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ABSTRACT

Over the last six years, several papers used memory deduplication
to trigger various security issues, such as leaking heap-address and
causing bit-flip in the physical memory. The most essential require-
ment for successful memory deduplication is to provide identical
copies of a physical page. Recent works use a brute-force approach
to create identical copies of a physical page that is an inaccurate
and time-consuming primitive from the attacker’s perspective.

Our work begins to fill this gap by providing a domain-specific
structured way to duplicate a physical page in cloud settings in the
context of industrial control systems (ICSs). Here, we show a new
attack primitive - BayesImposter, which points out that the attacker
can duplicate the .bss section of the target control DLL file of cloud
protocols using the Bayesian estimation technique. Our approach
results in less memory (i.e., 4 KB compared to GB) and time (i.e., 13
minutes compared to hours) compared to the brute-force approach
used in recent works. We point out that ICSs can be expressed as
state-space models; hence, the Bayesian estimation is an ideal choice
to be combined with memory deduplication for a successful attack
in cloud settings. To demonstrate the strength of BayesImposter, we
create a real-world automation platform using a scaled-down auto-
mated high-bay warehouse and industrial-grade SIMATIC S7-1500
PLC from Siemens as a target ICS. We demonstrate that BayesIm-
poster can predictively inject false commands into the PLC that can
cause possible equipment damage with machine failure in the target
ICS. Moreover, we show that BayesImposter is capable of adversarial
control over the target ICS resulting in severe consequences, such
as killing a person but making it looks like an accident. Therefore,
we also provide countermeasures to prevent the attack.
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1 INTRODUCTION

Historically, Industrial Control Systems (ICSs) follow the ANSI/ISA
95 model [65], where disconnected computer systems and isolated
sensor frameworks were used to screen various operations and
tasks in lower levels of the automation pyramid [20]. As we enter
the fourth industrial revolution [51] (Industry 4.0), the ANSI/ISA95
model is going under different transformations. These transforma-
tions include the vertically/horizontally interconnected and decen-
tralized ICSs in all levels of the automation pyramid for flexible
monitoring and control. The decentralization of ICSs in Industry
4.0 adds fuel to movement to the Industrial Internet of Things (IIoT)
trend, where cloud servers and virtualization [74] play an important
role by providing easy-to-access automation platforms.

In Industry 4.0, Infrastructure-as-a-Service (IaaS) enables Pro-
grammable Logic Controllers (PLCs) to connect with clouds [48].
Moreover, to support multiple PLCs and supervisory platforms,
today’s ICSs use multiple Virtual Private Servers (VPSs) in a single
cloud platform [38]. The cloud server has memory deduplication fea-
ture enabled [33], which is a widespread optimizing feature present
in today’s cloud servers to support virtualization. In this typical
ICS platform, the user sends control programming and supervisory
commands from VPSs using cloud protocols (i.e., MQTT, AMQP) to
PLCs [49]. The cloud protocol’s software stack has a specific DLL
file, which transports these commands and is located in the server
computer. We call this specific DLL file as target control DLL file.

In this paper, at first, we show that the .bss section of the target
control DLL file of cloud protocols transports the critical control
commands from VPSs to PLCs (i.e., lower level of the automation
pyramid). Next, after identifying the target control DLL file, we
introduce the Bayesian estimation by which an attacker can recreate
or fake the memory page of the .bss section of the target control
DLL file. We name the fake .bss section'as the .bss imposter and
denote the attack model by BayesImposter.

The intuition behind BayesImposter is that as ICSs can be ex-
pressed as state-space models [35], our BayesImposter exploits the
Bayesian estimation technique to accurately predict the current
state of the industrial controller. As control commands are directly
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related to the current states of the industrial controller, after estimat-
ing the states, the attacker can also estimate the control commands
from the estimated states. As the .bss section contains the control
commands, hence, the attacker can successfully recreate the .bss
section using the estimated control commands. We show that our
proposed Bayesian estimation results in less memory and attack
time to recreate the page of the .bss imposter compared to the brute
force approach demonstrated in recent works [19, 29, 58, 62].

After recreating the fake .bss section, BayesImposter uses the
underlying memory deduplication feature enabled in the cloud to
merge the page of the fake .bss section with the legitimate .bss
section. In this way, the attacker can locate the memory address of
the fake .bss section in the host machine and can use a malicious
co-located VPS to trigger a bit-flip in the page of the .bss section
using the Rowhammer bug [19, 29, 58, 62] of the host machine. As
the .bss section contains the control commands, this paper shows
that a bit flip in this section may cause corruption or even change
the actual command. This method can be termed as false command
injection. The injected false commands propagate from VPSs to
the PLCs and may cause an unplanned behavior with catastrophic
machine failure in the target ICS. It is worthwhile to mention here
that, as BayesImposter has more control over the recreation of a
fake .bss section, our attack is capable of adversarial control over
the target ICS from a co-located VPS on the same cloud. To the best
of our knowledge, BayesImposter is the first work that successfully
merges the idea of Bayesian estimation of the state-space models of
ICSs with the memory deduplication and the Rowhammer bug in
cloud settings in the context of ICSs.

Technical Contributions: Our contributions are:

e We are the first to point out how the .bss section of the tar-
get control DLL file of cloud protocols can be exploited by using
memory deduplication in modern ICSs.

o We are the first to introduce Bayesian estimation to recreate the
.bss section. Our attack requires less memory and time compared
to the brute force approach used in recent works [19, 29, 58, 62].

® We create a real-world scaled-down factory model of a practical
ICS, which has an automated high-bay warehouse from fischertech-
nik [6]. We use an industrial-grade PLC with a part# SIMATIC
$7-1500 [12] from Siemens to create the automation platform and
connect the PLC to clouds using industry-standard cloud protocols.

e We evaluate BayesImposter in our factory model considering
five variants of industry-standard cloud protocols and show the
adversarial control to generalize our attack model in cloud settings.
The demonstration of our work is shown in the following link:
https://sites.google.com/view/bayesmem/home.

2 BACKGROUND

2.1 Connecting PLCs with clouds

IIoT enables PLCs to upload the acquired data directly to clouds
[64]. PLCs are connected to clouds normally in two ways: using
an adapter or directly using a standard protocol. Standard cloud
protocols, such as MQTT and AMQP support bidirectional and event-
based data transmission between PLCs and upper managements.

n this paper, the .bss section means the .bss section of the target control DLL file of
cloud protocols; unless otherwise mentioned.
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The upper management can modify control functions of PLCs in
run-time by flashing new control programs to PLCs from clouds.

| VPSs to support different

Horizontal axis  vertical axis
PLC automation platforms -

Cloud server
VPS1

[V]

T Vacuum gripper robot

Cloud protocols IEC 61158 standard
(MQTT/AMQP) (Modbus/PROFINET)

Sending program
for supervisory controls

Figure 1: Different components of an ICS in cloud settings.

2.2 Programs for supervisory controls

The IEC 61131 programming standard [72] is used for control pro-
gramming of PLCs. Control programs can be broadly divided into
three categories: (i) programs for basic functions, (ii) programs for
supervisory controls, and (iii) programs for critical time-constraint
functions (e.g., security and real-time response, etc.). Traditionally,
all these three categories of control programs were implemented in
PLCs in industrial premises. However, with the new trend in Indus-
try 4.0, nowadays, only the programs for critical time-constraint
functions are implemented in PLCs. Programs for basic functions
and supervisory controls are not implemented in PLCs; rather, they
are implemented in clouds or in web-server. For example, basic
functions and supervisory control programs are outsourced as web
services to a cloud or to a server for class C33 PLC controller [49].
This gives more flexibility to upper managements as they can change
programs remotely in run-time to tackle abruptly changing situations.

