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Abstract

It is often assumed that electron backscatter and continuum (bremsstrahlung) productions emitted from electron-solid interactions during X-ray
microanalysis in compounds can be extrapolated from pure element observations by means of the assumption of average atomic number, or Z-bar
(Z2). For pure elements the average Z is equal to the atomic number, but this direct approach fails for compounds. The use of simple atomic
fractions yields completely spurious results, and while the commonly used mass fraction Z averaging produces fairly reasonable results, we
know from physical considerations that the mass of the neutron plays only a negligible role in such interactions below ~1 MeV. Therefore,
including the mass or atomic weight in such calculations can only introduce further errors in these models. We present an expression utilizing
atomic fractions of the atomic numbers of the elements in the compound (Z fraction), with an exponent to account for the variation in nuclear

screening as a function of the element Z value.

Key words: average atomic number, backscatter, compounds, continuum, EPMA, z-bar

Introduction

Electron probe microanalysis (EPMA) is a powerful analytical
technique for characterizing the composition of a material by
identifying and quantifying peaks in the X-ray spectra caused
by the ejection and refilling of orbital electrons of atoms within
the material. Yet to properly interpret these results, researchers
must also model the modification of the spectra due to electron
scattering off atomic nuclei. Electron-nucleus scattering affects
the spectra in two ways: backscattered electrons (BSE) modify
the relative strengths of characteristic X-ray peaks while
Bremsstrahlung, or “braking” radiation, forms a continuous
background signal in the X-ray spectra called the continuum.

Such scattering models combine known information about
pure elements for estimating backscatter and continuum pro-
ductions in compounds. Currently, microanalysis researchers
generally use the average mass fraction of elements in a mater-
ial to model average Z in compounds, however, this approach
is flawed. The mass fraction differentiates between elements in
a compound by atomic weight, the average mass of the elem-
ental isotopes scaled by their terrestrial abundance. Atomic
weight does not scale linearly with the atomic number of pro-
tons, as it includes neutrons as well. At the typical beam ener-
gies used in EPMA, electrons do not scatter from neutrons,
only charged particles, and so atomic weight is an incorrect
quantity to use in our models.

It is true the mass of the nucleus can affect electron scatter-
ing when the incident electron transfers enough energy for the

nucleus to have a non-negligible recoil. However, this requires
an accelerating voltage far higher than in EPMA operating
conditions. Consider an elastic collision of an electron and a
nucleus at rest. The maximum energy transfer to the nucleus
occurs with a scattering angle of 180°. The recoiling nucleus
of mass M acquires increased kinetic energy AE

2
AE=2M— "2 (1)

(me + M)
where m1, is the mass of the electron and v is the initial
velocity of the electron. Since m, is much smaller than M,
m, + M equals M to a very good approximation, and we can

express AE as
m,
AE~4—FE 2
= @)

where E is the initial kinetic energy of the electron. The largest
energy loss occurs in hydrogen, where 4m.,/M ~ 4/2000.
Hence, in each purely elastic collision, an electron loses a max-
imum of ~0.2% of its kinetic energy to the nucleus. For the
vast majority of collisions, with much smaller scattering an-
gles, the energy loss is considerably less than this. For heavier
nuclei, such as iron, it is smaller still (by a factor of A, the
atomic weight of the nucleus). The difference in this quantity,
for two isotopes of the same element, is even smaller yet: for
3¢Fe and *"Fe, the difference in fractional energy loss per nu-
clear collision is, at most, 6-107%. Earlier studies have
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demonstrated the insignificance of mass to modeling both elec-
tron backscattering and continuum production in solids by
empirical comparisons of stable isotope pairs of elements
(Donovan & Pingitore, 2002; Donovan et al., 2003). Mass
fraction has historically been the most accurate model, but
some other form of atomic fraction averaging must be utilized
for improved calculations of average Z in compounds.

