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1. Introduction
The critical almost Mathieu operator, that is
(Ha,69)(n) = ¢(n — 1) + ¢(n + 1) 4 2 cos 2m(an + 0)$(n), (1)

acting on ¢?(Z), is a model important in several physics contexts (see e.g. [7] and ref-
erences therein) and a subject to significant numerical/heuristic studies, demonstrating
a host of remarkable features [22]. For E in the spectrum, its transfer-matrix cocycle is
also critical in the sense of Avila’s global theory [3], thus is not amenable to either super-
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critical (localization) or sub-critical (reducibility) methods. In fact, operators (1) serve
as the boundary between two by now decently understood and very different regimes:
sub-critical (that is with cos in (1) replaced by A cos, A < 1), and super-critical (the same
with A > 1). H, ¢ has been long (albeit not from the very beginning [23]") conjectured
to have purely singular continuous spectrum for every o € R\Q and every 6. Since the
spectrum (which is #-independent for o € R\Q [9]) has Lebesgue measure zero [4], the
problem boils down to the proof of absence of eigenvalues, see e.g. problem 7 in [17].
This simple question has a surprisingly rich (and dramatic) history.

Aside from the results on topologically generic absence of point spectrum [8,20] that
hold in a far greater generality, all the proofs were, in one way or another, based on the
Aubry duality [1], a Fourier-type transform for which the family {H, ¢} is a fixed point.
One manifestation of the Aubry duality is: if u,, € ¢?(Z) solves the eigenvalue equation
H, gu = Eu, then v¥ := e2>™"%4(z + na) solves

H, 0" = Ev® (2)

for a.e. z, where 4(z) = 3. e?™"y,, is the Fourier transform of u. This led Delyon [13]
to prove that there are no ¢! solutions of H,gu = Eu, for otherwise (2) would hold
also for z = 0, leading to a contradiction. Thus any potential eigenfunctions must be
decaying slowly. Chojnacki [11] used duality-based C*-algebraic methods to prove the
existence of some continuous component, but without ruling out the point spectrum.
[14] gave a duality-based argument for no point spectrum for a.e. 8, but it had a gap,
as it was based on the validity of Deift-Simon’s [12] theorem on a.e. mutual singularity
of singular spectral measures, which is only proved in [12] in the hyperbolic case, and is
still open in the regime of zero Lyapunov exponents. Avila and Krikorian (see [2]) used
convergence of renormalization [5] and non-perturbative reducibility [10] to show that
for every o € R\Q, eigenvalues may only occur for countably many 6. Then Avila [2]
found a simple proof of the latter fact, also characterizing this potentially exceptional
set of phases explicitly: these are 6 that are a-rational, i.e. 20 + ka € Z, for some k. The
argument of [2] was incorporated in [6], where it was developed to prove a.e. absence
of point spectrum for the extended Harper’s model (EHM) in the entire critical region
(the EHM result was later further improved by Han [15]). The proof in [2,6] has as a
starting point the dynamical formulation of the Aubry duality: if v} solves the eigenvalue
equation H, v = Ev, then so does its complex conjugate vy, and this can be used to
construct an L2-reducibility of the transfer-matrix cocycles to the rotation by 6, given
independence of v and v. Unfortunately those vectors are always linearly dependent if 8
is a-rational. Thus the argument hopelessly breaks down for 20 + ka € Z.

Moreover, it was noted in [6] that in the bulk of the critical region, for a-rational
phases 6, the extended Harper’s operator actually does have eigenvalues. Also, super-
critical almost Mathieu with Diophantine «, has eigenvalues (with exponentially decaying

1 It is the paper where the name almost Mathieu was introduced.
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eigenfunctions) for a-rational phases as well [16,18]. All this increased the uncertainty
about whether eigenvalues may exist for the a-rational phases also for the critical almost
Mathieu.

In this note we prove

Theorem 1.1. H, g does not have eigenvalues for any o, 8 (and thus has purely singular-
continuous spectrum for all o ¢ Q).

In our proof we replace the Aubry duality by a new transform, inspired by the chiral
gauge transform of [19], see also [21]. The proof is fully self-contained.