2.3 Use of VPSs with PLCs

ICSs are becoming more complex in Industry 4.0. ICSs often need
to support multiple automation platforms that may conflict with
each other. Moreover, multiple PLC controllers and supervisory
platforms may need multiple software packages that may require
multiple operating systems. Also, introducing web servers and
clouds to ICSs increases the necessity of using multiple private
servers. As using multiple separate physical machines to support
multiple automation platforms or operating systems or private
servers is one of the available solutions, industries evidently use
VPSs to reduce the number of required physical machines to reduce
cost [63]. Moreover, modern cloud platforms offer cheap access to
VPSs by sharing a single server among multiple operating systems
on a single server machine using virtualization software [11].

2.4 A motivational example of an ICS

A motivational example is shown in Fig. 1 where we consider an
automated high-bay warehouse as our example ICS. It has a vac-
uum gripper robot, which stores objects in the storage rack of the
warehouse using a suction cup and moves along the horizontal
and vertical axis. We elaborate more on this in Section 7.1 while
demonstrating our attack model. Here, multiple PLCs having dif-
ferent platforms are supported by a cloud using multiple VPSs.
Upper management located in the cloud send programs for su-
pervisory controls from VPSs to PLCs using cloud protocols (i.e.,
MQTT/AMQP). PLCs communicate with the underlying sensors
and controllers using IEC 61158 standard protocols (e.g., Modbus,
PROFINET, etc.). Given this background, an attacker can perturb
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the supervisory control commands (i.e., false command injection) in
our example ICS and remotely hamper its normal operation using
our attack model - BayesImposter.

2.5 Memory deduplication

Memory deduplication is a process that merges identical pages
in the physical memory into one page to reduce redundant pages
having similar contents. It is a widely used feature in cloud servers
allowing multiple VPSs to run on less allocated memory in a single
physical machine. The amount of redundant pages can be as high
as 86% [30] and memory deduplication can save up to 50% of the
allocated memory in the cloud server [42]. This feature is available
in Windows 8.1, Windows Server 2016, 2019, and 2022 and Linux
distribution. Windows Servers have it as Data Deduplication [3]
and Linux distributions have it as Kernel Samepage Merging (KSM),
which is implemented in Kernel-based Virtual Machine (KVM) (see
Appendix 11.5, 11.6, and 11.7 for more detail on this topic).

3 ATTACK MODEL

Fig. 2 shows the attack model - BayesImposter in cloud settings. The
essential components of BayesImposter are described below.

(i) Target system: We consider an infrastructure [39] where
PLCs are connected with a cloud for maintenance and control pro-
gramming, and multiple Virtual Machines (VMs) acting as VPSs are
located in the same cloud to support multiple automation platforms.
As multiple VPSs in the same cloud share the same hardware, an
attacker can exploit the shared hardware from a co-located VPS.

(ii) Attacker’s capabilities: Let us consider a scenario where
a user gives commands from his proprietary VPS to a PLC to do
control programming and supervisory controls.

e .bss imposter: A few specific DLL files (i.e., target control
DLL) of the cloud protocols transport these commands from VPS
to PLCs. These DLL files are organized into different sections. Each
section can be writable or read-only and can encapsulate executable
(i.e., code) or non-executable (i.e., data) information. The section,
which encapsulates uninitialized data, is known as .bss section. The
.bss section of the target control DLL contains control programming
and supervisory control specific information/data, which are mostly
boolean type coming from the user as commands. This .bss section
is page-aligned in virtual memory as well as in physical memory.
Let us denote this as victim page. If an attacker can recreate the
victim page, the attacker can use this recreated victim page (a.k.a.,
.bss imposter page) to trigger memory deduplication.

o Bottleneck: To recreate the victim page, the attacker needs
to guess all the initialization values of uninitialized variables of the
.bss section. As there could be hundreds of control variables present
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Figure 2: Different components of our attack model - BayesImposter on industrial control systems in cloud settings.

in the .bss section, this is almost impossible for the attacker to
successfully guess the victim page and recreate it following the
brute force approach adopted in recent works [19, 29, 58, 62]. The
brute force approach was successful in [19, 29, 58, 62] because they
only guessed a specific 32-bit data to recreate a victim page. To guess
hundreds of variables in the .bss section, the brute force approach
could require hundreds of hours. Moreover, the attacker may need
to spray the physical memory with terabyte amount of recreated
pages to initiate a successful attack in the brute-force approach.

o Solution: Thankfully this challenge can be handled by using
BayesImposter. The intuition behind BayesImposter is that if an at-
tacker knows the state-space model of the ICS, the attacker can
estimate the boolean and non-boolean control commands because
the control commands are directly correlated with the current states
of an ICS. As the .bss section transports the control commands, the
estimation of the control commands helps the attacker to success-
fully guess the control variables present in the .bss section leading
to a successful recreation of the victim page (i.e., .bss imposter page).

e Memory deduplication + Rowhammer: After recreating
the .bss imposter page using our BayesImposter, the attacker can
initiate memory deduplication to merge the victim page with the
attacker’s provided .bss imposter page. In this way, the attacker maps
the victim page in his address space to initiate the Rowhammer
attack on the .bss imposter page from his address space. It can flip bits
in the .bss imposter page and change values of control commands.

(iii) Outcomes of the attack: As the .bss section contains im-
portant data dedicated to control programming and supervisory
controls, the bit flips in the .bss section may lead to potential failure
in ICSs. It can cause an unplanned shutdown, possible equipment
damage, catastrophic machine failure, monetary losses, or even can
kill a person but making it looks like an accident in the target ICS.

(iv) Attacker’s access level: Our attack requires the deployment
of a malicious co-located VPS in the cloud where the victim VPS
resides. As public clouds are not common in ICSs, the clouds in
ICSs can be either private or hybrid. The access needed to private
or hybrid clouds can be possible in at least three scenarios.

In the first scenario, the attack can be originated from the cloud
provider targeting the VPS of cloud users [61]. As cloud providers
provide software, platform, and infrastructure as service [16], they
have physical access to target clouds where the victim VPS resides.

In the second scenario, a malicious insider [31, 75], which can
be a disgruntled employee, can use his insider knowledge of the
system to deploy the malicious co-located VPS. A similar incident
is found in the literature where a disgruntled ex-employee of an
ICS posted a note in a hacker journal indicating that his insider
knowledge of the system could be used to shut down that ICS [69].
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The third scenario is interdiction, which has been rumored to
be used in the past [17, 67, 73] and has been recently proven to
be practically feasible [70]. In this scenario, during interdiction,
a competitor can intercept the installation of VPS in clouds while
providing service and may deploy the malicious VPS.

(v) Stealthy attack: The authorities may not be aware of the
co-located malicious VPS and would possibly not detect the source
of our attack. In this sense, our attack is stealthy and can alter the
normal behavior of PLCs in ICSs while remaining unidentified.

(vi) Attacker’s cost: Most of these specific DLLs are available
as open-source, and very few are proprietary. To acquire the open-
source DLL files, the attacker has a zero cost. To acquire the DLL
files of the proprietary cloud protocols, the attacker just needs to
buy a basic commercial license that may cost a minimum of $100 [1].
Moreover, most proprietary cloud protocols have a free evaluation
for few days, and the attacker can also use this free evaluation
period to access the .bss section of the target control DLL.

4 .BSS SECTION OF TARGET CONTROL DLL

To recreate the .bss imposter page, the attacker first needs to find
the target control DLL file of cloud protocols (i.e., MQTT, AMQP)
that transports the control commands from the VPS to PLCs.

4.1 Target control DLL file

Mostly, the name of the target control DLL file depends upon the
cloud protocol’s implementation variants. For example, the name
of a popular implementation of MQTT cloud protocol is Mosquitto,
and the target control DLL file for this variant to access by the
attacker is mosquitto.dll. We do an exhaustive search and tabulate
five popular variants of MQTT and their target control DLL files
in Table 1. The same approach is equally applicable to other cloud
protocols. The DLL files are located in the parent directory of the
installation folder in the cloud.

