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Abstract

Child birth via Cesarean section accounts for approximately 32% of all births each year in
the United States. A variety of risk factors and complications can lead caregivers and
patients to plan for a Cesarean delivery in advance before onset of labor. However, a non-
trivial subset of Cesarean sections (~25%) are unplanned and occur after an initial trial of
labor is attempted. Unfortunately, patients who deliver via unplanned Cesarean sections
have increased maternal morbidity and mortality rates and higher rates of neonatal intensive
care admissions. In an effort to develop models aimed at improving health outcomes in
labor and delivery, this work seeks to explore the use of national vital statistics data to quan-
tify the likelihood of an unplanned Cesarean section based on 22 maternal characteristics.
Machine learning techniques are used to ascertain influential features, train and evaluate
models, and assess accuracy against available test data. Based on cross-validation results
from a large training cohort (n = 6,530,467 births), the gradient-boosted tree algorithm was
identified as the best performer and was evaluated on a large test cohort (n= 10,613,877
births) for two prediction scenarios. Area under the receiver operating characteristic curves
of 0.77 or higher and recall scores of 0.78 or higher were obtained and the resulting models
are well calibrated. Combined with feature importance analysis to explain why certain mater-
nal characteristics lead to a specific prediction in individual patients, the developed analysis
pipeline provides additional quantitative information to aid in the decision process on
whether to plan for a Cesarean section in advance, a substantially safer option among
women at a high risk of unplanned Cesarean delivery during labor.

Author summary

Child birth via Cesarean section accounts for almost one third of all births each year in
the United States. While many of these Cesarean deliveries are planned for before the
onset of labor, a subset arise from complications during labor and occur after an initial
trial of labor. These unplanned Cesarean sections unfortunately have increased maternal
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and neonatal morbidity and mortality rates. This work leverages vital statistics data to
develop predictive models that quantify the risk of having an unplanned Cesarean section
based on 22 maternal characteristics. Multiple derived models were benchmarked against
a large testing cohort to identify a clinically practical model that also demonstrated high
calibration accuracy. Ultimately, this model can be used to provide a quantitative aid in
the decision process on whether to plan for a Cesarean section in advance, a substantially
safer option among women at a high risk of encountering an unplanned Cesarean delivery
during labor.

Introduction

Based on data from the Centers for Disease Control and Prevention (CDC), approximately
32% of all live births in the U.S. during the last decade have been performed via Cesarean sec-
tion (C-section) [1]. Of these C-sections, approximately 25% occur after an initial trial of labor
is attempted for vaginal delivery. In total, these unplanned C-sections account for ~ 300,000
births each year. Unfortunately, unplanned C-sections are also associated with a two- to three-
fold increase in maternal morbidity and mortality rates along with poorer fetal outcomes [2—
7]. To potentially aid in improving birth-related morbidities and provide additional informa-
tion for patients and caregivers, this work seeks to develop and test machine-learning models
to predict the probability of an unplanned C-section using national vital statistics data pub-
lished by the CDC. Potential input features for the models are selected based on domain
knowledge to account for two prediction scenario timeframes: the first occurring during the
1* trimester (< 14 weeks of pregnancy), and the second occurring near the end of pregnancy,
where important additional information is available.

The data considered for this analysis is published by the CDC on an annual basis [8] and
provides vital statistics information for all U.S. births (approximately 4 million births per
year). It is worth noting that the ability to analyze unplanned C-sections as proposed in the
current work is facilitated by a change to the U.S. birth certificate that was first introduced in
2003. In particular, the form of the 2003 U.S Standard Certificate of Live Birth introduced
additional checkboxes characterizing labor and the method of delivery including a flag indi-
cating whether labor was attempted or not (recorded in CDC published data as ME_TRIAL).
Combined with the method of delivery information, we can thus classify C-sections into
labored or non-labored variants for which the labored variant is assumed to be an unplanned
C-section.

