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Abstract 

The human ability to generalize beyond interpolation, often 
called extrapolation or symbol-binding, is challenging to recre- 
ate with computational models. Biologically plausible mod- 
els incorporating indirection mechanisms have demonstrated 
strong performance in this regard. Deep learning approaches 
such as Long Short-Term Memory (LSTM) and Transform- 
ers have shown varying degrees of success, but recent work 
has suggested that Transformers are capable of extrapolation 
as well. We evaluate the capabilities of the above approaches 
on a series of increasingly complex sentence-processing tasks 
to infer the capacity of each individual architecture to extrapo- 
late sentential roles across novel word fillers. We confirm that 
the Transformer does possess superior abstraction capabilities 
compared to LSTM. However, what it does not possess is ex- 
trapolation capabilities, as evidenced by clear performance dis- 
parities on novel filler tasks as compared to working memory- 
based indirection models. 

Keywords: Deep Neural Networks, Long Short Term Mem- 
ory, Transformers, Indirection 

 

Introduction 

Generalization is the process of applying previously learned 

abilities and knowledge to novel experiences. It is an essen- 

tial human faculty because no two experiences are exactly 

the same. One may have earlier experienced similar compo- 

nents of an event but the exact manner these components are 

arranged in, or even the components themselves, likely will 

not be identical. For instance, one is often able to infer the 

meaning of a sentence even if it contains a word outside of 

one’s lexicon. While deep artificial neural networks (ANNs) 

are computational systems capable of some forms of gener- 

alization, challenges remain when generalizing given novel 

inputs. One important thread of research in this area focuses 

on symbol processing, or “the ability to represent information 

in the form of abstract variables that can be bound to arbi- 

trary values”, which plays an important role in one’s ability 

to generalize using working memory (Kriete, Noelle, Cohen, 
 

& O’Reilly, 2013). In this paper, we build off of previous re- 

search regarding deep ANN models also reported to exercise 

this ability. We evaluate their capabilities on a series of in- 

creasingly complex sentence-processing tasks and are there- 

fore able to infer the capacity of each individual architecture 

to extrapolate to novel inputs. 

Background 

Biologically Plausible Indirection 

The interacting subsystems of the brain thought to underlie 

human working memory may allow for functionality analo- 

gous to the concept of pointers from computer science via 

a process called indirection (Kriete et al., 2013). Using in- 

direction, abstract values located in one region of memory 

can store the "addresses" of arbitrary values located in an- 

other memory region. The prefrontal cortex (PFC) contains 

stripes of densely intraconnected neurons which are sparsely 

interconnected to one another (Elston, Benavides-Piccione, 

Elston, Manger, & Defelipe, 2011) and appears suited to ac- 

tive maintenance of memory traces. These stripes are strongly 

linked with the basal ganglia (BG) which is appears suited for 

controlling active memory gating/updating (Alexander, De- 

Long, & Strick, 1986). Consequently, Kriete et al. hypothe- 

sized that different PFC stripes may be employed to maintain 

pointer-like memory traces and thereby implement a form of 

indirection with the BG responsible for the gating/updating 

of information in PFC stripes and proposed a biologically 

plausible computational model with generalization capabil- 

ities that utilize indirection (Kriete et al., 2013). 

In Kriete et al., the abstract variables are three possible 

roles in a three word sentence: agent, verb, and patient. The 

arbitrary values are known as fillers and are the concrete 

words which correspond to each role. For example, in the 

sentence “Tom Ate Food” the agent is “Tom”, the verb is 

“Ate”, and the patient is “Food”. The function of the model 

is to take the previously discussed three word sentence and 
1Equal contribution. Listing order is alphabetical by last name. 
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ory. Then, the model will be queried using the role, and the 

filler which was stored with the associated role will be re- 

called. The model was tested on three tasks, each requiring a 

different form of generalization performance: 

• Standard Generalization (SG) – During training, every 

filler has been used in every role and all fillers have been in 

the same sequence together. For instance, if the fillers are 

"apple", "bat", and "cat" and the roles are their respective 

ordering in the sequence, during training the model may 

have been presented with "apple bat cat", "cat apple bat", 

and "bat cat apple". Thus, "apple", "bat", and "cat" had all 

been used in every role and had been used in the same se- 

quence. During testing, unique combinations of role-filler 

pairs are employed, for example: "cat bat apple". 

