

UC Merced

Proceedings of the Annual Meeting of the Cognitive Science

Society

Title

Attention Is Not Enough

Permalink

https://escholarship.org/uc/item/30x346n8

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 44(44)

Authors

Miller, Joshua

Naderi, Shawheen

Mullinax, Chaning

et al.

Publication Date

2022

Peer reviewed

https://escholarship.org/
http://www.cdlib.org/
https://escholarship.org/uc/item/30x346n8
https://escholarship.org/uc/item/30x346n8#author

Attention Is Not Enough

Joshua Miller1 (jmill233@vols.utk.edu)
Department of Mathematics, University of Tennessee, Knoxville

Knoxville, TN 37904 USA

Shawheen Naderi1 (snaderi@csus.edu)
Department of Mathematics, California State Univeristy, Sacramento

Sacramento, CA 95819, USA

Chaning B. Mullinax (cbm5d@mtmail.mtsu.edu)
Department of Computer Science, Middle Tennessee State University,

Murfreesboro, TN 37132 USA

Joshua L. Phillips (Joshua.Phillips@mtsu.edu)
Department of Computer Science, Middle Tennessee State University,

Murfreesboro, TN 37132 USA

Abstract

The human ability to generalize beyond interpolation, often
called extrapolation or symbol-binding, is challenging to recre-
ate with computational models. Biologically plausible mod-
els incorporating indirection mechanisms have demonstrated
strong performance in this regard. Deep learning approaches
such as Long Short-Term Memory (LSTM) and Transform-
ers have shown varying degrees of success, but recent work
has suggested that Transformers are capable of extrapolation
as well. We evaluate the capabilities of the above approaches
on a series of increasingly complex sentence-processing tasks
to infer the capacity of each individual architecture to extrapo-
late sentential roles across novel word fillers. We confirm that
the Transformer does possess superior abstraction capabilities
compared to LSTM. However, what it does not possess is ex-
trapolation capabilities, as evidenced by clear performance dis-
parities on novel filler tasks as compared to working memory-
based indirection models.

Keywords: Deep Neural Networks, Long Short Term Mem-
ory, Transformers, Indirection

Introduction

Generalization is the process of applying previously learned

abilities and knowledge to novel experiences. It is an essen-

tial human faculty because no two experiences are exactly

the same. One may have earlier experienced similar compo-

nents of an event but the exact manner these components are

arranged in, or even the components themselves, likely will

not be identical. For instance, one is often able to infer the

meaning of a sentence even if it contains a word outside of

one’s lexicon. While deep artificial neural networks (ANNs)

are computational systems capable of some forms of gener-

alization, challenges remain when generalizing given novel

inputs. One important thread of research in this area focuses

on symbol processing, or “the ability to represent information

in the form of abstract variables that can be bound to arbi-

trary values”, which plays an important role in one’s ability

to generalize using working memory (Kriete, Noelle, Cohen,

& O’Reilly, 2013). In this paper, we build off of previous re-

search regarding deep ANN models also reported to exercise

this ability. We evaluate their capabilities on a series of in-

creasingly complex sentence-processing tasks and are there-

fore able to infer the capacity of each individual architecture

to extrapolate to novel inputs.

Background

Biologically Plausible Indirection

The interacting subsystems of the brain thought to underlie

human working memory may allow for functionality analo-

gous to the concept of pointers from computer science via

a process called indirection (Kriete et al., 2013). Using in-

direction, abstract values located in one region of memory

can store the "addresses" of arbitrary values located in an-

other memory region. The prefrontal cortex (PFC) contains

stripes of densely intraconnected neurons which are sparsely

interconnected to one another (Elston, Benavides-Piccione,

Elston, Manger, & Defelipe, 2011) and appears suited to ac-

tive maintenance of memory traces. These stripes are strongly

linked with the basal ganglia (BG) which is appears suited for

controlling active memory gating/updating (Alexander, De-

Long, & Strick, 1986). Consequently, Kriete et al. hypothe-

sized that different PFC stripes may be employed to maintain

pointer-like memory traces and thereby implement a form of

indirection with the BG responsible for the gating/updating

of information in PFC stripes and proposed a biologically

plausible computational model with generalization capabil-

ities that utilize indirection (Kriete et al., 2013).