Atomic Number Averaging

Although various alternative average atomic number, or
Z-bar, expressions utilizing atomic number fractions are
found in the scientific literature for both backscatter and con-
tinuum productions (Joyet et al., 1953; Danguy & Quivy,
1956; Everhart, 1960; Biichner, 1973; Herrmann & Reimer,
1984; Howell et al., 1998), simple mass fraction averaging is
traditionally utilized by microanalysts (Goldstein et al., 1992):

Ziey=Y_cZi (3)
i=1

where Z., is the mass fraction average Z or Z-bar, ¢; is the
conventional mass fraction of element 7, and Z; is the atomic
number of element 7 present in the compound.

However, from the first principle physics considered above
(Equations (1) and (2)) we know that mass has essentially no
effect on these productions. Most serendipitously, it is only
due to the fact that A/Z is roughly a constant over the periodic
table (where A is the atomic weight), that this assumption of
mass fraction averaging for compounds is a useful approxima-
tion at all. In fact, the error due to the inclusion of atomic mass
in atomic number average calculations depends on the specific
A/Z ratios of the elements in that compound. If the elements
all share similar A/Z ratios, the error is small, but if the ele-
ments in the compound have relatively disparate A/Z ratios,
the introduced error due to mass averaging can exceed 30%,
as will be discussed.

Given that atomic mass is essentially irrelevant to determin-
ing composition by X-ray microanalysis where the electron
beam energy is significantly less than 1 MeV, a model based
on atomic number is more suitable. Our approach is to modify

(@5
’ BSE vs. Mass Fraction Zbar
- Empirical Measurements
05 MAC standard block e
g .. Cinnabar U.C. #7584

No sample biasing Galena U.C. #7400

S
i
|

InAs (synthetic)
InP (synthetic)
‘Gahs (synthatic)

&
w
|

® Benitoite (white)
Pyrite UC # 21334

(]
AI203 (elemental) (#13)
Si02 (elemental) (#14)

Backscatter Coefficient (1)

® @ ® PureElements
® @® @ Compounds

oron Nitride (BN) Fit to Pure Elements

-0.1 T T T T T T T T T T T T T T T T T ]
0 10 20 30 40 50 60 70 80 90
Average Atomic Number (Z-Bar)

Microscopy and Microanalysis, 2023, Vol. 00, No. 0

the mass fraction average Z as shown in equation (3), by defin-
ing an alternative fractional method, the Z Fraction, as fol-
lows:

Zy =22 (4)
=1

where Z; is again the atomic number for element 7, and the Z
fraction z; is defined as:

a,'Z,'
S —
> =1 4Z;
and g; is the atomic fraction for element i. This expression is
algebraically equivalent to the expression from Saldick &

Allen (1954). However, to account for screening, we raise
the Z fraction to an exponent x generally less than 1:

m ZZ (6)

is the modified Z fraction defined by:

z(.x) _ a,Z;“
- 5o -
! Z/=1 “iz;c

Based on empirical backscatter and continuum measurements
we obtain an approximate best fit to Egs. (6) and (7) for x of
around 0.7 to 0.8. The exact value of this exponent depends
on the specific shape and density of the compound charge
distribution.

Zi= (5)

where zﬁ"’

(7)

Results

Empirical measurements of backscatter and continuum pro-
ductions were performed on the Cameca SX100 at the
University of Oregon and the Cameca SXFive at the
University of Adelaide using the Probe for EPMA v13.1.7 soft-
ware on both instruments. Monte Carlo modeling was per-
formed at the University of Oregon and University of
Wisconsin using the PENEPMA 2012 software (Llovet &
Salvat, 2017).
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Fig. 1. Measurements of electron backscatter on standard samples by measuring the ratio of the absorbed and Faraday cup currents, i.e., 7 =1 — M
for (@) mass fraction average Z, and (b) Z fraction average Z using an exponent of 0.7. This backscatter coefficient measurement is not absolutely accurate
due to re-absorption of secondary electrons, but suffices for a relative comparison. Note benitoite (BaTiSizOg), cinnabar (HgS) and galena (PbS) are

compounds containing elements with significantly different A/Z ratios.
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Fig. 2. Measurements of continuum intensity (absorption corrected) using a 15 keV electron beam energy at the chromium Ka emission energy position
for pure elements and compounds that do not contain Cr, plotted using (a) mass fraction average Z, (b) Z fraction average Z with exponent 1.0, and (¢) Z
fraction average Z with exponent 0.7. The blue line is the best fit to the data using a 2nd order polynomial.

