
PHYSICAL REVIEW RESEARCH 5, 033020 (2023)

Impact of correlated information on pioneering decisions

Megan Stickler ,1,* William Ott ,1,† Zachary P. Kilpatrick ,2,‡ Krešimir Josić ,1,3,§ and Bhargav R. Karamched 4,5,6,‖
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Normative models are often used to describe how humans and animals make decisions. These models treat

deliberation as the accumulation of uncertain evidence that terminates with a commitment to a choice. When

extended to social groups, such models often assume that individuals make independent observations. However,

individuals typically gather evidence from common sources, and their observations are rarely independent. Here

we ask: For a group of ideal observers who do not exchange information, what is the impact of correlated

evidence on decision accuracy? We show that even when agents are identical, correlated evidence causes decision

accuracy to depend on temporal decision order. The first decider is less accurate than a lone observer, and

early deciders are less accurate than late deciders. These phenomena occur despite the fact that the rational

observers use the same decision criterion, so they are equally confident in their decisions. We analyze discrete

and macroscopic evidence-gathering models to explain why the first decider is less accurate than a lone observer

when evidence is correlated. Pooling the decisions of early deciders using a majority rule does not rescue

accuracy results in only a modest accuracy gain. Although we analyze an idealized model, we believe that

our analysis offers insights that do not depend on exactly how groups integrate evidence and form decisions.

DOI: 10.1103/PhysRevResearch.5.033020

I. INTRODUCTION

Most organisms and many computational algorithms make

decisions based on a sequence of noisy observations of the en-

vironment [1]. Normative models that describe how evidence

should be integrated to make the best choice are central to

our understanding of such decisions [2]. When an observer

needs to choose between alternatives, accumulating evidence

refines their perceived probability of the truth of each alter-

native. Decision policies often prescribe a threshold on the

accumulated evidence in order to balance the speed and ac-

curacy of decisions [3,4]. These theories have been developed

and validated over decades in experiments with humans and

other animals [5–9]. However, most previous work was fo-

cused on individual decision makers, and less is known about

groups of observers who make choices based on streams of

evidence [10,11].
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Each member of a social group often needs to choose

between the same alternatives based on a combination of cor-

related and independent observations [12]. For instance, when

deciding whom to vote for, two individuals may see some of

the same media coverage, but each may also read opinion

pieces that the other does not [13]. Conspecifics deciding

where to forage are likely to rely on some of the same cues

but can also learn from distinct experiences [14]. Traders may

have access to private information but often track the same

aggregate market indices and reports to decide what stocks to

buy and sell, and the processes governing the valuation of dis-

tinct commodities are known to be correlated [15]. Thus, even

in the absence of direct communication, the measurements

individuals in a group use to make decisions are generally

imperfectly correlated.

Here we assess the impact of such correlated mea-

surements on the accuracy of individual decisions within

groups of agents who do not share information (see Fig. 1).

When identical, rational, unbiased agents make indepen-

dent observations the probability of a correct decision is

independent of the order or the time at which the deci-

sion is made [16,17]. However, when such agents makes

correlated measurements, early deciders tend to make deci-

sions based on misleading observations, and their choices

are less accurate than those of later deciders by as much

as 20%. The order of a decision can therefore determine

its accuracy, despite each agent subjectively believing their

decision is based on the same amount of evidence, and thus

as accurate as that of anyone else. Yet an outsider who
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(a) (b) (c)

FIG. 1. Agents receiving partially correlated evidence. (a) Agents make a sequence of measurements to decide between alternatives. At

each time step agents all make the same observation with probability c and independent observations with probability 1 − c. (b) Representative

trajectories of the log-likelihood ratios (LLRs) computed at discrete times [Eq. (2)] for c = 0.25 and c = 0.75 and two agents. Green segments

correspond to increments due to common observations, and red segments arise from independent observations. An agent commits to a decision

(±) when the computed LLR crosses ±θ . (c) Analogous trajectories generated from simulations of the limiting drift-diffusion model [Eq. (3)].

observes the order in which decisions are made knows that

early decisions are less likely to be correct than later ones. We

analytically show why this is the case in tractable examples

and provide an intuitive argument explaining why the same

holds more generally. Our analysis demonstrates why this

difference in accuracy depends on how strongly evidence is

correlated and on the size of the population. We also show

that pooling early decisions does not always help, but weight-

ing individual decisions according to their order can produce

better results.

II. MODEL

We consider a community of N agents who accumu-

late evidence to decide between two states, or hypotheses,

H+ or H−. Each agent accumulates evidence (observations)

to decide between the two hypotheses. Agents are rational

(Bayesian) and compute the probability that either hypothe-

sis holds based on all evidence they accrue. Each makes a

decision once the log-likelihood ratio (LLR) of the condi-

tional probabilities between the two hypotheses, given all the

accumulated observations, crosses one of two predetermined

decision thresholds [2,18]. For simplicity, we assume that the

observations the agents make are statistically identical and

that they use the same decision policy.

A. Independent evidence accumulation

The problem of a single agent integrating evidence to

decide between two options has been thoroughly stud-

ied [2,10,18–21]. In the simplest setting, an agent makes a

sequence of noisy observations (measurements), ξ1:t , with

ξi ∈ � for i ∈ {1, . . . , t}, where � ⊂ R. The observations, ξi,

are independent and identically distributed, conditioned on the

true state, H ∈ {H+, H−},

P(ξ1:t |H±) =
t

∏

i=1

P(ξi|H±) =
t

∏

i=1

f±(ξi).

Here the conditional probability of each measurement is given

by the probability mass functions, f±(ξ ) := P(ξ |H±), when

the conditional probability distributions are discrete, or by

density functions when they are absolutely continuous. Ob-

servations, ξi, are drawn from the same set, �, in either state

H±, and the two states are distinguished by the differences

in the conditional probabilities of making certain measure-

ments. See Appendix A for details on how the restriction

� = {ξ+, ξ−} can confine beliefs to evolving on the integer

lattice.

To compute the probability of the two choices, given all

observations, P(H±|ξ1:t ), an ideal observer uses Bayes’ rule.

