [51]. E2Clab sits on top of EnOSlib [36]
to enforce the experiment configurations on testbeds. High-level
features provided by E2Clab are: (i) reproducible experiments; (ii)
mapping application parts (Edge, Fog and Cloud/HPC) and physi-
cal testbeds; (iii) experiment variation and transparent scaling of
scenarios; (iv) defining Edge-to-Cloud network constraints; (v) ex-
periment deployment, execution and monitoring (e.g., on Grid’5000,
Chameleon, and FIT IoT LAB); and (vi) workflow optimization.

3 LIMITATIONS OF EXISTING
COLLABORATIVE ENVIRONMENTS
We briefly discuss the limitations of state-of-the-art collaborative

environments, with a focus on the specific challenges of the Com-
puting Continuum.

Daniel Rosendo, Kate Keahey, Alexandru Costan, Matthieu Simonin, Patrick Valduriez, and Gabriel Antoniu

Google Colab [18]. Mainly used by the AI community (more
than 50K users), it is a ready-to-use Jupyter notebook service. Co-
lab notebooks are stored in the .ipynb open-source Jupyter note-
book format [19], and come with the most popular Al libraries
and frameworks installed (e.g., Scikit-Learn [50], TensorFlow [31],
PyTorch [49], etc.) and allow users to run python code through the
browser. It is typically used for machine learning, data analysis and
education. Colab is popular because it allows users to share Jupyter
notebooks without having to download, install, or run anything.
Besdides, it provides free access to very expensive computing re-
sources such as GPUs and TPUs. Colab permits multiple users to
collaborate on the same notebook. Sharing datasets, ML models,
pipelines, and notebooks on AT Hub [7] is also possible (more than
167 notebooks). Its GitHub integration allows users to quickly open
GitHub-hosted Jupyter notebooks in Google Colab.

Kaggle [21]. This is a data science and Al platform that offers a
customizable Jupyter notebook environment. Kaggle is a subsidiary
of Google and, like Colab, it provides free access to GPUs as well
as a repository of community-published (more than 10.3 million
users) datasets (more than 50K public datasets) and code (e.g., ma-
chine learning code) with more than 400K public notebooks. Kaggle
is integrated with AI Hub and is popular in the data science and
machine learning communities. Kaggle is also well-known for pro-
moting Community Competitions in machine learning at no cost.
The main differences [20] between Colab and Kaggle are: (1) Kaggle
allows collaboration with other users on its Web site, while Colab
allows collaboration with anyone using the notebook link; (2) Kag-
gle has a lot of data sets that users can use directly (e.g., notebooks
already set up with Kaggle databases [22]), while in Colab setting
up notebooks with Google Drive [11] or managing files [10] (e.g., to
load data sets, files, and images) requires extra work; and (3) Kaggle
creates a history of notebook commits that we can be reviewed.

Code Ocean [37]. Designed according to FAIR [57] (i.e., Find-
able, Accessible, Interoperable, and Reusable), Code Ocean aims
to make scientific work reproducible. It introduces the concept of
Compute Capsule, which refers to Docker [14] containers com-
posed of code, data, environments, and results. Capsules provide
ready-to-use tools such as Git, Jupyter, RStudio, among others. Its
integration with Git allows users to save changes on capsules and
then commit them with just one click. Furthermore, users can easily
share the link of a capsule and grant permissions. Code Ocean pro-
vides scalable compute and storage resources hosted on Amazon
Web Services. Resources used by capsules are scaled out when the
demand exceeds the machine capacity. Finally, Code Ocean pro-
vides a public Capsule Repository [9] with more than 1K research
capsules. It allows authors of an article to incorporate capsules into
the submission process via a Hub publishing APL

Despite these systems being widely used by the AI and
data science communities, they present some limitations that
hinder their adoption for Computing Continuum research.
Table 2 summarizes these limitations in terms of:

(1) access to heterogeneous computing resources, from the

IoT/Edge to the Cloud/HPC;
(2) support for large-scale experimental evaluations;

KheOps: Cost-effective Repeatability, Reproducibility, and Replicability of Edge-to-Cloud Experiments

ACM REP 23, June 27-29, 2023, Santa Cruz, CA, USA

Table 2: Limitations of Existing Collaborative Environments.

Limitation Google Colab Code Ocean Kaggle
TRESDIREE CPU, disk, and memory limits; GPU types experiments run on AWS virtual ma- limits CPU, GPU, and TPU access; does
heterogeneity available; no access to IoT/Edge devices; chines; no access to IoT/Edge devices; not support IoT/Edge devices;

limits sessions to 12 hours; paid access to

Large-scale
multiple computing resources.

experiments
hard to repeat and reproduce experi-
ments on the same hardware: resource
Repeatability, availability varies over time and usage
Reproducibility, limits fluctuate. Replicability in different
Replicability infrastructures (e.g., beyond Google ma-

chines) is not straightforward.

limits access to 10 compute hours; paid
access to multiple computing resources.

lacks support for the reproducibility of
distributed experiments. Computing and
storage resources are available in AWS
virtual machines in the clients virtual pri-
vate cloud. Hard to replicate experiments
in different infrastructures.

limits execution time to 12 hours; paid
access to Google Cloud Services.

lacks support for the repeatability and re-
producibility of distributed experiments.
Computing resources vary over time and
hence between accesses. Replicability in
different infrastructures is not easy to set

up.

1 environment:

from e2clab.services import Service

with en.actions(roles=self.roles) as a:
install torchvision torch")
install pillow paho-mqtt")
return self.register_service(port=[1883])

Listing 2: E2Clab: user-defined service for the Cloud server.