First we examine empirical measurements of absorbed and
faraday cup beam currents as seen in Figure 1, where the
pure elements are plotted as black symbols and selected stand-
ard compounds of known composition are plotted as red

symbols for mass fraction average Z in (a), and modified Z
fraction in (b). Compounds containing elements with a variety
of A/Z ratios show improved correlation using the Z fraction
expression with an exponent of 0.7.
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Fig. 3. Measurements of continuum intensity (absorption corrected) using a 15 keV electron beam energy at the potassium Ka emission energy position
for pure elements and compounds that do not contain K, plotted using (a) mass fraction average Z, (b) Z fraction average Z with exponent 1.0, and (¢) Z
fraction average Z with exponent 0.7. The blue line is the best fit to the data using a 2nd order polynomial.

In Figures 2 and 3, and 4 we show results from high precision
continuum X-ray empirical measurements for a range of pure
elements and standard compounds for continuum energies at
the Cr Ko, K Ka, and Na Ko emission line energies, respectively,
for compounds that do not contain those elements. All con-
tinuum intensities were corrected for absorption using the
method of Packwood & Brown (1981), though any absorption
correction will produce similar results. In these three figures we
show (a) for mass fraction, (b) Z fraction (exponent = 1.0), and

(c) Z fraction (exponent = 0.7) that the best correlation is seen
for the Z Fraction average Z method with an exponent of 0.7.

Subsequently we performed a number of Monte Carlo sim-
ulations for both backscatter and continuum productions. In
Figure 5, we plot the calculated backscatter fraction from
high precision Monte Carlo modeling in PENEPMA 2012,
for both pure elements and selected compounds, which in-
clude compounds containing elements with a variety of A/Z
ratios. The pure elements from atomic number 10 to atomic
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Fig. 4. Measurements of continuum intensity (absorption corrected) using a 15 keV electron beam energy at the sodium Ko emission energy position for a
number of pure elements and compounds that do not contain Na, plotted using (a) mass fraction average Z, (b) Z fraction average Z with exponent 1.0, and
(e) Z fraction average Z with exponent 0.7. The blue line is the best fit to the data using a 2nd order polynomial.

number 85 are plotted as a line, and the compounds are plot-
ted as symbols, where we have assumed mass fractional aver-
aging for the calculation of average Z in the compounds in (a)
and using the modified Z fraction with an x exponent of 0.7
for (b), obtained from the best fit empirical data from Figure 1.

Figure 6 shows results from PENEPMA Monte Carlo model-
ing of generated continuum intensities at 2 and 8 keV for pure el-
ements and a number of compounds using both mass fraction
averaging and modified Z fraction averaging with x=0.7. We

note results from these figures suggest a possible small energy de-
pendence on the exact value of the exponent for these productions
as discussed by Moy et al. (2021). Experimental and theoretical
investigations of this subtle interdependency are ongoing.

In summary, both experimental measurements and theoret-
ical calculations clearly show that the backscattered coeffi-
cients and the continuum intensities are best modeled using a
Z fraction model with an exponent of approximately 0.7,
which we designate the “Yukawa Z fraction.”
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Fig. 5. Monte Carlo calculations from PENEPMA 2012 of the electron backscatter coefficient from pure elements plotted as a line, and compounds
plotted as symbols, for (a) mass fraction average Z, and (b) Z fraction average Z using an exponent of 0.7.

The Yukawa Potential and Its Expected
Accuracy

Here we review and discuss a simplified model of
electron-atom scattering to estimate a theoretical value of
the Z fraction exponent x = ~2/3. We use the Yukawa poten-
tial V(r) (Yukawa, 1935), also called a screened Coulomb or
Wentzel potential, to describe the interaction of the incident
electron and the target atom. Mathematically,

e—r/R
V(ir)=CZ

r

where 7 is the radial distance from the atom nucleus, R is the
BZ
4rey

screening length, and C = —;2- is a constant. The screening

length R=2pZ"'/3 is given by the Thomas-Fermi model
(Kittel, 2004; Carron, 2006; Egerton, 2011), where a, is the
Bohr radius.

