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1. Introduction

The critical almost Mathieu operator, that is

(Hα,θφ)(n) = φ(n− 1) + φ(n + 1) + 2 cos 2π(αn + θ)φ(n), (1)

acting on %2(Z), is a model important in several physics contexts (see e.g. [7] and ref-
erences therein) and a subject to significant numerical/heuristic studies, demonstrating 
a host of remarkable features [22]. For E in the spectrum, its transfer-matrix cocycle is 
also critical in the sense of Avila’s global theory [3], thus is not amenable to either super-
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critical (localization) or sub-critical (reducibility) methods. In fact, operators (1) serve 
as the boundary between two by now decently understood and very different regimes: 
sub-critical (that is with cos in (1) replaced by λ cos, λ < 1), and super-critical (the same 
with λ > 1). Hα,θ has been long (albeit not from the very beginning [23]1) conjectured 
to have purely singular continuous spectrum for every α ∈ R\Q and every θ. Since the 
spectrum (which is θ-independent for α ∈ R\Q [9]) has Lebesgue measure zero [4], the 
problem boils down to the proof of absence of eigenvalues, see e.g. problem 7 in [17]. 
This simple question has a surprisingly rich (and dramatic) history.

Aside from the results on topologically generic absence of point spectrum [8,20] that 
hold in a far greater generality, all the proofs were, in one way or another, based on the 
Aubry duality [1], a Fourier-type transform for which the family {Hα,θ}θ is a fixed point. 
One manifestation of the Aubry duality is: if un ∈ %2(Z) solves the eigenvalue equation 
Hα,θu = Eu, then vxn := e2πinθû(x + nα) solves

Hα,xv
x = Evx (2)

for a.e. x, where û(x) =
∑

e2πinxun is the Fourier transform of u. This led Delyon [13]
to prove that there are no %1 solutions of Hα,θu = Eu, for otherwise (2) would hold 
also for x = θ, leading to a contradiction. Thus any potential eigenfunctions must be 
decaying slowly. Chojnacki [11] used duality-based C∗-algebraic methods to prove the 
existence of some continuous component, but without ruling out the point spectrum. 
[14] gave a duality-based argument for no point spectrum for a.e. θ, but it had a gap, 
as it was based on the validity of Deift-Simon’s [12] theorem on a.e. mutual singularity 
of singular spectral measures, which is only proved in [12] in the hyperbolic case, and is 
still open in the regime of zero Lyapunov exponents. Avila and Krikorian (see [2]) used 
convergence of renormalization [5] and non-perturbative reducibility [10] to show that 
for every α ∈ R\Q, eigenvalues may only occur for countably many θ. Then Avila [2]
found a simple proof of the latter fact, also characterizing this potentially exceptional 
set of phases explicitly: these are θ that are α-rational, i.e. 2θ+kα ∈ Z, for some k. The 
argument of [2] was incorporated in [6], where it was developed to prove a.e. absence 
of point spectrum for the extended Harper’s model (EHM) in the entire critical region 
(the EHM result was later further improved by Han [15]). The proof in [2,6] has as a 
starting point the dynamical formulation of the Aubry duality: if vxn solves the eigenvalue 
equation Hα,xv = Ev, then so does its complex conjugate v̄xn, and this can be used to 
construct an L2-reducibility of the transfer-matrix cocycles to the rotation by θ, given 
independence of v and v̄. Unfortunately those vectors are always linearly dependent if θ
is α-rational. Thus the argument hopelessly breaks down for 2θ + kα ∈ Z.

Moreover, it was noted in [6] that in the bulk of the critical region, for α-rational 
phases θ, the extended Harper’s operator actually does have eigenvalues. Also, super-
critical almost Mathieu with Diophantine α, has eigenvalues (with exponentially decaying 

1 It is the paper where the name almost Mathieu was introduced.
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eigenfunctions) for α-rational phases as well [16,18]. All this increased the uncertainty 
about whether eigenvalues may exist for the α-rational phases also for the critical almost 
Mathieu.

In this note we prove

Theorem 1.1. Hα,θ does not have eigenvalues for any α, θ (and thus has purely singular-
continuous spectrum for all α /∈ Q).

In our proof we replace the Aubry duality by a new transform, inspired by the chiral 
gauge transform of [19], see also [21]. The proof is fully self-contained.

2. Proof of Theorem 1.1

Given u ∈ %2(Z), set

u(x) =
∞∑

n=−∞
une

πin(θ+nα−2x) (3)

and

ux
n = u(x + nα)eπin(x+nα−3θ

2 ) (4)

where ux
n is defined for a.e. x.