For simplicity, we assume that the agent knows the measure-

ment distributions, f±(ξ ), and knows that both environmental

states are equally likely, and hence uses a flat prior, P(H+) =
P(H−) = 1/2. The log-likelihood ratio (LLR) of the two

states at time t is then

yt := log

(

P(H+|ξ1:t )

P(H−|ξ1:t )

)

=
t

∑

s=1

LLR(ξs) = yt−1 + LLR(ξt ),

(1)

where LLR(·) ≡ log P(·|H+ )

P(·|H− )
. We also refer to yt as the belief of

the agent at time t . The magnitude of the LLR can be viewed

as the information an agent has gathered in support of a

hypothesis, while its sign describes the choice preference (H+

or H−) of the agent. The flat prior implies y0 = log P(H+ )

P(H− )
=

log
1/2

1/2
= 0.

The optimality of the sequential probability ratio test [18]

implies that an individual agent best manages speed and accu-

racy by waiting to decide until their belief reaches or crosses

above (below) an upper (lower) threshold θ+ > 0 (θ− < 0).

Thus, an ideal agent continues making observations while

θ− < yt < θ+ and makes a decision after acquiring suffi-

cient evidence, choosing H+ (H−) once yt � θ+ (yt � θ−).

We have analyzed a generalization of this model to social

networks both small [22] and large [17], where each agent

accrues independent information according to Eq. (1) and

shares their decision state with some or all other agents in

the group. These models of normative information exchange

based on neighbors’ decisions build on previous work on

normative confidence weighting for majority rules [23–26],

locally optimal Bayesian integration on sparse graphs [27],
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the impact of common observations [16], and nonnormative

decision sharing [28].

B. Accumulation of correlated measurements

We analyze the impact of correlated information on the ac-

curacy of the decisions of a community of N independent and

isolated agents. At each time step, t , every agent, i, makes an

observation (measurement), ξ i
t ∈ �, and updates their private

belief, yi
t , according to Eq. (1). However, an individual agent

does not know whether others have made decisions or what

those decisions were, in contrast to social network models

studied in the past [17,22–32]. This could be a model of a

sample of voters, each of whom does not know the others, or

traders deciding to buy or sell a stock without tipping their

hand.

To model correlated measurements, we assume that on

each time step all agents make an identical observation with

probability c. An identical observation means that ξ i
t = ξt for

all agents, i = 1, . . . , N , where ξt is a single sample from

the measurement distribution, f±(ξ ). With probability 1 − c

agents make independent observations during a time step, and

the N measurements, ξ i
t , are sampled independently from the

distribution f±(ξ ). This is equivalent to having N private,

independent sources of evidence, each accessible to a single

agent, and one common evidence source accessible to all

agents (see the Discussion for less restrictive assumptions).

Therefore, the belief of each agent evolves according to

yi
t = yi

t−1 + (1 − χt )LLR
(

ξ i
t

)

+ χt LLR(ξt ), (2)

where χt are i.i.d. Bernoulli random variables each with

parameter c. When c = 1 agents make only common ob-

servations, and when c = 0 agents make only independent

observations. As c increases from zero, each observation is

more likely to be common, and the overall evidence becomes

more correlated.

Each agent makes observations until their belief, yi
t ,

reaches one of the thresholds, θ±, at which point they make the

corresponding decision, H±. For simplicity we henceforth as-

sume the thresholds are symmetric about zero, i.e., θ± = ±θ ,

with θ > 0. We denote the decision time of agent i by Ti, and

assume that decisions are immutable. Thus, decision times are

uniquely defined, and only undecided agents continue to make

observations.

Importantly, each agent is isolated and does not observe

others’ decisions or their decision state (decided or unde-

cided), in contrast with [17,22]. Agents do not know whether

an observation is common or private, and each uses the evi-

dence they have collected to make the best possible decision

based on their belief (LLR) given by Eq. (2).

We ask how the accuracy of an agent’s decision depends

on the order in which the decision is made. In particular, how

accurate is the first decider? If multiple agents make a decision

at first-decision time, the “first” decider is chosen randomly

with equal probability from that group. The probability of a

correct first decision then equals the probability that this first

decider makes the correct choice, i.e., that the belief of the first

decider reaches the threshold, ±θ, whose sign agrees with that

of the true environmental state, H±. We briefly discuss other

ways of defining a first decision in Appendix B.

C. Scaling limit of correlated evidence accumulation

Computing decision accuracy and the distribution of de-

cision times reduces to a first-passage problem [2]. Often it

is easier to solve such problems in the scaling limit, thus

avoiding the combinatorial challenges common in discrete

problems [33]. By invoking the Donsker Invariance Prin-

ciple [34], in the limit of infinitely many infinitesimally

informative measurements we obtain the macroscopic version

of Eq. (2), often referred to as a drift-diffusion equation:

dyi = ±μ dt +
√

2(1 − c)μ dWi +
√

2cμ dWc. (3)

Here yi(t ) is the limit of the LLR of agent i and μ scales both

the drift and diffusion terms. See Appendix C for a derivation

of Eq. (3), verification of agreement with the discrete model,

and definition of μ, which is proportional to the square of

the signal-to-noise ratio of the sample distribution. The sign

of the drift agrees with the sign of the environmental state,

H±. The Wiener processes, Wi(t ) and Wc(t ), capture the vari-

ability of belief increments due to independent and common

observations, respectively. Thus, the belief of each observer,

yi(t ), evolves according to a drift-diffusion model [2] with

a combination of independent and correlated noise sources.

This model has been analyzed previously [16,35], but we are

not aware of a previous derivation from the normative model

(see Discussion).

III. RESULTS

We first asked how correlated evidence impacts the accu-

racy of decisions within a group of rational, identical agents.

The probability that a randomly selected agent in the group

makes a correct choice does not depend on the number of

other agents or on how strongly the evidence is correlated.

However, for all 0 < c < 1, the probability that the first de-

cider in the group is correct is smaller than the probability

that a lone observer is correct, reaching an internal minimum

[Fig. 2(a)].

Since every individual agent’s perception of the correct

hypothesis and decision process are described by the same

stochastic process, each agent has the same subjective esti-

mate that their choice is correct, (1/(1 + e−θ ) [2,36]. Indeed,

this is the probability that a randomly chosen agent makes a

correct decision. However, the first agent to make a decision

is less likely to make a correct choice than all other agents

in a group, and this probability decreases with the number

of agents in the community [Fig. 2(b)]. Furthermore, decider

accuracy increases almost monotonically with the order of the

decision [Fig. 2(c)]. Thus, someone observing the order in

which decisions are made should trust later decisions more

than early ones. Decision times of distinct agents get closer

as common observations become more probable [Fig. 2(d)],

since the observers’ beliefs evolve more synchronously.