The Yukawa potential has been used successfully for many
processes in physics dating back to Yukawa’s original efforts
to describe interactions between nucleons (Yukawa, 1935).
It is commonly used to model a Coulomb potential screened
by another charge distribution, such as the potential of atomic
nuclei surrounded by electrons (Kittel, 2004). Despite its ad-
vantages and pedigree, the Yukawa potential does not de-
scribe the actual charge distribution exactly. It suffers from
infinite charge density at the origin, just as does the
Coulomb potential, and it does not model the intricate struc-
ture of overlapping electron orbitals described by a fully rela-
tivistic quantum mechanical model. We use density functional
theory (DFT) to accurately describe real charge distributions
and test if the Yukawa potential is an appropriate model for
our purposes.

Using the atomic (Id1.x) package contained in the Quantum
Espresso software (Giannozzi et al., 2009, 2017), we calcu-
lated the radial charge distribution for hydrogen, oxygen,
and calcium atoms as a function of shell. We used the
Perdew-Burke-Enzerhof exchange correlation functional
(Perdew et al., 1996). In Figure 7, we plot the radial charge dis-
tribution 4zr2p(r) computed for hydrogen and oxygen. In (a),
the radial charge distribution in hydrogen indicates a max-
imum 1 Bohr (a.u.) interaction range for the electron. In (b),

we show the radial charge distribution of the 1s, 2s, and 2p or-
bitals in oxygen. Each orbital dominates a specific radial dis-
tance from the nucleus. The 1s orbital is pulled in to about
0.2 Bohr while the 2s and 2p orbitals peak at about 0.8 Bohr.

In Figure 8, we explore the radial charge distribution in the
larger and more complex calcium atom. Figures 8a and b show
the radial charge distribution to emphasize the interaction
ranges of each orbital. Again, particular shells dominate dif-
ferent radial ranges: the #=1 shell dominates r < 0.1 Bohr,
n=2 dominates 0.1 <r<0.6 Bohr, and #=3 dominates
r > 0.6 Bohr. In Figure 9, we plot the DFT-based V(r) distribu-
tions for each element alongside an arbitrary Yukawa poten-
tial chosen to best fit V(r) outside 1 Bohr. Despite the
multi-lobed quantum mechanical nature of the charge density,
the corresponding electric potential V(r) yields a fairly trad-
itional looking distribution for H, O, and Ca. Thus, the
Yukawa potential is correctly fitting the medium- to long-
range regimes of the potential. We conclude that the
Yukawa potential is a useful approximation of the atomic po-
tential and a suitable model for electron microprobe work.
The use of a more accurate charge distribution (such as
Mott scattering) would improve the modeling primarily for
light multi-electron atoms such as O.

The Differential Scattering Cross Section of the
Yukawa Potential

We will now describe electron-atom scattering by deriving the
angular differential cross section do/dQ of the Yukawa poten-
tial in the first Born approximation. This calculation can be
found in many standard microscopy and quantum mechanics
textbooks (Reimer, 1998; Griffiths & Schroeter, 2020).
Specifically, do/dQ is proportional to the probability of the in-
cident electron scattering from the spherically symmetric atom
into a differential solid angle dQ.

Quantum scattering theory assumes that an incident plane
wave, after interacting with a potential, propagates as a spher-
ical wave with angular dependence described by the complex
scattering amplitude f(6). The first Born approximation is a
standard technique to solve the time-independent Schrodinger
equation for the scattering amplitude and consequently the
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differential cross section jT‘; =|£(#)|>. This approximation is
valid for accelerating voltages above 1 keV and should be easily
satisfied in electron probe microanalysis.
For a projectile of mass m scattering from a spherically sym-

metric potential U(r), the scattering amplitude is,

2 o)

