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Abstract

Child birth via Cesarean section accounts for approximately 32% of all births each year in

the United States. A variety of risk factors and complications can lead caregivers and

patients to plan for a Cesarean delivery in advance before onset of labor. However, a non-

trivial subset of Cesarean sections (*25%) are unplanned and occur after an initial trial of

labor is attempted. Unfortunately, patients who deliver via unplanned Cesarean sections

have increased maternal morbidity and mortality rates and higher rates of neonatal intensive

care admissions. In an effort to develop models aimed at improving health outcomes in

labor and delivery, this work seeks to explore the use of national vital statistics data to quan-

tify the likelihood of an unplanned Cesarean section based on 22 maternal characteristics.

Machine learning techniques are used to ascertain influential features, train and evaluate

models, and assess accuracy against available test data. Based on cross-validation results

from a large training cohort (n = 6,530,467 births), the gradient-boosted tree algorithm was

identified as the best performer and was evaluated on a large test cohort (n = 10,613,877

births) for two prediction scenarios. Area under the receiver operating characteristic curves

of 0.77 or higher and recall scores of 0.78 or higher were obtained and the resulting models

are well calibrated. Combined with feature importance analysis to explain why certain mater-

nal characteristics lead to a specific prediction in individual patients, the developed analysis

pipeline provides additional quantitative information to aid in the decision process on

whether to plan for a Cesarean section in advance, a substantially safer option among

women at a high risk of unplanned Cesarean delivery during labor.

Author summary

Child birth via Cesarean section accounts for almost one third of all births each year in

the United States. While many of these Cesarean deliveries are planned for before the

onset of labor, a subset arise from complications during labor and occur after an initial

trial of labor. These unplanned Cesarean sections unfortunately have increased maternal
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and neonatal morbidity and mortality rates. This work leverages vital statistics data to

develop predictive models that quantify the risk of having an unplanned Cesarean section

based on 22 maternal characteristics. Multiple derived models were benchmarked against

a large testing cohort to identify a clinically practical model that also demonstrated high

calibration accuracy. Ultimately, this model can be used to provide a quantitative aid in

the decision process on whether to plan for a Cesarean section in advance, a substantially

safer option among women at a high risk of encountering an unplanned Cesarean delivery

during labor.

Introduction

Based on data from the Centers for Disease Control and Prevention (CDC), approximately

32% of all live births in the U.S. during the last decade have been performed via Cesarean sec-

tion (C-section) [1]. Of these C-sections, approximately 25% occur after an initial trial of labor

is attempted for vaginal delivery. In total, these unplanned C-sections account for *300,000

births each year. Unfortunately, unplanned C-sections are also associated with a two- to three-

fold increase in maternal morbidity and mortality rates along with poorer fetal outcomes [2–

7]. To potentially aid in improving birth-related morbidities and provide additional informa-

tion for patients and caregivers, this work seeks to develop and test machine-learning models

to predict the probability of an unplanned C-section using national vital statistics data pub-

lished by the CDC. Potential input features for the models are selected based on domain

knowledge to account for two prediction scenario timeframes: the first occurring during the

1st trimester (<14 weeks of pregnancy), and the second occurring near the end of pregnancy,

where important additional information is available.

The data considered for this analysis is published by the CDC on an annual basis [8] and

provides vital statistics information for all U.S. births (approximately 4 million births per

year). It is worth noting that the ability to analyze unplanned C-sections as proposed in the

current work is facilitated by a change to the U.S. birth certificate that was first introduced in

2003. In particular, the form of the 2003 U.S Standard Certificate of Live Birth introduced

additional checkboxes characterizing labor and the method of delivery including a flag indi-

cating whether labor was attempted or not (recorded in CDC published data as ME_TRIAL).

Combined with the method of delivery information, we can thus classify C-sections into

labored or non-labored variants for which the labored variant is assumed to be an unplanned

C-section.

Although this birth certificate change was introduced at the national level in 2003, reporting

adoption by states slowly increased over a number of years with new statistics first evident in

CDC data beginning in 2005. By parsing and analyzing reporting flags in the CDC data, we

document the growth in adoption of the revised certificate in Fig 1 which considers all births

to U.S residents from 2005 to 2017 (note that 2017 is the most recent year for which the CDC

has published period-linked birth information). In 2005, only 30.7% of the births reported had

adopted the revised birth certificate; by 2011, this percentage had increased significantly to

over 85% and surpassed 95% beginning in 2014. Based on this observed reporting trend and a

motivation to include the majority of births in a given year for our analysis, we restrict further

discussion in this paper to births reported between 2011-2017 using the revised birth certifi-

cate. Note that statistical overviews of the data considered in this analysis are published by the

CDC on a year by year basis [9–15].
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Primary outcome of interest

The primary predictive outcome of interest in this work is an unplanned (labored) C-section.