The decreased accuracy of the first decider for 0 < c < 1

relative to single-decider accuracy is not a trivial consequence

of early deciders spending less time accumulating evidence.

If this were the case, the first decider would be less accurate

than later ones when c = 0. But when all observations are in-

dependent, the probability of a correct decision is independent

of the order in which the decision is made and is determined
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(a) (b)

(c) (d)

FIG. 2. Impact of the probability of making a common observation, c, on decider accuracy and timing. (a) The probability of a correct

decision increases with the order in which the decision is made (solid lines) and varies nonmonotonically with c. The average accuracy

computed over all deciders (dashed line) equals the accuracy of a randomly chosen agent and is constant with c. N = 100. (b) The accuracy of

the first decider varies nonmonotonically with c, possessing an internal minimum 0 < cmin < 1. As N increases, the lowest accuracy decreases.

(c) The accuracy of each of N = 100 deciders increases with decision order almost monotonically, so the first (last) decider is less (more)

accurate than a lone decider for c �= 0, 1. (d) The time of the decision of N = 100 agents as a function of order is approximately invariant to

changes in the probability of common evidence, c. We used the discrete LLR model Eq. (2) with θ = 10 and binary likelihood functions f± as

described in Appendix A. Specifically we chose f± so that the update size is ±0.05.

by the decision threshold. However, a common initial bias can

also lead to accuracies that depend on decision order, even

when measurements are independent (see Discussion as well

as [22,37]). Moreover, as c is increased from 0 to approxi-

mately 0.5, the average time to the first decision increases,

but the average accuracy of this decision decreases. We next

provide an explanation of this observation.

A. An intuitive explanation for the decrease

in first decision accuracy

Why do common observations lead to less accurate first

decisions? At the time of the first decision, the remaining

undecided agents have likely made independent observations

that counter the common observations that often contribute to

the first decider’s choice. Indeed, if these independent obser-

vations aligned with this choice and the common evidence,

the other agents would likely have already made a decision as

well. For small c, little information is gained from common

evidence, and not much independently gathered evidence is

needed to counter it. As c increases, common evidence more

often drives the first decision, so we expect a substantial frac-

tion of the independent evidence collected by an undecided

agent will often counter the common evidence. However,

when c is large, most evidence is common, and fewer obser-

vations are independent, leaving less time for strong, contrary

independent observations. Thus, at a critical value of c, the

average total independent evidence obtained by undecided

agents countering common observations reaches a maximum.

The probability of a correct first decision is smallest at this

critical value. In the next subsection, we sharpen this argument

by showing independent observations made by undecided

agents that favor the correct decision are stronger when the

first decider makes an incorrect choice than in the opposite

case.

B. Reduction of the log-likelihood ratio of the first decider

We next show mathematically why the first decider’s

choice is less accurate than that of a randomly chosen agent
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selected with equal probability from all agents in the group

prior to evidence accumulation. To do so, we write the log-

likelihood ratio (LLR) associated with the probability the first

decider makes the correct choice as a sum of two terms: One

term is the LLR of a randomly selected agent at decision time,

while the second incorporates the condition that this agent

is the first decider. We show that the first term’s magnitude

equals θ , while the second term is negative for 0 < c < 1.

Thus, the information obtained by undecided agents reduces

the probability of a correct first decision. We begin by consid-

ering a pair of agents and obtain expressions for the sum of

LLR terms in the case of beliefs evolving on a lattice. We then

extend this calculation to an arbitrary number of agents.

1. Pair of agents in discrete time

We randomly number the agents using indices j = 1, 2,

and let FD be the index of the first decider. Let Tj be

the time of the decision of agent j, and denote the deci-

sion of agent j by d j ∈ {H+, H−}, so that y j (Tj ) = ±θ and

|y j (t )| < θ when 0 � t < Tj . Let T = min(T1, T2) denote the

time of the first decision. We assume the first decider chooses

H+ (dFD = H+) without loss of generality (WLOG), and

write the conditional probability P±(dFD = H+) := P(dFD =
H+|H±) as

P±(dFD = H+) =
2

∑

j=1

P±(d j = H+, FD = j)

=
2

∑

j=1

P±(FD = j|d j = H+)P±(d j = H+)

= 2P±(d1 = H+)P±(FD = 1|d1 = H+),

(4)

where the final line follows from the exchange symmetry

between the two agents. The first term in Eq. (4) is the

P± probability that a randomly chosen agent (here agent 1,

WLOG) selects H+, depending only on agent 1’s observa-

tions. The second term is the P± probability that, conditioned

on choosing H+, agent 1 is also the first to decide, which

depends on information gathered by agent 2.

The second term on the right side of Eq. (4) can be rewrit-

ten as a sum over T1, T2 ∈ N and then simplified by noting that

FD = 1 with certainty if T1 < T2 and with probability 1/2 if

T1 = T2:

P±(dFD = H+) = 2P±(d1 = H+)
∑

t1∈N

∑

t2∈N

P±(FD = 1|T1 = t1, T2 = t2, d1 = H+)P±(T1 = t1, T2 = t2|d1 = H+),

= 2P±(d1 = H+)
∑

t1∈N

[

1

2
P±(t1 = T1 = T2|d1 = H+) + P±(t1 = T1 < T2|d1 = H+)

]

.

Using Eq. (4) we can thus write the corresponding LLR of the first decider at the time of their decision as

LLR(dFD = H+) = log
P+(dFD = H+)

P−(dFD = H+)
= LLR(d1 = H+) + LLR(FD = 1|d1 = H+).