Although this birth certificate change was introduced at the national level in 2003, reporting
adoption by states slowly increased over a number of years with new statistics first evident in
CDC data beginning in 2005. By parsing and analyzing reporting flags in the CDC data, we
document the growth in adoption of the revised certificate in Fig 1 which considers all births
to U.S residents from 2005 to 2017 (note that 2017 is the most recent year for which the CDC
has published period-linked birth information). In 2005, only 30.7% of the births reported had
adopted the revised birth certificate; by 2011, this percentage had increased significantly to
over 85% and surpassed 95% beginning in 2014. Based on this observed reporting trend and a
motivation to include the majority of births in a given year for our analysis, we restrict further
discussion in this paper to births reported between 2011-2017 using the revised birth certifi-
cate. Note that statistical overviews of the data considered in this analysis are published by the
CDC on a year by year basis [9-15].
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Fig 1. History of the total number of births to U.S. residents per year and the adoption growth of the 2003 Revised Birth
Certificate. The percentage shown each year highlights the fraction of births reported to the CDC that used the revised birth

certificate.

https://doi.org/10.1371/journal.pdig.0000166.g001

Primary outcome of interest

The primary predictive outcome of interest in this work is an unplanned (labored) C-section.
We differentiate between labored and non-labored C-sections based on examination of two
available CDC variables: ME_TRIAL and RDMETH REC. The ME TRIAL variable is simply
used to indicate whether labor was attempted or not while the RDMETH REC variable corre-
sponds to the (revised) delivery method recode and is used to delineate between vaginal or C-
section deliveries. Potential values for ROMETH REC and their classification are as follows
[16]:

1 = Vaginal (excludes vaginal births after previous C-section)
2 = Vaginal after previous C-section

3 = Primary C-section

4 = Repeat C-section

5 = Vaginal (unknown if previous C-section)

6 = C-section (unknown if previous C-section)

9 = Not stated

The logic for binning births using these two variables is shown in Fig 2 and defines the
starting analysis cohort used for subsequent machine learning analysis. In particular, we con-
sider the group of births comprised of both vaginal deliveries and unplanned C-sections as
forming the basis for a supervised machine-learning classification problem. Non-labored
(planned) C-sections are excluded from the analysis cohort.
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Fig 2. Starting cohort identification of all attempted vaginal deliveries via examination of two variables included
in CDC data.

https://doi.org/10.1371/journal.pdig.0000166.9002

Modeling variables

A variety of data elements for the mother, father, and baby are included in birth data published
by the CDC. For this analysis, we restricted potential modeling variables to a maximum of 22
maternal characteristics and grouped them into two broad sets based on their time of availabil-
ity: the .4, prediction scenario includes items known during the 1° trimester while the t,.,,,,
scenario includes additional items known at or near the time of labor and delivery. A full list of
the binned variables considered, along with a brief description and their numerical data type is
presented in Table 1. Note from Table 1 that two categorical features are included related to
the mother’s race and hispanic origin. The encoding for these features is further expanded in
Table 2 using CDC-provided classifications.

Results

A comparison study using multiple machine-learning algorithms and parameter feature sets
was undertaken to assess whether maternal characteristics that are included in national vital
statistics birth data can be used to adequately predict unplanned C-sections. This first analysis
was carried out on a training set comprised of births reported to the CDC using revised birth
certificates from 2011-2013. The logic of Fig 2 was used to restrict the training cohort to
include only births with a known trial of labor. Additional inclusion criteria for the study was
to restrict to singleton births, cephalic presentations, and to exclude births with missing values
for desired modeling features. A summary of the multi-step data filtering process is shown in
Fig 3A indicating assembly of a final training cohort comprised of 6, 530, 467 births. Of the

~ 6.5M births that attempted labor, 10.7% of them (700, 943) ultimately delivered via
unplanned C-section and form the positive class for evaluation of multiple supervised
machine-learning configurations.

Table 3 presents comparative classification performance metrics from multiple ten-fold
cross-validation procedures using the training set with three different machine-learning algo-
rithms and varying number of input features from the ¢, and t,,,,, prediction scenarios. Exe-
cution runtimes obtained on a commodity server are also included. AdaBoost and XGBoost
are seen to perform better for this imbalanced classification problem with AUC scores of 76%
or better and recall scores of 77% or better (when using a minimum of 10 feature parameters).
XGBoost is seen to deliver better (lower) Brier scores in all cases.
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Table 1. Variables from CDC vital statistics data considered for machine-learning models to classify mode of delivery for two prediction scenarios: f,,,;, variables
are known during the 1* trimester while t,,,,, variables are known near the time of labor and delivery.