We differentiate between labored and non-labored C-sections based on examination of two

available CDC variables: ME_TRIAL and RDMETH_REC. The ME_TRIAL variable is simply

used to indicate whether labor was attempted or not while the RDMETH_REC variable corre-

sponds to the (revised) delivery method recode and is used to delineate between vaginal or C-

section deliveries. Potential values for RDMETH_REC and their classification are as follows

[16]:

1 ) Vaginal (excludes vaginal births after previous C-section)

2 ) Vaginal after previous C-section

3 ) Primary C-section

4 ) Repeat C-section

5 ) Vaginal (unknown if previous C-section)

6 ) C-section (unknown if previous C-section)

9 ) Not stated

The logic for binning births using these two variables is shown in Fig 2 and defines the

starting analysis cohort used for subsequent machine learning analysis. In particular, we con-

sider the group of births comprised of both vaginal deliveries and unplanned C-sections as

forming the basis for a supervised machine-learning classification problem. Non-labored

(planned) C-sections are excluded from the analysis cohort.

Fig 1. History of the total number of births to U.S. residents per year and the adoption growth of the 2003 Revised Birth
Certificate. The percentage shown each year highlights the fraction of births reported to the CDC that used the revised birth

certificate.

https://doi.org/10.1371/journal.pdig.0000166.g001
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Modeling variables

A variety of data elements for the mother, father, and baby are included in birth data published

by the CDC. For this analysis, we restricted potential modeling variables to a maximum of 22

maternal characteristics and grouped them into two broad sets based on their time of availabil-

ity: the tearly prediction scenario includes items known during the 1st trimester while the tterm
scenario includes additional items known at or near the time of labor and delivery. A full list of

the binned variables considered, along with a brief description and their numerical data type is

presented in Table 1. Note from Table 1 that two categorical features are included related to

the mother’s race and hispanic origin. The encoding for these features is further expanded in

Table 2 using CDC-provided classifications.

Results

A comparison study using multiple machine-learning algorithms and parameter feature sets

was undertaken to assess whether maternal characteristics that are included in national vital

statistics birth data can be used to adequately predict unplanned C-sections. This first analysis

was carried out on a training set comprised of births reported to the CDC using revised birth

certificates from 2011–2013. The logic of Fig 2 was used to restrict the training cohort to

include only births with a known trial of labor. Additional inclusion criteria for the study was

to restrict to singleton births, cephalic presentations, and to exclude births with missing values

for desired modeling features. A summary of the multi-step data filtering process is shown in

Fig 3A indicating assembly of a final training cohort comprised of 6, 530, 467 births. Of the

*6.5M births that attempted labor, 10.7% of them (700, 943) ultimately delivered via

unplanned C-section and form the positive class for evaluation of multiple supervised

machine-learning configurations.

Table 3 presents comparative classification performance metrics from multiple ten-fold

cross-validation procedures using the training set with three different machine-learning algo-

rithms and varying number of input features from the tearly and tterm prediction scenarios. Exe-

cution runtimes obtained on a commodity server are also included. AdaBoost and XGBoost

are seen to perform better for this imbalanced classification problem with AUC scores of 76%

or better and recall scores of 77% or better (when using a minimum of 10 feature parameters).

XGBoost is seen to deliver better (lower) Brier scores in all cases.

Fig 2. Starting cohort identification of all attempted vaginal deliveries via examination of two variables included

in CDC data.

https://doi.org/10.1371/journal.pdig.0000166.g002
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Based on the cross-validation results from the training cohort, the gradient-boosted trees

algorithm of XGBoost was next used for subsequent validation against a large test cohort com-

prised of births reported by the CDC during 2014–2017. The corresponding data filtering pro-

cess to arrive at the test cohort is presented in Fig 3B which indicates a cohort consisting of 10,

613, 877 births. A slightly smaller percentage of unplanned C-sections are present in the test

cohort (10.1%). Guided by the classification performance of the XGBoost cross-validation

results in the training dataset which considered four subsets of modeling inputs based on fea-

ture importance selection, the following modeling configurations were chosen for evaluation:

15 features from tearly and 20 features from the tterm modeling scenario. These counts were cho-

sen as the minimum number of features for which a steady state in scoring metric performance

was generally observed.

