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Abstract

The cerebellum is considered a “learning machine” essential for time interval estimation underlying motor coordination and other

behaviors. Theoretical work has proposed that the cerebellum’s input recipient structure, the granule cell layer (GCL), performs

pattern separation of inputs that facilitates learning in Purkinje cells (P-cells). However, the relationship between input reformat-

ting and learning has remained debated, with roles emphasized for pattern separation features from sparsification to decorrela-

tion. We took a novel approach by training a minimalist model of the cerebellar cortex to learn complex time-series data from

time-varying inputs, typical during movements. The model robustly produced temporal basis sets from these inputs, and the re-

sultant GCL output supported better learning of temporally complex target functions than mossy fibers alone. Learning was opti-

mized at intermediate threshold levels, supporting relatively dense granule cell activity, yet the key statistical features in GCL

population activity that drove learning differed from those seen previously for classification tasks. These findings advance testa-

ble hypotheses for mechanisms of temporal basis set formation and predict that moderately dense population activity optimizes

learning.

NEW & NOTEWORTHY During movement, mossy fiber inputs to the cerebellum relay time-varying information with strong intrin-

sic relationships to ongoing movement. Are such mossy fibers signals sufficient to support Purkinje signals and learning? In a

model, we show how the GCL greatly improves Purkinje learning of complex, temporally dynamic signals relative to mossy fibers

alone. Learning-optimized GCL population activity was moderately dense, which retained intrinsic input variance while also per-

forming pattern separation.

basis set; cerebellum; granule cell; learning; pattern separation

INTRODUCTION

The cerebellum refines movement and maintains cali-
brated sensorimotor transformations by learning to predict
outcomes of behaviors through error-based feedback (1–5). A
major site of cerebellar learning is in the cerebellar cortex,

where Purkinje cells (P-cells) receive sensorimotor informa-
tion from parallel fibers (6) whose synaptic strengths are
modified by the conjunction of presynaptic (parallel fiber)
activity and climbing fiber inputs to P-cells thought to

convey instructive feedback (7–10). P-cell activity is charac-
terized by rich temporal dynamics during movements, rep-
resenting putative computations of internal models of the
body and the physics of the environment (11, 12). Parallel
fibers are the axons of cerebellar granule cells (GCs), a huge
neuronal population (comprising roughly half of the neurons

in the entire brain; 13), which are the major recipient of ex-
trinsic inputs to the cerebellum. Thus, understanding the
output of the GCL is key in determining the encoding
capacity and information load of incoming activity projected
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to the cerebellum. Inputs to GCs arise from mossy fibers

(MFs), which convey sensorimotor information for P-cell
computations (14–16). There are massively more GCs than
MFs and each GC typically receives input from just four MFs

(17), such that the information carried by each MF is spread
among many GCs, but each GC samples from only a tiny
fraction of total MFs (18, 19).

The GCL has been the focus of theoretical work spanning

decades, which has explored the computational advantages
of the unique feedforward architecture of the structure.
Notably, early studies of the cerebellar circuit by Marr (20)

and Albus (21) proposed that a key component of the cerebel-
lar algorithm is the sparse representation of MF inputs by
GCs. In this view, the cerebellum often must discriminate
between overlapping, highly correlated patterns of MF activ-

ity with only subtle differences distinguishing them (22).
Sparse recoding of MF activity in a much larger population
of GCs (“expansion recoding”) increases the dimensionality

of population representation and transforms correlated MF
activity into independent activity patterns among a subset of
GCs (23–25). These decorrelated activity patterns are easier

to distinguish by learning algorithms operating in P-cells,
leading to better associative learning and credit assignment
(23, 26, 27).

The machine learning perspective of the Marr-Albus

theory tends to assume that the cerebellum is presented
with a series of static input patterns that must be distin-
guished and categorized. However, during movements, neu-
ronal population dynamics are rarely, if ever, static. Mauk

and Buonomano (3) revisited cerebellar expansion recoding
in the context of temporal encoding, a necessary computa-
tion for the cerebellar-dependent task of delay eyelid condi-

tioning. They proposed that a static activity pattern in MFs
could be recoded in the GC layer as a temporally evolving set
of distinct activity patterns, termed a temporal basis set (26,

28–31). P-cells could learn to recognize the GC activity pat-
tern present at the correct delay and initiate an eyeblink to
avert the “error” signal representing the air puff to the eye.

This transformative theory has given rise to an emerging lit-
erature exploring mechanisms of basis set formation. A vari-
ety of mechanisms have been proposed for how such time-
varying population activitymight emerge, including local in-

hibition, short-term synaptic plasticity, diverse unipolar
brush cell properties, and varying GC excitability (32–40,
42–49).