Variable | Variable Description

mager
Ibo

tbo

bmi_r
pwgt_r
mbrace
umhisp
rf_ppterm
rf_cesar
rf_cesarn
rf_diab
rf_phyp
cig_0
cig_1

rf_ghyp
rf_gest
cig_2
cig_3
previs_rec
combgest

wtgain_rec

mother’s age

live birth order (recode)

total birth order (recode)

body mass index (recode)
pre-pregnancy weight (recode)
mother’s bridged race
mother’s hispanic origin
previous preterm birth?
previous C-sections?

number of previous C-sections
prepregnancy diabetes
prepregnancy hypertension
pre-pregnancy cigarette use

cigarettes usage 1st trimester

gestational hypertension
gestational diabetes

cigarette usage 2nd trimester
cigarette usage 3rd trimester
number of prenatal visits
gestational age in weeks

weight gain (recode)

https://doi.org/10.1371/journal.pdig.0000166.t001

Feature Type
Numerical Binary Categorical
variables known at t.4s,
v
v
v
v
v
v
v

v

v
v

v

v
v
v

additional variables known at t,,,
v
v

NANENENEN

Based on the cross-validation results from the training cohort, the gradient-boosted trees

algorithm of XGBoost was next used for subsequent validation against a large test cohort com-
prised of births reported by the CDC during 2014-2017. The corresponding data filtering pro-
cess to arrive at the test cohort is presented in Fig 3B which indicates a cohort consisting of 10,
613, 877 births. A slightly smaller percentage of unplanned C-sections are present in the test
cohort (10.1%). Guided by the classification performance of the XGBoost cross-validation
results in the training dataset which considered four subsets of modeling inputs based on fea-
ture importance selection, the following modeling configurations were chosen for evaluation:
15 features from f,,,;, and 20 features from the ¢, modeling scenario. These counts were cho-
sen as the minimum number of features for which a steady state in scoring metric performance
was generally observed.

The 20 most important features from the XGBoost model as identified via computation of
SHapley Additive exPlanations (SHAP) values are highlighted in Fig 4 for both the t,.,, and tc,,,,
scenarios. In both cases, the top four most influential features are seen to be the live birth order,
pre-pregnancy body mass index, mother’s age, and prior C-section indicator. In the t,,,, case,
the weight gain during pregnancy is also seen to be influential as the 5™ most important feature.

Fig 5 presents scoring results of the trained XGBoost models applied to the test cohort on a
per-year basis (four years in total) for both .4, and t,.,,, scenarios. In addition to computing
raw metrics of AUC, accuracy, recall, F1, and Brier scores, model reliability curves are pre-
sented for each year. Results are seen to be quite consistent from year to year and the reliability
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Table 2. Encoding of categorical features for mother’s race and hispanic origin.

mother’s bridged race

mbrace_1
mbrace_2
mbrace_3
mbrace_4
mbrace_5
mbrace_6
mbrace_7
mbrace_8
mbrace_9
mbrace_10
mbrace_11
mbrace_12
mbrace_13
mbrace_14

mbrace_15

White

Black

American Indian
Asian Indian
Chinese

Filipino

Japanese

Korean
Vietnamese
Other Asian
Hawaiian
Guamanian
Samoan

Other Pacific Islander

More than one race

mother’s hispanic origin

umhisp_0
umhisp_1
umhisp_2
umbhisp_3
umhisp_4
umhisp_5
umhisp_9

Non-Hispanic

Mexican

Puerto Rican

Cuban

Central or South American
Other and Unknown Hispanic

Origin unknown or not stated

https://doi.org/10.1371/journal.pdig.0000166.1002

curves indicate good model calibration (the dashed line shown in each reliability curve pro-
vides a reference for a perfectly calibrated model). Note that raw classifier probabilities are
adjusted based on the imbalance ratio which does result in a cap of maximum calibrated prob-
abilities between 70-80%.

To aid in interpretation of the trained XGBoost models for individual predictions, Fig 6
presents SHAP value feature influences on the probability predictions for several test cohort
samples for the ., scenario. In particular, Fig 6A presents the highest probability sample
(p = 77%) and the 6 most influential feature values that push the probability of an unplanned
C-section for this birth to be significantly higher than the mean probability value of all predic-
tions which was p = 10.6%. In addition to this mother having had multiple prior C-sections, a
high body mass index (BMI > 40) and pre-pregnancy diabetes and hypertension contributed
to a high-probability prediction. Note that the bmi r values recorded by the CDC correspond
to six different BMI ranges delineated as follows:

1 = underweight (< 18.5)
2 = normal (18.5-24.9)

3 = overweight (25.0-29.9)
4 = obesity I (30.0-34.9)

5 = obesity II (35.0-39.9)