The 20 most important features from the XGBoost model as identified via computation of

SHapley Additive exPlanations (SHAP) values are highlighted in Fig 4 for both the tearly and tterm
scenarios. In both cases, the top four most influential features are seen to be the live birth order,

pre-pregnancy body mass index, mother’s age, and prior C-section indicator. In the tterm case,

the weight gain during pregnancy is also seen to be influential as the 5th most important feature.

Fig 5 presents scoring results of the trained XGBoost models applied to the test cohort on a

per-year basis (four years in total) for both tearly and tterm scenarios. In addition to computing

raw metrics of AUC, accuracy, recall, F1, and Brier scores, model reliability curves are pre-

sented for each year. Results are seen to be quite consistent from year to year and the reliability

Table 1. Variables from CDC vital statistics data considered for machine-learning models to classify mode of delivery for two prediction scenarios: tearly variables

are known during the 1st trimester while tterm variables are known near the time of labor and delivery.

Variable Variable Description Feature Type

Numerical Binary Categorical

variables known at tearly
mager mother’s age ✓

lbo live birth order (recode) ✓

tbo total birth order (recode) ✓

bmi_r body mass index (recode) ✓

pwgt_r pre-pregnancy weight (recode) ✓

mbrace mother’s bridged race ✓

umhisp mother’s hispanic origin ✓

rf_ppterm previous preterm birth? ✓

rf_cesar previous C-sections? ✓

rf_cesarn number of previous C-sections ✓

rf_diab prepregnancy diabetes ✓

rf_phyp prepregnancy hypertension ✓

cig_0 pre-pregnancy cigarette use ✓

cig_1 cigarettes usage 1st trimester ✓

additional variables known at tterm
rf_ghyp gestational hypertension ✓

rf_gest gestational diabetes ✓

cig_2 cigarette usage 2nd trimester ✓

cig_3 cigarette usage 3rd trimester ✓

previs_rec number of prenatal visits ✓

combgest gestational age in weeks ✓

wtgain_rec weight gain (recode) ✓

https://doi.org/10.1371/journal.pdig.0000166.t001
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curves indicate good model calibration (the dashed line shown in each reliability curve pro-

vides a reference for a perfectly calibrated model). Note that raw classifier probabilities are

adjusted based on the imbalance ratio which does result in a cap of maximum calibrated prob-

abilities between 70-80%.

To aid in interpretation of the trained XGBoost models for individual predictions, Fig 6

presents SHAP value feature influences on the probability predictions for several test cohort

samples for the tearly scenario. In particular, Fig 6A presents the highest probability sample

(p̂ ¼ 77%) and the 6 most influential feature values that push the probability of an unplanned

C-section for this birth to be significantly higher than the mean probability value of all predic-

tions which was �p ¼ 10:6%. In addition to this mother having had multiple prior C-sections, a

high body mass index (BMI � 40) and pre-pregnancy diabetes and hypertension contributed

to a high-probability prediction. Note that the bmi_r values recorded by the CDC correspond

to six different BMI ranges delineated as follows:

1 ) underweight (< 18.5)

2 ) normal (18.5–24.9)

3 ) overweight (25.0–29.9)

4 ) obesity I (30.0–34.9)

5 ) obesity II (35.0–39.9)

6 ) extreme obesity III (� 40)

Table 2. Encoding of categorical features for mother’s race and hispanic origin.

mother’s bridged race

mbrace_1 White

mbrace_2 Black

mbrace_3 American Indian

mbrace_4 Asian Indian

mbrace_5 Chinese

mbrace_6 Filipino

mbrace_7 Japanese

mbrace_8 Korean

mbrace_9 Vietnamese

mbrace_10 Other Asian

mbrace_11 Hawaiian

mbrace_12 Guamanian

mbrace_13 Samoan

mbrace_14 Other Pacific Islander

mbrace_15 More than one race

mother’s hispanic origin

umhisp_0 Non-Hispanic

umhisp_1 Mexican

umhisp_2 Puerto Rican

umhisp_3 Cuban

umhisp_4 Central or South American

umhisp_5 Other and Unknown Hispanic

umhisp_9 Origin unknown or not stated

https://doi.org/10.1371/journal.pdig.0000166.t002
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In contrast, the lowest probability sample (p̂ ¼ 1:2%) is presented in Fig 6B highlighting

the 5 most influential feature values that lowered the probability prediction of an unplanned

C-section significantly below the mean. Multiple births without a prior C-section, low body

mass index (BMI � 18.5), and a young age are seen to lower this mother’s likelihood of an

unplanned C-section. Clinically, the occurrence of one or more prior previous C-sections is

understood to reduce likelihood of vaginal delivery [17]. To examine the feature influence in a

birth without a prior C-section, one additional high-probability example is shown in Fig 6C.