The first term in this sum is the LLR of the decision a randomly chosen agent (taken here to be agent 1 WLOG), LLR(d1 =
H+) = θ . The second term is given by

LLR(FD = 1|d1 = H+) = log

∑

t1∈N

[

1
2
P+(t1 = T1 = T2|d1 = H+) + P+(t1 = T1 < T2|d1 = H+)

]

∑

t1∈N

[

1
2
P−(t1 = T1 = T2|d1 = H+) + P−(t1 = T1 < T2|d1 = H+)

] . (5)

Now, if agent 1 has made an incorrect decision, one inconsistent with the true hypothesis, both this agent’s common and

independent observations are likely to support the incorrect decision. But, by assumption, any randomly sampled observation is

more likely to be consistent with the true than the wrong hypothesis. Thus, the independent observations of agent 2 are likely

to point to the correct hypothesis, conflicting with the common observations supporting the incorrect decision of agent 1. As a

result, agent 2 more likely decides after T1 when agent 1’s choice is wrong than when it is correct. This argument shows that we

expect

∑

t1∈N

[

1

2
P+(t1 = T1 = T2|d1 = H+) + P+(t1 = T1 < T2|d1 = H+)

]

<
∑

t1∈N

[

1

2
P−(t1 = T1 = T2|d1 = H+) + P−(t1 = T1 < T2|d1 = H+)

]

(6)

for 0 < c < 1, so that Eq. (5) implies LLR(FD = 1|d1 =
H+) < 0 for such values of c. As a result, LLR(dFD =
H+) < LLR(di = H+) = θ for i = 1, 2 and 0 < c < 1,

so the first decider makes a correct choice less of-

ten than an agent chosen at random. This argument can

be extended to N > 2 agents in most cases, demon-

strating an increased probability and volume of con-

trary evidence in more remaining undecided agents, caus-

ing a larger drop in the first decider’s accuracy (see

Appendix C).
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(a) (b)

(c)

FIG. 3. When evidence is partially correlated, a randomly selected agent is more likely to be the first decider if they are wrong. (a) Joint

distribution of the probability that agent 1 decides first (FD = 1) and the belief of agent 2 at that decision time, y2 = y2(T1), conditioned on

agent 1 being right (d1 = H+ = H , blue) or wrong (d1 = H+ �= H , red). When 0 < c < 1, the accuracy of the first decider is strictly below

that of a randomly selected agent (here agent 1, WLOG) because of inequality (6). When c is small, P+(FD = 1|d1 = H+) nearly equals

P−(FD = 1|d1 = H+) (difference indicated by green line), since the joint distributions are approximately reflections of one another, i.e.,

P+(FD = 1, y2(T1)|d1 = H+) ≈ P−(FD = 1, −y2(T1)|d1 = H+), with equality holding when c = 0. As c increases, the difference P−(FD =
1|d1 = H+) − P+(FD = 1|d1 = H+) first grows (c = 0.5) and then shrinks (c = 0.9), as both terms converge to 1/2 as c → 1. As discussed

in Appendix A, each observation changes an agent’s belief, y j , by ±1; e.g., when FD = 1 and y1(T1) = ±3, then y2(T1) is also an odd integer.

(b) The probability that agent 1 decides first (conditioned on d1 = H+ and H = H−) as a function of c peaks around c = 0.5. (c) Colormap of

the joint distributions from (a) as functions of c. Here we used the discrete LLR model (2) with θ = 3 and binary likelihood functions f± as

described in Appendix A. f± are chosen so the update size is ±1.

Moreover, as c increases, so does the fraction of wrong

common observations that can be countered by correct inde-

pendent observations of agent 2. This initially increases the

likelihood that agent 2 remains undecided following incorrect

decisions by agent 1. But if c is high, most observations are

common, and agent 2 makes few independent observations.

Thus, as c approaches 1 the agents’ beliefs tend to evolve

more synchronously, and the difference between the left and

right sides of inequality (6) decreases. This tension between

the increase, with c, in the fraction of wrong common obser-

vations that are likely to be counteracted, and the decrease in

the fraction of correct independent observations that can coun-

teract them causes Eq. (5) to achieve an internal minimum,

0 < cmin < 1.

Numerical experiments support this explanation. Fig-

ure 3 illustrates the case of two agents, each with deci-

sion threshold magnitude θ = 3. As our argument predicts,

P+(FD = 1|d1 = H+) < P−(FD = 1|d1 = H+) for all 0 <

c < 1 [Fig. 3(b)]. Further, the difference P−(FD = 1|d1 =
H+) − P+(FD = 1|d1 = H+) first grows and then shrinks as

c increases, due mainly to the unimodalilty of the conditional

probability that agent 1 decides first when their choice is

wrong, P−(FD = 1|d1 = H+). Looking at the joint condi-

tional probabilities of FD = 1 and the belief of agent 2 at the

time of the first decision, P+(FD = 1, y2(T )|d1 = H+) and

P−(FD = 1, y2(T )|d1 = H+) helps illuminate the situation.

Figure 3(a) shows these joint distributions for representative

values of c with θ = 3. The distribution of beliefs, y2, concen-

trates more on values y2(T ) = ±1, away from the thresholds,

when H = H− than when H = H+ for intermediate values

of c [Fig. 3(c)].

2. Two agents with decision threshold magnitude θ = 2

We now discuss the case where θ = 2, allowing us to com-

pute exact expressions for Eq. (5), since two measurements

are sufficient for belief magnitude to reach the bound. As in

Appendix A, we assume there can only be two measurement

values (ξ±), and f±(ξ±) = p+ = e/(e + 1) and f±(ξ∓) =
1 − p+ ≡ p−, so beliefs are restricted to the integer lattice.
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Setting thresholds to ±θ = ±2, the belief of any undecided

agent, i, must equal yi
t = ±1, at any odd time, and yi

t = 0 at

any even time. Thus, the stochastic process governing the ev-

idence accumulation of undecided agents resets to 0 (renews)

every two time steps. If T is the time of the first decision, then

P(dFD = H±, T = t |T > t − 2) = P(dFD = H±, T = 2)

for all even t > 0, since if T > t − 2 then at time t − 2 both

agents must have been undecided with beliefs yi
t−2 = 0.

We now enumerate and sum the probabilities of all cases

in which agent 1 (not necessarily the first decider) makes

decision d1 = H+ under either condition, H = H±. There are

four ways for the two agents to make a simultaneous decision:

If d1 = H+, agent 2 can make the same decision (d2 = H+)

given zero, one, or two independent measurements, or the

opposite choice (d2 = H−), if they made two independent

measurements. Therefore,

P±(T1 = T2 = t |d1 = H+, T > t − 2)

= c2 + 2c(1 − c)p± + (1 − c)2(p2
+ + p2

−).