2. Proof of Theorem 1.1

Given u € (*(Z), set

U(IL’) _ Z uneﬂin(9+na72w) (3)
and
qu _ u(a: + na)ewin(m+ "02—39) (4)

where u? is defined for a.e. x.
Let H® : R?Z — RZ,z € R/2Z, be given by
(H®v),, = 2cosm(x 4+ na)v,_1 + 2cosm(z + (n 4 1)a)v, 41 (5)

Lemma 2.1. If u € (*(Z) solves H, gu = Eu, then u® € RZ is a formal solution of the
difference equation

~ g 8=
HIY 2w = Eu” (6)
for a.e. x.

Proof. If (T'u),, := upy1 + un—1, and (Su), = cos27(0 + na)u,, we obtain (Tu)(x) =
u(z—a)e™0+e=22) Ly (4 a)e™ (0+et20) and (Su)(z) = u(z—a)e?™ +u(z+a)e 270

,,,1;_"_9501
[e3%

leading, by a straightforward computation, to ((T'+ S)u)” = H, u®. O

We note that the family {H*},cr 2z is self-dual with respect to the Aubry-type
duality. Namely, the following holds. For 2 € R/2Z,v € (*(Z) for a.e. 3, we can define
w? € RZ by
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Lemma 2.2. Ifv € (?(Z) solves ffgv = Ewv, then, for a.e. B, w® € RZ is a formal solution
of the difference equation

o

HY % wh = BuP. (8)
Proof. A similar direct computation. O

Let now u € ¢*(Z) with |lull2 = 1 be a solution of H,¢u = Eu. By Lemma 2.1, (6)
holds, which implies that we also have, for a.e. z,

~ b—a
HY T @ = Ea” (9)
thus the Wronskian of «* and «” is constant in n. That is
cos 7(z + na)Im (u(z + na)a(z + (n — 1)a)em @Hnatial@d)y — () (10)

for some ¢(z), all n and a.e. z. Here and below a(«, #) stands for (an explicit) real-valued
function that does not depend on n, . Its exact form is not important. a(«, #) may stand
for different such functions in different expressions.

By ergodicity, this implies that, for a.e. x and some constant c,

miz+ia(a,0) 77Ti$7ia(a,9)) =c. (11)

cosmz(u(z)u(z — a)e u(z — a)u(z)e
It follows by Cauchy-Schwarz that u(z)u(x — a)e™™@+ie(@0) ¢ [1 swhich implies that
c=0,s0

miz+ia(e,0)

u(z)u(z — a)e u(z — a)u(z)e ™rial@0) — (12)

for a.e. x.
Lemma 2.3. For a.e. x, we have u(zx) # 0.

Proof. Indeed, otherwise by ergodic theorem there would exist (in fact, a full measure
of, but it is not important) = such that u? solves (6) and u? = 0 for infinitely many n (in
fact, only four such n suffice for the argument). Let n; < n;y1 — 1,7 € Z, be the labeling
of zeros of such u2. Clearly, if v € RZ is a solution of (6) with v, = v,, = 0, we have

Vg, k € [n+1,m—1]

that vj, m) € ¢?(Z) defined by (Vnym))e = { is also a solution of

0, otherwise
(6). Set v®* = ufmmﬂ].

Clearly, for any I C Z the collection {v®'};c; is linearly independent in ¢?(Z). This
implies that the corresponding Aubry dual collection {w®"#};c; constructed by (7) from

2 A similar argument was used by R. Han [15].
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{v®};e1, is linearly independent in RZ. Thus, by Lemma 2.2 we obtain, for a.e. 3, in-
finitely many linearly independent w?*# € R%, that all solve (8). This is in contradiction
with the fact that the space of solutions of (8) is two-dimensional for a.e. 5. O

Therefore we can define for a.e. , a unimodular measurable function on R/27Z

(b(m) = %enix+ia(a,0) (13)

E\l

By (12), (13) we have that, for a.e. z,

d)(w) — ¢($ _ a>e—27riz+ia(oz,0)’ (14)

Tikx

and expanding ¢(z) into the Fourier series, ¢(z) = >_7 __ are™ ", we obtain |agi2| =

|ak|, a contradiction. O
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