• Spurious Anticorrelation (SA) – During training, every 

filler has been used in every role but not all fillers have 

been in the same sequence together. For instance, if the 

fillers are "apple", "bat", "cat", and "dog" and the roles are 

their respective ordering in the sequence, during training 

the model may have been presented with "apple bat cat" 

and "cat bat dog". During testing, unique sequences of 

role-filler pairs are presented that have not been in the same 

sequence together, for example: "apple bat dog". In this ap- 

proach, "apple", "bat", "cat", and "dog" had been trained in 

every role. However, while "apple" and "dog" had not been 

in the same sequence during training, they were together in 

the testing sequence. 

• Full Combinatorial (FC) – During training, not all fillers 

have been used in every role. For instance, if the fillers 

are "apple", "bat", "cat", and "dog" and the roles are their 

respective ordering in the sequence, during training the 

model may have been presented with "dog bat cat", "dog 

apple cat", and "dog bat apple". During testing, a sequence 

of role-filler pairs is presented to the model where a filler 

is in a role it had not experienced during testing: for exam- 

ple, "apple bat cat". Thus, "apple" was tested in the first 

role but this filler had never been in the first role during 

training. 

Since the model utilized one-hot encodings for the output 

layer response tokens (each output unit corresponding to one 

of the possible filler words), some previous exposure to all 

filler words was required via pretraining on a simple associ- 

ation task prior to any of the above experiments. These trials 

consisted of requiring the model to respond with the same 

word which was immediately provided as input. The Indi- 

rection model’s performance on the SG, SA, and FC tasks 

described above was compared with a simple recurrent net- 

work (SRN), a working memory (WM) model, and a work- 

ing memory model with the addition of output-gating mecha- 

nisms (WMO) but lacking indirection mechanisms. The gen- 

eralization abilities of the Indirection model were found to 

surpass the SRN and WM on all three tasks, and performance 

was similar to the WMO model for the SG and SA tasks, but 

far superior on the FC task (Kriete et al., 2013). 

Artificial Indirection Models 

Since the indirection model by Kriete et al. was designed for 

biological plausibility, it contains many biologically plausible 

mechanisms which result in slower model training and testing 

compared to deep learning models which abstract away many 

of these details. Therefore, Jovanovich developed an artificial 

indirection model that employed Holographic Reduced Rep- 

resentations (HRRs) (Plate, 1995) to replace recurrent PFC 

layers and utilized temporal difference reinforcement learn- 

ing, specifically SARSA, to replace Perceived Value Learned 

Value (PVLV) layers (O’Reilly, Frank, Hazy, & Watz, 2007). 

This model was tested on SG, SA, FC, but also on an ad- 

ditional task for the model to complete (Kriete et al., 2013; 

Jovanovich, 2017): 

• Novel Filler (NF) – During training, some fillers are not 

observed in any role nor in any sequence. Some poten- 

tial training examples might be: "apple bat cat", "bat apple 

cat", and "cat apple bat". During testing, the model is pre- 

sented with "zoo bat cat". In this case, "zoo" is a novel filler 

since "zoo" is tested in the first role, but never observed in 

any roles during training. 

Jovanovich’s model performed approximately the same as 

the model from Kriete et al. on the three shared tasks (SG, 

SA, and FC) (Jovanovich, 2017). However, on the new task, 

NF, the performance was poor due to a lack of pretraining. 

While pretraining could have been leveraged to overcome this 

limitation, similarly to Kriete et al., it was seen as an unsatis- 

fying way to meet the challenge of the NF task, since the goal 

is to assess how a model will perform when provided a word 

which it truly has never seen before. The model’s internal rep- 

resentations were instead analyzed and the results indicated 

that it was holding onto and providing the correct informa- 

tion to the one-hot-encoded actor network for the task, but a 

solution to this dilemma was left for future work. 