1
2 gbk: cluster: dahu 2 import enoslib as en
3 iotlab: cluster: grenoble 3
4 layers: 4 class Server(Service):
5= name: cloud 5 def deploy(self):
6 services: 6
7 - name: Server 7 a.shell("pip3
8 environment: g5k, quantity: 1 8 a.shell("pip3
9 - name: edge 9
10 services:
11 - name: Client
12 environment: iotlab, archi: rpi3, quantity: 5

Listing 1: E2Clab: layers and services configuration.
Hardware details described in Section 5.1.

(3) repeatability and reproducibility of experiments on the
same hardware setup, and replicability on different in-
frastructures.

In summary, collaborative environments lack support for
providing access to heterogeneous resources (e.g., Edge-to-
Cloud); performing experiments at large-scale; and achieving
the repeatability, reproducibility, and the replicability of ex-
periments in different testbeds. Hence, the need for novel ap-
proaches for reproducible evaluations of workflows targeting
the characteristics of the Computing Continuum.

4 KHEOPS DESIGN

This section introduces KheOps, a collaborative environment for
the cost-effective reproducibility and replicability of Edge-to-Cloud
experiments. KheOps is designed to meet the experimental require-
ments of both authors and readers as presented in Section 1.

4.1 Architecture and implementation

Figure 4 presents the architecture of KheOps, which consists of
three main components: (i) Trovi sharing portal; (ii) Jupyter en-
vironment (JupyterHub service and JupyterLab server); and (iii)
E2Clab framework (multi-platform experiment methodology). Next,
present the integration details of KheOps three components, and
we briefly describe their main roles.

4.1.1 Experiment repository. KheOps uses Trovi to share research
artifacts such as packaged experiments. These artifacts may be

publicly available to allow others to recreate and rerun experiments.
Trovi provides a REST API to manage experiment artifacts and
integrate them with other systems. The JupyterHub in KheOps uses
the Trovi REST API to download artifacts and launch them in the
JupyterLab server.

Artifacts hosted in Trovi can also provide references to reposi-
tories like container registries (e.g., DockerHub [2]), multipurpose
repositories (e.g., Zenodo [5]), code repositories (e.g., Github [4]),
and among others.

4.1.2 Notebook environment. Following our previous work [33]
on integrating experiment workflows with Jupyter notebooks, we
extend JupyterHub to authenticate users and to download (using the
Trovi REST API) the experiment artifacts available at Trovi. We also
extend JupyterLab to allow users to easily share their experiments in
Trovi. Furthermore, JupyterLab is set up with the E2Clab framework
as experimental methodology.

The JupyterLab is packaged with code, data, environment con-
figurations, and experiment results. Its notebooks (file extension
.ipynb) allow users to run experiments step-by-step by combining
text (e.g., explaining the reasoning of the experiments: What pa-
rameters? Why these parameters? and How it was set up?) with
executable code. Such notebooks are ready to use (e.g., installed
with required library/software), executed through a browser, and
shared as a Trovi artifact.

4.1.3 Multi-testbed experiment methodology. KheOps uses the E2Clab
methodology to deploy experiments on large-scale scientific testbeds
such as Grid’5000, Chameleon Cloud, CHI@Edge, and FIT IoT LAB.
Notebooks come with three main template files (e.g., executable
code cells in the notebook, presented in Listings 1 to 4) that users
can benefit from to easily configure and adapt the deployment logic

1
2
3

ACM REP ’23, June 27-29, 2023, Santa Cruz, CA, USA

&
&

KheOps

(4)
Downloads
artifacts
from Trovi

—)

(1) Requests list of

experiment artifacts (3) Spawns

notebook
server

o [

I

Daniel Rosendo, Kate Keahey, Alexandru Costan, Matthieu Simonin, Patrick Valduriez, and Gabriel Antoniu

Large-scale Scientific Testbeds
. Chameleon + + FIT loT LAB
credentials
Ch:meleon
= § CHI@Edge
sy B
¥ . > ISR
d‘ [. — - Rt gty
o p IS
di‘ — VPN g
@IFOITTI.AB
(5) Deploys | . R4 !
experiments D4 v S =
on testbeds %\%\

Experiment results

Figure 4: KheOps architecture and experimental workflow.

’ (2) Users
D=\ request
Jupyter launch of
co @K Trovi artifact
networks:
- src: cloud, dst: edge
delay: "150ms", rate: "25kbit", loss: "0.02"

Listing 3: E2Clab: network configuration.

(e.g., computing resources, network, and application execution)
according to their experimental needs.

The first file, named layers_services.yaml and presented in List-
ing 1, allows users to lease IoT/Edge and Cloud/HPC resources.
Through this file, users may also set up their applications and ser-
vices as presented in Listing 2. Next, the network.yaml file (Listing 3)
allows users to define delay, loss, and bandwidth between comput-
ing resources. Finally, the workflow.yaml file (Listing 4) guides
users to define the experiment workflow through three main steps:
prepare (e.g., copy artifacts to remote nodes, install libraries, etc.),
launch (e.g., execute the application parts), and finalize (e.g., backup
results from remote nodes to the JupyterLab server).

E2Clab abstracts all the complexities of deploying and executing
experiments across various testbeds. To do so, users need to add
the credential files of the respective testbeds to their notebooks.
Setting up a VPN is also supported as this may be required to enable
the communication between different geographically distributed
tesbeds (e.g., Chameleon in the USA and Grid’5000 in France).

4.2 Experimental workflow

In summary, the workflow for launching an experiment artifact
on large-scale testbeds consists of 5 main steps. First, through a
web interface, users can browse the list of experimental artifacts
publicly available in Trovi (step 1). Selecting an artifact displays
details such as the experiment description, the authors and contact
information, and the artifact versions.