In this case, a high body mass index, pre-pregnancy hypertension and diabetes again contrib-

ute to a higher unplanned C-section probability (p̂ ¼ 77%).

Discussion

The current study aims to to develop a predictive model for optimal mode of delivery in preg-

nancy by quantify the individual risk of having an unplanned C-section following an

attempted vaginal delivery. Clinically, the motivation for such a predictive tool is to aid in the

decision making process to offer and consider an elective C-section for patients identified with

a higher risk of having an unplanned C-section. A benefit and motivation for choosing to use

national vital statistics data from the CDC is that it includes a comprehensive, nearly complete

Fig 3. Overview of data filtering applied to CDC data to arrive at analysis cohorts for (A) training and (B) testing of machine-learning classification

methods applied to births with a trial of labor.

https://doi.org/10.1371/journal.pdig.0000166.g003
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sample of all U.S. births over multiple years. This dataset thus contains ample samples for

training and evaluation of multiple models over a large target population and development of

the models in this context minimizes the risk of overfitting while maximizing the probability

of capturing individual variation.

Current conventions regarding mode of delivery promote vaginal delivery in most patients.

In part, this is motivated by the fact that lower rates of maternal mortality and morbidity are

associated with vaginal delivery when compared to all C-section deliveries (both planned and

unplanned). Indeed, this sentiment is reflected in current guidelines regarding C-section on

Table 3. Delivery mode classification performance using varying number of input features from public CDC data and machine-learning models using tenfold cross-

validation of the training set (results using variable combinations from the tearly and tterm prediction scenario timeframes). Scoring results from five metrics are pre-

sented (mean value ±2σ) along with execution runtimes for each cross-validation exercise.

Features AUC Accuracy Recall F1 Brier Time (s)

XGBoost [tearly]
5 0.765 ± 0.009 0.635 ± 0.014 0.789 ± 0.013 0.317 ± 0.007 0.201 ± 0.008 655.4

10 0.769 ± 0.008 0.640 ± 0.019 0.788 ± 0.017 0.319 ± 0.008 0.199 ± 0.011 782.2

15 0.770 ± 0.008 0.640 ± 0.019 0.788 ± 0.017 0.320 ± 0.008 0.198 ± 0.010 769.2

20 0.770 ± 0.008 0.640 ± 0.019 0.788 ± 0.016 0.320 ± 0.008 0.199 ± 0.010 825.5

36 0.770 ± 0.008 0.640 ± 0.019 0.788 ± 0.017 0.320 ± 0.008 0.199 ± 0.010 950.3

XGBoost [tterm]

5 0.770 ± 0.009 0.657 ± 0.015 0.771 ± 0.014 0.326 ± 0.008 0.198 ± 0.006 662.3

10 0.778 ± 0.007 0.667 ± 0.017 0.769 ± 0.016 0.332 ± 0.009 0.195 ± 0.010 705.7

15 0.780 ± 0.008 0.669 ± 0.019 0.768 ± 0.018 0.333 ± 0.009 0.194 ± 0.011 806.0

20 0.781 ± 0.008 0.668 ± 0.019 0.771 ± 0.016 0.333 ± 0.009 0.194 ± 0.011 843.8

41 0.781 ± 0.008 0.668 ± 0.020 0.771 ± 0.017 0.333 ± 0.009 0.194 ± 0.011 977.9

AdaBoost [tearly]
5 0.732 ± 0.012 0.632 ± 0.016 0.730 ± 0.023 0.299 ± 0.008 0.248 ± 0.000 2010.5

10 0.765 ± 0.009 0.632 ± 0.014 0.793 ± 0.012 0.317 ± 0.007 0.247 ± 0.000 2977.3

15 0.768 ± 0.009 0.648 ± 0.018 0.776 ± 0.015 0.322 ± 0.008 0.247 ± 0.000 2480.3

20 0.769 ± 0.008 0.649 ± 0.021 0.777 ± 0.018 0.322 ± 0.009 0.247 ± 0.000 2685.6

36 0.769 ± 0.008 0.649 ± 0.021 0.777 ± 0.018 0.322 ± 0.009 0.247 ± 0.000 3583.5

AdaBoost [tterm]