In Kriete et al., the abstract variables are three possible

roles in a three word sentence: agent, verb, and patient. The

arbitrary values are known as fillers and are the concrete

words which correspond to each role. For example, in the

sentence “Tom Ate Food” the agent is “Tom”, the verb is

“Ate”, and the patient is “Food”. The function of the model

is to take the previously discussed three word sentence and
1Equal contribution. Listing order is alphabetical by last name.

3147
individually encode each role and filler into working mem-

In J. Culbertson, A. Perfors, H. Rabagliati & V. Ramenzoni (Eds.), Proceedings of the 44th Annual Conference of the Cognitive Science
Society. ©2022 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).

3148

ory. Then, the model will be queried using the role, and the

filler which was stored with the associated role will be re-

called. The model was tested on three tasks, each requiring a

different form of generalization performance:

• Standard Generalization (SG) – During training, every

filler has been used in every role and all fillers have been in

the same sequence together. For instance, if the fillers are

"apple", "bat", and "cat" and the roles are their respective

ordering in the sequence, during training the model may

have been presented with "apple bat cat", "cat apple bat",

and "bat cat apple". Thus, "apple", "bat", and "cat" had all

been used in every role and had been used in the same se-

quence. During testing, unique combinations of role-filler

pairs are employed, for example: "cat bat apple".

• Spurious Anticorrelation (SA) – During training, every

filler has been used in every role but not all fillers have

been in the same sequence together. For instance, if the

fillers are "apple", "bat", "cat", and "dog" and the roles are

their respective ordering in the sequence, during training

the model may have been presented with "apple bat cat"

and "cat bat dog". During testing, unique sequences of

role-filler pairs are presented that have not been in the same

sequence together, for example: "apple bat dog". In this ap-

proach, "apple", "bat", "cat", and "dog" had been trained in

every role. However, while "apple" and "dog" had not been

in the same sequence during training, they were together in

the testing sequence.

• Full Combinatorial (FC) – During training, not all fillers

have been used in every role. For instance, if the fillers

are "apple", "bat", "cat", and "dog" and the roles are their

respective ordering in the sequence, during training the

model may have been presented with "dog bat cat", "dog

apple cat", and "dog bat apple". During testing, a sequence

of role-filler pairs is presented to the model where a filler

is in a role it had not experienced during testing: for exam-

ple, "apple bat cat". Thus, "apple" was tested in the first

role but this filler had never been in the first role during

training.

Since the model utilized one-hot encodings for the output

layer response tokens (each output unit corresponding to one

of the possible filler words), some previous exposure to all

filler words was required via pretraining on a simple associ-

ation task prior to any of the above experiments. These trials

consisted of requiring the model to respond with the same

word which was immediately provided as input. The Indi-

rection model’s performance on the SG, SA, and FC tasks

described above was compared with a simple recurrent net-

work (SRN), a working memory (WM) model, and a work-

ing memory model with the addition of output-gating mecha-

nisms (WMO) but lacking indirection mechanisms. The gen-

eralization abilities of the Indirection model were found to

surpass the SRN and WM on all three tasks, and performance

was similar to the WMO model for the SG and SA tasks, but

far superior on the FC task (Kriete et al., 2013).

Artificial Indirection Models

Since the indirection model by Kriete et al. was designed for

biological plausibility, it contains many biologically plausible

mechanisms which result in slower model training and testing

compared to deep learning models which abstract away many

of these details. Therefore, Jovanovich developed an artificial

indirection model that employed Holographic Reduced Rep-

resentations (HRRs) (Plate, 1995) to replace recurrent PFC

layers and utilized temporal difference reinforcement learn-

ing, specifically SARSA, to replace Perceived Value Learned

Value (PVLV) layers (O’Reilly, Frank, Hazy, & Watz, 2007).