Despite these promising avenues, the problem of learning

more complex movements presents a distinct set of ques-
tions about how the cerebellum processes and uses time-var-
iant inputs to learn complex P-cell signals, a type of time

series. Therefore, to test how expansion recoding of time-
varying input contributes to learning, we used a simple
model of the GCL and a time-series prediction task to explore

the effect of putative GCL-filtering mechanisms on expan-
sion recoding and learning. Similar to previous models, this
simplified model made GC activity sparser relative to MF
inputs (20, 21) and increased the dimensionality of the input

activity (25) while preserving information (50). The model
greatly enhanced learning accuracy and speed by P-cells on
a difficult time-series prediction task when compared with

MF inputs alone. Together, these results suggest that the cer-
ebellar GCL provides a rich basis for learning in downstream

Purkinje cells, providing a mixture of lossless representation

(50) and enhanced spatiotemporal representation (25) that

are selected for by associative learning to support the learn-

ing of diverse outputs that support adaptive outputs in a va-

riety of tasks (51, 52).

METHODS

Model Construction

The model presented here incorporated only the domi-

nant features of the granule cell layer (GCL) circuit anatomi-
cal organization and physiology. The features chosen for the

model were the sparse sampling of inputs (GCs have just 4

synaptic input branches in their segregated dendrite com-

plexes on average), which was reflected in the connectivity
matrix between the input pool and the GCs, where each GC

received four inputs with weights of 1/4th (i.e., 1 divided by

the number of inputs; 1/M) of the original input strength,

summing to a total weight of 1 across all inputs. The other
features were thresholding, representing inhibition from

local inhibitory Golgi neurons and intrinsic excitability of

the GCs. The degree of inhibition and intrinsic excitability

(threshold) was a free parameter of the model, and the dy-
namics were normalized to the z-score of the summated

inputs. This feature reflects the monitoring of inputs by

Golgi cells while maintaining simplicity in their mean out-

put to GCs. Although this model simplifies many aspects of

previous models of the GCL, it recreated many of the impor-
tant features of those models, suggesting that the sparse

sampling and firing are the main components dictating GCL

functionality.
The model, in total, uses the following formulas to deter-

mine GC output:

GCiðtÞ ¼
X

kM

k1

MFkðtÞ

M
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@

1

A� h
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þ

ð1Þ

where k is a random selection ofMMFs from the MF popula-

tion. The inputs are summed and divided by the total num-
ber of MF inputs to the GC, M, so that their total weight is

equal to 1. Unless noted as a variable, we usedM = 4, reflect-

ing the mean connectivity between MFs and GCs, and the

optimal ratio for expansion recoding (25), and the point of

best input variance retention (Fig. 5). This function is then
linearly rectified, i.e., ½x�þ ¼ x if x > 0 and 0 otherwise so

that there are no negative rates present in the GC activity.

The h function, which determines the threshold, estimating

the effects of intrinsic excitability and feedforward inhibi-
tion, was formulated as:

h ¼ MF þ ðz � rðMFÞÞ ð2Þ

Here, z sets the number of standard deviations from the

MFmean. z is the only free parameter, which determines the

minimum value below which granule cell activity is sup-
pressed. Therefore, we report z as the “threshold.” Note that

the summated MF inputs are divided by the number of

inputs per GC (M) in Eq. 1 such that their received activity

relative to h is proportional to the input size, M. As the input
to GCs is Gaussian in our model, the summed activity inte-

grated by the GCs is Gaussian as well. For that reason, we

found it convenient to define the GC thresholding term in
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terms of a z-score. Thus, a GC with a threshold of “zero” has

its threshold set at the mean value of its MF inputs; such a

GC would be silent 50% of the time on average because the

Gaussian presynaptic input would be below the mean value

half the time. This makes it possible to discuss functionally

similar thresholds across varying network architectures (e.g.,

a GC with a threshold of zero would discard half of its input

on average regardless of whether it received 2 or 8 MF

inputs).

OU Input Construction

To provide a range of inputs with physiological-like tem-

poral properties that could be parameterized, we used a class

of randomly generated signals called Ornstein-Uhlenbeck

processes (OU), defined by the following formula:

OUðtÞ ¼ ðOUðt� DtÞ � e �Dt
sð ÞÞ þ ðr �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � e�2�Dt
s

p

� RÞ

ð3Þ

Here, t is the time point being calculated, Dt is the time

interval (the time base is inms and Dt is 1 ms). r is the prede-

termined standard deviation of the signal, and R is a vector

of normally distributed random numbers. This process bal-

ances a decay term, the exponential with e raised to �Dt/s,

and an additive term which introduces random fluctuations.

Without the additive term, this function decays to zero as

time progresses. For all simulations, unless noted otherwise,

s was 100 ms. This resulted in a mean autocorrelation s of

502 ± 52 ms, which was intermediate between pontine neu-

rons and reach-related electromyograms autocorrelation s of

351 ± 120 ms and 567 ± 151 ms, used below as model inputs,

respectively. After the complete function has been calcu-

lated, the desired mean is added to the time series to set the

mean to a predetermined value.
The vector R can also be drawn from a matrix of corre-

lated numbers, as was the case in Fig. 7 and Supplemental

Fig. S3, B and C. These numbers were produced with the

MATLAB functions randn() for normal random numbers,

and mvnrnd() for matrices with a predetermined covari-

ance matrix supplied to the function. The covariance ma-

trix used for these experiments was always a 1-diagonal

with a constant, predetermined, covariance value on the

off-diagonal coordinates.