Table 1: Target control DLL file of cloud protocol variants

[ ST Cloud protocol variants [ Target control DLL |
1 EMQ X Broker [4] erlexec.dll
2 Mosquitto [9] mosquitto.dll
3 MQTT-C [10] mqtt_pal.dll
4 eMQTT5 [5] MQTT_client.dll
5 wolfMQTT [13] MqttMessage.dll

4.2 Format of target control DLL files

In 64-bit Windows, DLL files follow Portable Executable 32+ (PE32+)
format. In high level, PE32+ has a number of headers and sections
(Fig. 4). The header consists of DOS header, PE header, optional
header, section headers, and data directories. These headers have
Image base Address and relative virtual address (RVA) of every sec-
tion that tells the dynamic linker how to map every section of
the DLL file into physical memory. There are different sections
placed after headers in DLL. Among different sections in DLLs,
we want to mention four sections, namely .rdata, .data, .text, and
.bss sections. The .rdata section contains string literals, the .data
section contains global/static initialized variables, the .text section
contains machine code of the program, whereas the .bss section
contains zero-initialized variables. It is important to note that all
these sections are page-aligned [60]. This means that these sections
must begin on a multiple of a page size in both virtual and physical
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memory. These sections of DLL files are mapped to pages in phys-
ical memory after the base-relocation [60]. The base-relocation is
randomized, and the ASLR technique is used to map these sections
to pages in physical memory at load time by the operating system.

4.3 Reasons for choosing the .bss section

The intention of the attacker is to find a section in the DLL file that
has less entropy, which leads to a successful guess of the section.
As the .rdata, the .data, and the .text sections consist of different
unknown data and addresses, the pages in physical memory corre-
sponding to these three sections have higher entropy. Hence, the
estimation of these pages by the attacker requires large memory
and time [19] that is not computationally feasible.

On the other hand, we examine that the .bss section of a target
control DLL file of cloud protocols (i.e., MQTT, AMQP) is responsi-
ble for transporting control programming and supervisory control-
related data, which are static except a new control command is
issued. The .bss section contains different uninitialized global/static
variables. They are also known as tag values and are organized in a
tag table. The tag table is typically placed in the .bss section.

An example of the tag values: We use a real-world testbed of
an automated high-bay warehouse from fischertechnik. The ware-
house is connected with a SIMATIC S7-1500 PLC from Siemens. The
PLC communicates with the cloud using a TIA portal [7] through
the MQTT cloud protocol Mosquitto. A snippet of tag values in the
tag table sent from the TIA portal to the SIMATIC PLC are shown in
Fig. 3. A complete list of the tag values is provided in the following
link: https://sites.google.com/view/bayesmem/home.

Path Data Type Logical Addr Comment

Tag values in Tag table :able /Bool Boolean type state started by start button 1 time

Defaulttag table | Bool | %Q0.0 Q1

Defaulttag table \ Bool / %M0.1 sortingline, processing white block

Default tag table Boo %M0.3  sorting line, processing blue block

Defaulttagtable Bool  %M04 sorting line, processing red block

Default tag table  Bool | Non-boolean type ng line light barrier inlet state, start

Default tag table  Bool I/ %M0.7 sorting line ejecting a block

Default tag table /85D %M40.0  sorting line detected a block

Default tag table %IW4 14: sorting line analog colour sensor
Bod %Q0.1

Default tag table Q2: sorting line vacuum compressor

BN st eject the block
N st block detected
2N st colour sensor
[N st compressor

BN st white block ejector valve  Defaulttagtable  Bool  %Q0.2 Q3: ejector valve for white block
[EEN st blue block ejector valve Defaulttagtable Bool  %Q0.4 Q5: ejector valve for blue block

[N st red block ejector valve

Figure 3: Tag values in tag table of the TIA portal.

Default tag table  Bool %Q0.3 Q4: ejector valve for red block

If we analyze the tag values in tag tables (Fig. 3), we can observe
that tag values correspond to particular states of the target ICS, e.g.,
the position of a vacuum gripper robot in the warehouse. Most of
the tag values are boolean, and very few of them are other data
types. The initialization of tag values to either 0 or 1 or non-boolean
values in .bss section depends on states of the target ICS and in-
creases entropy. Therefore, it provides a challenge to the attacker to
successfully recreate the .bss section. Thankfully, this challenge can
be handled by using the Bayesian estimation of specific command
data in the .bss section. This process is discussed in the next section.

5 BAYESIAN ESTIMATION OF .BSS SECTION

We first mathematically model ICSs using the Bayesian estimation
and then use the model to recreate the .bss imposter page.

Proposition 1- State-space model of an ICS: An ICS is dynamic
in nature and can be expressed as a discrete-time state-space model
[35]. Therefore, a control system in ICS can be expressed by a state
vector xj, which is a parameter of interest, and a measurement
vector yy, which is the measurement for x;. at discrete-time index
k (see Fig. 4). The terms x; and y; can be expressed as:
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where g._; and ry are state noise and measurement noise vector
respectively, and they are mutually exclusive. Please note that both
Xy and yg are stochastic processes, and Eqn. 1 implies that current
state x; at time index k depends on only the previous state x;_;
at time index k — 1 (i.e., Markov process). We implement the state
space model of ICS in lines 2-3 of our BayesImposter algorithm 1.

Source of the data to create the state-space model: To create
the state-space model and to estimate x; and yy, the main challenge
for the attacker is to gather the previous states, x.;_; and previous
measurements, y;.x_1. The attacker can gather xi.;._1 and yy.p_1
from OPC tags, historian data, specific PLC block information, or
network traffic [31]. Moreover, as mentioned in Section 3, the cloud
provider, or a malicious insider, or an interdiction method can make
it possible to get x1.p_1 and yy.x_1 from these sources. The attacker
can use x1.,_; and y;.,_; to create a probabilistic graphical model -
Bayes net, which is a directed acyclic graph describing how a joint
density can be factorized. The Bayes net also illustrates conditional
dependencies among all the states in the ICS (Fig. 4).

The tag values located in the .bss section are directly related to
the current states (xg) and measurements (yg ). Therefore, BayesIm-
poster has the following two parts:

Part 1. Estimation of the current states (x;) and measurements
(yg) of the state-space model.

Part 2. Estimation of tag values from the estimated xj and yy.

5.1 Estimation of states and measurements

At first, we define the univariate and multivariate ICS to provide
background on the design space of the state-space model of ICSs.

Definition 1 (Univariate ICS). We define an univariate ICS as
where each state x; has only a single measurement quantity y; at
any time step k.

Definition 2 (Multivariate ICS). We define a multivariate ICS
as where each state x; has multiple (i.e., n number) measurement
quantities, [y}c, y,zc, ...... .y | at any time step k.

Practically speaking, an ICS is a mixture of univariate and multi-
variate state-space models. Therefore, the main challenge for the
attacker is to satisfactorily estimate the current state x; and mea-
surement yg for both univariate and multivariate ICSs. To handle
this challenge, we bring Propositions 2 and 3 to estimate x; and yj
for a univariate ICS and Propositions 4 and 5 for a multivariate ICS.

OPC tags, historian data, Bayesian estimation

specific PLC block information, using Propositions 1-5
network traffic, etc. \
Source

Process state vector, x;

eYe¥alr

Target state &

@ @ dy measurement

Measurement vector, yy

PE32+ file format

DoS Header
PE Header
Optional Header
Section Header
.rdata Section
.data Section
.text Section Q
| _:bss Section |
Other Sections

Supervisory command related
les (e.g., various
process states, sensor and

actuator states, etc.
Protocol related variables
(e.g., packet length, size,
timing data, i
sleep time, etc. Bayes net (Factorization of joint density)

ud specific reference book,

open source DLL files,
proprietary DLL files, etc.

Source

Figure 4: An overview of duplicating the .bss section of the
target control DLL file.
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Proposition 2: BayesImposter can predict the current state x; at
time k if the attacker has information only on the previous state
Xj_1 and previous measurements y.,_1, by using the Chapman-
Kolmogorov equation. Here, y;.x_; consist of all previous measure-
ment data [y1 y2 ... yp—1] up-to time k — 1.