This model was tested on SG, SA, FC, but also on an ad-

ditional task for the model to complete (Kriete et al., 2013;

Jovanovich, 2017):

• Novel Filler (NF) – During training, some fillers are not

observed in any role nor in any sequence. Some poten-

tial training examples might be: "apple bat cat", "bat apple

cat", and "cat apple bat". During testing, the model is pre-

sented with "zoo bat cat". In this case, "zoo" is a novel filler

since "zoo" is tested in the first role, but never observed in

any roles during training.

Jovanovich’s model performed approximately the same as

the model from Kriete et al. on the three shared tasks (SG,

SA, and FC) (Jovanovich, 2017). However, on the new task,

NF, the performance was poor due to a lack of pretraining.

While pretraining could have been leveraged to overcome this

limitation, similarly to Kriete et al., it was seen as an unsatis-

fying way to meet the challenge of the NF task, since the goal

is to assess how a model will perform when provided a word

which it truly has never seen before. The model’s internal rep-

resentations were instead analyzed and the results indicated

that it was holding onto and providing the correct informa-

tion to the one-hot-encoded actor network for the task, but a

solution to this dilemma was left for future work.

Long Short-Term Memory

Recurrent Neural Networks (RNNs) are helpful for process-

ing sequential data (eg. text sequences) and may be viewed

as an approximate form of working memory in deep learn-

ing research. They function by storing information from one

time step to another through the use of hidden, internal states.

This allows for an accumulation of information from the past

states to impact current states (Karpathy, 2015). A problem

that arises with RNNs are exploding and vanishing gradients.

The former refers to the "large increase of the norm of the

gradient during training" and the later to the gradient dimin-

ishing to zero (Pascanu, Mikolov, & Bengio, 2013). To sur-

mount this challenge, a specific type of RNN, long short-term

memory (LSTM) (Hochreiter & Urgen Schmidhuber, 1997),

was developed. LSTMs deploy a mechanism of input, out-

put, and forget gates that allow the model to more effectively

remember useful information over time and greatly reduce

the impact of the exploding and vanishing gradients prob-

lem (Goodfellow, Bengio, & Courville, 2016).

3149

Novel Role-Filler Generalization

To partially overcome the pretraining limitations observed by

Jovanovich, Mullinax utilized LSTM-based models to con-

struct word embeddings which could be passed to an artifi-

cial indirection model with three memory stripes (Mullinax,

2020). Mullinax also replaced the SARSA algorithm, used by

Jovanovich, with Q-Learning to operate the input and output

gates that determined how a filler would be stored. However,

HRRs were still used to encode role information. The model

was constructed in a nested fashion where an outer LSTM

(OL) encoder-decoder was used to learn word embeddings

from character-level tokens, and an inner artificial indirec-

tion (IND) model would utilize these learned embeddings in

place of the HRRs used for fillers in prior work (Cho et al.,

2014; Sutskever, Vinyals, & Le, 2014).

Encoder-decoder models built from LSTM layers demon-

strate standard generalization, SG, capabilities. Compared

with the works above, this approach allowed for pretraining

of the OL component in a more realistic manner and one that

could fulfill the requirements of the NF task at the sentential-

level. For example, pretraining the outer model on the fillers

"boy" and "cat" would allow the outer model to successfully

encode and decode the filler "bat". This manner of pretrain-

ing is analagous to our learning experience of spoken lan-

guage as well, where the individual letters above correspond

to individual phonemes. Even novel words can be properly

encoded and decoded by this outer, OL, component, so long

as they consist of letters (or phonemes) with which the model

is already familiar. Therefore, word-level embeddings con-

structed by the outer component, OL, were more flexible than

the one-hot or HRR encodings used in the prior approaches,

leaving the more difficult task of examining the meaning of

the novel filler in its sentential role up to the inner component,

IND. Thus, standard generalization is used to encode whole

word representation for fillers (OL), but these representations

can then be referenced using indirection to avoid confusion

when processed through the inner model (IND). Therefore,

we refer to this approach as the OL/IND model.