Introduction of Noise to Input and GCL Population

To test whether fluctuations riding on input signals influ-

ence GCL basis set formation, we introduced Gaussian noise

that was recalculated trial to trial and added it to the MF

input population. The amplitude of the introduced noise

was scaled to the amplitude of the input so that the propor-

tion of the signal that is noise could be described with a per-

centage: % Noise = 100 � Noise Amp./(Signal Amp. þ noise

Amp.). For example, if the amplitude of the noise was equal

to the amplitude of the input, the % noise would be equiva-

lent to 1/(1 þ 1) = 0.5 or 50% noise.
To determine the stability of representations in the MF

and GCL populations with introduced noise, we measured

the displacement of the temporal location where peak firing

occurred between noiseless and noisy activity patterns at

threshold 0 (unless noted). This measurement was rectified

to obtain the absolute displacement of peak firing time.

Learning Accuracy and Speed Assay

To understand how the GCL contributed to learning, we

constructed an artificial Purkinje cell (P-cell) layer. The P-

cell unit learned to predict a target function through a gradi-

ent descent mechanism, such that the change in weight for

each step was:

ErrðtÞ ¼ jPðtÞ � TFðtÞj ð4Þ

DWi ¼ Wi � ðErrðtÞ � GCi ðtÞ � gÞ ð5Þ

where P(t) is the output of the P-cell at time t, TF(t) is the

target function at time t, Wi is the weight between the

Purkinje cell and the ith GC, and g is a small scalar termed

the “step size.” g was 1E-3 for GCs, and 1E-5 for MF alone

in simulations shown in this study where the step size

was held fixed, which was chosen to maximize learning

accuracy and stability of learning for both populations.

Although not strictly physiological because of membrane

time constant temporal filtering and variable eligibility

windows for plasticity, this form of learning is widely

applied in neural models, including cerebellar (e.g., Ref.

53). Physiological equivalents of negative weights found

by gradient descent could be achieved by molecular layer

interneuron feedforward inhibition to P-cells. The learn-

ing process in Eqs. 4 and 5 was repeated for T trials at ev-

ery time point in the desired signal. The number of trials

was chosen so that learning reached asymptotic change

across subsequent trials. Typically, 1,000 trials were

more than sufficient to reach asymptote, so that value

was used for the experiments in this study.
The overall accuracy of this process was determined by

calculating the mean squared error between the predicted

and desired function:

MSE ¼
1

T

X

T

t¼1

ðPðtÞ � TFðtÞÞ2 ð6Þ

The learning speed was determined by fitting an exponen-

tial decay function to the MSE across every trial and taking

the s of the decay (seeGCL OutputMetrics).

GCL Output Metrics

To assay the properties of the GCL output that influence

learning, we measured the features of GCL output across a

spectrum of metrics that have theoretically been associated

with GCL functions like pattern separation or expansion,

as well as optimization or cost-related metrics developed

for this paper. These included dimensionality, spatiotem-

poral sparseness, contributing principal components,

spatial sparseness (mean population pairwise correlation),

temporal sparseness (mean unit autocovariance exponen-

tial decay), population variance, temporal lossiness, popu-

lation lossiness, and temporal cover.
We considered three forms of lossiness here, two related

to the dimensions of sparseness considered above, time

and space, and one that is a measure of sparseness on the

individual GC level. Temporal lossiness is a measure of

the percentage of time points that are not encoded by any

members of the GCL population, essentially removing the

ability of P-cells to learn at that time point and producing
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no output at that time in the final estimation of the target

function. Increases in the value are guaranteed to de-
grade prediction accuracy for any target function that
does not already contain a zero value at the lossy time
point.

Temp:Lossiness ¼
1

T

X

T

t¼1

xt where xt

X

N

i¼1

GCiðtÞ

 !
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else ¼ 0
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>
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>

>

;

ð7Þ

Here, T is the total number of points in the encoding
epoch, the bracketed portion of the formula is a summation
of inputs from all GCs (N = population size) at that time
point. When all GCs are silent, the sum is 0, and the temporal
lossiness is calculated as 1, and when all time points are cov-
ered by at least one GC, total temporal lossiness is 0.

Spatial lossiness, or population lossiness, is the proportion
of GCs in the population that are silent for the entirety of the
measured epoch. This is thought to reduce total encoding
space and deprive downstream P-cells of potential informa-
tion channels and could potentially impact learning efficacy.
It is defined as

Pop: Lossiness ¼
1

N

X

N

i¼1

xi where xi

X
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Here, N is the total population size of the GCL, and the
bracketed portion of the formula is a sum of the activity of
GCs across all time points, such that if a GC is silent across
all time points, xi is calculated as 1, indicating the “loss” of
that GC unit’s contribution. When all GCs are silent, popula-
tion lossiness is 1, and when all GCs are active for at least one
time point, population lossiness is 0.