5 0.734 ± 0.012 0.637 ± 0.017 0.727 ± 0.027 0.301 ± 0.008 0.248 ± 0.000 2943.7

10 0.776 ± 0.008 0.663 ± 0.016 0.773 ± 0.013 0.330 ± 0.009 0.247 ± 0.000 2131.7

15 0.778 ± 0.008 0.666 ± 0.018 0.771 ± 0.016 0.332 ± 0.009 0.247 ± 0.000 3951.7

20 0.779 ± 0.008 0.667 ± 0.024 0.771 ± 0.021 0.332 ± 0.011 0.247 ± 0.000 3115.4

41 0.779 ± 0.007 0.669 ± 0.024 0.769 ± 0.021 0.333 ± 0.011 0.247 ± 0.000 6072.9

Complement Naive Bayes [tearly]
5 0.661 ± 0.018 0.578 ± 0.028 0.663 ± 0.070 0.252 ± 0.009 0.246 ± 0.014 24.9

10 0.655 ± 0.012 0.595 ± 0.044 0.628 ± 0.079 0.249 ± 0.007 0.248 ± 0.032 30.5

15 0.660 ± 0.011 0.596 ± 0.055 0.636 ± 0.089 0.253 ± 0.007 0.247 ± 0.035 35.1

20 0.691 ± 0.009 0.621 ± 0.055 0.651 ± 0.072 0.270 ± 0.008 0.237 ± 0.034 38.2

36 0.694 ± 0.010 0.624 ± 0.055 0.653 ± 0.068 0.272 ± 0.010 0.236 ± 0.034 58.2

Complement Naive Bayes [tterm]

5 0.559 ± 0.018 0.613 ± 0.042 0.464 ± 0.073 0.204 ± 0.009 0.251 ± 0.018 24.9

10 0.648 ± 0.011 0.632 ± 0.056 0.559 ± 0.092 0.246 ± 0.008 0.246 ± 0.041 32.1

15 0.654 ± 0.011 0.628 ± 0.059 0.576 ± 0.093 0.249 ± 0.008 0.246 ± 0.040 33.6

20 0.660 ± 0.011 0.635 ± 0.063 0.576 ± 0.095 0.253 ± 0.008 0.244 ± 0.042 44.8

41 0.691 ± 0.011 0.657 ± 0.061 0.600 ± 0.072 0.274 ± 0.013 0.233 ± 0.041 54.5

https://doi.org/10.1371/journal.pdig.0000166.t003
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Fig 4. SHAP value influence of CDC inputs for the top 20 most impactful features using XGBoost on training set: (A)

tearly scenario variables, (B) tterm scenario variables. The maternal modeling variables in these plots derive from CDC vital

statistics data-fields and are described further in Tables 1 and 2.

https://doi.org/10.1371/journal.pdig.0000166.g004
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Fig 5. Classifier performance of XGBoost model trained using births from 2011 thru 2013 and evaluated on subsequent years 2014

thru 2017. Scoring metrics include AUC (area under the ROC curve), accuracy, recall, Brier loss, and F1 along with reliability curves to

assess predictive calibration: (A) results using top 15-most influential parameters from tearly prediction scenario, (B) results using 20-most

influential variables from tterm.

https://doi.org/10.1371/journal.pdig.0000166.g005
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maternal request [18, 19]. However, planned versus unplanned C-sections have different risk

profiles and approximately one in ten women attempting vaginal birth ultimately delivers via

an unplanned C-section during labor due to maternal or fetal indications. These unplanned C-

sections are not only much riskier for both the mother and the baby when compared to vaginal

delivery, but also when compared to an electively planned C-section before labor. In particular,

an unplanned C-section in labor is associated with a twofold higher risk of maternal mortality

and morbidity, and a two- to fivefold higher rate of perinatal mortality and morbidity versus

an electively planned C-section [2–7, 20]. Thus, there is a clear need to individualize the

decision regarding mode of delivery. For those women who are at high risk of having an

unplanned C-section in labor, a planned C-section before onset of labor is likely the much

safer option.

More detailed clinical guidance on choosing the mode of delivery has focused on patients

who have had a previous C-section. For example, an analysis of *12K women across nine-

teen academic medical centers was used previously to develop a calculator predicting proba-

bility of a successful vaginal birth after Cesarean delivery (VBAC) [21]. In contrast, the

current effort considers all labored births during model development and testing and

leverages significantly larger cohorts using CDC data for model development and, more

Fig 6. SHAP value feature influences of individual model predictions of unplanned C-section for high and low risk patients from the tearly prediction scenario.