A launch button allows users to execute the artifact (step 2). This
button redirects users to the JupyterHub service. After authenti-
cation, the request to launch the artifact is sent to the JupyterHub
Spawner. Next, the Spawner spawns the JupyterLab server (step 3)

1
2
3
4

5
6
7

8
9

10
11
12

- hosts: edge.x
depends_on:
conf_selector: cloud.server.x*
grouping: round_robin, prefix: "server"
prepare:
- copy:
src:{{working_dir}}/artifacts, dest: /
launch:
- shell: bash /edge_worker.sh edge_data 100 "{{
server.ip}}" False
finalize:
- fetch:

dest:{{working_dir}}/
Listing 4: E2Clab: workflow configuration.

src:/tmp/predict.log,

and then it downloads experimental artifacts such as notebooks,
code, and datasets, among others (step 4). The JupyterLab service
is set up with the E2Clab framework as the experimental method-
ology. Finally, users can execute the code cells from the notebook
to lease IoT/Edge and Cloud/HPC computing resources available
on the testbeds, deploy and execute the application, and gather the
experiment results (step 5).

Steps 2 to 4 are automatically executed. This is a one-click feature
that allows users to have a ready-to-use environment for repro-
ducing and replicating complex Edge-to-Cloud experiments in a
cost-effective manner. Note that the whole workflow requires only
three clicks: selecting the experiment artifact (step 1); then launch-
ing it (steps 2 to 4); and executing it on the testbeds (step 5).

5 EVALUATION

In this section, we show how KheOps can be used to analyze the
performance of a real-life Edge-to-Cloud application deployed in
the African savanna (illustrated in Figure 5). This application is
composed of distributed Edge devices monitoring animal migration
in the Serengeti region. Devices at the Edge collect and compress
wildlife images, then the image is sent to the Cloud where the
animal classification happens using a pre-trained Neural Network

KheOps: Cost-effective Repeatability, Reproducibility, and Replicability of Edge-to-Cloud Experiments

Cloud

Figure 5: Edge-to-Cloud application: monitoring animals mi-
gration in the African savanna.

model. Finally, classified data helps conservationists to learn what
management strategies work best to protect species.
The goals of these experiments are:

o to understand the impact on performance of Cloud-centric
and Hybrid (Edge+Cloud) processing;

o to show how authors of an article can benefit from KheOps
to make their experiments reproducible;

e to show how readers of an article can leverage KheOps to
replicate the experiments in an article (published using
KheOps).

To reproduce the evaluations in this section, refer to [16].

5.1 Experimental setup

Application performance metrics. The main tracked metric is
the processing time, which refers to the time required to: pre-process
the image captured (e.g., image compression on the Edge device);
transmit the image to the Cloud server; and finally decompress the
image and predict the animal through an AI model. In addition,
we analyze the amount of data transmitted to the Cloud and the
resource consumption (e.g., CPU and memory) on the Edge device.

To increase the accuracy of the results, we measure the pro-
cessing duration 100 times for each experiment, each time with
a different image and an interval of 30 seconds (i.e., Edge devices
transmit images to the Cloud server every 30 seconds). The re-
maining metrics are captured using Dool (Dstat) [3] at application
runtime. All results are presented as the mean followed by their
respective 95% confidence interval.

KheOps replicability metric. To measure how close/precise
readers experiments are from authors experiments, we define the
Replicability Accuracy (Repaccuracy) metric. For assessing variabil-
ity and error in results [48], a recommendation is to repeat the
experiments multiple times to achieve narrower inferential error
bars (i.e., confidence interval, standard deviation, etc.) [38]. The
Replicability Accuracy metric is calculated as Equation 1:

ACM REP 23, June 27-29, 2023, Santa Cruz, CA, USA

min(x14,X24) min(xiR, X2r)
max(x14,%24) max(xiR, X2R)

1)

Repaccuracy =

Ideally, Repaccuracy would be close to 1. x;4 and x;g refer to the
application performance metric value obtained from authors and
readers experiments, respectively. For instance, in Figure 6a, x4
refers to the Cloud-centric bar and x4 to the Edge+Cloud bar.

Workload. Devices at the Edge transmit images (from the Snap-
shot Serengeti dataset [30] composed of millions of wildlife images
collected annually) to the Cloud server that predicts animals using
a trained MobileNetV3 Convolutional Neural Network model. We
evaluate this workload considering two network configurations,
25Kbit and 15Kbit bandwidth with a round-trip delay of 150ms.

Software. On the Edge devices, we use the zlib [24] Python
library to compress images. MQTT [23] protocol is used to transmit
images to the Cloud server. On the Cloud server, we use an MQTT
broker to receive images, then zlib to decompress images, and finally
PyTorch to predict animals.

Hardware. The authors perform experiments on the follow-
ing testbeds in France: Grid’5000 and FIT IoT LAB. On Grid’5000
(Cloud server), they use the dahu [13] machine equipped with an
Intel Xeon Gold 6130 CPU 2.10GHz, 16 cores/CPU, 192GB of RAM,
and Ethernet network. On FIT IoT LAB (Edge device), they use a
Raspberry Pi 3 Model B [25] with four ARM Cortex-A53 process-
ing cores running at 1.2GHz, 1GB LPDDR2 memory, and 2.4GHz
802.11ac wireless LAN.

The readers replicate authors experiments on the following
testbeds in USA: Chameleon Cloud and CHI@Edge. On Chameleon
CHI@TACC (Cloud server), they use the Skylake [12] machine
equipped with an Intel Xeon Gold 6126 CPU 2.60GHz, 12 cores/CPU,
192GB of RAM, and Ethernet network. On CHI@Edge (Edge device),
they use a Raspberry Pi 4 [26], with four BCM2711 Cortex-A72
processing cores running at 1.5GHz, 8GB LPDDR4 memory, and
2.4GHz and 5GHz 802.11ac wireless LAN.