£(6) = = =22 1 +U(r)sin(er) dr,

h7Kk 0
where x = 2ksin(6/2) includes the relativistic momentum of the
incident electron via bk = ymv. Now for the Yukawa potential,

f(0) x lofo e Tsin(xr)dr =

o
K0
@

Thus, we have our differential cross section

% 1

= If(OF =—= 5
ap 1 (0
(E) + 4k2sin? (z)

Rearranging, and inserting the Thomas-Fermi screening length
R above,

do

-2
90y _a,2.272/3 _1/32~2Q
dQ(G) 4azy 7 |:1 + (2kapZ~/7) sin (2)] R

we can see the cross section, when evaluated at @ = 0, is propor-
tional to Z%/3.
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Fig. 7. The radial charge distributions 4zrp(r) of orbitals for hydrogen and oxygen atoms: (a) the H atom (which is only due to the 1s electron) and (b)

individual orbitals in O (not all orbitals are fully occupied).
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for all occupied Ca orbitals combined.

The Modified Z Fraction Exponent

Here we argue that both continuum and BSE emissions are
most heavily dominated by forward scattering, and so both
signals scale roughly with Z2/3 according to the simple model
derived above. In Figure 10a, we plot the differential cross sec-
tion, an expression for scattering angle probability, versus
scattering angle and atomic number for an accelerating volt-
age of 20 keV. The key qualitative feature of this scattering
distribution is its sharp peak at low scattering angles and the
maxima at 6 = 0 for all Z values. In fact, with increased accel-
erating voltages this peak at small 0 is only accentuated. Note
the black line which highlights the Z?/3 trend at small 6. We
further isolate particular atomic differential cross sections,
again at 20 keV, in Figure 10b. At both ends of the periodic
table, an atomic nucleus barely deflects almost all the electrons
it interacts with. For Z =35, 95% of all electrons are scattered
within 9 degrees of their initial trajectory, while for Z =96,
95% of all electrons are scattered within 15 degrees of their
initial trajectory.

We also utilized PENELOPE 2012 (Llovet & Salvat, 2017)
Monte Carlo simulations to substantiate this theoretical mod-
el. These simulations were performed with 100,000 total elec-
trons incident on aluminum (Z =13), copper (Z=29), and
gold (Z=79) at 15 keV. We examined all electrons which
made it back out of the sample with an energy greater than
500 eV. We next computed the average scattering angle for
each electron, and took the mean of these averages for all
backscattered electrons. We then found the same mean after
discarding the largest scattering event for each backscattered
electron. These are the Average Scattering Angle and
Average Small Angle Scattering, respectively, in Table 1. We
find, after removing the maximum scattering angle, this re-
duced mean is significantly smaller than the simple mean
and well within the realm of small angle scattering for all three
elements.

These simulations tell us that the vast majority of electrons
essentially continue in the direction of their original momen-
tum when incident on any atom in the sample as shown in
Figure 11. However, most BSEs are electrons that undergo
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derived from DFT, plotted against a Yukawa function least squares fit to
V(r) over radial distances from 1 to 100 Bohr radii plotted from 0 to 10
Bohr. See (a) for H atom, (b) for O atom, and (c) for Ca atom.

one or two rare higher-angle scattering events at the beginning
of their history inside a material. These high-angle scattering
events turn the BSE’s trajectory back in the direction of the
surface. These BSEs then experience many more scattering
events as they travelled back towards the surface. As estab-
lished above, the likelihood of low-angle scattering events
dominate, and this probability converges towards Z*/3. Of

course, the electron could also undergo a second, third, or
n™ higher-angle reorientation, but these more unlikely sequen-
ces yield an electron which stays within the sample unmeas-
ured. Thus, the overall probability for an electron to
re-emerge from the surface, becoming a backscattered elec-
tron, is proportional to the probability of the dominant low-
angle scattering events.