In addition, we looked at the mean sparseness of activity
across the population by measuring the “coverage” or pro-
portion of time points each GCwas active during, defined as:

Coverage ¼
1

N

X

N

i¼1

1

T

X

T

t¼1

xi where xi
GCiðtÞ > 0 ¼ 1

else ¼ 0

� �

 !

ð9Þ

As before, N is the number of cells in the population
and T is the total length of the epoch. The bracketed func-
tion counts the number of time points where GCi is active

and divides that by the total time period length to get the
proportion of time active. This value is summed across all
GCs and divided by N to calculate the average coverage in
the population. This value has strong synonymy with pop-
ulation variance, so it was not used for fitting assays in
later experiments (Fig. 6), but reflects the effect of thresh-
olding on average activity in the GCL population.

Dimensionality is a measure of the number of independ-
ent dimensions needed to describe a set of signals, similar in
concept to the principal components of a set of signals. This
measure is primarily influenced by the covariance between
signals, and when dimensionality approaches the number of
signals included in the calculation (n), the signals become

progressively independent. The GCL has previously been

shown to enhance the dimensionality of input sets and does
so in the model presented here too. Dimensionality is calcu-
lated with

Dim ¼
X

n

i¼1

ki

 !2

=
X

n

i¼1

ki
2

 !

ð10Þ

provided by Litwin-Kumar et al. (25). This is the ratio of the
squared sum of the eigenvalues to the sum of the squared
eigenvalues of the covariancematrix of the signals.

Spatiotemporal sparseness (STS) was a calculated cost
function meant to measure the divergence of GC popula-
tion encoding from a “perfect” diagonal function where
each GC represents one point in time and does not over-
lap in representation with other units. This form of repre-
sentation is guaranteed to produce perfect learning, and
transformations between the diagonal and any target
function can be achieved in a single learning step, mak-
ing this form of representation an intriguing form of GCL
representation, if it is indeed feasible. We calculated the
cost as

STS ¼ ð1� Lt Þ �
1

T

� �

�
W

GCw

� �

ð11Þ

where (1 – Lt) is the cost of temporal lossiness, defined
above (Eq. 7), and T is the total length of the epoch. W is
the number of unique combinations (termed “words,”
akin to a barcode of activity across the population) of GCs
across the epoch at each point of discrete time, and GCw is
the average number of words that each GC’s activity con-
tributes to. The intuition used here is that when there is
no temporal lossiness, all points in time are represented,
leading the 1 – Lt term to have no effect on the STS equa-
tion, and when W, the number of unique combinations of
GC activities is equal to T, then each point in time has a
unique “word” associated with it. Finally, when GCw is 1,
W/GCw is equal to W, which only occurs when each GC
contributes to a single word. When these conditions are
met, STS = 1, otherwise when GCs contribute to more than
one word, GCw increases and W is divided by a number
larger than 1, decreasing STS. Alternately, when there are
not many unique combinations, such as when every GC
has the exact same output, W/GCw is equal to (1/T),
decreasing STS. Finally, because lossiness causes the
occurrence of a “special,” but nonassociable word, we
multiplied the above calculations by (1 – Lt) to account for
the effect of the unique nonencoding word (i.e., all GCs
inactive) on distance from the ideal diagonal matrix.

Mean temporal decay, i.e., temporal sparseness, is a mea-
sure of variance across time for individual signals, where a
low value would indicate that the signal’s coherence across
time is weak, meaning that the signal varies quickly, whereas
a high value would mean that trends in the signal persist for
long periods. This value is extracted by fitting an exponential

decay function to the autocovariance of each unit’s signal
andmeasuring the s of decay in the function

y ¼ a � eð�x=sÞ ð12Þ
This is converted to the ms form by taking the ratio of

1,000/s. y here s is a description of the autocovariance of the
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activity of a MF or GC signal, so when the descriptor s is a

large number, the decay in autocovariance is longer, or

slower, when s is a small number, the autocovariance across

time decays more quickly, making the change in activity

faster.
Although dimensionality and STS are metrics rooted in

a principled understanding of potentially desirable prop-

erties of population encoding, the gradient descent algo-

rithm can extract utility from population statistics that

are much noisier and correlated than the ideal popula-

tions that dimensionality and STS account for. To mea-

sure a more general pattern separation feature in GCL

output that could still be associated with the complex tar-

get function, we turned to principal component analysis

(PCA) with the intuition that components that explain

variance in the GCL output could be used by the down-

stream Purkinje cell units to extract useful features from the

input they receive (54). We parameterized the utility of this

measure by taking the proportion of the PCs derived from the

GCL output which explained variance (of the GCL output) in

that population by more than or equal to 1/N, where N is the

number of GCs, suggesting that they explain more variance

than would be expected from chance.
Population correlation was measured by taking the mean

correlation between all pairwise combinations of GCs using

the corr() function in MATLAB and excluding the diagonal

and top half of the resultant matrix.
Population aggregate variance is a measure related to the

expansion or collapse of total space covered by the encoding

done by a population, and higher or expanded values in this

metric are thought to assist in pattern separation and classi-

fication learning.