Explanation of Proposition 2: Let us give an example to clear
this concept. Let us denote the states of a suction cup of the vacuum
gripper robot in our example warehouse as xj at time k. Let us
consider the suction cup can be in one of two states, x;.e{ON, OFF}.
The activation of the suction cup in each state depends on the
position of the horizontal and vertical axis of the vacuum gripper
robot (see Fig. 1). The position measurement can be expressed by yj.
at time k. If the attacker knows previous state xj_; of the suction
cup and previous position measurements yq.,_1, then the attacker
can use these data to accurately estimate the current state x at
time k by using Eqn. 3 (i.e., Chapman-Kolmogorov equation). The
L.H.S of Eqn. 3, p(xk|yq.k—1), is a conditional estimation of current
state xj, while previous measurements y.;_; are given. The RH.S
of Eqn. 3 depicts that p(xg|y;.x—1) is a function of previous state,
Xy —1, that is an indication of Markov process. The Proposition 2 is
implemented in lines 6-7 of our BayesImposter algorithm 1.

pCklyie ) = / Pl )P e )dxiy ()

An example: The name of a specific tag value in the .bss section
of the mosquitto.dll is suctionstate, which corresponds to the
state information xze{ON, OFF} of the suction cup of our exam-
ple automated high-bay warehouse. After estimating the state x
using Eqn. 3, the attacker can initialize the tag value to 0 or 1 of
the variable suctionstate in the .bss section. If the .bss section
contains multiple uninitialized tag values originating in the VPS,
the attacker can use a similar technique to successfully estimate all
uninitialized tag values and can recreate the .bss section.

Proposition 3: BayesImposter can predict the current measure-
ment yy if the attacker has information on current state xy.

Explanation of Proposition 3: It is important to note that
along with state information x, the .bss section transports current
measurement yy from VPSs to PLCs. The importance of sending
measurement information yj from VPSs to PLCs is explained below.

An example: In the automated high-bay warehouse, a solenoid
is present in the suction cup of the vacuum gripper robot that is
turned on/off if the position of the horizontal and vertical axis
is above/below a threshold position. Let us denote this threshold
position by Sy. If the threshold position is required to be changed by
the upper management located in the cloud, the VPS can send a new
threshold position Sz to overwrite the previous value Sf_ ;- The new
threshold position Sg is equivalent to the current measurement yy,
which depends on the current state xj. of the suction cup. Therefore,
the current measurement, y; = S?, can be calculated using the
Naive Bayes estimation equation as below:

Pkl = S7) X plyk = )

(4)
Zye PYR)P (xxclyx)

p(yk = SP)xy) =

Here, the likelihood term, p(x|yr = Sz), is calculated from
the frequency distribution of the measurement y; for the state xy.
The frequency distribution is calculated from the OPC tags and
the historian data (Fig. 4). The prior probability, p(yr = Sg), is
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the probability that the parameter takes on a particular value S?,
prior to taking into account any new information (i.e., current state
xi.). If the probability of the estimation, p(yg = Sz |xx), is below a
cut-off value (K;), BayesImposter discards that estimation and picks
another y = SZ to test in Eqn. 4. By this way, the attacker can use
BayesImposter to estimate any measurement quantity yi at time
step k. It is noteworthy that if the current state xj is unknown,
BayesImposter can use the Proposition 2 to calculate the current
state xy. first, and then use the Proposition 3 to calculate p(yg|xx)
using Eqn. 4. The Proposition 3 is implemented in lines 9-17 of our
proposed BayesImposter algorithm 1.

Proposition 4: If multiple (i.e., n) measurement quantities, [y,lc,
yIZC, yi,l.., y]':], at a time step k, jointly contribute to estimate any
state xy., BayesImposter uses the joint probability of multiple mea-
surement quantities, p(yllc n y,zC n yi N Nyp), in Eqn. 3.

Explanation of Proposition 4: Let us assume that each state xj.
in a multivariate ICS has n number of measurements at every time
step. For example, at state x1, the ICS has y%, yf, y?,

...... , Y measure-
ment values; at state xo, the ICS has y%, y% , yg, ...... R yg measurement
values and so forth. Let us denote the joint probability of n number
of measurement values at state x. by Y. = p(y}c ﬂyi ﬁy?c N.ccee.NYP).
Eqn. 3 is modified in the following way to accommodate the joint
probability of measurement values.

®)

where joint probability of measurement values from time step 1
to k — 1 is denoted by Y;.x_1. The Proposition 4 is implemented in
lines 20-22 of our proposed BayesImposter algorithm 1.

An example: From the explanation of the Proposition 2, we
know that the suction cup can have any one of the following two
states: {ON, OFF}, depending upon the position of the horizontal
and vertical axis of the vacuum gripper robot. In multivariate ICS,
instead of having a single position value for a particular state, the
horizontal and vertical axis could have multiple position values
within a range. For example, a position within 0 cm to 10 cm of the
horizontal axis could trigger the state to ON from OFF. If there are
n measurement values within the position range of 0 cm to 10 cm,
BayesImposter uses Eqn. 5 to estimate the next state xg.

Proposition 5: If multiple (i.e., n) measurement quantities, [yllc,
ylzc, yi, ...... s yZ], at a time step k, present in a multivariate ICS,
BayesImposter finds yj that gives the highest probability in Eqn. 4.

Explanation of Proposition 5: The Proposition 5 is an exten-
sion of the Proposition 3 for multiple number of measurement
values [y}c, ylzc, yz, ...... X yl’:], at a current state x;.. To estimate a mea-
surement value from multiple measurement values, BayesImposter
plugs in most frequent values from the distribution of measurement
values [y,lc, ylzc, yi, ...... .y ] in Eqn. 4 with an intention to maximize
the left hand side of Eqn. 4. For example, if the threshold position in
521, 592"""92”

el Vi) = / Pl )P (o Y1)y

the explanation of Proposition 3 has multiple values

for current state xj, we can write Eqn. 4 as below.
X, X

max { Pk lyie) X p(yx)

6

Ve Xy Pr)P Ccklyx) ©)

. S,f"}. The r\?ax is the function that max-
Y

max {p(yilxx)} =
Y Yk
where yke{Szl, Szz, .

imizes p(yg|xy) for all y that is implemented using an iterative
approach in lines 24-34 of the proposed BayesImposter algorithm 1.
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Algorithm 1: BayesImposter Algorithm.

Input: Previous measurements, y.x-1 and states xy.x—; up to k-1
Output: Current measurements, yj and states, xj at k step
1 fork <« 1tok-1do // Proposition 1 for state-space model

2 Collect yy.k—1 and xy.—; information of ICS

3 Create state-space model: xx = p(xk|xk-1) & yr = p(yr|xk)
4 if ICS is univariate then

5 for Each unknown xj. do // Proposition 2 for xj
6 Find p(xx|y1:k—-1) for every xj

7 Select xx having the highest p (x| y1.6-1)

8 for Each unknown yj do // Proposition 3 for yi
9 if xi is known then

10 Find p (yi |xx ) for every xi

1 if p(yx|xx) > cut-off K. then

12 L Select the y as the estimation

13 else

14 L Discard the estimated yg

15 else

16 Find xy first using Proposition 2

17 Then use Proposition 3
18 if ICS is multivariate then

19 for Each unknown xx do // Proposition 4 for xi
20 Find joint probability Y = p(y;( al yi [ ny)
21 Find p (xx|Y1:k—1) for every x

22 | Select xi having the highest p (xx |Y1.k-1)

23 for Each unknown yj. do // Proposition 5 for yi
24 if xi is known then // max function

Yk

25 Find p(y |xk) for yke{yp. vz, - Y}

2 max — p(y} Ixe)

27 for Every yre{ ylz(, yi, - Yptdo

28 Find p (v |xx)

29 if p(yk|xx) > max then

30 | max < p(yxlxx)

31 Select max as the yj for given xj

32 else

33 Find xy first using Proposition 2

34 Then use Proposition 5

5.2 Tag values from the estimated x; and y;

It is mentioned earlier in section 4 that the .bss section contains dif-
ferent uninitialized global/static tag variables. They can be broadly
divided into two categories, namely the control programming or
command related variables and protocol related variables (Fig. 4).
Estimation of control commands from x;. and yj.: After esti-
mating xj and yg, the next challenge is to look for the corresponding
control commands from the estimated x; and yg. It can be done in
two ways. Firstly, most control commands are the direct values of
xy and yy that are already estimated by BayesImposter. For example,
from the Proposition 2, the threshold position Slf is equal to the
estimated measurement y;. in the .bss section. Secondly, rest of the
control commands are estimated from OPC tags and specific PLC
information (Fig. 4) using the estimated x; and yi. For example,
the value of suctionstate e{ON, OFF} corresponding to 0 or 1
can be found from specific PLC information (see Section 5.3).
Estimation of protocol related variables: The protocol-related
variables are specific to cloud protocols and hence, are fixed and
initialized at the load time of the control DLL file. The attacker can
get the list of all the protocol-related variable names and their values
from the reference book of a specific cloud protocol. As mentioned
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in Section 3, most of the target control DLLs are available as open-
source, and very few are proprietary, which are accessible by a
basic commercial license (cost less than $100 [1]).