The maternal modeling variables in these explanation plots derive from CDC vital statistics data-fields and are described further in Tables 1 and 2. Note that per

CDC encoding, a value of bmi_r = 6 corresponds to a BMI value � 40 while bmi_r = 1 maps to a BMI value < 18.5. Boolean features are demarcated with 1.0

for true and 0.0 for false.

https://doi.org/10.1371/journal.pdig.0000166.g006
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importantly, model validation (with n � 6.5M births for training and n � 10.6M births for

testing in the current work).

A more recent machine learning approach was used for the prediction of successful vaginal

delivery [22]. This publication used information available at admission to the labor and deliv-

ery unit and during the first stage of labor to predict occurrence of vaginal delivery. Thus, this

study addresses a different clinical situation and one that precludes or limits the decision

options before labor onset, such as elective cesarean delivery. Moreover, this study was done in

a sample of the target population from a single center limiting the generalizability of the study

findings, further limited by a low rate of unplanned cesarean deliveries, approximately half of

that observed in the US. Furthermore, the resulting calibration of internal validation results

showed substantial overestimation of risk. In contrast, the calibration results demonstrated in

the current effort were very good over a large range of risks which is critical for decision mak-

ing contexts.

Cross-validation results (Table 3 obtained from the best of three different machine-learning

classification algorithms considered herein showed AUC and recall scores of 77% and 79%

respectively for the tearly prediction scenario using 15 modeling features. Similar results for the

tterm prediction scenario were observed with AUC and recall scores of 78% and 77% respec-

tively with 20 modeling features employed. Exercising the final XGBoost model trained against

births from 2011–2013 across multiple external validation years from 2014–2017 yielded

nearly identical AUC and recall scores as the original k-fold cross-validation. In particular,

AUC scores fell between 77–79% for both tearly and tterm while recall scores were in the range

78–79%. The results were also very consistent year to year from 2014–2017. After accounting

for classification imbalance, the resulting models are also seen to have excellent calibration

properties when evaluated against the test cohort. Good calibration performance is an impor-

tant requirement for any potential clinical model as it reflects the degree to which a model’s

predicted probability estimates the true correctness likelihood [23].

Based on these results, we conclude that there is indeed sufficient information available in

national vital statistics from extended birth-certificate data for effective prediction of the opti-

mal mode of delivery. In the analysis, a maximum of 41 features were considered after one-hot

encoding categorical variables for the tterm prediction scenario (36 features for the tearly sce-

nario). For the boosted gradient-tree method of XGBoost, we computed SHapley Additive

exPlanations (SHAP) values [24] to calculate feature importance based on the average impact

on model output for the top 20 features presented in Fig 4. Similar to existing models for

VBAC prediction, a mother’s age and starting body mass index are seen as important predic-

tive features in the current models. In addition to live/total birth order and number of previous

C-sections, other variables from the tearly scenario making the top 10 most influential features

include mbrace_2 (indicating race = Black), cig_0 (pre-pregnancy smoking), pwgt_r
(pre-pregnancy weight), and umhisp_1 (indicating a Mexican hispanic origin). Three addi-

tional features available near the end of pregnancy are seen to be in the top 10 for average

model impact in the tterm prediction scenario, namely wtgain_rec (weight gain), comb-
gest (gestational age), and previs_rec (number of prenatal visits).

In summary, this work has developed an individualized predictive model for optimal mode

of delivery creating a clinically useful aid in decision making regarding the safest mode of

delivery and demonstrated the usefulness of national vital statistics combined with machine-

learning techniques for this type of analysis. Several classifiers were considered with the gradi-

ent-boosted machine variant from XGBoost chosen as the best performer. A particular

strength of this model lies in aggregating the predictive power of a large number of risk factor

combinations and protective characteristics rather than relying solely on a handful of features

that are observed to be influential on average. Furthermore, the large combination of risk
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factors and protective characteristics provide excellent predictive accuracy as evidenced by the

well-calibrated results obtained during external validation across multiple test years. The

resulting model is dual-pronged targeting usage scenarios at the beginning of pregnancy (tearly)
and near the time of labor and delivery (tterm) allowing for individualized risk prediction and

feedback at two points during pregnancy. Furthermore, the model is amenable for implemen-

tation into clinical practice via an interactive front-end to assess individualized risk and weigh

the influence associated with different risk factors before and during pregnancy.