The OL/IND model was compared to a nested model which

used an outer LSTM (OL) encoder-decoder and inner LSTM

(IL) encoder-decoder: OL/IL (see Figure 2). Critically, the

outer component for both of these models was the same and

was pretrained as explained above. However, the inner com-

ponent of the OL/IL model was an encoder-decoder model

constructed using LSTM layers, meaning it lacked any in-

direction capabilities and is the deep learning-equivalent of

the WMO model employed by Kriete et al. above. Both

models were trained and tested with three, five letter-long,

fillers (agent, role, and patient) using all four task types de-

scribed above: SG, SA, FC, and NF. The performance of the

models were evaluated by comparing letter-level and word-

level accuracy (see eqns. (2)–(3)). Letter-level accuracy mea-

sured the percentage of correct letters in the correct positions,

and word-level accuracy quantified the percentage of correct

words produced in the correct positions. The latter metric

necessitates that each entire words must be spelled correctly

to qualify as an accurate response, but letter-level accuracy

can discern partially correct responses. The results indicated

that the OL/IND model could learn to generalize perfectly

across all four tasks using the realistic pretraining regime de-

scribed above. However, the OL/IL model only performed

well on the SG and SA tasks. Given prior research, it was

not surprising that the OL/IL model failed to learn the NF

task well, but this model actually performed even worse on

FC. This was a somewhat surprising result, and suggests that

some form of representational interference is preventing the

OL/IL model from performing well on the FC task as prior

work with one-hot and HRR encodings had suggested. Even

though the OL/IND model showed better performance after

training, it’s reliance on reinforcement learning meant signif-

icantly longer training times.

Transformers

Transformers (T) are a neural network architecture first in-

troduced in a 2017 paper titled "Attention Is All You Need"

(Vaswani et al., 2017). One remarkable part of the Trans-

former architecture is its self-attention mechanism which al-

lows the network to focus on relevant input features by weigh-

ing the relations of distinct components of the input against

one-another. By comparing all tokens to all other tokens, the

model is better able to understand long-range dependencies.

This is because, unlike SRNs and LSTMs, Transformers can

process entire sequences of inputs simultaneously which pre-

cludes any bias due to sequential processing and allows for

faster, feed-forward training. Empirically, Transformers have

performed better than other models on tasks such as English-

to-German translation (Vaswani et al., 2017).

Emergent Symbol Binding Network

Since traditional deep neural networks have difficulties in-

ferring rules from high dimensional data, Webb et al. de-

veloped a model known as Emergent Symbol Binding Net-

work (ESBN) that can perform a simple form of indirec-

tion (Webb, Sinha, & Cohen, 2021). ESBN was trained and

tested on four tasks that involved learning abstract rules from

images: same/different discrimination, relational match-to-

sample, distribution-of-three, and identity rules (Webb et al.,

2021). Several deep learning architectures, including most

importantly the Transformer, were compared with the perfor-

mance of ESBN. The only clear advantage that ESBN had

over other approaches was that it did not require as many

training examples to learn the tasks. While this is clearly

advantageous, these results suggest that the Transformer ar-

chitecture is sufficient for performing indirection and symbol

binding given sufficient data. However, it is not clear whether

this was truly the case, or if the tasks were simply not chal-

lenging enough to delineate differences in performance be-

tween the tested architectures.

3150

Methods

With the recent development and subsequent success of

Transformers, the task still stands to explore their strengths

as well as their shortcomings. While the Transformer ar-

chitecture has passed several abstraction-based challenges

(Vaswani et al., 2017) and indirection-based challenges

(Webb et al., 2021), previous indirection work involving the

SG, SA, FC, and NF data sets (Jovanovich, 2017; Mullinax,

2020) suggests that these tasks may be better suited to dis-

criminate between the capabilities of the LSTM, Transformer,

and IND approaches. Additionally, Transformer models can

be viewed as a replacement for RNN/SRN/LSTM compo-

nents, and therefore either the inner and/or outer LSTM com-

ponents in prior models. By replacing the LSTM components

of the OL/IL models with transformer components (T), we

hope to observe what advantages the Transformer architec-

ture might provide. This provides a framework for developing

and testing five different combinations of inner/outer compo-

nents: OL/IND, OL/IL, OL/IT, OT/IL and OT/IT. All outer

components can be pretrained as described above, and all

inner components can then be trained/tested across the four

tasks using the embeddings produced by the outer compo-

nents. An example of the encoding/decoding process is illus-

trated in Figure 1. In this way, we hope to expose any gener-

alization distinctions to be made among the different models.