Pop: Var ¼
X

N

n¼1

ðxn � lÞ2 ð13Þ

As shown in Cayco-Gajic et al. (23), here, x is the activity of

one of N cells across a measured epoch, and μ is the mean of

that activity. This value is reported relative to the number

of GC units, such that Pop. Var reported in Fig. 6 is normal-

ized to Pop. Var/N.

Variance Retained Assay

To test the recovery of inputs by a feedforward network

with a granule cell layer (GCL), we used explained variance,

R2, to quantify the quality of recovery of a sequence of nor-

mal random variables (Fig. 5) across Nw = 1,000 numerical

experiments. To distinguish this metric from the MSE and

R2 metrics to evaluate other models in the study, we rename

this “variance retained.” Within each numerical experiment

i, at each time point, a vector of inputs xt of length M (repre-

senting the mossy fiber, MF, inputs) was drawn from an

M-dimensional normal distribution with no correlations,

xt�Nð0; IMÞ. This vector is then left-multiplied by a random

binary matrix W with N rows and M columns with n 1’s per

row and the rest zeros, followed by a threshold linearization

to obtain the GCL output, yt ¼ ½Wxt � z�þ with threshold.

This process is then repeated T = 1,000 times and a down-

stream linear readout was fit to optimally recover xt from

yt. It can be shown that multivariate linear regression

[MATLAB’s regress() function, employing least squares to

minimize mean squared error] solves this problem, identify-

ing for each MF input stream x
j

1:T, the optimal weighting B1:T

from the GCL to estimate x̂
j

1:T ¼ Bj;1:Ny1:T. Across time t = 1:T,

we then computed the squared error across the vector,

MSEi ¼
P

T

t¼1

P

M

j¼1

ðx̂
j
t � x

j
t Þ

2, as well as the summed variance of

the actual input, Vari ¼
1

MT

P

M

j¼1

P

T

t¼1

ðx
j
t � �xjÞ2, where �xj ¼ 1

T

P

T

t¼1

x
j
t

is the mean of the jth MF input stream. Lastly, to compute

variance explained, we take R2 ¼ 1�

PNw

i¼1
MSEi

PNw

i¼1
Vari

, so the higher

the relative mean-squared error is, the lower the variance

explained will be. To generate the panels in Fig. 5, we always

kept the number of time points and experiments the same, but

varied the threshold along the axis and the number of inputs n
per GC output (Fig. 5B), the total number of GC outputs N and

input per output n (Fig. 5C), number of inputs M and outputs

N (Fig. 5D), and finally the number of inputs per GC output n

alongwith the total number of outputsN (Fig. 5E).

Generation of GCL Output with Defined Statistical
Structure

To determine if the sparseness measures had inherent

benefits for learning, we supplemented the GCL output with

OU processes with known temporal and correlational proper-

ties to examine their effect on learning accuracy (Fig. 7;
Supplemental Fig. S3). We varied the temporal properties by

systematically varying the s value in the exponential decay

function. To vary population correlation, the random draw

function in the OU process was replaced with a MATLAB

function, mvnrnd(), which allowed for preset covariance val-

ues to direct the overall covariance between random sam-
ples. We used a square matrix with 1 s on the diagonal and

the desired covariance on all off-diagonal locations for this

process and varied the covariance to alter the correlation

between signals. The OU outputs from this controlled pro-

cess were then fed into model P cells with randomized OU

targets, as per the normal learning condition described in
Eqs. 4 and 5. To vary the effect of the input population size,

the size of the supplemented population varied from 10 to

3,000 using a s of 10 and drawing from normal random

numbers.
To measure the effects of STS on learning, a diagonal ma-

trix was used at the input to a Purkinje unit, which repre-
sented population activity with an STS of 1 (see Eq. 11 under

GCL Output Metrics). To degrade the STS metric, additional

overlapping activity was injected either by expanding tem-

poral representation or at random, for example, adding an

additional point of activity causes inherent overlap in the di-

agonal matrix, increasing the GCw denominator of Eq. 11 to
(1 þ 2/N) because the overlapping and overlapped units now

each contribute to 1 additional neural word. This process

was varied by increasing the amount of overlap to sample

STS from 0 to 1.

Statistics of GCL Output Metrics and Learning

To estimate the properties of GCL output that contribute

to enhanced learning of time series, we used multiple lin-

ear regression to find the fit between measures of GCL
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population activity and observed MSE in learning. Because

there are large inherent correlations between the metrics

used (dimensionality, spatiotemporal sparseness, explana-

tory principal components of the GC population, population

variability, mean pairwise GC correlation, temporal sparse-

ness, temporal lossiness, population lossiness, and input var-

iance retained), we used two linear regression normalization

techniques: LASSO and RIDGE regression. For Fig. 7, LASSO

was used to isolate the “top” regressors, whereas RIDGE was

used in Fig. 8 to preserve small contributions from regres-

sors. The RIDGE regression method was then used to com-

pare resultant regression slopes (b coefficients) to changes

in task parameters (see METHODS, Simulation of Cerebellar

Tasks).
Regressions were performed using the fitrlinear() function

in MATLAB, with LASSO selected by using the “SpaRSA”