Electron scattering events also produce X-ray radiation as
these redirections of the electron trajectory necessitate the de-
celeration that gives bremsstrahlung its name. We measure
the aggregate of these signals as continuum X-rays, which are
generated predominantly at the low energy limit as shown in
Figure 12. For increasing energy in continuum production,
the decreased probability of scattering events large enough in
angle, hence energy, limits the continuum production until
reaching zero at the Duane-Hunt limit. Thus, it can reasonably
be claimed that continuum X-rays are predominantly generated
by electrons scattering at low angles, since this process is the
overwhelmingly dominant one. Thus, the Z-proportionality
of X-ray continuum also scales approximately as Z%/3.

We do observe variation in the Z exponent from Z*3 predom-
inantly towards Z* in empirical measurements of BSE and con-
tinuum emissions of compounds. Figure 13 shows experimental
evidence of differing best fit Z Fraction exponents from empiric-
al continuum measurements over a range of emission energies.
This is further corroborated from PENEPMA 2012 (Llovet &
Salvat, 2017) Monte Carlo simulations of the optimized Z frac-
tion exponents for pure elements and compounds as shown in
Figure 14. We would predict, in general, deviations from our
model to manifest as a slight increase in the Z exponent.
When fitting the differential cross section to Z* while treating
a nonzero 0 as a parameter, the exponent x rises monotonically
with 0 to a bound of x = 2. Figure 15 depicts this transition and
the details of the calculations are shown in the Appendix.

Implications for Microanalysis

Considerations from physics, empirical measurements, and
Monte Carlo modeling all demonstrate that mass has essen-
tially no effect on the generation and emission of backscat-
tered electrons and continuum X-rays in electron-solid
interactions at typical electron energies utilized in electron
probe microanalysis.

But what about the main focus of microanalysis: the gener-
ation and emission of characteristic X-rays for elemental
quantification? We do not at this time attempt to provide a
Yukawa Z fraction based model for the treatment of charac-
teristic emissions, however we can say that such a model
would be entirely consistent from what we already know
from physics, which is that both wavelength and energy dis-
persive X-ray spectrometries (WDS and EDS) do not weigh
atoms. They count them!

Simply put, the use of mass fractions in the physics of elec-
tron probe microanalysis induces a bias equal to the relative
differences in the A/Z ratios of the elements involved. For
some elements this difference in A/Z is small, but for other
compounds these A/Z differences can become quite large.
For example, the relative difference in mass fraction versus
the Yukawa Z fraction for average Z in MgO for Mg and O
is under 1%, while for a compound such as PbS, the differen-
ces in A/Z yield average Z values that vary by more than 20%
relative (Donovan et al., 2003) as shown in Table 2. If we es-
timate the backscatter correction in PbS to be ~20% of the
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Fig. 10. Scattering probabilities as a function of atomic number Z and scattering angle 6 (a) and for selected atomic numbers Z =5, 50, and 96 (b). Both are

plotted with E =20 keV.

Table 1. Average Scattering Characteristics for Electrons Exiting Sample
With Energies Greater than 500 eV in Monte Carlo Simulations.

Average Average
Number of Average Maximum Small
Backscattered ~ Scattering  Scattering Angle

Sample e Angle Angle Scattering
Aluminum 15,669 12.35 83.93 9.62
Copper 30,092 19.82 93.50 15.38
Gold 45,680 18.92 121.29 13.06

The average small angle scattering is the average of all scattering angles
without the maximum scattering angle included. 100,000 electrons
accelerated to 15 keV were incident on each simulated material.

T
2

100,000x

3m

2

Fig. 11. Polar depiction of the full angular dependence of the differential
cross section, normalized by the maximum at theta=0, for Z=29 at
20 keV. The inset, on a 100,000 times smaller scale, shows the relatively
small number of complete (180 degrees) backscattering events.
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Fig. 12. Generated continuum radiation in copper at 15 keV. The vast
majority of bremsstrahlung production is from low energy (small angle)
electron scattering demonstrating the relatively large number of small
energy scattering events producing continuum photons.

matrix correction, we are looking at an accuracy error of
around 4% relative in such materials. In fact, we suspect this
is one reason many analysts seem to require the use of so-
called “matrix matched” standards for best accuracy. We be-
lieve that only through the use of a Yukawa Z fraction based
analysis can we adequately handle these mass induced biases
in our quantitative analyses.