Methods

For this work, the analysis toolchain uses a custom Python 3.x application that was developed

to first parse and load raw datafiles as published by the CDC on a year by year basis into Pan-

das arrays [25]. CDC birth files published by the CDC have companion user guides which

detail available variables each year along with their physical location (columns) within the

flat ASCII datafile. Unfortunately, the location of variables of interest are not necessarily

consistent from year to year and one must be careful to account for these subtle changes.

Furthermore, many variables also have separate reporting flags which are used to indicate

whether the birth is reported using the revised (2003) certificate of live birth [26]. These

reporting flags must be queried for relevant variables of interest to confirm data availability

during parsing. To allow for a flexible runtime description of CDC variables and reporting

flags, the analysis pipeline code developed herein utilizes an INI style input file to document

variable locations on a per-year basis. The following highlights one example stanza of the

input description for the bmi_r variable that is included in the tearly prediction scenario

described in Table 1.

[cdc/varindex/bmi_r]
len = 1
type = int
2011 = 533
2012 = 533
2013 = 533
2014 = 287
2015 = 287
2016 = 287
2017 = 287
2011_flag = 576
2012_flag = 576
2013_flag = 576
2014_flag = 282
2015_flag = 282
2016_flag = 282
2017_flag = 282
The syntax above provides information on the location of bmi_r indicating an integer

field length of one which is located in column number 533 for years 2011–2013. However,

beginning in 2014, the location changes to column number 287 and remains there through

2017. Similar information is provided for the location of a reporting flag for this variable

which also changes field location in 2014. Using this flexible input parsing description for all

parameters of interest, we were able to accommodate yearly changes to underlying CDC file

formats to ultimately assemble a large aggregate dataset from 2011–2017 consisting of over

25M births that were reported using the revised birth certificate format.
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One additional subtlety that arose during CDC data parsing concerns the consistent avail-

ability and definition of mother’s bridged race during the reporting years 2011-2017. In partic-

ular, the allowable values for the mbrace variable reduced significantly in 2014 to include

only 4 race identifier values versus the 18 identifiers defined previously from 2011–2013. For-

tunately, additional race recode variables were also introduced in 2014 and we identified one

new variant (mrace15) with sufficient overlap with the original variable. The race identifica-

tion values for this new variable are identical to the previous mbrace values with the excep-

tion of how bridged multiple races are identified. With mrace15, a single categorization is

used to identify multiple race while the original mbrace variable delineated a mother’s

bridged race into four variants. To derive a consistent race designation for all analysis years

considered herein, we thus collapsed the bridged multiple race options present in years 2011–

2014 into a single marker in combination with the use of mrace15 for later years.

Once the relevant CDC data has been parsed and loaded, the starting analysis cohort is

assembled using the logic identified in Fig 2. Further filtering is applied to restrict analysis to

singleton births with labor attempted and cephalic presentations. Births in which modeling

variables from Table 1 are missing are also dropped from the analysis and specific data counts

for each step of the filtering process are included in Fig 3. Note that of the records dropped

due to missing data, wtgain_rec was one of the larger contributors with 4.2% of eligible

births dropped from the training cohort and 3.5% from the test cohort. The smoking indica-

tors (cig_n) also had a larger contribution to missing data in the training cohort with 4.8% of

eligible births being dropped. This reporting prevalence of cig_n is improved significantly

for latter years with only 0.6% of eligible births dropped in the test cohort. After filtering, two

additional data transformations are applied to prepare for subsequent classification training

and evaluation. First, the two categorical features highlighted in Table 1 are one-hot encoded

which increases the modeling state space to a maximum of 41 features. Second, six yes/no tex-

tual risk factors parsed from raw CDC data are converted to binary counterparts; these are

applied to rf_ppterm, rf_cesar, rf_diab, rf_phyp, rf_ghyp, and rf_gest with

a _bool suffix appended to the variable names.

From a machine learning perspective, the mode of delivery analysis is poised as a supervised

learning problem with a binary output class that corresponds to whether a birth was delivered

vaginally (class = 0) or via an unplanned C-section (class = 1). As is the case frequently encoun-

tered in medicine, the distribution for the output class is unbalanced with 10.3% of the data

samples observed in the positive class in CDC data from 2011–2017. To test applicability of

classification techniques, three different algorithms are trained and evaluated via cross-valida-

tion using the training cohort. These include AdaBoost [27], a meta-estimator which combines

weighted predictions from a sequence of weak learners; XGBoost [28], an optimized gradient

boosting library; and Complement Naive Bayes [29], an updated variant of the classic Naive

Bayes classifier that is better suited for imbalanced datasets. In all cases, we leverage the scikit-

learn [30] interface to these algorithms for training, cross-validation, scoring evaluation, and

prediction.