The second agent may remain undecided at the time of the first

agent’s decision if they made one independent measurement

that conflicts with the first agent’s decision, or two indepen-

dent measurements that conflict with each other:

P±(T1 = t < T2|d1 = H+, T > t − 2)

= 2c(1 − c)p∓ + 2(1 − c)2 p+ p−. (7)

Now let m ∈ N and t1 = 2m. Referring to the sums in Eq. (5),

we have

P±(t1 = T1 = T2|d1 = H+)

= P±(t1 = T1 = T2|d1 = H+, T > t1 − 2)

× P±(T > t1 − 2|d1 = H+)

= P±(t1 = T1 = T2|d1 = H+, T > t1 − 2)P(T > t1 − 2)

= P±(t1 = T1 = T2|d1 = H+, T > t1 − 2)[P(T > 2)]m−1.

A similar calculation gives

P±(t1 = T1 < T2|d1 = H+) = P±(t1 = T1 < T2|d1

= H+, T > t1 − 2)[P(T > 2)]m−1.

We factor common terms out of the sums in Eq. (5) and

cancel sums over factors of P(T > 2)m−1 in the numerator and

denominator to obtain an explicit form of Eq. (5),

LLR(FD = 1|d1 = H+)

= log
[c2 + 2c(1 − c)(1 + p−) + (1 − c)2(1 + 2p+ p−)]

[c2 + 2c(1 − c)(1 + p+) + (1 − c)2(1 + 2p+ p−)]
.

(8)

The numerator and the denominator in this expression differ

only in the middle terms, 2c(1 − c)(1 + p−) < 2c(1 − c)(1 +
p+) for 0 < c < 1, which is the probability that agent 2 makes

an independent observation that counters the agents’ common

observation, in agreement with our general explanation. As

discussed previously, this is more likely when the decision of

the first agent (and the common measurement) is wrong.

3. Macroscopic case

Our results for the discrete model extend to agents with

continuously evolving beliefs, obtained in the limit of many

weak observations (see Appendix C). Agents’ beliefs, y j (t ),

each evolve according to Eq. (3) until crossing a thresh-

old ±θ , determining the choice d j = H± and decision time

Tj ∈ (0,∞) for j = 1, . . . , N . Define T = (T1, . . . , TN ) ∈
(0,∞)N ≡ R

N
+. For finite N and c < 1, the probability that

two agents decide at the same time is zero, so we need not

account for simultaneous decisions. By marginalizing over all

agents and decision times, we obtain

P±(dFD = H+) = NP±(d1 = H+)

×
∫

RN
+

P±(FD = 1|T = t, d1 = H+)g±(t|d1 = H+) dt .

Here g±(·|d1 = H+) is the conditional probability density

function for T, conditioned on the state, H = H±, and on the

decision d1 = H+. We have P±(FD = 1|T = t, d1 = H+) =
1 if t1 = min1�i�N ti and otherwise this quantity is zero,

simplifying the multi-dimensional integral in the preceding

expression to an integral over the t1 axis and allowing us to

write

LLR(dFD = H+) = θ + log

∫

R+
G+(t1|d1 = H+) dt1

∫

R+
G−(t1|d1 = H+) dt1

,

where the second term is the log of the ratio of the prob-

abilities that all other agents are undecided at the time at

which agent 1 chooses H+. Terms in the ratio are obtained

by integrating the probability density

G±(t1|d1 = H+)

=
∫

(t1,∞)N−1

g±(t1, t2, . . . , tN |d1 = H+) dt2 · · · dtN ,

across all possible times of the decision of agent 1, given that

agent 1 chooses H+.

When N = 2, the nonmonotonicity of the first decider’s

accuracy in c is due to the tension between opportunity for

contradiction in agent 2’s observations and the decreasing

prevalence of independent observations, as c increases. The

densities d
dz

P(FD = 1, y2(T ) � z|d1 = H+, H ) are nearly re-

flections of one another for small c [Fig. 4(a), top left].

Integrating over z, the difference P−(FD = 1|d1 = H+) −
P+(FD = 1|d1 = H+) is small when c is small [red bar minus

blue bar, Fig. 4(a), top center]. For intermediate values of

c, the distribution of beliefs of agent 2 is pulled away from

the correct threshold when agent 1 decides incorrectly, due

to common observations, causing P−(FD = 1|d1 = H+) −
P+(FD = 1|d1 = H+) to reach a maximum within the in-

termediate c range. When c is close to 1, both P−(FD =
1|d1 = H+) and P+(FD = 1|d1 = H+) converge to 1/2, so

the difference converges to zero. Figure 4(b) shows that the

unimodal response of first-decider accuracy as c increases

occurs because the probability P−(FD = 1|d1 = H+) of an

incorrect agent deciding first increases for small c and then

decreases in c (red curve), while P+(FD = 1|d1 = H+) is

approximately insensitive to c (blue curve).
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(a) (b)

FIG. 4. When beliefs evolve continuously and evidence is correlated, a randomly selected agent is again more likely to decide first if

they are wrong. (a) As in the discrete model, the densities p(FD = 1, y2|d1 = H+, H ) are nearly reflections of one another for small c. By

marginalizing over the distribution of beliefs, y2, we can obtain the difference P−(FD = 1|d1 = H+) − P+(FD = 1|d1 = H+). This difference

is small when c is small (red bar minus blue bar). As c increases, this difference first increases and then decreases, the latter because each

term in the difference converges to 1/2 as c → 1. (b) The unimodal response of first-decider accuracy as c increases is again due to P−(FD =
1|d1 = H+) obtaining a maximum around c = 0.5. We used the macroscopic model (3) with unit drift and variance and threshold θ = 3.

C. Pooling over early deciders does not rescue accuracy

The “wisdom of crowds” is the idea that collective deci-

sion by a group of people is more likely to be correct than

the decision of any single member of the group [23,38]. A

group’s decision accuracy can be improved when individu-

als exchange information preceding their final decisions or

when the group decision is determined by the majority of

individual choices [17,23,27,39,40]. However, this improve-

ment can be diminished, and individuals can even outperform

crowds when biases in individual decisions are not accounted

for when forming the group decision [41,42]. Applying a

majority rule to an initial pool of early deciders, we show

that even modest correlations in information can cause this

pool to make less accurate choices than a randomly selected

agent and only slightly improves on the accuracy of the first

decider [Figs. 5(a) and 5(b)]. The additional time required to

obtain these additional opinions is appreciable and roughly

independent of the population size, N [Fig. 5(c)]. Hence,

even weak correlations in evidence impact the accuracy of

collective decisions.