(sparse reconstruction by separable approximation; 55)

solver, and RIDGE selected with the “lbfgs” (limited-memory

BFGS; 56) solver techniques. The potential spread of MSE in

the models was determined using a K-fold validation tech-

nique, with 10 “folds” used, as well as for determining the

range of absolute slopes shown in Fig. 8C, of which the mean

and standard deviation of cross-validation trials are plotted

with solid lines and shaded polygons, respectively. Models

were selected by choosing the model with the least complex

fitting parameters (i.e., the model with the highest Lambda)

while still falling within the bounds of the model with the

minimized MSE plus the standard error (a standard “1SE”

method).
We reasoned that interactions between explanatory GCL

statistical featuresmight account for observed learning accu-

racy to some degree. A standard method for selecting poten-

tial interactions while constraining the regression model to a

reasonable number of parameters is through selection by

Bayesian information criteria (BIC) stepwise regression. We

used the MATLAB stepwiselm() function with the BIC

method to select from our nine statistical features and

allowed the regression function to select potential interac-

tions between them. The output of the regression listed

which linear and interacting components best fit the model.

Although this output also included the b values of the fits,

they were not regularized in a way that was intuitively inter-

pretable, so we therefore transferred the BIC-selected param-

eters to a RIDGE regressor to get the final b values and fit.
To convey the overall contribution of regressors to the

above models of MSE, the slope relative to the magnitude of

all slopes were used as plottedmetrics (Fig. 8C).

Pontine Neuron Activity Patterns

To investigate the properties of GCL filtering on physio-

logical inputs to the cerebellar cortex, we extracted record-

ings of pontine neurons, a primary source of mossy fibers,

from the work of Guo et al. (41) during a reaching task in

mice. We used the first 50 neurons for the recording to

keep MF counts similar to the modeled OU population and

applied a 100-ms Gaussian filter to the raw spiking data,

aligned to reach onset, to obtain the estimated firing rate.

The firing rate values were range normalized for display

and filtering (Fig. 1, B and E) and are shown in order of

their peak firing rate time.

Simulation of Cerebellar Tasks

To simulate the transformation between motor com-
mands and kinematic predictions, we used human EMG as a
proxy for a motor command-like input signal to the GCL.
Thirty muscles from 15 bilateral target muscles were used

(57, 58). The target function was a kinematic trajectory
recorded simultaneously with the recordings of EMG used
for the study. Although many body parts and coordinate
dimensions were recorded of the kinematics, we opted to use

the kinematic signal with the largest variance to simplify the
experiment to a single target function.

Code Availability

All computer code and simulation data is freely avail-
able at https://github.com/jesse-gilmer/2022-GCL-Paper.

Supplemental Figures are available at https://doi.org/10.
6084/m9.figshare.21763943.v1.

RESULTS

Temporal Basis Set Formation as Emergent Property of
GCL Filtering of Time-Varying Inputs

In many motor tasks, both mossy fibers and P-cells show
highly temporally dynamic activity patterns, raising the ques-

tion of how GCL output supports time-series learning using
time-varying inputs, a divergence from traditional classifica-
tion tasks used inmost cerebellar models (Fig. 1; 59).

We used a simple model, similar to previously published
architectures (23, 25, 50), capturing the dominant circuit fea-

tures of the GCL; sparse sampling of mossy fiber (MF) inputs by
postsynaptic granule cells (GCs) and coincidence detection regu-
lated by cellular excitability and local feedforward inhibition
(Fig. 1A; Eqs. 1 and 2; 17, 20, 21, 34, 60). GC output is generated
by summing MF inputs and thresholding the resultant sum;

anything below threshold is set to zero while suprathreshold
summed activity is passed on as GC output (Fig. 1A, middle).
The GC threshold level represents both intrinsic excitability and
the effect of local inhibition on regulating GC activity.

We fed two naturalistic sources of cerebellar inputs to the

model: recordings from the mouse pontine nucleus (PN, Fig.
1B, reanalyzed data previously published in Ref. 41) and elec-
tromyograms measured during reaching tasks (EMG, Fig. 1C,
reanalyzed data fromRef. 57). In both cases, the GCL enhanced
the spatiotemporal representation of input activity. To parame-

terize such time-varying inputs, we next generated artificial
MF activity using Ornstein-Uhlenbeck (OU) stochastic proc-
esses. These signals provide a statistically tractable ensemble
that was rich enough to capture the dynamic nature of natural-

istic inputs while remaining analytically tractable and easily
parameterized, fully characterized by just three parameters:
correlation time, mean, and standard deviation. Example OU
input functions are shown in Fig. 1D (top). Importantly, OU
functions preserve autocorrelations typical of physiological sig-

nals, such that they are not random frommoment-to-moment
(Fig. 1D, s of 100 ms). All OUMFs had the same s and were not
correlated with one another. As with the naturalistic inputs,
the model GCL spatiotemporally diversified OU processes Fig.