Further, albeit indirect, evidence for this assertion is demon-
strated in Figure 16, which shows WDS measurements of
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Fig. 14. Plot of optimized Z fraction exponents from PENEPMA 2012
Monte Carlo simulations of generated continuum intensities for a range
of continuum emission energies. As previously shown by empirical
measurements in Figure 13, at higher energies the optimum Z fraction
exponent, for a range of pure elements and compounds, demonstrates a
positive trend increasing from 2/3 to slightly higher values as expected.

characteristic emission lines for Ni Ka, Cu Ka, and Mo La
X-rays in pure metals. Both natural abundance material and
enriched stable isotope material from the Oak Ridge Stable
Isotope Repository were used in two sample splits.
Fractional atomic mass numbers are averages for natural iso-
topic mixtures presented for comparison with masses for en-
riched isotopes. Each point represents an average of 10
measurements, shown relative to the average intensity meas-
ured for both natural and enriched isotopes; each error bar

Z-exponent vs. Scattering Angle

201
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1264
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Fig. 15. Plotting average scattering angle as a function of the Z
exponent, we see the highest probability is close to Z%° for average
scattering angles approaching zero, thus demonstrating that Z~%2 is the
dominant exponent as opposed to Z2. Details of this calculation are found
in the Appendix.

is one standard deviation. The complete analysis
(Measurement #1) was repeated for verification on a second
probe mount of a separate set of isotope pairs (Measurement
#2). Conventional mass fraction averaging implies that the
X-ray emission from °°Ni, ®*Cu, and '’Mo should be
1.7%, 2.3%, and 4% greater than from natural Ni, Cu, and
Mo, respectively. Note that all the measurements fall within
0.25% of the respective average of each isotope pair, and
that even the one-standard-deviation error bars are within
0.5% of the average. These observed deviations are far less
than the differences expected under atomic mass based
assumptions.

Some may argue that we currently successfully utilize mass
fractions in our stopping power and absorption correction
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Table 2. Comparison of Concentrations Expressed in Mass Fractions, 2% Fractions, and Z'%” Fractions Along With the Relative Differences for Each
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Element, and the Mass, 2% Fractions, and Z'®” Fractions for Several Compounds Showing a Range of A/Z Effects.

Mass Z Fraction Relative Z Fraction Relative Mass Z Fraction Z Fraction
Compound Element  Fraction (Z'°) Difference (%) (Zz°7) Difference (%) Zbar (Z'°) Zbar (z°7) Zbar
MgO Mg 0.6030 0.6000 -0.50 0.5705 -5.40 10.4121 10.4000 10.2819
O 0.3970 0.4000 0.76 0.4295 8.20
TiO, Ti 0.5995 0.5789 -3.43 0.5037 -15.97 16.3930 16.1053 15.0524
O 0.4005 0.4211 5.13 0.4963 23.91
GaAs Ga 0.4820 0.4844 0.49 0.4890 1.46 32.0360 32.0313 32.0219
As 0.5156 0.5156 -0.46 0.5110 -1.36
ZrSiOy4 Zr 0.4976 0.4651 -6.53 0.3602 -27.61 24.8439 23.8606 20.5637
Si 0.1532 0.1628 6.25 0.1728 12.75
O 0.3491 0.3721 6.57 0.4670 33.77
PbS Pb 0.8660 0.8368 -3.38 0.7584 -12.42 73.1560 71.23 66.0557
S 0.1340 0.1632 21.83 0.2416 80.28

Note the large relative differences in results when comparing traditional mass fractions and mass fraction derived average Z values to Z Fraction derived values

for compounds with disparate A/Z ratios.
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Fig. 16. EPMA measurements of characteristic emission lines in natural
abundance and enriched stable isotopes from the Oak Ridge Stable Isotope
Repository in nickel, copper, and molybdenum for two separate splits of the
materials (a) and (b). There is up to an almost 5% relative difference in the
average atomic weights for these material pairs. This weight differential is
significantly greater than the precision of the measurements.

calculations, but this is only because we simultaneously utilize
associated parameters which are already normalized to mass,
i.e., mass thickness and mass absorption coefficients. Such
mass based modeling is not utilized in purely physics based
Monte Carlo approaches, as we have demonstrated in the
PENEPMA 2012 simulations. It is worth considering what
mass biased results we might obtain from measuring isotope
enriched materials such as 2°Si in silicates, while utilizing a
natural abundance standard, if we insist on expressing our re-
sults in mass fractions. Similarly, by utilizing Yukawa based Z
fraction concentrations, we can also eliminate such mass bias
effects in our analysis of normal isotopic abundance materials.