5.2 How KheOps helps experiment authors

Let us consider the requirements of the experiment authors (a-REQ)
as introduced in Section 1.

a-REQ 1. Execute experiments on heterogeneous comput-
ing resources. KheOps provides access to IoT/Edge devices and
Cloud/HPC resources at large-scale, using the E2Clab methodology.
Supported testbeds include (but are not limited to, as explained in
Section 6.3): Grid’5000, FIT IoT LAB.

a-REQ 2. Systematically describe and explain the experimen-
tal processes and their reasoning. Through Jupyter notebooks
and the E2Clab configuration files, the authors describe and explain
the experiment design choices such as the layers (e.g., Edge and
Cloud), the services (e.g., the Edge client and the Cloud server), the
network constraints, and the application workflow execution. This
is done in Jupyter notebooks by combining text (explaining the
configurations) followed by executable code (E2Clab files).

ACM REP ’23, June 27-29, 2023, Santa Cruz, CA, USA

15Kbit Bandwidth 25Kbit Bandwidth

Daniel Rosendo, Kate Keahey, Alexandru Costan, Matthieu Simonin, Patrick Valduriez, and Gabriel Antoniu

15Kbit Bandwidth 25Kbit Bandwidth

33 33 12 12
.30 _.30 — —
827 = g27] 8
224 T 224 29 - 29
21 21 g g
=18 518 k= 6 = =1 6
215 215 2 2 =
712 @12 = = 7 -
g 9 g 9 g 3 g 3
£ 6 26 e o
o 3 o 3 o a
0 Cloud-centric Edge+Cloud 0 Cloud-centric Edge+Cloud 0 Cloud-centric Edge+Cloud 0 Cloud-centric Edge+Cloud

(a) Grid’5000 + FIT IoT LAB. (b) Grid’5000 + FIT IoT LAB.

(c) Chameleon + CHI@Edge. (d) Chameleon + CHI@Edge.

Figure 6: Cloud-centric vs Edge+Cloud processing: (a, b) executed by authors on Grid’5000 and FIT IoT LAB testbeds; and (c, d)
replicated by readers on Chameleon Cloud and CHI@Edge testbeds.

Data sent to the Cloud Data sent to the Cloud

110 110 ==
100 100
90 = 90 T
@ 80 EE @ 80
o 70 @ 70
< 60 < 60
<= 50 + 50
3 40 a 40
30 30
20 20
10 10

Cloud-centric Edge+Cloud Cloud-centric Edge+Cloud

(a) Grid’5000 + FIT IoT LAB. (b) Chameleon + CHI@Edge.
Figure 7: Amount of data sent to the Cloud regarding the
Cloud-centric and Edge+Cloud processing approaches.

a-REQ 3. Efficiently configure the experimental infrastruc-
ture and repeat the experiments. All the complexities of config-
uring the Edge-to-Cloud infrastructure, such as leasing computing
resources, mapping the application parts (e.g., Edge and Cloud ser-
vices), enforcing the network constraints, and executing the work-
flow are transparently handled by KheOps. The authors just need
to define their experimental needs in the E2Clab configuration files.
Repeating and adapting the experiments (e.g., changing the network
constraints) is easily done through E2Clab instrumentation.

a-REQ 4. Easily share the experiment artifacts in a public
and safe repository. Through the Trovi and JupyterLab integra-
tion, authors can upload their artifacts to the Trovi sharing portal
with a few clicks.

We discuss the experimental results from the authors perspective,
using the three application performance metrics mentioned earlier.

5.2.1 Impact of the network on the processing time. Authors
define two sets of experiments. In the first one (Figure 6a), they fix
the network bandwidth at 15Kbit and vary the processing approach
between Cloud-centric and Hybrid (Edge+Cloud). In the second one
(Figure 6b), they fix the bandwidth at 25Kbit for both processing
approaches.

From the results, the authors observe that the Hybrid (Edge+Cloud)
approach outperforms the Cloud-centric one for both network con-
figurations. In the 15Kbit bandwidth setup, the processing time for
the Cloud-centric is about 27 seconds on average, against 24 seconds

for the hybrid processing. In the 25Kbit bandwidth configuration,
this difference is lower, 13 seconds and 11 seconds for the Cloud-
centric and Hybrid, respectively. The higher the bandwidth, the
lower will be the difference between the two processing approaches.
This is because image transmission is the most time-consuming task
among the other tasks (i.e., compressing/decompressing images and
model inference).

5.2.2 Amount of data sent to the Cloud. According to the
results presented in Figure 7a, authors observe that the Hybrid
(Edge+Cloud) approach transmits less data (81kB/s on average) to
the Cloud compared to the Cloud-centric approach (96kB/s on aver-
age). This is because, in Hybrid processing, Edge devices compress
images before transmitting them to the Cloud.

5.2.3 Resource consumption on the Edge device. Results in
Figures 8a and 8b show that there is no significant difference in the
CPU and memory usage in the Edge device when changing between
the Cloud-centric and Hybrid processing approaches. CPU usage
is around 4.2% and 4.4% for Hybrid and Cloud-centric processing,
respectively. Memory usage is around 0.38GB for both.

5.3 How KheOps helps readers

After the authors publish their results, other researchers from a
different lab download the article from a scientific database and
decide to replicate the study on their own premises (e.g., on a
different testbed). Following the same logic, we present how KheOps
helps the readers to replicate the experiments cost-effectively, that
is, according to the readers requirements (r-REQ) in Section 1.

r-REQ 1. Find and access the experiment as simply as find-
ing and reading the paper. Through the KheOps web interface
(step 1 in Figure 4) the readers obtain access to all the public ex-
periments shared by the community and available in Trovi. Then,
they select the experiment shared by the authors of the article to
get more details.

r-REQ 2. Perform the experiment, not just read about it.
Next, in the experiment details web page, readers can launch a
JupyterLab server with artifacts in just a single click (steps 2, 3,
and 4 in Figure 4). Finally, following the experiment instructions
described in the Jupyter notebook, the readers deploy and execute
the experiments on their testbeds, such as (but not limited to): the
Chameleon Cloud and CHI@Edge (step 5 in Figure 4).