1D (exploredmore thoroughly below). The emergence of sparse
spatiotemporal representation under the simplistic constraints
of the model suggests that the cerebellum’s intrinsic circuitry
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is sufficient to produce spatiotemporal separation when given

sufficiently time-varying inputs. Below, we refer to the trans-

formation of information between GCL inputs and outputs as

“GCL filtering.”

GCL Temporal Basis Is Robust to Noise

By relying on coincident peaks in time-varying mossy

fibers, this mechanism of spatiotemporal sparsening raised

the question of whether such temporal basis sets were robust

to noise. To address whether noise degrades spatiotemporal

representation, we ran repeated simulations, adding Gaussian

noise that changed from trial to trial to fixed OU functions,

and compared the resultant GCL basis sets (Fig. 2). We mod-

eled trial-over-trial noise variance by superimposing a

Gaussian fluctuation such that the overall proportion of the

total signal was noise ranged from 25%–50%.
GCL population activity was generally stable across noise

levels (Fig. 2B). To quantify stability, we measured the shift

in the time of peak rate for each GC over 100 trials at thresh-

old of 0. Fifty percent of granule cells shifted 10 ms or less in

the 25% noise condition (Fig. 2C, left) and 50% shifted less

than 30 ms when 50% of the signal was unstable noise

(Fig. 2C, right). Thus, although the basis set structure is not

perfectly resistant to noise, the primary temporally correlated

OU signal dominates the population’s temporal structure. The

effect of high noise on the stability of the temporal basis was

dependent on threshold; higher thresholds coupled with

higher noise degraded temporal stability. At a threshold of 0,

the mean time shift was 136 ms. While at a threshold of 1, the

mean time shift was 305ms.

GCL Improves Time-Series Learning Accuracy

If mossy fiber activity is naturally time-varying, it raises

the question of whether it, by itself, is intrinsically suited to

support time-series learning, obviating a role for the GCL (61,

Supplemental Fig. S1). To address this question, we tested

whether GCL population activity assisted learning beyond

the temporal representations inherent in the mossy fibers.

We devised a task where P-cells learned to generate specific

time-varying signals (OU process with 10 ms autocorrelation

time) using gradient descent (Eqs. 4 and 5, METHODS). Inputs

to P-cells were either MFs or GCL populations. Initially, P-

cell output was distinct from the target function, but over

repeated trials, P-cell output converged toward the target

Figure 1. Model architecture and effects

of thresholding on GCL population activity.

A: diagram of algorithm implementation.

Left shows Ornstein-Uhlenbeck (OU) proc-

esses (see METHODS) as proxies for mossy

fiber (MF, blue) inputs to granule cell units

(GCs, red), with convergence and diver-

gence of MFs to GCs noted beneath

MFs. GCs employ threshold-linear filtering

shown beneath the red parallel fibers. GC

outputs are then transmitted to down-

stream Purkinje cells (P-cells). P-cells learn

to predict target functions by reweighting

GC inputs. Differences between the predic-

tion and true target are transmitted as an

“error,” which updates synaptic weights to

P-cells. B–D: examples of MF inputs and

GCL outputs. B: emergence of temporal

basis sets in model GCLs using inputs

derived from pontine neuron recordings.

Top: pontine recordings in mice during pel-

let reaching task, aligned to reach onset at

0 ms. Bottom: model GCL output using PN

activity as input. C: same as B, but using

EMGs as MF inputs. Top: electromyogram

(EMG) recordings from human subject in

point-to-point reaching task (EMG). Bottom:

model GCL output using EMG as input. D:

same as B, but using OU functions as MF

inputs. Bottom: model GCL output using

OU processes as inputs. The model GCL

enhanced spatiotemporal representation

for all three input types (B–D). GCL, granule

cell layer.
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function (Fig. 4A). We quantified the convergence of the P-

cell output to the target function and compared performance

to instances when MF activity was sent directly to P-cells

(“MFs alone”). GCL activity was used as P-cell input. Finally,

we examined performance of these learning simulations

across different thresholds, expressed in terms of a z-score,

such that a threshold of “zero” indicates the threshold is at

themean of MF input.
The model achieved excellent learning with either MFs or

GCL inputs. Notably, the GCL markedly enhanced the con-

vergence to a target function at thresholds between –1 and 1

(Fig. 3A), achieving a minimized mean-squared error (MSE)

of roughly 0.005, outperforming learning using MFs alone

(MSE 0.02; normalized to a range of [0,1]). To establish an

intuition into the practical difference of the range of MSEs

achieved with GCL or MFs alone, we tasked the model with

learning a time series which could be rendered as a recogniz-

able image to human viewers (Fig. 3B). This function had an

identical range of target function values ([0,1], Fig. 3B). GCL

inputs facilitated P-cell time-series learning that recapitu-

lated the recognizable image (Fig. 3B, bottom; MSE 0.002).