IV. DISCUSSION

Humans and other animals integrate evidence to make de-

cisions. Often members of a group or community are faced

with the same choices and will use evidence that is avail-

able to all of them to decide between a common set of

options [43–45]. We have shown that when some observations

are made in common, even when no social information is ex-

changed, the first individual to decide makes the least accurate

decision. The accuracy of subsequent decisions increases in

the order in which they are made, with few exceptions.

We have focused on agents deciding between two op-

tions, so that response accuracy can be computed as exit

probabilities of populations of univariate stochastic processes

(a) (b) (c)

FIG. 5. Pooling choices of early deciders using a majority rule mildly improves accuracy compared to the first decision when evidence is

correlated. (a) The group’s decision is determined by the majority of the first Npool deciders. For different population sizes, N , the accuracy

of the group decision at first decreases as c is increased and can be lower than the accuracy of a single decider in isolation (dashed line).

Npool = 0.2N . (b) Improvement in the accuracy obtained by pooling the first Npool = 0.2N decisions compared with the accuracy of the first

decision drops substantially even for small values of c and is nearly independent of N . (c) The mean time at which the last decider in the pool

makes a decision increases with c (solid curves). Dashed curves give the mean time of the first decision. We used the macroscopic LLR (3)

with threshold θ = 10.
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driven by common and independent noise [46]. The accuracy

of the first agent to make a decision depends nonmonotoni-

cally on the probability c of making a common measurement.

When the accuracy of the first decision is at a minimum,

roughly half the observations are common. The remaining

independent observations allow the agent’s beliefs to diverge,

leading the first agent to often choose differently than later

deciders.

A similar result holds for groups of observers who have a

common initial bias and integrate independent evidence [22].

If there are many such agents, the first decision will almost

always correspond to the decision boundary closest to the

initial belief [37] and is thus wholly determined by the initial

common bias.

We made the simplifying assumption that all agents ei-

ther jointly make a common observation or all make private

observations on each time step. This requires a coordinated

measurement process, which is counter to our assumption

that agents do not share social information. We could relax

this assumption and allow agents to each independently make

measurements from two sources, one common to the group

and one available only to the agent. With two agents this

model is equivalent to the model we analyzed. More gener-

ally, different subsets of agents could have access to separate

sources of shared information, rather than a single common

source available to the entire community. The analysis of

these cases becomes more cumbersome, but we expect that

our general conclusions will hold.

Agents could also share their decisions, in which case the

fact that no decision has been announced up to a time t can be

informative. The first agent to reach threshold will know that

no other decisions have been made yet. This reveals that other

agents have gathered independent evidence that disagrees with

the first agent’s choice. The first agent can take this informa-

tion into account reducing their belief that what they thought

is the correct choice holds true. Similar reasoning can lead

to intricate social information exchanges [22]. However, hu-

mans frequently exhibit correlation neglect [47]. If observers

assume that information is uncorrelated, then the model we

described here may be applicable even when they observe

each other’s decisions.

We have assumed that the agents in the population are

identical. If agents have different decision thresholds, early

decisions tend to be driven by less evidence [2], generating

a decrease in accuracy unrelated to the effect of common ob-

servations. Correlated evidence could exacerbate this decrease

in accuracy. However, if agents have access to information of

different quality, early deciders tend to be those with access

to the best information [27]. In this case early decisions can

be more accurate than later ones. We expect correlated evi-

dence to still impact the accuracy of the first decision, but the

specifics would depend on the quality of common and private

evidence.

Except for limiting cases, we found it quite cumbersome

to obtain analytical expressions for the accuracy of the first

decider and other statistics of the agents’ decisions. However,

prior work has shown that the correlated drift diffusion model

generated in the macroscopic limit can be solved explicitly

using method of images solutions for specific threshold val-

ues [35]. In our case thresholds always form a square domain

encompassing both agents’ beliefs for N = 2 or cubes or

hypercubes for N > 2, but method of images approach may

still be applicable.

Like other mathematical models of cognition, our model

only roughly approximates decision-making processes used

by humans and animals. Despite its limitations, we believe

that our analysis offers important insights independent of the

exact way evidence is integrated and decisions formed in

groups: Common observations drive the beliefs of individuals

in the community in the same direction. If those common

observations are misleading, it takes time for private evidence

to counter their effect. When deciders use a substantial frac-

tion of common observations to make their decisions, early

decisions are most likely consistent with common observa-

tions. Thus, if common observations are right (wrong), the

first decision tends to be as well. First decisions thus tend

to be based predominantly on common evidence, which of-

fers less information than what is implied by the decision

threshold. We expect that the resulting asymmetric weight of

common evidence in determining the first decision leads to

similar effects more generally, e.g., when the population is

heterogeneous, faced with more than two choices, or when

observations are made asynchronously. Social information

exchange would lead to more subtle effects, modulating the

impact of common measurements. We have thus described

a general mechanism that can affect group decision-making,

with implications that transcend specific scenarios. The in-

sights we provided can describe decision-making processes

across a range of contexts and could be used to organize and

guide more effective individual and group choices.
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APPENDIX A: BELIEFS EVOLVING

ON THE INTEGER LATTICE

In the simplest case we can assume that an observer

can make only two measurements, ξ+ and ξ−. We let

P(ξ±|H±) = p+ and P(ξ±|H∓) = p− with p+ + p− = 1 and

p− < p+. Assuming p− = p+/e, gives p+ + p+/e = 1 so

p+ = e/(1 + e), p− = 1/(1 + e), and hence, LLR(ξ±) =
±1. Binarized evidence samples ξ± then increment or decre-

ment each agent’s belief yi
t by one, so the sum of an even (odd)

number of odd numbers, ±1, will be even (odd). In particular,

when p− = p+/a the information provided by observation ξ±

equals ± ln a. As a result, the belief of each agent, yi, lies on

a lattice defined by {n ln a}n∈Z, and we can use the mapping

n → n ln a or a logarithm in base a to place beliefs on an

integer lattice. In the double limit of infinitesimal evidence,

lima→1+ ln a, and infinitesimal time between observations, we

can recover a continuous-time model.

APPENDIX B: ALTERNATIVE DEFINITIONS

OF THE FIRST DECIDER

In the main text we defined the “first decider” as an agent

chosen with equal probability from the set of all agents who
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reach threshold at the same time. Alternatively, we could pool

all first deciders across trials and compute the probability an

agent in this entire pool makes a correct choice. In the scaling

limit, the probability that multiple agents reach the threshold

at the same time converges to zero, and the two definitions

are equivalent. However, when evidence increments are finite,

multiple agents can decide first simultaneously. In that case

choosing the first decider within a trial and pooling across

trials gives different results.