5.3 Entropy in the .bss section

The size of the specific control variable used in the .bss section
can be a maximum of 64 bits in a 64-bit machine. Therefore, we
have an entropy of 264 possible values. For example, the tag vari-
able suctionstate ideally could have 264 yvalues. But, in real-
world implementation, the control variables are problem-specific
and they have very few key values, which are also problem spe-
cific. Therefore, as mentioned in Proposition 2, the state variable,
suctionstate, has two possible key values: {ON, OFF}. So, the en-
tropy of the suctionstate is not 2%4; instead, the entropy is only
two. Moreover, these key values are declared in the header files of
the program codes, and programmers, as a good practice, generally
use user-defined data types, such as Enumeration (enum) type to
declare these key values. The use of enum data type by the pro-
grammer makes the declared control variable (e.g., suctionstate,
etc.) more predictable. For example, after careful examination of
control-related application codes that are running on top of cloud
protocols, we find the following code snippet that supports our
observation:
enum statepool {0,1};
enum statepool suctionstate;

This indicates that the values of ON/OFF is 0 or 1. In this way,
the attacker can specifically know the tag values in the .bss section
to recreate the .bss imposter page.

6 MEMORY DEDUPLICATION+ROWHAMMER

So far, we have discussed how the attacker can recreate the .bss im-
poster page using BayesImposter. Now, we discuss how the attacker
uses the memory deduplication + Rowhammer bug to trigger a bit
flip in the recreated .bss imposter page to corrupt control commands.
As recent works [19, 29, 58, 62] have already provided details on the
memory deduplication + Rowhammer bug, we will not repeat the
same details here. We refer to Appendix 12 for more details. Instead,
we provide advantages of our approach over [19, 29, 58, 62]. Let us
briefly discuss the memory deduplication + Rowhammer first.

[ memory of co-located malicious VPS ] Memory of victim VPS

X again on .bss X
X X imposter page X X

Profiling X = X X
X X X

X X CO-\';’:sﬂtﬂd > [Bss imposter ) “bss imposter
Memory of
co-located Victim | . —icn

ictim page
malicious VPS VPS Memory
A B Deduplication
X—»V“h‘?"a!t’ll'et If?'ca!ion Physical memory Physical memory Physical memory
orbitHlip of cloud of cloud of cloud

Figure 5: (A) Profiling the memory of cloud. (B) Placing .bss
imposter page in the vulnerable location. (C) After memory
deduplication, victim page is backed by the .bss imposter page
and the Rowhammer causes bit flips in the .bss imposter page.
Brief overview: Memory deduplication merges identical pages
located in the physical memory into one page. Rowhammer [45]
is a widespread vulnerability in recent DRAM devices in which
repeatedly accessing a row can cause bit flips in adjacent rows.
Memory deduplication thread (i.e., KSM) running in the host
cloud hypervisor (i.e., KVM in Linux) maintains stable/unstable
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trees in a red-black tree format to keep track of the pages having
identical contents in memory. If the .bss imposter page arrives first
in the memory provided from the co-located malicious VPS, the
node of the red-black tree will be updated first with the .bss imposter
page. Therefore, if the victim page comes later from the victim VPS,
the victim page is merged with the .bss imposter page, and the victim
page shares the same memory location of the .bss imposter page.
In this way, the attacker can control the memory location of the
victim page and can trigger a Rowhammer on that page.

The first step to initiate Rowhammer is to find the aggres-
sor/victim addresses in the physical memory of the running system.
This step is named as profiling. The aggressor addresses are the
memory locations within the process’s virtual address space that
are hammered, and the victim addresses are the locations where
the bit flips occur (Fig. 5(A)). From the profiling step, the attacker
knows the aggressor rows for the vulnerable memory locations. Af-
ter placing the .bss imposter page in one of the vulnerable locations,
the attacker hammers again on the aggressor rows (Fig. 5(C)). This
results in bit-flips in the .bss imposter page that in effect changes
the control commands in the .bss section of the target control DLL.

6.1 Advantages of BayesImposter

6.1.1 No first precedence and two copies of target pages.
To ensure that the .bss imposter page arrives first in the memory,
the attacker’s VPS should start first before the victim VPS. This is
known as the first precedence. Recent works [19, 29, 58, 62] use this
technique along with creating two copies of target pages to place
the .bss imposter page in the red-black tree before the target victim
page. These techniques require more control over the victim VPS
and may not be feasible in practical ICSs. For example, the attacker
may not know when the victim VPS is started.

Thanks to the Bayesian estimation of the victim page. Referring
to Section 5, if the attacker can predict the current states (x) and
measurements (yg), this means that he actually can predict the
victim page before time k. As the attacker has the predicted victim
page, the attacker can provide this predicted victim page to the
memory deduplication thread at any time. Hence, the attacker does
not need to start his VPS before the victim or does not need to create
two copies of the target pages in our attack model. This makes our
attack model more practical and reliable in the context of ICSs.

6.1.2 Bayeslmposter provides simpler profiling step. Recent
works [19, 29, 58, 62] activate the large pages [55] in VPS to ex-
ploit the double-sided Rowhammering. However, large pages may
not be explicitly turned on in the victim VPS. Therefore, double-
sided Rowhammering may not be feasible in the context of ICSs
[66]. Therefore, BayesImposter uses the random address selection
approach for profiling the bit-flippable memory locations.

In this approach, BayesImposter allocated a 1 GB block of
memory using a large array filled with doubles. A value of
1.79769313486231 x 10398 is stored as double that gives 1 in mem-
ory locations. Next, the attacker randomly picks virtual aggressor
addresses from each page of this large memory block and reads
2% 10° times. Then the attacker moves to the next page and repeats
the same steps. As the attacker can know the number of memory
banks of the running system from his VPS, he can calculate his
chance of hammering addresses in the same bank. For example, in
our experimental setup, the machine has 2 Dual Inline Memory
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Modules (DIMMs) and 8 banks per DIMM. Therefore, the machine
has 16 banks, and the attacker has a 1/16 chance to hit aggressor
rows in the same bank. Moreover, the attacker hammers 4 aggres-
sor rows in the same iteration that increases the chance of having
successful Rowhammering.

7 ATTACK MODEL EVALUATION
7.1 Automated high-bay warehouse testbed

We prepare a testbed to evaluate BayesImposter on a practical ICS.
We choose a scaled-down model of an automated high-bay ware-
house (AHBW) from fischertechnik connected with a vacuum grip-
per robot (VGR), multiprocessing oven (MPO), and sorting line (SL).
The process begins first in MPO with a workpiece placed in the
oven feeder. The processed workpiece from the MPO is then sent
to SL using a conveyor belt. The SL sorts the workpiece depending
upon color and stores it in the storage location. Next, the VGR uses
its suction cup to hold the workpiece and transports it from the
storage location to the pre-loading zone of the rack feeder of the
AHBW. Then the rack feeder stores the workpiece in the ware-
house. A video demonstration of the factory system is given here:
https://sites.google.com/view/bayesmem/home.