KheOps: Cost-effective Repeatability, Reproducibility, and Replicability of Edge-to-Cloud Experiments

ACM REP ’23, June 27-29, 2023, Santa Cruz, CA, USA

6 CPU usage 0.05 Memory usage 6 CPU usage 1.25 Memory usage
5 1 0.04 — — 5 = + 10
<4 I o <4 @
2 S o.03 g So.7s
[[
23 & 23 &
3 £0.02 3 g 0.5
S2 =] 22 =]
1 0.01 1 0.25
0 0.0 0.0

Cloud-centric Edge+Cloud Cloud-centric Edge+Cloud

(a) Grid’5000 + FIT IoT LAB. (b) Grid’5000 + FIT IoT LAB.

Cloud-centric Edge+Cloud Cloud-centric Edge+Cloud

(c) Chameleon + CHI@Edge. (d) Chameleon + CHI@Edge.

Figure 8: Resource consumption on the Edge device: CPU and Memory usage.

Table 3: Accuracy of replicated experiments.

Replicability
accuracy
Processing time 15Kbit 0.943
Processing time 25Kbit 0.882

Data sent to the cloud 0.973

CPU usage 0.978

Memory usage 0.996

Metric Experiment result

Figure 6a and 6¢c
Figure 6b and 6d
Figure 7a and 7b
Figure 8a and 8c
Figure 8b and 8d

r-REQ 3. Experiment reasoning: “What”, “Why”, and “How”.
Before running the experiments, the readers can go through the
Jupyter notebook to understand What the experiment does (e.g.,
capture and compress images on Edge devices and then decompress
the images and predict the animals on the Cloud server). The read-
ers can also discover Why the authors set up the experiment with
a 25kbit and 15kbit network bandwidth. Finally, KheOps allows to
understand How the authors interconnect the Edge devices with
the Cloud server (e.g., assigning a public IP to the Cloud server, or
opening firewall rules; using the MQTT protocol; among others).

r-REQ 4. Efficiently configure the experimental infrastruc-
ture. To achieve this, the readers just have to adapt the layers_services
configuration file (presented in Listing 1) to the Chameleon Cloud
and CHI@Edge testbeds. Configuring the network bandwidth to
25kbit and then changing it to 15kbit is as simple as changing the
rate parameter in the network file (Listing 3). Finally, copying data
to the Edge device, interconnecting it with the Cloud server, launch-
ing the application, and finally collecting the results is as simple
as defining the workflow configuration file (Listing 4). The network
and workflow configuration files are testbed agnostic, meaning that
users do not need to update these files when changing the deploy-
ment from Grid’5000 + FIT IoT LAB to Chameleon + CHI@Edge.

Next, we report on the replicated experiments.

5.3.1 Impact of the network on the processing time. From
the results in Figures 6¢ and 6d, readers conclude that the Hybrid
(Edge+Cloud) processing approach outperforms the Cloud-centric
one for both network configurations. This conclusion is consistent
with the results observed in the published article.

Following the analysis, readers observe that in the 15Kbit band-
width network configuration, the processing time for the Cloud-
centric is about 8 seconds on average, against 6.5 seconds for the

hybrid processing. In the 25Kbit bandwidth setup, this difference is
lower, 5.5 seconds and 4 seconds for the Cloud-centric and Hybrid,
respectively. Similarly to the authors results, readers also observe
that the higher the bandwidth, the lower will be the difference
between the two processing approaches.

Furthermore, as presented in Table 3, we highlight that readers
obtained a replicability accuracy of 88.2% and 94.3% for 15Kbit and
25Kbit network configurations, respectively.

5.3.2 Amount of data sent to the Cloud. According to the
results presented in Figure 7b, readers observe that the Hybrid
approach transmits less data than the Cloud-centric. The former
transmits around 89.2kB/s and the latter 108.8kB/s. Compressing
images on the Edge helps to reduce the amount of data sent to the
Cloud server. This conclusion is also consistent with the published
article and presents a replicability accuracy of 97.3%.

5.3.3 Resource consumption on the Edge device. Results in
Figures 8c and 8d show that there is no significant difference in the
CPU and memory usage between the Cloud-centric and the Hybrid
processing approaches. CPU usage is around 5.1% and 5% for Hybrid
and Cloud-centric processing, respectively. Memory usage is around
1.1GB for both. We highlight that these conclusions are consistent
with the published article and present a replicability accuracy of
97.8% and 99.6% for CPU and memory usage, respectively.

Despite readers observing a lower processing time com-
pared to the authors, they could verify that their experiment
conclusions are consistent with the original study, and their
results present a high replicability accuracy (see Table 3).

This time difference is expected since readers used a more
powerful Edge device (Raspberry Pi4 against Raspberry Pi3)
for processing the most time-consuming task (e.g., image com-
pression and then transmission). The Raspberry Pi4 has more
RAM memory (8GB vs. 1GB in Raspberry Pi3), a better CPU
(1.5GHz vs. 1.2GHz), network (5GHz vs. 2.4GHz).

Furthermore, regarding the remaining metrics such as the
amount of data sent to the Cloud and the CPU and memory
usage on the Edge device, readers observe small differences
when replicating the original study in different testbeds. This
is due to the different deployment approaches used by each
testbed, for instance, in FIT IoT LAB the Raspberry Pi 3 board
runs an embedded Linux that is built with Yocto [29], while

ACM REP 23, June 27-29, 2023, Santa Cruz, CA, USA

CHI@Edge is based on Docker [14] containers. Despite that,
the conclusions observed by authors and readers are the same
and present high accuracies.

6 DISCUSSION

KheOps core elements (i.e., Trovi, JupyterLab, E2Clab) exhibit sev-
eral features that make it a promising environment for advancing
Computing Continuum research through reproducible and replica-
ble experiments. We briefly discuss them here.