Let H̃x
α : RZ → RZ, x ∈ R/2Z, be given by

(H̃x
αv)n = 2 cosπ(x + nα)vn−1 + 2 cosπ(x + (n + 1)α)vn+1 (5)

Lemma 2.1. If u ∈ %2(Z) solves Hα,θu = Eu, then ux ∈ RZ is a formal solution of the 
difference equation

H̃
x+ θ−α

2
α ux = Eux (6)

for a.e. x.

Proof. If (Tu)n := un+1 + un−1, and (Su)n := cos 2π(θ + nα)un, we obtain (Tu)(x) =
u(x −α)eπi(θ+α−2x)+u(x +α)eπi(−θ+α+2x) and (Su)(x) = u(x −α)e2πiθ+u(x +α)e−2πiθ, 
leading, by a straightforward computation, to ((T + S)u)x = H̃

x+ θ−α
2

α ux. !

We note that the family {H̃x
α}x∈R/2Z is self-dual with respect to the Aubry-type 

duality. Namely, the following holds. For x ∈ R/2Z, v ∈ %2(Z) for a.e. β, we can define 
wβ ∈ RZ by

wβ
n = v̂(β + nα

2 )eπin(x+α
2 ). (7)
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Lemma 2.2. If v ∈ %2(Z) solves H̃x
αv = Ev, then, for a.e. β, wβ ∈ RZ is a formal solution 

of the difference equation

H̃
β−α

2
α wβ = Ewβ . (8)

Proof. A similar direct computation. !

Let now u ∈ %2(Z) with ‖u‖2 = 1 be a solution of Hα,θu = Eu. By Lemma 2.1, (6)
holds, which implies that we also have, for a.e. x,

H̃
x+ θ−α

2
α ūx = Eūx (9)

thus the Wronskian of ux and ūx is constant in n. That is

cosπ(x + nα)Im (u(x + nα)ū(x + (n− 1)α)eπi(x+nα+ia(α,θ))) = c(x) (10)

for some c(x), all n and a.e. x. Here and below a(α, θ) stands for (an explicit) real-valued 
function that does not depend on n, x. Its exact form is not important. a(α, θ) may stand 
for different such functions in different expressions.

By ergodicity, this implies that, for a.e. x and some constant c,

cosπx(u(x)ū(x− α)eπix+ia(α,θ) − u(x− α)ū(x)e−πix−ia(α,θ)) = c. (11)

It follows by Cauchy-Schwarz that u(x)ū(x − α)eπix+ia(α,θ) ∈ L1, which implies that 
c = 0,2 so

u(x)ū(x− α)eπix+ia(α,θ) − u(x− α)ū(x)e−πix−ia(α,θ) = 0 (12)

for a.e. x.

Lemma 2.3. For a.e. x, we have u(x) %= 0.

Proof. Indeed, otherwise by ergodic theorem there would exist (in fact, a full measure 
of, but it is not important) x such that ux

n solves (6) and ux
n = 0 for infinitely many n (in 

fact, only four such n suffice for the argument). Let ni < ni+1 − 1, i ∈ Z, be the labeling 
of zeros of such ux

n. Clearly, if v ∈ RZ is a solution of (6) with vn = vm = 0, we have 

that v[n,m] ∈ %2(Z) defined by (v[n,m])k =
{
vk, k ∈ [n + 1,m− 1]
0, otherwise

is also a solution of 

(6). Set vx,i := ux
[ni,ni+1].

Clearly, for any I ⊂ Z the collection {vx,i}i∈I is linearly independent in %2(Z). This 
implies that the corresponding Aubry dual collection {wx,i,β}i∈I constructed by (7) from 

2 A similar argument was used by R. Han [15].
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{vx,i}i∈I , is linearly independent in RZ. Thus, by Lemma 2.2 we obtain, for a.e. β, in-
finitely many linearly independent wx,i,β ∈ RZ, that all solve (8). This is in contradiction 
with the fact that the space of solutions of (8) is two-dimensional for a.e. β. !

Therefore we can define for a.e. x, a unimodular measurable function on R/2Z

φ(x) := u(x)
ū(x)e

πix+ia(α,θ) (13)

By (12), (13) we have that, for a.e. x,

φ(x) = φ(x− α)e−2πix+ia(α,θ), (14)

and expanding φ(x) into the Fourier series, φ(x) =
∑∞

k=−∞ akeπikx, we obtain |ak+2| =
|ak|, a contradiction. !
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