The AHBW is connected with a SIMATIC S7-1500 PLC from
Siemens using 32 input/output ports and 8 analog input ports. The
PLC communicates with the cloud using a TIA portal through
the MQTT cloud protocol Mosquitto. The cloud server runs on
Intel CPU i7-6900K with 8 cores and 64GB of DDR3 RAM. We use
Ubuntu Server 14.04.2 LTS x86_64 as the cloud server, which has
a Kernel-based Virtual Machine (KVM). Memory deduplication is
implemented as Kernel Samepage Merging (KSM) in KVM. The
KVM is kept at its default configuration. The parameters for KSM
(see Appendix 11.6) are also kept at their default settings. All VPSs
run with Windows 10 [8] and have 2 GB of main memory. The idea of
BayesImposter is equally applicable to the Linux VPSs with .so file [19]
of cloud protocols. The victim VPS is using MQTT to communicate
with the PLC using TIA portal. The testbed is shown in Fig. 6.

Cloud server with Vacuum Rack feeder

TIA portal | robot

S 4 " I“Automated high-
= ’F 2 Multiprocessing oven 24 bay warehouse

Figure 6: A small scale real-world testbed of automated high-
bay warehouse to evaluate BayesImposter.

7.2 Estimation accuracy of BayesImposter

A practical ICS could have hundreds of states (x;) and measurement
values (y). Let us mathematically formulate this first.
Proposition 6: If an ICS has M state variables (x;) and each
state variable has N probable states, N™ combinations are possible
among state variables and probable states. Similarly, If an ICS has P
measurement variables (y;) and each measurement variable has Q
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probable values, OF combinations are possible among measurement
variables and probable values.

After counting, we find that our testbed - automated high-bay
warehouse has M = 420, N = 3, P = 160, Q = 4. We find that the
estimation accuracy for next states or next measurements using
Propositions 1-5 of our BayesImposter algorithm is ~91%. It means
that BayesImposter can estimate the next state or measurement
variables within 1/0.91 = 1.09 attempt.

Table 2: Estimation accuracy of BayesImposter.

[ Estimating state variables Xz [ Estimating measurement variables yx |
[ 902% [ 91.47% |

7.3 Recreating the .bss imposter page

The automated high-bay warehouse testbed has M = 420 state
variables (x;) in total, and each state has an average of N = 3
probable states. The brute-force approach gives 3420 ~ 2.4 x 1029
combinations according to the Proposition 6. Moreover, this ICS
in hand has also P = 160 measurement variables (y) in total, and
each variable has an average of Q = 4 probable values. The brute-
force approach gives 410 ~ 2.13 x 10 combinations. In combined,
there are 2.4 x 10%% 4+ 2.13 x 10% = 2.4 x 10%°° combinations are
possible for the ICS in hand. For a 4KB page size, this may require
(4 x 2.4 x 10%9) KB = 9.6 x 10'°* GB of guessed pages. In other
words, the attacker may need to spray 9.6 x 10'°* GB pages in
the physical memory for successful memory deduplication that
is not possible in terms of time and memory. It is not possible to
accommodate 9.6 X 10'°* GB pages in one attempt of the attack,
and the attacker may require thousands of attempts to spray the
memory with the guessed pages. In contrast, as BayesImposter has
an estimation accuracy of ~91% (see Section 7.2), it does not require
to guess NM or OF combinations; instead, it can guess states and
measurement variables in 1/0.91 = 1.09 attempt. Therefore, most
of the time, BayesImposter requires only one or two pages (because
of ~91% accuracy) of size 4KB to spray in the physical memory.

The victim VPS in our example ICS has a 2 GB main memory,
and it takes ~13 minutes to scan all the pages of main memory in a
single attempt (see Section 7.7). And, out of 2 GB of memory, we can
spray 1.2 GB with the guessed pages at each attempt (i.e., remaining
0.8 GB for operating systems and other applications). Therefore,
brute force requires (9.6 x 101%4) /1.2 = 8 x 10194 attempts, whereas
BayesImposter requires only a 1.09 attempt. As each attempt takes
~13 minutes, BayesImposter requires only ~13 minutes compared
t0 9.6 X 101 x 13 min. = 2 x 10! hours of brute force approach
which is not feasible. This reduction of attempts also reduces the
attack time (see Section 7.7). As the attack time for BayesImposter is
significantly low compared to a brute force approach, BayesImposter
gives more control over the ICS from the attacker’s perspective.
Table 3 shows the memory and time requirements for brute-force
and BayesImposter approaches.

Table 3: Attack time of BayesImposter
‘ BayesImposter |

Brute force

Guessed page | Time
4KB or 8KB

Guessed page Time
9.6 x 101°GB | 2x10* Hr.

13 min.
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7.4 Attacking the vacuum gripper robot (VGR)

As mentioned in Section 7.1, the VGR uses its suction cup to trans-
port the workpiece from the SL to the rack feeder of the AHBW. The
solenoid present in the suction cup is turned on/off if the position
of the horizontal and vertical axis of the VGR is above or below a
threshold position. The threshold position is a measurement value
(i-e., yg) and can be estimated by BayesImposter. The correct value
of the threshold position where the suction cup is turned off (re-
lease the workpiece) is 2 cm. The estimated value of the threshold
position is also calculated as 2 cm using BayesImposter at a par-
ticular state (i.e., moving from SL to AHBW). After the successful
estimation of the threshold position with all other tag values of the
victim page using the same BayesImposter, the attacker can recre-
ate the .bss imposter page. Now, the attacker initiates the memory
deduplication + Rowhammer attack and arbitrarily causes a bit-flip
in the .bss imposter page. A demonstration of the attack is shown
in Fig. 7, which indicates the location of the occurred bit-flip in the
victim row. (0 0 1 7 3¢97 0) means address of channel 0, dimm 0,
rank 1, bank 7, row 3¢97, column 0 in DRAM with a row-offset 0743,
which has a byte value f7 after the bit-flip; however, byte expected
according to fill pattern is ff (i.e., all erased). The victim byte f7 is the
upper byte of the threshold position being corrupted that changes
the 2 cm threshold position to 2050 cm. This causes an out-of-range
value for the VGR resulting in a wrong drop-off location of the
workpiece other than the rack-feeder. This may result in possible
equipment damage or even can kill a person if the attacker drops the
workpiece on a target person. A video demonstration of this attack
is given here: https://sites.google.com/view/bayesmem/home

Format: <channel><dimm><rank>
<bank><row><column>

l Row offset

a) -
:](0 817 3¢97 B%w"

o e
(0017 383
(0 017 3b72

Expected fill
pattern

After bit-flip
(0 817 3bSd
(0 @ 17 3b5d
(0 0 1 7 3b5d

7.5 Adversarial control using BayesImposter

As the attacker knows the physical location of a tag value in the tag
table of the .bss imposter page, he can target a particular tag value
and initiate an adversarial control over that tag value. For example,
the attacker can cause a bit-flip of suctionstate from 1 — 0 and
can adversarially drop the workpiece from the suction cup when it
is not supposed to drop the workpiece ( Fig. 8). This may result in
possible equipment damage or even can kill a person if the attacker
drops the workpiece on a target person. This adversarial control
makes BayesImposter stronger compared to [19, 29, 58, 62].

Dropped worl\(pia:e
in a correct place

Dropped workpiécé g
in a wrong place §

Figure 8: Dropping workpiece using adversarial control.
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7.6 Profiling time in our testbed

Fig. 9 evaluates the profiling time (see Section 6) for different num-
ber of VPSs in the cloud. BayesImposter takes ~51.45 seconds to
complete single-sided Rowhammer for each target row. We searched
for vulnerable locations for the Rowhammer in the memory space,
and Fig. 9 shows that to get ~20000 vulnerable locations, ~100
hours are required. With the increase of VPSs, this profiling time
increases due to more memory pressure in the system memory. Fig.
9 shows the profiling time for 1, 3, and 6 VPSs in the same cloud.