6.1 Usability and reusability

KheOps targets usability by allowing users to easily find exper-
iment artifacts shared in Trovi and then to launch experiments
in a JupyterLab server in just a few clicks. KheOps abstracts all
the low-level details of defining and configuring the experimental
environment. It provides a high-level abstraction for mapping ap-
plication parts with the Edge and Cloud infrastructures. Besides,
the configuration files used to define the whole experimental envi-
ronment are designed to be easy to use and understand.

KheOps also targets reusability of the experiment artifacts. For
instance, readers of an article can reuse the authors artifacts to
replicate the study or build upon the existing artifacts to generate
new results. In addition, through E2Clab User-Defined Services, users
can define their own services (e.g., the Edge client and the Cloud
server) with the desired deployment logic (e.g., mapping the services
to the physical machines/devices; installing required software and
packages; etc.). Such services can be shared in this repository [15].

6.2 Analyzing other real-life applications

The KheOps approach is generic in terms of deployment and anal-
ysis of other applications. We highlight that, despite our evalu-
ations focusing on the African savanna use-case, KheOps can be
easily used in other contexts. Supporting new applications can be
achieved by describing and implementing their logic in the User-
Defined Services configuration file.

6.3 Integration with other scientific testbeds

The KheOps approach is generic with respect to the deployment
testbeds. KheOps allows users to analyze application workflows
on various large-scale scientific testbeds, beyond the four testbeds
used in this work. The definition of the experimental environment
through E2Clab configuration files (e.g., layer_services.yaml, net-
work.yaml, and workflow.yaml) is tesbed agnostic, meaning that a
deployment on the Grid’5000 testbed can be easily replicated in
Chameleon (if the required computing resources are available).

6.4 Reproducibility and artifact availability

The experimental evaluations presented in this work follow a rig-
orous methodology [53] to support reproducible Edge-to-Cloud
experiments on large-scale scientific testbeds. All the experiment
artifacts are publicly available [16] at the Trovi sharing portal and
the results are also publicly available [17] in our GitLab repository.

Daniel Rosendo, Kate Keahey, Alexandru Costan, Matthieu Simonin, Patrick Valduriez, and Gabriel Antoniu

6.5 KheOps limitations

Next, we discuss future research under the KheOps approach to
help with experiment reproducibility.

Provenance data capture. It may assist in the processes of repro-
ducing complex Edge-to-Cloud workflows [47]. Typically, users
have to execute and repeat various experiments. The output of this
process generates hundreds of data related to the experimental
setup (e.g., hardware, software, code, data set, etc.) and application
workflow execution. Analyzing such data is only possible with the
help of provenance data capture [54].

Abstract hardware description. The hardware configuration is
a significant barrier to reproducibility [27], especially in complex
Edge-to-Cloud deployments comprising heterogeneous comput-
ing resources. The description of resources should be in terms of
hardware requirements to execute the experiments (e.g., CPU, GPU,
memory, disk, and network). The goal is to abstract the hardware re-
source description among various testbeds, preventing independent
researchers from knowing about the infrastructure of the original
experimental environment.

7 RELATED WORK

We have not found in the literature related work proposing collabo-
rative environments with a focus on the Edge-to-Cloud Continuum.
Closer solutions to KheOps, but without focusing on the Com-
puting Continuum, are Google Colab [18], Kaggle [21], and Code
Ocean [37] as presented in Section 3.

KheOps differs from Google Colab, Kaggle, and Code Ocean
mainly regarding the features presented in Table 2 (limitations)
such as the access to heterogeneous Edge-to-Cloud resources; ac-
cess to large-scale infrastructures; and supporting the experiment
repeatability and reproducibility on the same hardware setup and
replicability in different infrastructures. In addition, KheOps relies
on open scientific testbeds (e.g., Grid5000, FIT IoT LAB, Chameleon,
and CHI@Edge) that are highly reconfigurable and controllable
and designed to support reproducible experiments.

8 CONCLUSION

KheOps is, to the best of our knowledge, the first collaborative
environment supporting the cost-effective reproducibility of appli-
cations on the Edge-to-Cloud Continuum. It provides simplified
abstractions for systematically defining and explaining the exper-
imental environment through Jupyter notebooks (e.g., infrastruc-
tures, services, network, and workflow execution); provides access
to heterogeneous computing resources from the IoT/Edge to the
Cloud/HPC; and allows researchers to easily find and share the
experiment artifacts in the Trovi portal.

The experimental validation shows that KheOps helps authors
to make their experiments repeatable and reproducible on the
Grid5000 and FIT IoT LAB testbeds. Furthermore, KheOps helps
readers to cost-effectively replicate authors experiments in different
infrastructures such as Chameleon Cloud + CHI@Edge testbeds,
and obtain the same conclusions with accuracies >88% for all per-
formance metrics.

KheOps: Cost-effective Repeatability, Reproducibility, and Replicability of Edge-to-Cloud Experiments

ACKNOWLEDGMENTS

This work was funded by Inria through the HPC-BigData Inria
Challenge (IPL) and through the UNIFY Associate Team joint in the
framework of the JLESC international lab and the HPDeSc associate
team with Brazil. It was co-funded by the French ANR OverFlow
project (ANR-15- CE25-0003). Experiments presented in this paper
were carried out using the Chameleon Cloud, CHI@Edge, Grid’5000,
and FIT IoT LAB testbeds, supported by a scientific interest group
hosted by several Universities. We also would like to thank Argonne
National Laboratory for supporting this work. This material is based
upon work supported by the U.S. Department of Energy, Office of
Science, under contract number DE-AC02-06CH11357 as well as by
the NSF award 2130889 and NIFA award 2021-67021-33775.