Long Short-Term Memory 

Recurrent Neural Networks (RNNs) are helpful for process- 

ing sequential data (eg. text sequences) and may be viewed 

as an approximate form of working memory in deep learn- 

ing research. They function by storing information from one 

time step to another through the use of hidden, internal states. 

This allows for an accumulation of information from the past 

states to impact current states (Karpathy, 2015). A problem 

that arises with RNNs are exploding and vanishing gradients. 

The former refers to the "large increase of the norm of the 

gradient during training" and the later to the gradient dimin- 

ishing to zero (Pascanu, Mikolov, & Bengio, 2013). To sur- 

mount this challenge, a specific type of RNN, long short-term 

memory (LSTM) (Hochreiter & Urgen Schmidhuber, 1997), 

was developed. LSTMs deploy a mechanism of input, out- 

put, and forget gates that allow the model to more effectively 

remember useful information over time and greatly reduce 

the impact of the exploding and vanishing gradients prob- 

lem (Goodfellow, Bengio, & Courville, 2016). 
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Novel Role-Filler Generalization 

To partially overcome the pretraining limitations observed by 

Jovanovich, Mullinax utilized LSTM-based models to con- 

struct word embeddings which could be passed to an artifi- 

cial indirection model with three memory stripes (Mullinax, 

2020). Mullinax also replaced the SARSA algorithm, used by 

Jovanovich, with Q-Learning to operate the input and output 

gates that determined how a filler would be stored. However, 

HRRs were still used to encode role information. The model 

was constructed in a nested fashion where an outer LSTM 

(OL) encoder-decoder was used to learn word embeddings 

from character-level tokens, and an inner artificial indirec- 

tion (IND) model would utilize these learned embeddings in 

place of the HRRs used for fillers in prior work (Cho et al., 

2014; Sutskever, Vinyals, & Le, 2014). 

Encoder-decoder models built from LSTM layers demon- 

strate standard generalization, SG, capabilities. Compared 

with the works above, this approach allowed for pretraining 

of the OL component in a more realistic manner and one that 

could fulfill the requirements of the NF task at the sentential- 

level. For example, pretraining the outer model on the fillers 

"boy" and "cat" would allow the outer model to successfully 

encode and decode the filler "bat". This manner of pretrain- 

ing is analagous to our learning experience of spoken lan- 

guage as well, where the individual letters above correspond 

to individual phonemes. Even novel words can be properly 

encoded and decoded by this outer, OL, component, so long 

as they consist of letters (or phonemes) with which the model 

is already familiar. Therefore, word-level embeddings con- 

structed by the outer component, OL, were more flexible than 

the one-hot or HRR encodings used in the prior approaches, 

leaving the more difficult task of examining the meaning of 

the novel filler in its sentential role up to the inner component, 

IND. Thus, standard generalization is used to encode whole 

word representation for fillers (OL), but these representations 

can then be referenced using indirection to avoid confusion 

when processed through the inner model (IND). Therefore, 

we refer to this approach as the OL/IND model. 