Data Sets

The goal for all models described in the subsequent sections

is the reading and reproduction of three-word sentences fed

into each of the models. There are two principal classes of

data sets on which the models are trained. First is the pre-

training corpus which was the same across all models and

tasks; it consists of ten thousand 5 character-long lowercase

ASCII words or fillers. Another 10,000 word-long pretest-

ing corpus of different fillers was used for testing (SG con-

straints as described in the Background section). All outer

model components are trained and tested on the two corpi,

respectively, until reaching 100% accuracy on the pretesting

corpus. Component weights are fixed after training for these

(outer) components, so that they are only used to either embed

each separate word in a sentence for presentation to the inner

model component, or to decode the word representations pro-

duced by the output layers of the inner model. The second

class of data sets employed are the training/testing materials

for the inner model components which differ depending on

the task: SG, SA, FC or NF. Every training set for each of

the four tasks consists of two hundred three-word sentences,

each sentence being composed of words from the pretesting

corpus above. Therefore, for remainder of this work, we re-

fer to the pretesting corpus as simply the corpus since the

pretraining corpus is technically not used for any of the inner

component tasks. This procedure therefore insists on using

words that the outer component has never seen before to train

the inner components. The testing set for each task also con-

sists of words from the corpus, but obeying the rules of the

respective task. Note that an important distinction occurs in

the NF task: some fillers from the corpus are never observed

during model training, but are used during testing.

Models and Training Parameters

All models were created using Tensorflow/Keras [ver.

2.5.0]. Additionally, all models were developed with both

a coupled and decoupled version to either provide teacher-

forcing (for training) or remove teacher-forcing (for testing),

respectively. When encoding and decoding tokens, the com-

ponents (both outer and inner) are supplied with a start and

stop token, allowing for potentially variable word/sentence

lengths; though in this work each word was always composed

of five letters (for the outer components) and each sentence

was always composed of three words (for the inner compo-

nents). The hidden states of the encoder are passed to ini-

tialize the states of the decoder. While training, a coupled

version of these components is used, and during testing the

decoupled version of the component is used wherein the hid-

den states are passed through separate input layers to allow

separation between the encoder and decoder for testing with-

out teacher forcing. Instead of decoupling encoder-decoder

components, masking is another common method for remov-

ing teacher forcing and allowing for variable length inputs.

However, our pretraining approach requires the outer com-

ponents to be decoupled into a separate encoder and decoder

for embedding and decoding, respectively. Therefore, we uti-

lized consistent modeling efforts across both inner and outer

components for parsimony.

The first model developed was the nested inner/outer

LSTM (OL/IL) model which used an LSTM module to en-

code and decode fillers from the corpus into vector represen-

tations and then another LSTM to take three filler vectors and

amalgamate them into a representation for the entire sentence.

These are then decoded back into human-readable characters

by the outer component decoder. Key hyperparameters in-

volved are the dimension size of the OL into which each filler

is encoded, the dimension size of the IL wherein the three

filler vectors are combined into a vector representation of the

entire sentence. This model was then trained and fitted ac-

cording to the parameters shown in Table 1. The Adam opti-

mizer was used and updated using mean squared error (MSE)

and binary crossentropy (BCE) loss functions for the embed-

ding and start/stop token layers, respectively. The training

parameters for this model are given in Table 1.

The second model developed consisted of an outer LSTM

model wrapped around an inner Transformer (OL/IT). Both

the inner and outer components performed identical functions

as in the OL/IL model. In addition to replacing the IL with

the IT, the necessary addition of a position embedding layer

was added between the OL and before the transformer block.

Details in the training regimen and model constructions are

found in Table 1, and as above the Adam optimizer with MSE

and BCE loss functions for the embedding and start/stop to-

ken layers, respectively, were used to train.