REFERENCES

(1]

2

'
)

=
A P

[12]

[13

[14]
[15]

[16]

[17]

(18

[19]
[20]

[21]
[22]

[23

[24]

[25

&
&

[27]

[28]

[29]
[30

[31]

[n.d.]. Artifact Review and Badging Version 1.1. https://www.acm.org/
publications/policies/artifact-review-and-badging-current

[n.d.]. What is Docker Hub? Retrieved Jun 1, 2023 from https://www.docker.
com/products/docker-hub/

2018. Dool (Dstat) monitoring. Retrieved Jan 14, 2023 from https://github.com/
scottchiefbaker/dool

2018. GitHub. Retrieved Jan 14, 2023 from https://github.com/

2018. Zenodo. Retrieved Jan 14, 2023 from https://zenodo.org/

2019. E2Clab source code. Retrieved Jan 14, 2023 from https://gitlab.inria.fr/
E2Clab/e2clab

2023. AI Hub. Retrieved Jan 14, 2023 from https://aihub.cloud.google.com/
2023. Apache Zeppelin. Retrieved Jan 15, 2023 from https://zeppelin.apache.org/
2023. Code Ocean Explore: Open Science Library. Retrieved Jan 19, 2023 from
https://codeocean.com/explore

2023. Colab: Cloud Storage from the command line. Retrieved Jan 18, 2023 from
https://cloud.google.com/storage/docs/gsutil

2023. Colab: Google Spreadsheets. Retrieved Jan 18, 2023 from https://github.
com/burnash/gspread#more-examples

2023. Compute skylake cluster at CHI@TACC. Retrieved Feb 16,
2023 from https://www.chameleoncloud.org/hardware/node/sites/tacc/clusters/
chameleon/nodes/0b0bceb9- 14bf-423e-890f-3ef187511d71/

2023. Dahu cluster. Retrieved Feb 16, 2023 from https://www.grid5000.fr/w/
Grenoble:Hardware#dahu

2023. Docker. Retrieved Jan 18, 2023 from https://www.docker.com/

2023. E2Clab User Defined Services. Retrieved Feb 8, 2023 from https://gitlab.
inria.fr/E2Clab/user-defined- services

2023. Experiment artifacts. Retrieved Feb 8, 2023 from https:
//www.chameleoncloud.org/experiment/share/347adbf3-7c14-4834-b802-
b45fdd0d9564

2023. Experiment results. Retrieved Jan 14, 2023 from https://gitlab.inria.fr/
E2Clab/Paper- Artifacts

2023. Google Colab. Retrieved Jan 17, 2023 from https://colab.research.google.
com/

2023. Google Colab: Frequently Asked Questions. Retrieved Jan 18, 2023 from
https://research.google.com/colaboratory/faq.html

2023. Google Colab vs Kaggle. Retrieved Jan 20, 2023 from https://
datasciencenotebook.org/compare/colab/kaggle

2023. Kaggle community. Retrieved Jan 19, 2023 from https://www.kaggle.com/
2023. Kaggle datasets. Retrieved Jan 20, 2023 from https://www.kaggle.com/
datasets

2023. MQTT: The Standard for IoT Messaging. Retrieved Feb 16, 2023 from
https://mqtt.org/

2023. Python zlib. Retrieved Feb 16, 2023 from https://docs.python.org/3/library/
zlib.html

2023. Raspberry Pi 3 Model B. Retrieved Feb 16, 2023 from https://www.iot-
lab.info/docs/boards/raspberry-pi-3/

2023. Raspberry Pi 4. Retrieved Feb 16, 2023 from https://chameleoncloud.org/
experiment/chiedge/hardware-info/

2023. SC: The largest Reproducibility Laboratory. Retrieved Feb 8,
2023 from https://www.chameleoncloud.org/blog/2023/02/20/sc-the-largest-
reproducibility-laboratory/

2023. Trovi: Practical Open Reproducibility. Retrieved Jan 20, 2023 from https:
//chameleoncloud.gitbook.io/trovi/

2023. Yocto Project. Retrieved Jan 14, 2023 from https://www.yoctoproject.org/
2023. Zooniverse dataset. Retrieved Feb 16, 2023 from https://www.zooniverse.

org/organizations/meredithspalmer/snapshot-safari
Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.

ACM REP 23, June 27-29, 2023, Santa Cruz, CA, USA

2016. Tensorflow: A system for large-scale machine learning. In 12th { USENIX}
symposium on operating systems design and implementation ({ OSDI} 16). 265-283.
Cedric Adjih, Emmanuel Baccelli, Eric Fleury, Gaetan Harter, Nathalie Mitton,
Thomas Noel, Roger Pissard-Gibollet, Frederic Saint-Marcel, Guillaume Schreiner,
Julien Vandaele, et al. 2015. FIT IoT-LAB: A large scale open experimental IoT
testbed. In 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT). IEEE,
459-464.

Jason Anderson and Kate Keahey. 2019. A case for integrating experimental con-
tainers with notebooks. In 2019 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). IEEE, 151-158.

L. A. Barba and G. K. Thiruvathukal. 2017. Reproducible Research for Computing
in Science Engineering. Computing in Science Engineering 19, 6 (2017), 85-87.
Raphaél Bolze, Franck Cappello, Eddy Caron, Michel Dayde, Frédéric Desprez,
Emmanuel Jeannot, Yvon Jégou, Stephane Lanteri, Julien Leduc, Nouredine Melab,
Guillaume Mornet, Raymond Namyst, Pascale Primet, Benjamin Quétier, Olivier
Richard, El-Ghazali Talbi, and Iréa Touche. 2006. Grid’5000: A Large Scale And
Highly Reconfigurable Experimental Grid Testbed. International Journal of High
Performance Computing Applications 20, 4 (2006), 481-494. https://doi.org/10.
1177/1094342006070078

Ronan-Alexandre Cherrueau, Marie Delavergne, Alexandre Van Kempen, Adrien
Lebre, Dimitri Pertin, Javier Rojas Balderrama, Anthony Simonet, and Matthieu
Simonin. 2021. Enoslib: A library for experiment-driven research in distributed
computing. IEEE Transactions on Parallel and Distributed Systems 33, 6 (2021),
1464-1477.