APPENDIX C: DERIVATION OF THE SCALING LIMIT

Let f+(ξ ) be a probability distribution of observations, ξ ,

over an arbitrary set � obtained in state H+, and f−(ξ ) the

probability distribution of observations over that same set �

in state H−. Note if the sets of observations for either state

differ, then there will be infinitely informative observations

which, when observed, would immediately make an agent

certain of the state. However, these occurrences could be rare,

in which case an accumulation process would still be needed.

As previously, we use y to denote accumulated LLR so that in

the discrete case we have

y(t ) =
∑

s�t

LLR(ξs), (C1)

where ξs is the observation obtained at time s � t . Similarly,

in the continuous case

y(t ) =
∫ t

0

dy(s)

ds
ds, (C2)

where
dy

ds
is given by the stochastic drift-diffusion equation de-

scribed previously.

We again assume that in a group of N observers each

observer at each time step t makes an independent private

observation with probability 1 − c, and all observers make a

common observation with probability c. Private and common

observations have the same conditional distributions, f±(ξ )

given the state H±.

For observations drawn from such general likelihood func-

tions, we can determine the statistics of the limiting stochastic

accumulation process by averaging the impact of multiple

“subobservations” on short intervals which we shrink to be

infinitesimal. Focusing on a single observer i, define a family

of stochastic processes parameterized by k, the number of

subobservations made in an interval of length �t . Thus, we

expect the LLR increment obtained each �t is given

�yt =
k

∑

l=1

log
f+

(

ξ l
i,t

)

f−
(

ξ l
i,t

)

= Eξ

[

k
∑

l=1

log
f+

(

ξ l
i,t

)

f−
(

ξ l
i,t

)

∣

∣

∣

∣

∣

H

]

+

(

k
∑

l=1

log
f+

(

ξ l
i,t

)

f−
(

ξ l
i,t

) − Eξ

[

k
∑

l=1

log
f+

(

ξ l
i,t

)

f−
(

ξ l
i,t

)

∣

∣

∣

∣

∣

H

])

.

We can split the sum not contained in an expectation into those

observations drawn from the common pool and those not,

�yt = Eξ

[

k
∑

l=1

log
f+

(

ξ l
i,t

)

f−
(

ξ l
i,t

)

∣

∣

∣

∣

∣

H

]

+

⎛

⎝

kc
∑

l=1

log
f+

(

ξ
l,c
i,t

)

f−
(

ξ
l,c
i,t

) +
k−kc
∑

l=1

log
f+

(

ξ
l,n
i,t

)

f−
(

ξ
l,n
i,t

) − Eξ

[

k
∑

l=1

log
f+

(

ξ l
i,t

)

f−
(

ξ l
i,t

)

∣

∣

∣

∣

∣

H

]

⎞

⎠,

where ξ
l,c
i,t are samples the ith agent sees from the common pool and ξ

l,n
i,t are those they see from the independent pool. For large

k while keeping �t fixed, we know the number of common observations will scale as kc ≈ ck, so assigning

±μ�t ≡ Eξ

[

k
∑

l=1

log
f+

(

ξ l
i,t

)

f−
(

ξ l
i,t

)

∣

∣

∣

∣

∣

H = H±

]

,

assuming f±(ξ ) are scaled appropriately as �t → 0. We then estimate the variability in the incremental process as k → ∞ by

computing

〈(

kc
∑

l=1

log
f+

(

ξ
l,c
i,t

)

f−
(

ξ
l,c
i,t

) +
k−kc
∑

l=1

log
f+

(

ξ
l,n
i,t

)

f−
(

ξ
l,n
i,t

) − Eξ

[

k
∑

l=1

log
f+

(

ξ l
i,t

)

f−
(

ξ l
i,t

)

∣

∣

∣

∣

∣

H

])2〉

=

〈

kc
∑

l=1

[

log
f+

(

ξ
l,c
i,t

)

f−
(

ξ
l,c
i,t

)

]2〉

− cμ2�t2 +

〈

k−kc
∑

l=1

[

log
f+

(

ξ
l,n
i,t

)

f−
(

ξ
l,n
i,t

)

]2〉

− (1 − c)μ2 · �t2

= cVar

[

k
∑

l=1

log
f+

(

ξ
l,c
i,t

)

f−
(

ξ
l,c
i,t

)

]

+ (1 − c)Var

[

k
∑

l=1

log
f+

(

ξ
l,n
i,t

)

f−
(

ξ
l,n
i,t

)

]

.

We can thus approximate the update in the limit of rapid and infinitesimally weak observations using the Donsker Invariance

Principle [34]

�yi,t ≈ ±μ�t +
√

�t (ρ1−c,�t (t )η1−c + ρc,�t (t )ηc),
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where ηc and η1−c are random variables with standard normal

distributions, and

±μ =
1

�t
Eξ

[

log
f+(ξi,t )

f−(ξi,t )

∣

∣

∣

∣

H±
]

,

ρ2
1−c,�t (t ) =

(1 − c)

�t
Varξ

[

log
f+(ξi,t )

f−(ξi,t )

∣

∣

∣

∣

H±
]

,

ρ2
c,�t (t ) =

c

�t
Varξ

[

log
f+(ξi,t )

f−(ξi,t )

∣

∣

∣

∣

H±
]

. (C3)

The drift h�t and the variances ρ2
c,�t , ρ2

1−c,�t will diverge

unless f±(ξ ) are properly scaled in the �t → 0 limit.

Taking �t → 0 gives

dy = ±μdt + ρ1−c dWi + ρc dWc, (C4)

where

±μ = lim
�t→0

h�t (t ) = Eξ

[

log
f+(ξ )

f−(ξ )

∣

∣

∣

∣

H±
]

,

ρ2
c (t ) = lim

�t→0
ρ2

c,�t (t ) = c Varξ

[

log
f+(ξ )

f−(ξ )

∣

∣

∣

∣

H±
]

,

ρ2
1−c(t ) = lim

�t→0
ρ2

c,�t (t ) = (1 − c) Varξ

[

log
f+(ξ )

f−(ξ )

∣

∣

∣

∣

H±
]

.

We note that dWi corresponds to private noise, which is

generated independently for each agent. The term dWc is

common to all agents.