Conclusion

We argue that the traditional inclusion of mass in average Z
calculations for microanalysis merely introduces a bias related
to the A/Z ratio of the elements in compounds and suggest that,
for improved accuracy in electron backscatter loss and con-
tinuum production modeling, only a Z dependent calculation
be adopted for quantitative analysis. We have presented both
experimental data as well as Monte Carlo simulations that
both show excellent fits to predicted values when the Z fraction
israised to an exponent of approximately 0.7, and we provide a
simple theoretical model for electron scattering from screened
atomic potentials that predicts a similar Z fraction exponent of
2/3 that is consistent with an experimentally derived value.

Future work will attempt to provide a Yukawa Z fraction
based matrix correction method for quantitative microanaly-
sis in which a suitable table of atomic weights will only be uti-
lized to convert our (standard) concentrations from mass
fractions to Yukawa Z fractions, and subsequently to convert
our matrix corrected (unknown) results using a similarly ap-
propriate table of atomic weights for these unknowns, from
(Yukawa) Z fractions to mass fractions for final reporting of
the analysis results in traditional mass units.
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Appendix: Variability of Z exponent with
scattering angle ¢

The result of “The Differential Scattering Cross Section of the
Yukawa Potential” is the function

40 _ no = 4ar Z 1+ (2kaoz) sin2(0)]
d—Q—|f( N* = 4ayy 2 +( ao ) sin 5 .

We observe j—g is a rational function of Z, i.e., 5—6 = % (0, Z2),
that simplifies into a true polynomial when evaluated at
0= 0°. However, for any 0, we can validly fit the differential
cross section to y = aZ”, where a and /8 are the fitting param-
eters. Figure 15 plots our Z exponent, the parameter f, as a
function of 6.

More rigorously, we can calculate the numerical value of the
different coefficients in the previous equation. ag is the Bohr
radius of 5.29 x 10" " mand k = V’i';]—"c 1- (Wm;—f;)zis the mo-
mentum of the electron where 71, is the mass of the electron, #
is the reduced Planck constant, and E is the electron energy in
keV. For a beam energy of 20 keV, typical for EPMA, we have
k=7.32x10"m™".

The above equation can be rewritten as

do 20, z?
[223 + 4adk2 sin*(9)]”

which, once expanded, is of the form

do z?

o =M gz
where A =4a%y?, B=8ajk? sin? (%), and C=16a3k? sin* &.
Choosing 6 = 180° to maximize B and C, and keeping E =20
keV, we have A=1.21 m?, B=1.20x10* and C=3.59x

107. We consider elements of atomic number between 1 and
99, so Z*% € [1%3, 997 = [1, 21.40] and Z*° €1, 457.98].
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These values are too small to prevent C from being the domin-
ant term, leaving the differential cross section to be proportion-
al to Z2.

To extend the domain of validity of this reasoning, we as-
sume EPMA analyses use electron beam energies ranging
from 5 keV to 40 keV. A has a very light energy dependence
in this regime, changing from 1.14 to 1.30 with this increase
in acceleration voltage. Otherwise, at 5 keV and Z =299,
BZ*®=6.32x10* and C=2.18x10° At 40 keV and
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Z=99, BZ**=5.23x10° and C=1.49 x 10%. And, while
we’ve ignored the angular dependence of B and C in this ana-
lysis, sin*(§) is the same order of magnitude as sin®(%) for
36.87° <6 < 180°. Consequently, at large scattering angles
for all beam energies used in EPMA, the differential cross sec-
tion can be approximated by

do o A

Tal0>37) ~ 2.
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