— Profiling time for 1 VPS
— Profiling time for 3 VPS
— Profiling time for 6 VPS

Increase of time

due to increase of
memory pressure

o 4000 8000 12000 16000 20000
Number of vulnerable bit-flippable locations

Time (hours)

Figure 9: Profiling time for different number of VPSs.

7.7 Attack time

Here, we define attack time as how much time it takes to cause a bit
flip in the .bss section. Attack time is the summation of the memory
deduplication time and the Rowhammer implementation time. The
exact time required for memory deduplication can be calculated
using the timing side-channel [29]. However, roughly, the maximum
time for memory deduplication is the time needed to scan all the
memory of the co-located VPSs in the cloud. Here, for simplicity,
we assume that deduplication happens within this maximum time
frame, and hence, we consider this maximum time as the memory
deduplication time. The memory deduplication time depends upon
the parameters pages_to_scan and sleep _millisec. In default
configuration, pages_to_scan = 100 and sleep _millisec = 20.
Therefore, Linux/KSM can scan 1000 pages/second, which results
in a total scan time of almost 5 minutes per 1GB of main memory
[56]. As the victim VPS has a main memory of 2 GB, it should take
approximately 10 minutes to scan all the pages in the main memory
of a VPS. In our testbed, the memory deduplication takes approx.
13 minutes, and the Rowhammering process takes approx. 51.45
seconds to complete a single-sided Rowhammer for each target row.
Therefore, after summing up these two figures, the total attack time
is approximately 13 minutes and 52 seconds for 1 target VPS.

— Deduplication time for 1 VPS
— Deduplication time for 3 VPS
— Deduplication time for 6 VPS

Time (minutes)
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Figure 10: Deduplication time for different protocols.

Fig. 10 shows the memory deduplication time for five variants of
MQTT cloud protocol for 1, 3, and 6 VPSs. This figure indicates that
all five variants of the cloud protocol give almost equal deduplica-
tion time. As the addition of a VPS increases the scannable memory
locations, the deduplication time increases with the number of co-
located VPS in the cloud. The Rowhammer implementation time
for a target row is almost the same for all five protocol variants.
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7.8 Evaluation for different cloud protocols

As our attack model does not require any software bug present in
the implementation of cloud protocols, state-of-the-art variants of
cloud protocols should be vulnerable to our attack model. To sup-
port this claim, we implement a total of five variants of the MQTT
protocol in our testbed and find that all are equally vulnerable,
which proves the generalization of our attack model in ICSs.

Table 4: Cloud protocol variants vulnerable to BayesImposter
B

Cloud protocol variants

EMQ X Broker [4]
Mosquitto [9]
MOTT-C [10]
eMOQTTS5 [5]
wolfMQTT [13]

Vulnerability |

G | WD =
ENENENENEN

8 DEFENSE

The following mitigations should be adopted against BayesImposter.

Increasing entropy in the .bss section: To prevent the attack,
we increase entropy in the .bss section. This is done using a random
variable as a signature in the .bss section. The attacker requires
a significant amount of memory and time to break this signature
variable [19] as this variable is not a part of the state variable. This
approach is also effective against a malicious insider.

Securing cloud server from the malicious VPS: Any unau-
thorized cloud provider or personnel, or visitor should not access
the cloud server without the presence of authorized personnel. Pe-
riodic screening by an authorized person needs to be carried out
to look for any unauthorized co-hosted VPS. Any unnecessary or
suspicious co-located VPS should be considered as a security breach
and should be immediately contained in the cloud.

Turning off the KSM: To prevent memory deduplication, KSM
can be turned permanently off. KSM is off by default in recent
Linux kernel [2]. However, the KSM service, which is included in
the gemu-kvm package, is turned on by the KVM host in the cloud
setting. We turn off the KSM using the ksm/ksmtuned services in
the KVM host. However, turning off the KSM may increase mem-
ory usage in clouds. Therefore, it is not favorable where memory
workloads are high in cloud settings [43].

Preventing Rowhammer in DRAM: The next way to prevent
BayesImposter is to prevent the Rowhammer in DRAM. While the
built-in error-correcting codes (ECCs) can prevent single bit-flip
in 64-bit words [32], it may not be enough where the Rowhammer
causes multiple bit-flips [15, 50]. While only modern AMD Ryzen
processors support ECC RAM in consumer hardware, Intel restricts
its support to server CPUs [40]. One method to prevent Rowhammer
is to increase (e.g., double) the refresh rate in DRAM chips [57].
This can reduce the probability of multiple bit-flips in DRAM, but
causes more energy consumption and more overhead in the memory
[34, 45]. Another method is to probabilistically open adjacent or
non-adjacent rows, whenever a row is opened or closed [44]. An
introduction of a redundant array of independent memory (i.e.,
RAIM) [54], and ANVIL [18] in the server hardware can make the
Rowhammer attack infeasible. Moreover, replacing older chips with
DDR4 having Target Row Refresh (TRR) capability can prevent
single-sided and multi-sided Rowhammer attack on cloud networks
[47]. However, [36] shows that DDR4 can also be compromised
using TRR-aware attacks.
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9 RELATED WORK

Attacks on ICSs: The attacks on ICSs can be broadly classified
as attacks on physical hardware (e.g., PLCs, control modules, etc.),
attacks on communication networks, and attacks on sensing side.

Abbasi et al. [14] demonstrated an attack on PLCs by exploiting
pin control operations of certain input/output pins resulting in
abnormal hardware interrupt in PLCs. Garcia et al. [37] presented
a malware-PLC rootkit that can attack PLCs using the physics of
the underlying systems. Bolshev et al. [28] showed an attack on the
physical layer (i.e., analog-to-digital converter), resulting in false
data injection into PLCs. Spenneberg et al. [68] developed a worm
- PLC Blaster, that independently searches any network for S7-
1200v3 devices and attacks them when the protective mechanisms
are switched off. Compared to our attack model, these attacks on PLCs
lack the presence of adversarial control over PLCs and do not provide
any means of stealthiness with respect to the monitoring entity.

Klick et al. [46] showed that internet-facing controllers act as
an SNMP scanner or SOCKS proxy, and their protocols can be mis-
used by an adversary to inject false codes into PLCs, which are not
directly connected to the internet. Basnight et al. [26] presented an
attack on firmware exploiting communication protocols of PLCs.
Beresford et al. [27] discovered vulnerabilities in Siemens S7 se-
ries communication protocol and showed a replay attack on ICSs.
Compared to these attacks, our attack model does not need any vul-
nerabilities in the communication protocol and does work without
any presence of software bugs at any level of the system.

Barua et al. [21-25], Liu et al. [52], and McLaughlin et al. [53]
showed false data injection attack on different sensing nodes of ICSs
leading to abnormal behaviour of the underlying system. Compared
to these attacks, our attack model is capable of false command injection
from a remote location with adversarial control in ICSs.

Attacks using memory deduplication and/or Rowhammer:
Bosman et al. [29] demonstrated memory deduplication based ex-
ploitation vector on Windows using Microsoft Edge. Barresi et al.
[19] exploited the memory deduplication in a virtualized environ-
ment to break ASLR of Windows and Linux. This attack uses brute
force to duplicate the target page in the memory. Razavi et al. [62]
provided Flip Fleng Shui (FFS) to break cryptosystems using both
the memory deduplication and Rowhammer. There are funda-
mental differences between our work and [19, 29, 62]. First,
our attack model exploited the .bss section of cloud protocols that
is more impactful and realistic in ICSs. Second, our attack uses the
Bayesian estimation to duplicate the target page compared to the
brute force approach in [19, 29, 62]. This results in significantly less
memory usage (i.e., in KB compared to GB) and time (i.e., in min-
utes compared to hours) to duplicate the target page. This makes our
attack model more feasible. Third, our attack model demonstrates
adversarial control over the target ICS that is absent in [19, 29, 62].
Seaborn et al. [66] exploited CPU caches to read directly from
DRAM using the Rowhammer bug. Gruss et al. [41] used cache
eviction sets and Transparent Huge Pages (THP) for a success-
ful double-sided Rowhammer. Tatar et al. [71] used Rowhammer
attacks over the network to cause bit-flips using Remote DMA
(RDMA). Compared to these works, our work uses memory dedupli-
cation to skip the knowledge of physical memory location and uses
single-sided Rowhammer on the target cloud memory. Moreover, our
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attack does not require any RDMA to happen that makes our attack
more flexible in the context of ICSs.