APPENDIX D: EXTENDING THE ANALYSIS OF THE

DISCRETE MODEL TO MORE THAN TWO AGENTS

Accuracy of the first decider dips even lower when consid-

ering more than two agents N > 2 [see Fig. 2(b)]. To explain

this more general observation, we extend our two-agent analy-

sis. We denote the decision of agent j ∈ {1, . . . , N} by d j and

the corresponding decision time by Tj . The probability that

the first decider chooses H+ conditioned on the true state is

given by

P±(dFD = H+) =
N

∑

j=1

P±(FD = j|d j = H+)P±(d j = H+).

Leveraging exchange symmetry of distinct agents and defin-

ing T = (T1, . . . , TN ) ∈ N
N (the vector of decision times) and

T = min j Tj (the time of the first decision), then

P±(dFD = H+) = NP±(d1 = H+)
∑

t∈NN

P±(FD = 1|T = t,

d1 = H+)P±(T = t|d1 = H+), (D1)

where the first term in the sum vanishes if t1 > min1� j�N t j .

On the other hand, if t1 = min1� j�N t j , the conditional prob-

ability that agent 1 is chosen as the first decider depends on

the number of indices j for which t j = t1, i.e., the number

of agents who simultaneously decide at the time of the first

decision. Let nFD(t ) denote the number of these first deciders.

Overall, we have

P±(FD = 1|T = t, d1 = H+)

=

{

0, t1 > min1� j�N t j,

1/nFD(t ), t1 = min1� j�N t j .

Thus, we can turn the second term within the sum from

Eq. (D1) into an additional sum over the count of agents

deciding at the first decision time:

P±(dFD = H+) = NP±(d1 = H+)
∑

t1∈N

N
∑

k=1

1

k
P±

× (t1 = T1 = T, nFD(T) = k|d1 = H+).

As before, we write the LLR as a sum of two terms, one given

by the LLR of a randomly selected agent (agent 1) choosing

H+, LLR(d1 = H+) = log[P+(d1 = H+)]/P−(d1 = H+) =
θ , and a second term involving conditional probabilities that

the randomly selected agent is the first decider,

LLR(dFD = H+) = LLR(d1 = H+)

+ LLR(FD = 1|d1 = H+),

where

LLR(FD = 1|d1 = H+) = log

∑

t1∈N

∑N
k=1

1
k
P+(t1=T1 = T, nFD(T)=k|d1=H+)

∑

t1∈N

∑N
k=1

1
k
P−(t1 = T1=T, nFD(T)=k|d1=H+)

.

This term has the same form as in the case of two agents

and is negative for 0 < c < 1 for the same reason: Common

observations are likely to be in agreement with the decision of

the first decider. However, when the first decider is wrong, in-

dependent observations of the other observers are more likely

to point away from the first decision threshold than when the

first decision is correct. Thus, the first decider is less likely to

be correct than a randomly selected agent when 0 < c < 1, in

agreement with simulation results. Moreover, the difference

between the numerator and denominator grows with the num-

ber of agents, reflecting the additional information provided

by having even more undecided agents [Fig. 2(b)]. Other

agents will make observations countering the first decision

when it is incorrect, and consistent with it when it is correct.

033020-11



MEGAN STICKLER et al. PHYSICAL REVIEW RESEARCH 5, 033020 (2023)

[1] J. I. Gold and M. N. Shadlen, Banburismus and the brain:

Decoding the relationship between sensory stimuli, decisions,

and reward, Neuron 36, 299 (2002).

[2] R. Bogacz, E. Brown, J. Moehlis, P. Holmes, and J. D. Cohen,

The physics of optimal decision making: A formal analysis of

models of performance in two-alternative forced-choice tasks,

Psych. Rev. 113, 700 (2006).

[3] L. Chittka, P. Skorupski, and N. E. Raine, Speed–accuracy

tradeoffs in animal decision making, Trends Ecol. Evol. 24, 400

(2009).

[4] R. Bogacz, E.-J. Wagenmakers, B. U. Forstmann, and S.

Nieuwenhuis, The neural basis of the speed–accuracy tradeoff,

Trends Neurosci. 33, 10 (2010).

[5] R. Ratcliff, A theory of memory retrieval, Psych. Rev. 85, 59

(1978).

[6] L. Chittka, A. G. Dyer, F. Bock, and A. Dornhaus, Bees trade

off foraging speed for accuracy, Nature (London) 424, 388

(2003).

[7] W. T. Newsome, K. H. Britten, and J. A. Movshon, Neuronal

correlates of a perceptual decision, Nature (London) 341, 52

(1989).

[8] N. Uchida and Z. F. Mainen, Speed and accuracy of olfactory

discrimination in the rat, Nat. Neurosci. 6, 1224 (2003).

[9] J. A. Swets, W. P. Tanner Jr., and T. G. Birdsall, Decision

processes in perception, Psych. Rev. 68, 301 (1961).

[10] J. I. Gold and M. N. Shadlen, The neural basis of decision

making, Annu. Rev. Neurosci. 30, 535 (2007).

[11] T. Bose, A. Reina, and J. A. R. Marshall, Collective decision-

making, Curr. Opin. Behav. Sci. 16, 30 (2017).

[12] A. B. Kao and I. D. Couzin, Decision accuracy in complex

environments is often maximized by small group sizes, Proc.

R. Soc. B: Biol. Sci. 281, 20133305 (2014).

[13] A. S. Gerber, D. Karlan, and D. Bergan, Does the media matter?

A field experiment measuring the effect of newspapers on vot-

ing behavior and political opinions, Am. Econ. J. Appl. Econ.

1, 35 (2009).

[14] T. J. Valone, Group foraging, public information, and patch

estimation, Oikos 56, 357 (1989).

[15] W. Mensi, M. Beljid, A. Boubaker, and S. Managi, Corre-

lations and volatility spillovers across commodity and stock

markets: Linking energies, food, and gold, Econ. Model. 32, 15

(2013).

[16] R. Moreno-Bote, Decision confidence and uncertainty in dif-

fusion models with partially correlated neuronal integrators,

Neural Comput. 22, 1786 (2010).

[17] B. Karamched, M. Stickler, W. Ott, B. Lindner, Z. P.
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of evidence accumulation in changing environments, SIAM

Rev. 58, 264 (2016).

[22] B. Karamched, S. Stolarczyk, Z. P. Kilpatrick, and K. Josić,
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