6 = extreme obesity III (> 40)
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Fig 3. Overview of data filtering applied to CDC data to arrive at analysis cohorts for (A) training and (B) testing of machine-learning classification
methods applied to births with a trial of labor.

https://doi.org/10.1371/journal.pdig.0000166.g003

In contrast, the lowest probability sample (p = 1.2%) is presented in Fig 6B highlighting
the 5 most influential feature values that lowered the probability prediction of an unplanned
C-section significantly below the mean. Multiple births without a prior C-section, low body
mass index (BMI < 18.5), and a young age are seen to lower this mother’s likelihood of an
unplanned C-section. Clinically, the occurrence of one or more prior previous C-sections is
understood to reduce likelihood of vaginal delivery [17]. To examine the feature influence in a
birth without a prior C-section, one additional high-probability example is shown in Fig 6C.
In this case, a high body mass index, pre-pregnancy hypertension and diabetes again contrib-
ute to a higher unplanned C-section probability (p = 77%).

Discussion

The current study aims to to develop a predictive model for optimal mode of delivery in preg-
nancy by quantify the individual risk of having an unplanned C-section following an
attempted vaginal delivery. Clinically, the motivation for such a predictive tool is to aid in the
decision making process to offer and consider an elective C-section for patients identified with
a higher risk of having an unplanned C-section. A benefit and motivation for choosing to use
national vital statistics data from the CDC is that it includes a comprehensive, nearly complete
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Table 3. Delivery mode classification performance using varying number of input features from public CDC data and machine-learning models using tenfold cross-
validation of the training set (results using variable combinations from the t,,,;, and t,.,,, prediction scenario timeframes). Scoring results from five metrics are pre-
sented (mean value +20) along with execution runtimes for each cross-validation exercise.

Features

10
15
20
36

10
15
20
41

10
15
20
36

10
15
20
41

5
10
15
20
36

5
10
15
20
41

https://doi.org/10.1371/journal.pdig.0000166.1003

AUC

0.765 + 0.009
0.769 + 0.008
0.770 + 0.008
0.770 + 0.008
0.770 + 0.008

0.770 + 0.009
0.778 + 0.007
0.780 + 0.008
0.781 + 0.008
0.781 + 0.008

0.732 +0.012
0.765 + 0.009
0.768 + 0.009
0.769 + 0.008
0.769 + 0.008

0.734 + 0.012
0.776 + 0.008
0.778 + 0.008
0.779 + 0.008
0.779 + 0.007

0.661 +0.018
0.655 + 0.012
0.660 + 0.011
0.691 + 0.009
0.694 + 0.010

0.559 +0.018
0.648 + 0.011
0.654 + 0.011
0.660 + 0.011
0.691 + 0.011

Accuracy

0.635+0.014
0.640 + 0.019
0.640 + 0.019
0.640 + 0.019
0.640 + 0.019

0.657 £ 0.015
0.667 + 0.017
0.669 + 0.019
0.668 + 0.019
0.668 + 0.020

0.632 +0.016
0.632 +0.014
0.648 + 0.018
0.649 + 0.021
0.649 + 0.021

0.637 £ 0.017
0.663 £ 0.016
0.666 + 0.018
0.667 + 0.024
0.669 * 0.024

0.578 + 0.028
0.595 + 0.044
0.596 + 0.055
0.621 * 0.055
0.624 £ 0.055

0.613 +0.042
0.632 + 0.056
0.628 + 0.059
0.635 + 0.063
0.657 + 0.061

Recall F1
XGBoost [teqry]
0.789 £0.013 0.317 £ 0.007
0.788 £0.017 0.319 = 0.008
0.788 £0.017 0.320 = 0.008
0.788 £0.016 0.320 = 0.008
0.788 £0.017 0.320 = 0.008
XGBoost [term]
0.771 £0.014 0.326 £ 0.008
0.769 £ 0.016 0.332 = 0.009
0.768 £ 0.018 0.333 £ 0.009
0.771 £ 0.016 0.333 £ 0.009
0.771 £0.017 0.333 £ 0.009

AdaBoost [fer)]

0.730 £ 0.023 0.299 £+ 0.008
0.793 £0.012 0.317 £ 0.007
0.776 £ 0.015 0.322 + 0.008
0.777 £0.018 0.322 + 0.009
0.777 £0.018 0.322 £ 0.009
AdaBoost [ter]
0.727 £ 0.027 0.301 £ 0.008
0.773 £0.013 0.330 £ 0.009
0.771 £0.016 0.332 £ 0.009
0.771 £0.021 0.332£0.011
0.769 £ 0.021 0.333 £0.011