10 CONCLUSION

We present an attack model-BayesImposter that can hamper the
availability and integrity of an ICS in cloud settings. We are the
first to point out how the .bss section of the target control DLL
file of cloud protocols is vulnerable in ICS. BayesImposter exploits
the memory deduplication feature of the cloud that merges the
attacker’s provided .bss imposter page with the victim page. To
create the .bss imposter page, BayesImposter uses a new technique
that involves the Bayesian estimation, which results in less memory
and time compared to recent works [19, 29, 62]. We show that as
ICSs can be expressed as state-space models; hence, the Bayesian
estimation is an ideal choice to be combined with the memory
deduplication in cloud settings. We prepare a scaled-down model
of an automated high-bay warehouse using SIMATIC PLC from
Siemens and demonstrate our attack model on this practical testbed.
We show that our attack model is effective on different variants of
cloud protocols, and does not need any vulnerabilities in the cloud
protocol, and works without any presence of software bug in any
level of the system that proves a generalization of our attack model.
We show that BayesImposter is capable of adversarial control that
can cause severe consequences through system demage. Therefore,
our attack is impactful, and the countermeasures should be adopted
to prevent any future attack like ours in ICSs.
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11 APPENDIX
11.1 Automation pyramid

The automation pyramid is a graphical representation of the layers
of automation within a typical industry (Fig. 11). It has five different
levels of integrated devices. The name of the five levels and their
components are briefly described below :

P
ERP
Level 3
MES
Level 2
SCADA

Level 1
Automation

Level O
Sensors and actuators

Figure 11: Automation pyramid in a typical Industry.

Level 0 - Sensors and actuators: This is the bottom level of
the automation pyramid and comprises wide variety of sensors
and actuators including measurement instruments, communication
protocols, and actuators.

Level 1 - Automation: This level is made up with different
controllers, such as PLCs, proportional-integral-derivative.

Level 2 - SCADA: This level consists of data acquisition system,
human-machine interface, monitoring interfaces, etc.

Level 3 - MES: This level has management execution system
(MES) for monitoring the entire process.

Level 4 - ERP: This level is made up with enterprise resource
planning (ERP) which is responsible for the integrated management
of main business processes.

11.2 PLCs and Industry 4.0

As Programmable Logic Controllers (PLCs) are one of the key ingre-
dients of ICSs, Industry 4.0 drives new approaches in the PLC design
[48]. Historically, PLCs were originally designed to support three
main concepts, namely programmability, reliability and, real-time
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response. Different programmable platforms, such as microproces-
sors, FPGAs, Hard Processor Systems (HPS) are chosen to support
programmability in PLCs, as these hardware are programmable
in run time in onsite industrial premises following the IEC 61131
key programming standard. Moreover, the standard IEC 61131 is
developed in such a way to ensure reliability and real-time response
by treating PLCs as logically independent with its own, individual
configuration.

An architecture like this may provide predictable outcomes with
a low likelihood of failure, but on the flip-side, it turns out to be
progressively lumbering when confronted with developments in
IIoTs that require noteworthy adaptability. The IIoTs require the
cooperation of individual PLCs on a much deeper level. Moreover,
individual PLCs likewise need to work considerably more closely
with each other within the industry and remotely, to the web-server
and cloud, for instance.

11.3 PLCs interface for basic web technologies

Todays PLCs have an interface that can be connected to a web-
server via a device gateway. The device gateway is integrated into
the existing PLC controllers that can support web-compatible pro-
tocol required for communication with the IP network. The web-
server can connect to the PLC controller using HTML pages that
enables a browser-based communication and diagnosis of the PLCs.
The web-server can read and write control variables and collect
measurement data from PLCs, with restrictions. Sometimes, this
web-server is referred to as a “thin server" having enough comput-
ing resources to support local client/server network architecture.

11.4 Implemented protocols

Different protocols exist in different layers of ICSs. Typically IEC
61158 standard protocols are used in communication between PLCs
and sensors. Here PLCs act as master, and sensors act as slaves. IEC
61158 standard contains a total of nine protocols: Fieldbus, Common
Industrial Protocol (CIP), PROFIBUS/PROFINET, P-NET, WorldFIP,
INTERBUS, HART, CC-Link, and SERCOS. These same protocols
can be used between PLCs (master) and cloud adapters (slave). RS-
232 or RS-485 based Fieldbus has multiple variants. Modbus and
DNP3 are two of the most popular variants. They are widely adopted
as a de facto standard and has been modified further over the years
into several distinct variants. Moreover, Ethernet-based protocols,
such as PROFINET, CC-LINK, SERCOS have lower latency than
the Fieldbus protocols. Hence, these are preferred over Fieldbus in
today’s ICSs.

As already discussed in Section 2.2, the program for basic func-
tions and supervisory controls are implemented in clouds or in
web-server. These control programs are implemented using service
functions in PLC controllers. A standardized protocol named Device
Protocol for Web Services (DPWS) enables service-based access to
PLC controllers. As mentioned earlier in Section 2.1, MQTT and
AMQP are used to communicate with PLCs from clouds using an
IoT gateway.

11.5 Memory deduplication and KVM

Memory deduplication or content-based page sharing is a process

that combines/merges identical pages in the physical memory into
one page. When the same/similar operating systems or applications
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are running in co-located VPSs, lots of redundant pages with same
contents are created on the host system. The amount of redundant
pages can be as high as 86% depending on the operating system
and workload [30], and about 50% of the allocated memory can be
saved through memory deduplication [42]. Memory deduplication
is a feature in Windows 8.1, Windows 10, and Linux distribution.
Due to more reliability, high security, stability, and less cost, Linux
is more preferable over Windows in ICSs [59]. That is why here
we consider Linux as our implementation platform for memory
deduplication, and the idea is similarly applicable to Windows as
well. Let us consider that the cloud in our discussion of ICS runs in
the Linux platform. To allocate multiple VPSs in the same cloud,
Kernel-based Virtual Machine (KVM) has been introduced in the
Linux kernel since 2.6.20. Memory deduplication is implemented
as Kernel Samepage Merging (KSM) in KVM. Next, we discuss
how KSM is used in our attack model to merge the duplicated .bss
section.

11.6 Kernel Samepage Merging (KSM)

When a VPS is started, a process named gemu-kvm of the KVM
hypervisor allows KSM to merge identical pages in the memory.
KSM has a specific daemon named ksmd that periodically scans a
specific region of the physical memory of an application. The dae-
mon ksmd can be configured in sysf's files in /sys/kernel/mm/ksm
location. The sysfs files contain different configurable parameters.
Among them, we need to mention two parameters: pages_to_scan,
and sleep_millisec. The parameter pages_to_scan defines how
many pages to scan before ksmd goes to sleep, and sleep_millisec
defines how much time ksmd daemon sleeps before the next scan.
If sleep_millisec = 500, and pages_to_scan = 100, then KSM
scans roughly 200 pages per second. These numbers depend upon
workload and are configured by the cloud provider accordingly. The
values of sleep_millisec and pages_to_scan have a significant
influence on the attack time. This is discussed in Section 7.7.

11.7 KSM data structure

The daemon ksmd periodically scans registered address space and
looks for pages with similar contents. KSM reduces excessive scan-
ning by sorting the memory pages by their contents into a data
structure, and this data structure holds pointers to page locations.
Since the contents of the pages may change anytime, KSM uses
two data structures in red-black tree format, namely unstable tree
and stable tree. Moreover, there are three states of each page in
the memory: frequently modified state, sharing candidate yet not
frequently modified state, and shared/merged state. The page which
is frequently modified is not a candidate to be loaded in a stable
or unstable tree of KSM. The page which has similar contents yet
not frequently modified (i.e., unchanged for a period of time) is
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