The OL/IND model was compared to a nested model which 

used an outer LSTM (OL) encoder-decoder and inner LSTM 

(IL) encoder-decoder: OL/IL (see Figure 2). Critically, the 

outer component for both of these models was the same and 

was pretrained as explained above. However, the inner com- 

ponent of the OL/IL model was an encoder-decoder model 

constructed using LSTM layers, meaning it lacked any in- 

direction capabilities and is the deep learning-equivalent of 

the WMO model employed by Kriete et al. above. Both 

models were trained and tested with three, five letter-long, 

fillers (agent, role, and patient) using all four task types de- 

scribed above: SG, SA, FC, and NF. The performance of the 

models were evaluated by comparing letter-level and word- 

level accuracy (see eqns. (2)–(3)). Letter-level accuracy mea- 

sured the percentage of correct letters in the correct positions, 

and word-level accuracy quantified the percentage of correct 

words produced in the correct positions. The latter metric 

necessitates that each entire words must be spelled correctly 

to qualify as an accurate response, but letter-level accuracy 

can discern partially correct responses. The results indicated 

that the OL/IND model could learn to generalize perfectly 

across all four tasks using the realistic pretraining regime de- 

scribed above. However, the OL/IL model only performed 

well on the SG and SA tasks. Given prior research, it was 

not surprising that the OL/IL model failed to learn the NF 

task well, but this model actually performed even worse on 

FC. This was a somewhat surprising result, and suggests that 

some form of representational interference is preventing the 

OL/IL model from performing well on the FC task as prior 

work with one-hot and HRR encodings had suggested. Even 

though the OL/IND model showed better performance after 

training, it’s reliance on reinforcement learning meant signif- 

icantly longer training times. 

 
Transformers 

 
Transformers (T) are a neural network architecture first in- 

troduced in a 2017 paper titled "Attention Is All You Need" 

(Vaswani et al., 2017). One remarkable part of the Trans- 

former architecture is its self-attention mechanism which al- 

lows the network to focus on relevant input features by weigh- 

ing the relations of distinct components of the input against 

one-another. By comparing all tokens to all other tokens, the 

model is better able to understand long-range dependencies. 

This is because, unlike SRNs and LSTMs, Transformers can 

process entire sequences of inputs simultaneously which pre- 

cludes any bias due to sequential processing and allows for 

faster, feed-forward training. Empirically, Transformers have 

performed better than other models on tasks such as English- 

to-German translation (Vaswani et al., 2017). 

 
Emergent Symbol Binding Network 

 
Since traditional deep neural networks have difficulties in- 

ferring rules from high dimensional data, Webb et al. de- 

veloped a model known as Emergent Symbol Binding Net- 

work (ESBN) that can perform a simple form of indirec- 

tion (Webb, Sinha, & Cohen, 2021). ESBN was trained and 

tested on four tasks that involved learning abstract rules from 

images: same/different discrimination, relational match-to- 

sample, distribution-of-three, and identity rules (Webb et al., 

2021). Several deep learning architectures, including most 

importantly the Transformer, were compared with the perfor- 

mance of ESBN. The only clear advantage that ESBN had 

over other approaches was that it did not require as many 

training examples to learn the tasks. While this is clearly 

advantageous, these results suggest that the Transformer ar- 

chitecture is sufficient for performing indirection and symbol 

binding given sufficient data. However, it is not clear whether 

this was truly the case, or if the tasks were simply not chal- 

lenging enough to delineate differences in performance be- 

tween the tested architectures. 
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Methods 

With the recent development and subsequent success of 

Transformers, the task still stands to explore their strengths 

as well as their shortcomings. While the Transformer ar- 

chitecture has passed several abstraction-based challenges 

(Vaswani et al., 2017) and indirection-based challenges 

(Webb et al., 2021), previous indirection work involving the 

SG, SA, FC, and NF data sets (Jovanovich, 2017; Mullinax, 

2020) suggests that these tasks may be better suited to dis- 

criminate between the capabilities of the LSTM, Transformer, 

and IND approaches. Additionally, Transformer models can 

be viewed as a replacement for RNN/SRN/LSTM compo- 

nents, and therefore either the inner and/or outer LSTM com- 

ponents in prior models. By replacing the LSTM components 

of the OL/IL models with transformer components (T), we 

hope to observe what advantages the Transformer architec- 

ture might provide. This provides a framework for developing 

and testing five different combinations of inner/outer compo- 

nents: OL/IND, OL/IL, OL/IT, OT/IL and OT/IT. All outer 

components can be pretrained as described above, and all 

inner components can then be trained/tested across the four 

tasks using the embeddings produced by the outer compo- 

nents. An example of the encoding/decoding process is illus- 

trated in Figure 1. In this way, we hope to expose any gener- 

alization distinctions to be made among the different models. 