Complement Naive Bayes [f,q1,]

0.663 £ 0.070 0.252 £ 0.009
0.628 £ 0.079 0.249 £ 0.007
0.636 £ 0.089 0.253 £ 0.007
0.651 £ 0.072 0.270 £ 0.008
0.653 £ 0.068 0.272 £0.010
Complement Naive Bayes [f;¢,,]
0.464 £ 0.073 0.204 = 0.009
0.559 £ 0.092 0.246 = 0.008
0.576 £ 0.093 0.249 + 0.008
0.576 £ 0.095 0.253 = 0.008
0.600 £ 0.072 0.274 £ 0.013

Brier

0.201 £ 0.008
0.199 +£0.011
0.198 +0.010
0.199 +0.010
0.199 +0.010

0.198 + 0.006
0.195 +0.010
0.194 £ 0.011
0.194 £ 0.011
0.194 £ 0.011

0.248 + 0.000
0.247 +0.000
0.247 +0.000
0.247 +0.000
0.247 + 0.000

0.248 + 0.000
0.247 £ 0.000
0.247 £ 0.000
0.247 £ 0.000
0.247 £+ 0.000

0.246 + 0.014
0.248 + 0.032
0.247 £ 0.035
0.237 £ 0.034
0.236 + 0.034

0.251 +£0.018
0.246 £ 0.041
0.246 + 0.040
0.244 + 0.042
0.233 +£ 0.041

Time (s)

655.4
782.2
769.2
825.5
950.3

662.3
705.7
806.0
843.8
977.9

2010.5
2977.3
2480.3
2685.6
3583.5

2943.7
2131.7
3951.7
3115.4
6072.9

24.9
30.5
35.1
38.2
58.2

24.9
32.1
33.6
44.8
54.5

sample of all U.S. births over multiple years. This dataset thus contains ample samples for
training and evaluation of multiple models over a large target population and development of
the models in this context minimizes the risk of overfitting while maximizing the probability
of capturing individual variation.
Current conventions regarding mode of delivery promote vaginal delivery in most patients.
In part, this is motivated by the fact that lower rates of maternal mortality and morbidity are
associated with vaginal delivery when compared to all C-section deliveries (both planned and
unplanned). Indeed, this sentiment is reflected in current guidelines regarding C-section on
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Fig 4. SHAP value influence of CDC inputs for the top 20 most impactful features using XGBoost on training set: (A)
tearty Scenario variables, (B) t.., scenario variables. The maternal modeling variables in these plots derive from CDC vital
statistics data-fields and are described further in Tables 1 and 2.

https://doi.org/10.1371/journal.pdig.0000166.9004
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Fig 5. Classifier performance of XGBoost model trained using births from 2011 thru 2013 and evaluated on subsequent years 2014
thru 2017. Scoring metrics include AUC (area under the ROC curve), accuracy, recall, Brier loss, and F1 along with reliability curves to
assess predictive calibration: (A) results using top 15-most influential parameters from £,,;, prediction scenario, (B) results using 20-most
influential variables from t,,,.

https://doi.org/10.1371/journal.pdig.0000166.9005
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Fig 6. SHAP value feature influences of individual model predictions of unplanned C-section for high and low risk patients from the ¢.,,;, prediction scenario.
The maternal modeling variables in these explanation plots derive from CDC vital statistics data-fields and are described further in Tables 1 and 2. Note that per
CDC encoding, a value of bmi r = 6 corresponds to a BMI value > 40 whilebmi r = 1 mapstoa BMI value < 18.5. Boolean features are demarcated with 1.0
for true and 0.0 for false.

https://doi.org/10.1371/journal.pdig.0000166.9006

maternal request [18, 19]. However, planned versus unplanned C-sections have different risk
profiles and approximately one in ten women attempting vaginal birth ultimately delivers via
an unplanned C-section during labor due to maternal or fetal indications. These unplanned C-
sections are not only much riskier for both the mother and the baby when compared to vaginal
delivery, but also when compared to an electively planned C-section before labor. In particular,
an unplanned C-section in labor is associated with a twofold higher risk of maternal mortality
and morbidity, and a two- to fivefold higher rate of perinatal mortality and morbidity versus
an electively planned C-section [2-7, 20]. Thus, there is a clear need to individualize the
decision regarding mode of delivery. For those women who are at high risk of having an
unplanned C-section in labor, a planned C-section before onset of labor is likely the much
safer option.