In the third model, the roles are reversed and a Transformer

3151

is used as the outer model which surrounds an inner LSTM

(OT/IL). The OT’s encoder and decoder utilizes a masked po-

sition embedding prior to the transformer block itself. Unlike

the previous models, this was trained using the Nadam opti-

mizer with MSE and BCE loss functions for the embedding

and start/stop token layers, respectively. Further details of the

model and training scheme are shown in Table 1.

The last model developed was the nested Transformer

model (OT/IT). Transformer blocks, each proceeded by a

masked position embedding layer, are used to encode and

decode both the corpus and the vector embeddings created

by the outer encoder. Training used the Adam optimizer up-

dated using MSE and BCE loss functions for the embedding

and start/stop token layers, respectively. Further details of the

model and training scheme are shown in Table 1.

A fifth model, used for state-of-the-art comparison, was the

outer LSTM and inner Indirection model (OL/IND) devel-

oped by (Mullinax, 2020) and described in the Background

section above. For further details on the model’s construction

and training/testing regimen see (Mullinax, 2020).

Table 1: Key Model and Training Parameters

Name Value Description

Figure 1: The figure above shows how the Inner/Outer En-

coder/Decoder operate. A sentence like "Tom Ate Food" is

passed to: 1) the Outer Encoder where each word is inde-

pendently encoded as a series of letter token and 2) sent into

the Inner Encoder which generates an encoding for the entire

sentence as a series of word embeddings, and 3) this sentence

encoding is then sent to the Inner Decoder which decodes

the sentence into independent word embeddings, and 3) the

word embeddings are sent to the Outer Decoder which de-

codes each one into the corresponding words (series of let-

ters).

We employed letter-level accuracy and word-level accuracy

to quantify how exactly the model was reproducing the test

sentences it was fed. We defined a function IS_EQ(x1, x2)
to compare words and characters from the model and testing

data set as follows:

IS_EQ(x1, x2) =

(
1 x1 = x2

(1)

0 otherwise

Since the testing data sets are one hundred sentences long,

word and letter accuracies are as follows:

WORD_ACC= 1 ∑100 ∑3 IS_EQ(model’s word,test word) (2)
100·3 1 1

LETTER_ACC= 1 ∑100 ∑3 ∑5 IS_EQ(model’s letter,test letter) (3)
100·3·5 1 1 1

Training, Testing and Evaluation

Before evaluating performance, a hyperparameter search for

each model was performed manually until a set of values

yielded consistent and high-performing results for that model.

Certain key hyperparameters are shown in Table 1. Models

were then formally evaluated by training and testing them ten

times using the optimal hyperparameters found previously.

Over the ten training runs, the word and letter-level accuracies

for each model were obtained and the mean (+/- 1.96 standard

errors) results were plotted for comparison with one another.

Results

According to the methodology described above, we trained

and tested the four models we developed–OL/IL, OL/IT,

OT/IL, and OT/IT–on the four tasks–SG, SA, FC and NF.

Additionally we also include the results from the OL/IND

model developed by (Mullinax, 2020). The results from the

five models tested on the four tasks are shown in Figure 2,

sorted according to the task they were tested on. One of the

most apparent trends in the data is the performance gap be-

tween the SG/SA and FC/NF tasks. All models perform the

SG and SA tasks with nearly 100% letter and word accuracy;

OL/IL
Outer size

100

Dimension size for corpus embeddings

Hidden size 300 Dimension size for embedding of sentence
α 0.001 Learning rate for Adam optimizer

n 1600 Number of epochs

k 100 Batch size

OL/IL - Int. Embed.
Outer size 64 or 256

Dimension size for corpus embeddings

Hidden size 300 Dimension size for embedding of sentence
α 0.001 Learning rate for Adam optimizer