Given the imbalance present in our unplanned C-section classification variable, additional

care must be taken to appropriately weight samples during the training phase and we leverage

scikit’s compute_sample_weight function in “balanced” mode to compute individual

sample weights that are inversely proportional to class frequency. These weights are then pro-

vided as input to each of the underlying classifiers fit() method. We chose this approach

over under sampling [31] to avoid ignoring the majority of samples (births) available during

training.

Feature selection results are also evaluated in the context of cross-validation using the train-

ing set and classification performance was computed for the top 5, 10, 15, and 20 subfeatures
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in terms of importance for both tearly and tterm scenarios (Table 3). To choose the subfeatures,

each of the three machine-learning algorithms considered were first trained against the entire

training set with all available features. Then, feature importance for each input was computed

in one of two ways depending on the classifier. For XGBoost, the feature order was determined

using mean SHAP value [24] impacts on model output. For the other two classifiers, the fea-
ture_importances method was exploited in scikit-learn which orders model features

using gini importance [32]. Subsets of the most-important features were then used in ten-fold

cross-validation to assess model performance with increased feature counts for each algorithm.

Note that the parallel (threaded) capability of XGBoost was exploited on 44 cores to reduce

execution time. The other classifiers do not have a parallel implementation within scikit-learn

and were executed serially. Based on the results obtained with cross-validation, we identified

XGBoost as the best performer for the algorithms considered and chose model configurations

of 15 features for tearly and 20 features for tterm for subsequent evaluation against the test cohort

(as no improvement in scoring metrics was observed with additional features added).

Validation results presented in Fig 5 are obtained using XGBoost with chosen subfeature

counts by training against n = 6,530,467 samples from the training cohort (births during

2011–2013) and testing against n = 10,613,877 samples from the test cohort (births during

2014–2017). Five scoring metrics are computed against yearly subsets of the test cohort using

standard classification scoring routines provided by the sklearn.metrics class. Predicted

probabilities for the test samples are computed using each classifiers predict_proba
method. Reliability (model calibration) curves are generated by computing histograms of pre-

dicted model probabilities into a maximum of 10 bins and comparing the mean probability

within each bin to the fraction of true positives from samples within the bin [33]. Note that

while the maximum bin count considered is 10, we restrict the highest bin to have a minimum

of at least 100 samples.

When evaluating model calibration, additional treatment is necessary to adjust resulting

classifier probability outputs to account for the imbalanced prevalence of unplanned C-sec-

tions. In this case, we assume a similar prior between training and test populations and use the

imbalance ratio observed from the training cohort (b ¼ 700;943

5;829;524
¼ 12:02%) to adjust raw classi-

fier probabilities (p) to a calibrated probability (p0) as follows [34]:

p0 ¼
bp

bp � p þ 1
ð1Þ

The updated probability distributions obtained using this calculation are then used to generate

the reliability curves that are included in Fig 5. Note that the transformation applied via Eq 1

does limit the maximum possible classifier probabilities and consequently, the largest mean

probability seen in the reliability curves is *73%.

To interrogate feature influence of trained XGBoost models for individual birth predic-

tions, we leverage the force_plot utility provided by the SHAP library [35]. Three exam-

ples using this approach (two with high probability and one with low) are shown in Fig 6,

although similar plots can be generated for any prediction to help aid in explaining which

maternal characteristics lead to an individual patient’s probability prediction.

Note that the raw data utilized to complete this analysis is available for public download

from the CDC’s Vital Statistics online portal. Relevant live-birth data is obtained from the

denominator files included in period linked birth-infant death data files from 2005 to 2017.

The uncompressed size of these files totals approximately 50GB.

The companion Python utilities and Jupyter notebooks used to complete this analysis are

available via GitHub [36]. All analysis was completed using the developed source-code files
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starting from raw CDC birth files on computational resources housed at the Texas Advanced

Computing Center (TACC). The data analysis environment was containerized using Docker

[37] and executed within a Linux HPC cluster running OpenHPC [38] with 64GB of ram/

node. Note that a self-contained Dockerfile that defines the Python analysis platform with

all required computing modules and Jupyter support is also included within the GitHub

repository.
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