More detailed clinical guidance on choosing the mode of delivery has focused on patients
who have had a previous C-section. For example, an analysis of ~ 12K women across nine-
teen academic medical centers was used previously to develop a calculator predicting proba-
bility of a successful vaginal birth after Cesarean delivery (VBAC) [21]. In contrast, the
current effort considers all labored births during model development and testing and
leverages significantly larger cohorts using CDC data for model development and, more
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importantly, model validation (with n ~ 6.5M births for training and n ~ 10.6M births for
testing in the current work).

A more recent machine learning approach was used for the prediction of successful vaginal
delivery [22]. This publication used information available at admission to the labor and deliv-
ery unit and during the first stage of labor to predict occurrence of vaginal delivery. Thus, this
study addresses a different clinical situation and one that precludes or limits the decision
options before labor onset, such as elective cesarean delivery. Moreover, this study was done in
a sample of the target population from a single center limiting the generalizability of the study
findings, further limited by a low rate of unplanned cesarean deliveries, approximately half of
that observed in the US. Furthermore, the resulting calibration of internal validation results
showed substantial overestimation of risk. In contrast, the calibration results demonstrated in
the current effort were very good over a large range of risks which is critical for decision mak-
ing contexts.

Cross-validation results (Table 3 obtained from the best of three different machine-learning
classification algorithms considered herein showed AUC and recall scores of 77% and 79%
respectively for the t.,,, prediction scenario using 15 modeling features. Similar results for the
tierm prediction scenario were observed with AUC and recall scores of 78% and 77% respec-
tively with 20 modeling features employed. Exercising the final XGBoost model trained against
births from 2011-2013 across multiple external validation years from 2014-2017 yielded
nearly identical AUC and recall scores as the original k-fold cross-validation. In particular,
AUC scores fell between 77-79% for both .4, and t,.,,, while recall scores were in the range
78-79%. The results were also very consistent year to year from 2014-2017. After accounting
for classification imbalance, the resulting models are also seen to have excellent calibration
properties when evaluated against the test cohort. Good calibration performance is an impor-
tant requirement for any potential clinical model as it reflects the degree to which a model’s
predicted probability estimates the true correctness likelihood [23].

Based on these results, we conclude that there is indeed sufficient information available in
national vital statistics from extended birth-certificate data for effective prediction of the opti-
mal mode of delivery. In the analysis, a maximum of 41 features were considered after one-hot
encoding categorical variables for the ¢, prediction scenario (36 features for the t.,,, sce-
nario). For the boosted gradient-tree method of XGBoost, we computed SHapley Additive
exPlanations (SHAP) values [24] to calculate feature importance based on the average impact
on model output for the top 20 features presented in Fig 4. Similar to existing models for
VBAC prediction, a mother’s age and starting body mass index are seen as important predic-
tive features in the current models. In addition to live/total birth order and number of previous
C-sections, other variables from the ¢, scenario making the top 10 most influential features
include mbrace 2 (indicating race = Black), cig 0 (pre-pregnancy smoking), pwgt r
(pre-pregnancy weight), and umhisp 1 (indicating a Mexican hispanic origin). Three addi-
tional features available near the end of pregnancy are seen to be in the top 10 for average
model impact in the ¢, prediction scenario, namely wtgain rec (weight gain), comb-
gest (gestational age), and previs rec (number of prenatal visits).

In summary, this work has developed an individualized predictive model for optimal mode
of delivery creating a clinically useful aid in decision making regarding the safest mode of
delivery and demonstrated the usefulness of national vital statistics combined with machine-
learning techniques for this type of analysis. Several classifiers were considered with the gradi-
ent-boosted machine variant from XGBoost chosen as the best performer. A particular
strength of this model lies in aggregating the predictive power of a large number of risk factor
combinations and protective characteristics rather than relying solely on a handful of features
that are observed to be influential on average. Furthermore, the large combination of risk
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factors and protective characteristics provide excellent predictive accuracy as evidenced by the
well-calibrated results obtained during external validation across multiple test years. The
resulting model is dual-pronged targeting usage scenarios at the beginning of pregnancy (t.a,,)
and near the time of labor and delivery (¢,.,,,) allowing for individualized risk prediction and
feedback at two points during pregnancy. Furthermore, the model is amenable for implemen-
tation into clinical practice via an interactive front-end to assess individualized risk and weigh
the influence associated with different risk factors before and during pregnancy.