n 1600 Number of epochs

k 100 Batch size

OL/IT
Outer size

100

Dimension size for corpus embeddings

Num_heads 4 Number of attention heads in each transformer block

ff_dim 4 Hidden layer size in feed forward network in transformer

rate 0.1 Dropout rate for transformer
α 0.001 Learning rate for Adam optimizer

n 1600 Number of epochs

k 100 Batch size

OT/IL
Outer size

300

Dimension size for corpus embeddings

Hidden size 300 Dimension size for embedding of sentence

Num_heads 4 Number of attention heads in each transformer block

ff_dim 4 Hidden layer size in feed forward network in transformer

rate 0.1 Dropout rate for transformer
α 0.001 Learning rate for Nadam optimizer

n 40 Number of epochs

k 25 Batch size

OT/IT
Outer size

300

Dimension size for corpus embeddings

Outer Num_heads 32 Number of attentions heads in outer transformer block

Inner Num_heads 4 Number of attention heads in inner transformer block

embed_dim 128 Embedding size for each token

Inner ff_dim 32 Hidden layer size in feed forward network in inner transformer

rate 0.1 Dropout rate for both inner and outer transformers
α 0.001 Learning rate for Adam optimizer

n 250 Number of epochs

k 50 Batch size

3152

110.0

80

60

40

20

0.8

0

100

80

60

40
0.6

20

0

100

Word level Letter level

however, as we move to the FC and NF tasks, the letter and

word accuracies drop off significantly, most notably in the

OL/IL model. The OL/IL model performed to over 90% ac-

curacy on SG and SA for both world-level and letter-level ac-

curacy. However, OL/IL model performance was poor on FC

and NF (<40% and <65%, respectively). The OL/IL model

did noticeably better on letter-level accuracy than word-level

accuracy in all of these cases, and the study concludes that

the model produces the best matching fillers experienced dur-

ing training in these cases rather than the expected test fillers.

Using a Transformer as the outer model (OT/IL) did not sig-

nificantly increase performance: in fact, for the SG and SA

tasks, the OL/IL model outperforms OT/IL, suggesting that

the representations created by the OT may be, in a sense, con-

fusing to the inner IL. However, seemingly resilient across

all tasks at the letter-level were the OL/IT and OT/IT mod-

els, only showing poor word-level accuracy on the NF task.

All of these models, however, were ultimately out-performed

by the outer LSTM and inner indirection/working memory

model (OL/IND), which scored nearly 100% across all tasks

(see Figure 2). These results indicate that the Transformer

better approximates indirection mechanisms than LSTM, but

is not all that is needed to sufficiently handle novel fillers.

Conclusion

80

0.4
60

40

20

0

100

0.2

80

60

40

20

0.0

0.0

0.2

0.4

0.6

0.8

1.0

This work set out to evaluate certain neural network ar-

chitectures’ indirection and symbol binding capabilities

through testing on a series of increasingly difficult sentence-

processing tasks. Additionally, we examined possible syn-

ergy across the LSTM and Transformer architectures by cre-

ating nested models where the outer and inner components

were interchangeable. As demonstrated in Figure 2, we see

that models involving inner transformers (OL/IT, OT/IT) out-

performed the model composed entirely of LSTMs (OL/IL).

When employing transformers in conjunction with LSTMs,

we found care must be taken as the OT/IL model performed

far worse than the OL/IL model in the fairly easy SG and SA

tasks. Further research into the relationships and synergies

between the outer and inner encoders/decoders could help

elucidate why in the OT/IL model under-performed compared

to other model combinations but LSTMs were observed to

be more sensitive to representational complexity than Trans-

formers. Based on the OT/IT’s 100% scores on the SG, SA

and FC tasks, we confirm that the Transformer does possess

superior abstraction capabilities compared to LSTM. How-

ever, what it does not possess is indirection or symbol binding
Figure 2: Plots of the letter-level and word level accuracies

of the five models examined in this work. Formulas for these

accuracies metrics are given in eqns. (2)–(3). All models were

trained and tested N=10 times to obtain the mean (and +/-

1.96 standard errors shown by the black bars). Models are

composed of inner (I) and outer (O) components: LSTM (L),

Transformer (T), or indirection (IND).

capabilities, as evidenced by the clear disparity between the

OL/IND model and the four others in the NF task. However,

long training times are required for OL/IND models since

they use reinforcement instead of supervised learning. More

research is clearly needed to elucidate why the Transformer

fails to perform indirection; yet it is certain that more than

attention is needed to understand the unknown.