April Clyburne-Sherin, Xu Fei, and Seth Ariel Green. 2019. Computational
reproducibility via containers in psychology. Meta-psychology 3 (2019).

Geoff Cumming, Fiona Fidler, and David L Vaux. 2007. Error bars in experimental
biology. The Journal of cell biology 177, 1 (2007), 7-11.

ETP4HPC. April 29, 2020. ETP4HPC Strategic Research Agenda. https://www.
etp4hpc.eu/sra.html.

Odd Erik Gundersen, Yolanda Gil, and David W Aha. 2018. On reproducible
Al: Towards reproducible research, open science, and digital scholarship in AI
publications. AI magazine 39, 3 (2018), 56-68.

Benjamin Haibe-Kains, George Alexandru Adam, Ahmed Hosny, Farnoosh Kho-
dakarami, Massive Analysis Quality Control (MAQC) Society Board of Direc-
tors Shraddha Thakkar 35 Kusko Rebecca 36 Sansone Susanna-Assunta 37 Tong
Weida 35 Wolfinger Russ D. 38 Mason Christopher E. 39 Jones Wendell 40 Dopazo
Joaquin 41 Furlanello Cesare 42, Levi Waldron, Bo Wang, Chris McIntosh, Anna
Goldenberg, Anshul Kundaje, et al. 2020. Transparency and reproducibility in
artificial intelligence. Nature 586, 7829 (2020), E14-E16.

Kate Keahey. 2020. The Silver Lining. IEEE Internet Computing 24, 4 (2020),
55-59.

Kate Keahey, Jason Anderson, Michael Sherman, Zhuo Zhen, Mark Powers, Isabel
Brunkan, and Adam Cooper. 2021. Chameleon@Edge Community Workshop
Report.

Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan Stanzione,
Mert Cevik, Jacob Colleran, Haryadi S Gunawi, Cody Hammock, et al. 2020.
Lessons learned from the chameleon testbed. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). 219-233.

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason
Grout, Sylvain Corlay, et al. 2016. Jupyter Notebooks-a publishing format for
reproducible computational workflows. Vol. 2016.

Matthew S Krafczyk, A Shi, Adhithya Bhaskar, D Marinov, and Victoria Stod-
den. 2021. Learning from reproducing computational results: introducing three
principles and the Reproduction Package. Philosophical Transactions of the Royal
Society A 379, 2197 (2021), 20200069.

Ling Liu and M Tamer Ozsu. 2009. Encyclopedia of database systems. Vol. 6.
Springer.

Engineering National Academies of Sciences, Medicine, et al. 2019. Reproducibility
and replicability in science. National Academies Press.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019), 8026-8037.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825-2830.

Daniel Rosendo, Alexandru Costan, Gabriel Antoniu, Matthieu Simonin, Jean-
Christophe Lombardo, Alexis Joly, and Patrick Valduriez. 2021. Reproducible
Performance Optimization of Complex Applications on the Edge-to-Cloud Con-
tinuum. In Cluster 2021 - IEEE International Conference on Cluster Computing. Port-
land, OR, United States, 23-34. https://doi.org/10.1109/Cluster48925.2021.00043
Daniel Rosendo, Alexandru Costan, Patrick Valduriez, and Gabriel Antoniu. 2022.
Distributed intelligence on the Edge-to-Cloud Continuum: A systematic literature
review. Journal of Parallel and Distributed Computing 166 (Aug. 2022), 71-94.

ACM REP 23, June 27-29, 2023, Santa Cruz, CA, USA

[53]

[54]

[55]

https://doi.org/10.1016/j.jpdc.2022.04.004

Daniel Rosendo, Pedro Silva, Matthieu Simonin, Alexandru Costan, and Gabriel
Antoniu. 2020. E2Clab: Exploring the Computing Continuum through Repeatable,
Replicable and Reproducible Edge-to-Cloud Experiments. In Cluster 2020 - IEEE
International Conference on Cluster Computing. Kobe, Japan, 1-11. https://doi.
org/10.1109/CLUSTER49012.2020.00028

Renan Souza, Vitor Silva, Jose J. Camata, Alvaro L. G. A. Coutinho, Patrick
Valduriez, and Marta Mattoso. 2019. Keeping Track of User Steering Actions in
Dynamic Workflows. Future Generation Computer Systems 99 (2019), 624-643.
https://doi.org/10.1016/j.future.2019.05.011

Victoria Stodden, Marcia McNutt, David H Bailey, Ewa Deelman, Yolanda Gil,
Brooks Hanson, Michael A Heroux, John PA Ioannidis, and Michela Taufer. 2016.

[56

[57

Daniel Rosendo, Kate Keahey, Alexandru Costan, Matthieu Simonin, Patrick Valduriez, and Gabriel Antoniu

Enhancing reproducibility for computational methods. Science 354, 6317 (2016),
1240-1241.

Victoria Stodden and Sheila Miguez. 2014. Best Practices for Computational
Science: Software Infrastructure and Environments for Reproducible and Ex-
tensible Research. Journal of Open Research Software (Jul 2014). https:
//openresearchsoftware.metajnl.com/articles/10.5334/jors.ay

Mark D Wilkinson, Michel Dumontier, [Jsbrand Jan Aalbersberg, Gabrielle Apple-
ton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino
da Silva Santos, Philip E Bourne, et al. 2016. The FAIR Guiding Principles for
scientific data management and stewardship. Scientific data 3, 1 (2016), 1-9.