Methods

For this work, the analysis toolchain uses a custom Python 3.x application that was developed
to first parse and load raw datafiles as published by the CDC on a year by year basis into Pan-
das arrays [25]. CDC birth files published by the CDC have companion user guides which
detail available variables each year along with their physical location (columns) within the
flat ASCII datafile. Unfortunately, the location of variables of interest are not necessarily
consistent from year to year and one must be careful to account for these subtle changes.
Furthermore, many variables also have separate reporting flags which are used to indicate
whether the birth is reported using the revised (2003) certificate of live birth [26]. These
reporting flags must be queried for relevant variables of interest to confirm data availability
during parsing. To allow for a flexible runtime description of CDC variables and reporting
flags, the analysis pipeline code developed herein utilizes an INI style input file to document
variable locations on a per-year basis. The following highlights one example stanza of the
input description for the bmi_ r variable that is included in the ,,;, prediction scenario
described in Table 1.

[cdc/varindex/bmi r]

len =1

type = int
2011 = 533
2012 = 533
2013 = 533
2014 = 287
2015 = 287
2016 = 287
2017 = 287

2011 flag = 576

2012 flag = 576

2013 flag = 576

2014 flag = 282

2015 flag = 282

2016 flag = 282

2017 flag = 282

The syntax above provides information on the location of bmi _r indicating an integer
field length of one which is located in column number 533 for years 2011-2013. However,
beginning in 2014, the location changes to column number 287 and remains there through
2017. Similar information is provided for the location of a reporting flag for this variable
which also changes field location in 2014. Using this flexible input parsing description for all
parameters of interest, we were able to accommodate yearly changes to underlying CDC file
formats to ultimately assemble a large aggregate dataset from 2011-2017 consisting of over
25M births that were reported using the revised birth certificate format.
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One additional subtlety that arose during CDC data parsing concerns the consistent avail-
ability and definition of mother’s bridged race during the reporting years 2011-2017. In partic-
ular, the allowable values for the mbrace variable reduced significantly in 2014 to include
only 4 race identifier values versus the 18 identifiers defined previously from 2011-2013. For-
tunately, additional race recode variables were also introduced in 2014 and we identified one
new variant (mracel5) with sufficient overlap with the original variable. The race identifica-
tion values for this new variable are identical to the previous mbrace values with the excep-
tion of how bridged multiple races are identified. With mrace15, a single categorization is
used to identify multiple race while the original mbrace variable delineated a mother’s
bridged race into four variants. To derive a consistent race designation for all analysis years
considered herein, we thus collapsed the bridged multiple race options present in years 2011-
2014 into a single marker in combination with the use of mrace15 for later years.

Once the relevant CDC data has been parsed and loaded, the starting analysis cohort is
assembled using the logic identified in Fig 2. Further filtering is applied to restrict analysis to
singleton births with labor attempted and cephalic presentations. Births in which modeling
variables from Table 1 are missing are also dropped from the analysis and specific data counts
for each step of the filtering process are included in Fig 3. Note that of the records dropped
due to missing data, wtgain rec was one of the larger contributors with 4.2% of eligible
births dropped from the training cohort and 3.5% from the test cohort. The smoking indica-
tors (cig n) also had a larger contribution to missing data in the training cohort with 4.8% of
eligible births being dropped. This reporting prevalence of cig n is improved significantly
for latter years with only 0.6% of eligible births dropped in the test cohort. After filtering, two
additional data transformations are applied to prepare for subsequent classification training
and evaluation. First, the two categorical features highlighted in Table 1 are one-hot encoded
which increases the modeling state space to a maximum of 41 features. Second, six yes/no tex-
tual risk factors parsed from raw CDC data are converted to binary counterparts; these are
appliedto rf ppterm,rf cesar,rf diab,rf phyp,rf ghyp,andrf gest with
a_Dbool suffix appended to the variable names.

From a machine learning perspective, the mode of delivery analysis is poised as a supervised
learning problem with a binary output class that corresponds to whether a birth was delivered
vaginally (class = 0) or via an unplanned C-section (class = 1). As is the case frequently encoun-
tered in medicine, the distribution for the output class is unbalanced with 10.3% of the data
samples observed in the positive class in CDC data from 2011-2017. To test applicability of
classification techniques, three different algorithms are trained and evaluated via cross-valida-
tion using the training cohort. These include AdaBoost [27], a meta-estimator which combines
weighted predictions from a sequence of weak learners; XGBoost [28], an optimized gradient
boosting library; and Complement Naive Bayes [29], an updated variant of the classic Naive
Bayes classifier that is better suited for imbalanced datasets. In all cases, we leverage the scikit-
learn [30] interface to these algorithms for training, cross-validation, scoring evaluation, and
prediction.