OL/IND OL/IL OL/IT OT/IL OT/IT

M
e
a
n
 A

c
c
u
ra

c
y
 (

%
)

[N
=

1
0
]

N
F

F
C

S
A

S
G

3153

Acknowledgments

We thank three anonymous reviewers for their helpful feed-

back in improving the clarity of the manuscript. This work

was funded by NSF Grant #1757493 (Computational Model-

ing and Simulation in Applied Science) at Middle Tennessee

State University.

References

Alexander, G. E., DeLong, M. R., & Strick, P. L.

(1986). Parallel organization of functionally segregated

circuits linking basal ganglia and cortex. Annual Re-

view of Neuroscience, 9, 357-381. doi: 10.1146/an-

nurev.ne.09.030186.002041

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D.,

Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learn-

ing phrase representations using RNN encoder–decoder for

statistical machine translation. In Proceedings of the 2014

conference on empirical methods in natural language pro-

cessing (EMNLP) (pp. 1724–1734). doi: 10.3115/v1/D14-

1179

Elston, G. N., Benavides-Piccione, R., Elston, A., Manger,

P. R., & Defelipe, J. (2011, 2). Pyramidal cells in pre-

frontal cortex of primates: Marked differences in neuronal

structure among species. Frontiers in Neuroanatomy, 1-17.

doi: 10.3389/fnana.2011.00002

Goodfellow, I. J., Bengio, Y., & Courville, A. (2016).

Deep learning. Cambridge, MA, USA: MIT Press.

(http://www.deeplearningbook.org)

Hochreiter, S., & Urgen Schmidhuber, J. (1997). Long Short-

Term Memory. Neural Computation, 9(8), 1735–1780. doi:

10.1162/neco.1997.9.8.1735

Jovanovich, M. P. (2017). Biologically inspired task

abstraction and generalization models of working mem-

ory Middle Tennessee State University. Retrieved from
http://jewlscholar.mtsu.edu/xmlui/handle/mtsu/

5561

Karpathy, A. (2015). The unreasonable effec-

tiveness of recurrent neural networks. Retrieved

from http://karpathy.github.io/2015/05/21/rnn-

effectiveness

Kriete, T., Noelle, D. C., Cohen, J. D., & O’Reilly, R. C.

(2013). Indirection and symbol-like processing in the pre-

frontal cortex and basal ganglia. Proceedings of the Na-

tional Academy of Sciences of the United States of Amer-

ica, 110. doi: 10.1073/pnas.1303547110

Mullinax, C. B. (2020). Novel Role Filler Generalization for

Recurrent Neural Networks Using Working Memory-Based

Indirection Middle Tennessee State University. Retrieved

from https://jewlscholar.mtsu.edu/items/

e90deed2-fc9e-4eb1-8305-5b4747bc4394

O’Reilly, R. C., Frank, M. J., Hazy, T. E., & Watz, B. (2007).

PVLV: The Primary Value and Learned Value Pavlovian

Learning Algorithm. (Vol. 121) (No. 1). American Psycho-

logical Association. doi: 10.1037/0735-7044.121.1.31

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the dif-

ficulty of training recurrent neural networks. In Proceed-

ings of the 30th international conference on international

conference on machine learning (p. III–1310–III–1318).

JMLR.org.

Plate, T. A. (1995). Holographic reduced representations.

IEEE Transactions on Neural Networks, 6(3), 623–641.

doi: 10.1109/72.377968

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to

sequence learning with neural networks. In Proceedings

of the 27th international conference on neural information

processing systems - volume 2 (p. 3104–3112). Cambridge,

MA, USA: MIT Press.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,

L., Gomez, A. N., . . . Polosukhin, I. (2017). Atten-

tion is all you need. In Proceedings of the 31st interna-

tional conference on neural information processing systems

(p. 6000–6010). Red Hook, NY, USA: Curran Associates

Inc.

Webb, T. W., Sinha, I., & Cohen, J. (2021). Emergent sym-

bols through binding in external memory. In Proceedings

of the 9th international conference on learning representa-

tions. (https://arxiv.org/abs/2012.14601)

http://jewlscholar.mtsu.edu/xmlui/handle/mtsu/
http://karpathy.github.io/2015/05/21/rnn-