Data Sets 

The goal for all models described in the subsequent sections 

is the reading and reproduction of three-word sentences fed 

into each of the models. There are two principal classes of 

data sets on which the models are trained. First is the pre- 

training corpus which was the same across all models and 

tasks; it consists of ten thousand 5 character-long lowercase 

ASCII words or fillers. Another 10,000 word-long pretest- 

ing corpus of different fillers was used for testing (SG con- 

straints as described in the Background section). All outer 

model components are trained and tested on the two corpi, 

respectively, until reaching 100% accuracy on the pretesting 

corpus. Component weights are fixed after training for these 

(outer) components, so that they are only used to either embed 

each separate word in a sentence for presentation to the inner 

model component, or to decode the word representations pro- 

duced by the output layers of the inner model. The second 

class of data sets employed are the training/testing materials 

for the inner model components which differ depending on 

the task: SG, SA, FC or NF. Every training set for each of 

the four tasks consists of two hundred three-word sentences, 

each sentence being composed of words from the pretesting 

corpus above. Therefore, for remainder of this work, we re- 

fer to the pretesting corpus as simply the corpus since the 

pretraining corpus is technically not used for any of the inner 

component tasks. This procedure therefore insists on using 

words that the outer component has never seen before to train 

the inner components. The testing set for each task also con- 

sists of words from the corpus, but obeying the rules of the 

respective task. Note that an important distinction occurs in 

the NF task: some fillers from the corpus are never observed 

during model training, but are used during testing. 

Models and Training Parameters 

All models were created using Tensorflow/Keras [ver. 

2.5.0]. Additionally, all models were developed with both 

a coupled and decoupled version to either provide teacher- 

forcing (for training) or remove teacher-forcing (for testing), 

respectively. When encoding and decoding tokens, the com- 

ponents (both outer and inner) are supplied with a start and 

stop token, allowing for potentially variable word/sentence 

lengths; though in this work each word was always composed 

of five letters (for the outer components) and each sentence 

was always composed of three words (for the inner compo- 

nents). The hidden states of the encoder are passed to ini- 

tialize the states of the decoder. While training, a coupled 

version of these components is used, and during testing the 

decoupled version of the component is used wherein the hid- 

den states are passed through separate input layers to allow 

separation between the encoder and decoder for testing with- 

out teacher forcing. Instead of decoupling encoder-decoder 

components, masking is another common method for remov- 

ing teacher forcing and allowing for variable length inputs. 

However, our pretraining approach requires the outer com- 

ponents to be decoupled into a separate encoder and decoder 

for embedding and decoding, respectively. Therefore, we uti- 

lized consistent modeling efforts across both inner and outer 

components for parsimony. 

The first model developed was the nested inner/outer 

LSTM (OL/IL) model which used an LSTM module to en- 

code and decode fillers from the corpus into vector represen- 

tations and then another LSTM to take three filler vectors and 

amalgamate them into a representation for the entire sentence. 

These are then decoded back into human-readable characters 

by the outer component decoder. Key hyperparameters in- 

volved are the dimension size of the OL into which each filler 

is encoded, the dimension size of the IL wherein the three 

filler vectors are combined into a vector representation of the 

entire sentence. This model was then trained and fitted ac- 

cording to the parameters shown in Table 1. The Adam opti- 

mizer was used and updated using mean squared error (MSE) 

and binary crossentropy (BCE) loss functions for the embed- 

ding and start/stop token layers, respectively. The training 

parameters for this model are given in Table 1. 

The second model developed consisted of an outer LSTM 

model wrapped around an inner Transformer (OL/IT). Both 

the inner and outer components performed identical functions 

as in the OL/IL model. In addition to replacing the IL with 

the IT, the necessary addition of a position embedding layer 

was added between the OL and before the transformer block. 

Details in the training regimen and model constructions are 

found in Table 1, and as above the Adam optimizer with MSE 

and BCE loss functions for the embedding and start/stop to- 

ken layers, respectively, were used to train. 

In the third model, the roles are reversed and a Transformer 
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is used as the outer model which surrounds an inner LSTM 

(OT/IL). The OT’s encoder and decoder utilizes a masked po- 

sition embedding prior to the transformer block itself. Unlike 

the previous models, this was trained using the Nadam opti- 

mizer with MSE and BCE loss functions for the embedding 

and start/stop token layers, respectively. Further details of the 

model and training scheme are shown in Table 1. 