Given the imbalance present in our unplanned C-section classification variable, additional
care must be taken to appropriately weight samples during the training phase and we leverage
scikit’s compute sample weight function in “balanced” mode to compute individual
sample weights that are inversely proportional to class frequency. These weights are then pro-
vided as input to each of the underlying classifiers £it () method. We chose this approach
over under sampling [31] to avoid ignoring the majority of samples (births) available during
training.

Feature selection results are also evaluated in the context of cross-validation using the train-
ing set and classification performance was computed for the top 5, 10, 15, and 20 subfeatures
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in terms of importance for both .4, and t,.,,, scenarios (Table 3). To choose the subfeatures,
each of the three machine-learning algorithms considered were first trained against the entire
training set with all available features. Then, feature importance for each input was computed
in one of two ways depending on the classifier. For XGBoost, the feature order was determined
using mean SHAP value [24] impacts on model output. For the other two classifiers, the fea-
ture importances method was exploited in scikit-learn which orders model features
using gini importance [32]. Subsets of the most-important features were then used in ten-fold
cross-validation to assess model performance with increased feature counts for each algorithm.
Note that the parallel (threaded) capability of XGBoost was exploited on 44 cores to reduce
execution time. The other classifiers do not have a parallel implementation within scikit-learn
and were executed serially. Based on the results obtained with cross-validation, we identified
XGBoost as the best performer for the algorithms considered and chose model configurations
of 15 features for f,,,;, and 20 features for t,,,,, for subsequent evaluation against the test cohort
(as no improvement in scoring metrics was observed with additional features added).

Validation results presented in Fig 5 are obtained using XGBoost with chosen subfeature
counts by training against n = 6,530,467 samples from the training cohort (births during
2011-2013) and testing against n = 10,613,877 samples from the test cohort (births during
2014-2017). Five scoring metrics are computed against yearly subsets of the test cohort using
standard classification scoring routines provided by the sklearn.metrics class. Predicted
probabilities for the test samples are computed using each classifiers predict proba
method. Reliability (model calibration) curves are generated by computing histograms of pre-
dicted model probabilities into a maximum of 10 bins and comparing the mean probability
within each bin to the fraction of true positives from samples within the bin [33]. Note that
while the maximum bin count considered is 10, we restrict the highest bin to have a minimum
of at least 100 samples.

When evaluating model calibration, additional treatment is necessary to adjust resulting
classifier probability outputs to account for the imbalanced prevalence of unplanned C-sec-
tions. In this case, we assume a similar prior between training and test populations and use the

imbalance ratio observed from the training cohort (f = - 55 = 12.02%) to adjust raw classi-

fier probabilities (p) to a calibrated probability (p’) as follows [34]:

/ bp
4 Pp—p+1 M
The updated probability distributions obtained using this calculation are then used to generate
the reliability curves that are included in Fig 5. Note that the transformation applied via Eq 1
does limit the maximum possible classifier probabilities and consequently, the largest mean
probability seen in the reliability curves is ~73%.

To interrogate feature influence of trained XGBoost models for individual birth predic-
tions, we leverage the force plot utility provided by the SHAP library [35]. Three exam-
ples using this approach (two with high probability and one with low) are shown in Fig 6,
although similar plots can be generated for any prediction to help aid in explaining which
maternal characteristics lead to an individual patient’s probability prediction.

Note that the raw data utilized to complete this analysis is available for public download
from the CDC’s Vital Statistics online portal. Relevant live-birth data is obtained from the
denominator files included in period linked birth-infant death data files from 2005 to 2017.
The uncompressed size of these files totals approximately 50GB.

The companion Python utilities and Jupyter notebooks used to complete this analysis are
available via GitHub [36]. All analysis was completed using the developed source-code files
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starting from raw CDC birth files on computational resources housed at the Texas Advanced
Computing Center (TACC). The data analysis environment was containerized using Docker
[37] and executed within a Linux HPC cluster running OpenHPC [38] with 64GB of ram/
node. Note that a self-contained Dockerfile that defines the Python analysis platform with

all required computing modules and Jupyter support is also included within the GitHub
repository.
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