The last model developed was the nested Transformer 

model (OT/IT). Transformer blocks, each proceeded by a 

masked position embedding layer, are used to encode and 

decode both the corpus and the vector embeddings created 

by the outer encoder. Training used the Adam optimizer up- 

dated using MSE and BCE loss functions for the embedding 

and start/stop token layers, respectively. Further details of the 

model and training scheme are shown in Table 1. 

A fifth model, used for state-of-the-art comparison, was the 

outer LSTM and inner Indirection model (OL/IND) devel- 

oped by (Mullinax, 2020) and described in the Background 

section above. For further details on the model’s construction 

and training/testing regimen see (Mullinax, 2020). 

Table 1: Key Model and Training Parameters 

 
Name Value Description 

 

 
 

Figure 1: The figure above shows how the Inner/Outer En- 

coder/Decoder operate. A sentence like "Tom Ate Food" is 

passed to: 1) the Outer Encoder where each word is inde- 

pendently encoded as a series of letter token and 2) sent into 

the Inner Encoder which generates an encoding for the entire 

sentence as a series of word embeddings, and 3) this sentence 

encoding is then sent to the Inner Decoder which decodes 

the sentence into independent word embeddings, and 3) the 

word embeddings are sent to the Outer Decoder which de- 

codes each one into the corresponding words (series of let- 

ters). 

 

We employed letter-level accuracy and word-level accuracy 

to quantify how exactly the model was reproducing the test 

sentences it was fed. We defined a function IS_EQ(x1, x2) 
to compare words and characters from the model and testing 

data set as follows: 

 
IS_EQ(x1, x2) = 

(
1  x1 = x2 

 
(1) 

0  otherwise 

 

Since the testing data sets are one hundred sentences long, 

word and letter accuracies are as follows: 

WORD_ACC=  1  ∑100 ∑3 IS_EQ(model’s word,test word) (2) 
100·3  1 1 

LETTER_ACC=   1   ∑100 ∑3 ∑5 IS_EQ(model’s letter,test letter) (3) 
100·3·5  1 1  1 

 

 

 

 

 

 
Training, Testing and Evaluation 

Before evaluating performance, a hyperparameter search for 

each model was performed manually until a set of values 

yielded consistent and high-performing results for that model. 

Certain key hyperparameters are shown in Table 1. Models 

were then formally evaluated by training and testing them ten 

times using the optimal hyperparameters found previously. 

Over the ten training runs, the word and letter-level accuracies 

for each model were obtained and the mean (+/- 1.96 standard 

errors) results were plotted for comparison with one another. 

Results 

According to the methodology described above, we trained 

and tested the four models we developed–OL/IL, OL/IT, 

OT/IL, and OT/IT–on the four tasks–SG, SA, FC and NF. 

Additionally we also include the results from the OL/IND 

model developed by (Mullinax, 2020). The results from the 

five models tested on the four tasks are shown in Figure 2, 

sorted according to the task they were tested on. One of the 

most apparent trends in the data is the performance gap be- 

tween the SG/SA and FC/NF tasks. All models perform the 

SG and SA tasks with nearly 100% letter and word accuracy; 

OL/IL 
Outer size 

 
100 

 
Dimension size for corpus embeddings 

Hidden size 300 Dimension size for embedding of sentence 
α 0.001 Learning rate for Adam optimizer 

n 1600 Number of epochs 

k 100 Batch size 

OL/IL - Int. Embed. 
Outer size 64 or 256 

 
Dimension size for corpus embeddings 

Hidden size 300 Dimension size for embedding of sentence 
α 0.001 Learning rate for Adam optimizer 

n 1600 Number of epochs 

k 100 Batch size 

OL/IT 
Outer size 

 
100 

 
Dimension size for corpus embeddings 

Num_heads 4 Number of attention heads in each transformer block 

ff_dim 4 Hidden layer size in feed forward network in transformer 

rate 0.1 Dropout rate for transformer 
α 0.001 Learning rate for Adam optimizer 

n 1600 Number of epochs 

k 100 Batch size 

OT/IL 
Outer size 

 
300 

 
Dimension size for corpus embeddings 

Hidden size 300 Dimension size for embedding of sentence 

Num_heads 4 Number of attention heads in each transformer block 

ff_dim 4 Hidden layer size in feed forward network in transformer 

rate 0.1 Dropout rate for transformer 
α 0.001 Learning rate for Nadam optimizer 

n 40 Number of epochs 

k 25 Batch size 

OT/IT 
Outer size 

 
300 

 
Dimension size for corpus embeddings 

Outer Num_heads 32 Number of attentions heads in outer transformer block 

Inner Num_heads 4 Number of attention heads in inner transformer block 

embed_dim 128 Embedding size for each token 

Inner ff_dim 32 Hidden layer size in feed forward network in inner transformer 

rate 0.1 Dropout rate for both inner and outer transformers 
α 0.001 Learning rate for Adam optimizer 

n 250 Number of epochs 

k 50 Batch size 
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however, as we move to the FC and NF tasks, the letter and 

word accuracies drop off significantly, most notably in the 

OL/IL model. The OL/IL model performed to over 90% ac- 

curacy on SG and SA for both world-level and letter-level ac- 

curacy. However, OL/IL model performance was poor on FC 

and NF (<40% and <65%, respectively). The OL/IL model 

did noticeably better on letter-level accuracy than word-level 

accuracy in all of these cases, and the study concludes that 

the model produces the best matching fillers experienced dur- 

ing training in these cases rather than the expected test fillers. 

Using a Transformer as the outer model (OT/IL) did not sig- 

nificantly increase performance: in fact, for the SG and SA 

tasks, the OL/IL model outperforms OT/IL, suggesting that 

the representations created by the OT may be, in a sense, con- 

fusing to the inner IL. However, seemingly resilient across 

all tasks at the letter-level were the OL/IT and OT/IT mod- 

els, only showing poor word-level accuracy on the NF task. 

All of these models, however, were ultimately out-performed 

by the outer LSTM and inner indirection/working memory 

model (OL/IND), which scored nearly 100% across all tasks 

(see Figure 2). These results indicate that the Transformer 

better approximates indirection mechanisms than LSTM, but 

is not all that is needed to sufficiently handle novel fillers. 
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This work set out to evaluate certain neural network ar- 

chitectures’ indirection and symbol binding capabilities 

through testing on a series of increasingly difficult sentence- 

processing tasks. Additionally, we examined possible syn- 

ergy across the LSTM and Transformer architectures by cre- 

ating nested models where the outer and inner components 

were interchangeable. As demonstrated in Figure 2, we see 

that models involving inner transformers (OL/IT, OT/IT) out- 

performed the model composed entirely of LSTMs (OL/IL). 

When employing transformers in conjunction with LSTMs, 

we found care must be taken as the OT/IL model performed 

far worse than the OL/IL model in the fairly easy SG and SA 

tasks. Further research into the relationships and synergies 

between the outer and inner encoders/decoders could help 

elucidate why in the OT/IL model under-performed compared 

to other model combinations but LSTMs were observed to 

be more sensitive to representational complexity than Trans- 

formers. Based on the OT/IT’s 100% scores on the SG, SA 

and FC tasks, we confirm that the Transformer does possess 

superior abstraction capabilities compared to LSTM. How- 

ever, what it does not possess is indirection or symbol binding 
Figure 2: Plots of the letter-level and word level accuracies 

of the five models examined in this work. Formulas for these 

accuracies metrics are given in eqns. (2)–(3). All models were 

trained and tested N=10 times to obtain the mean (and +/- 

1.96 standard errors shown by the black bars). Models are 

composed of inner (I) and outer (O) components: LSTM (L), 

Transformer (T), or indirection (IND). 

capabilities, as evidenced by the clear disparity between the 

OL/IND model and the four others in the NF task. However, 

long training times are required for OL/IND models since 

they use reinforcement instead of supervised learning. More 

research is clearly needed to elucidate why the Transformer 

fails to perform indirection; yet it is certain that more than 

attention is needed to understand the unknown. 
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