By contrast, P-cells that received MFs alone generated a time

series that rendered an unrecognizable image, despite the

seemingly excellent MSE of 0.02. Thus, the small errors of

MF-driven output accumulated along the time series to

degrade performance, while GCL-driven P-cell output

yielded an easily recognizable image (Fig. 3B, top right vs.

three thresholds, bottom). Importantly, this was not a con-

sequence of the large population expansion between MFs

and GCs, as increasing the number of MFs alone did not

improve performance to the levels observed in the model

GCL (Supplemental Fig. S1, A and B). Nevertheless, a suffi-

ciently large GCL population is required to improve learn-

ing (Supplemental Fig. S1B).

GCLModel Speeds Time-Series Learning

Having found that the GCL improves the match between

predicted output and target output over a range of thresh-

olds, we next examined whether the GCL also increased the

speed of convergence. We examined the MSE between the

model output and the target function on each trial as train-

ing progressed (Fig. 4C, red circles) and found that output

usually converged rapidly at first then more slowly in later

stages of training (Fig. 4A). The reduction in MSE over train-

ing in our model was reasonably well fit by a double expo-

nential (Fig. 4B, red curve) of the form

MSEðnÞ ¼ A1 e
ð�k1 nÞ þ A2 e

ð�k2 nÞ þ C

where n is the trial number. We measured the convergence

speed of a simulation by the rate constants k1 and k2. In the

vast majority cases, one of these rate constants was 5–50

times larger than the other; we denote the larger constant

kfast and the other kslow. For most parameter values, kfast
accounts for more than 80% of learning.

We next examined the influence of several key model pa-

rameters on convergence speed, such as threshold and gradi-

ent descent steps size. First, we looked at the effect of the GC

threshold. Learning was fastest for GCL thresholds near a z-

Figure 2. Effect of increased input noise on GCL peak activ-

ity timing. A: example MF input modeled as an OU process

without noise (left) and with (right). B: example of a GCL pop-

ulation with stable OU process as input (noiseless; left), and

the population with addition of noise (middle and right). The

granule cell (GC) population is ordered by timing of peak

rate in the noiseless condition. C: cumulative distribution of

peak rate time shift between “no noise” and 25% noise (left)

or 50% noise (right), with MFs in black and GCs in red. x-axis

is bounded to capture�85% of population. CDF step length

is 1 ms. GCL, granule cell layer; MF, mossy fiber; OU,

Ornstein-Uhlenbeck.
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score of zero (Fig. 4C, red circles), the level that filters out

half of the input received by a GC. Convergence in networks
that lack a GCL (MFs directly innervating P-cells) was consis-
tently slower (Fig. 4C, blue line) than networks with a GCL.
Convergence was also sped up by increasing the size of the
parameter jumps in synaptic weight space during gradient
descent (the “step size”), but only to a limited degree
(Supplemental Fig. S2). Indeed, at a GCL threshold of 0, con-
vergence speed decreased as the step size increased beyond
�10�6 (au). We speculated that this trade-off was a conse-
quence of a failure to converge in a subset of simulations.
To test this, we looked at the fraction of simulations that
converged toward a low MSE as a function of the update
magnitude. We found that the fraction of simulations that
converged (“fraction successful”) decreased with increasing
step size (Supplemental Fig. S3B); in simulations that did
not converge, the MSE increased explosively and synaptic
weights diverged. In such cases, we assume the large weight
updates made it impossible to descend the MSE gradient;
each network weight update drastically changed the cost
function such that local MSE minima were overshot. When
larger step sizes did permit convergence, progress was
nevertheless slowed, likely because the relatively large
learning rates led to inefficient progress toward the MSE
minimum.

Although larger step sizes eventually cause learning to
slow and then fail entirely at a given GCL threshold, higher
thresholds permitted larger step sizes before failures predo-
minated (Supplemental Fig. S2). Since higher thresholds per-
mit larger step sizes before convergence failure sets in,
convergence speed might be maximized by jointly opti-
mizing step size and GCL threshold. We tested this by sys-
tematically raising step sizes at each threshold until
convergence success fell to 50%. We defined the “maxi-

mum convergence rate” for a given threshold as the maxi-
mum convergence rate (derived from fitting the MSE
trajectory with a double exponential) yielding successful con-
vergence at least 50% of the time.We found that the threshold
giving the fastest convergence was indeed higher when step
size was also optimized (Supplemental Fig. S2) than when
step size was fixed (Fig. 4C). Thus, increased GCL threshold-
ing can allow the network to trade learning accuracy for
increased speed of learning.

Recovering GCL Input from GCL Output

Having established a framework for studying GCL process-
ing of time-varying inputs, we wanted to understand to what
extent thresholding GCL activity led to the loss of informa-
tion supplied by MF inputs, which potentially contains use-
ful features for learning. In other words, would Purkinje
neurons be deprived of behaviorally relevant mossy fiber in-
formation if these inputs are severely filtered by the GCL? To
assess this issue, we used a metric of information preserva-
tion called explained variance (62); however, in this special
case, we use the term “variance retained,” because this met-
ric represents the preservation of information about the
input after being subjected to filtering in the GCL layer and
we wanted to avoid confusing when describing linear regres-

sion results below. Let xt denote the MF input at time t. If the
GCL activity preserves the information present in xt, then it

Figure 3. Enhanced time-series learning using GCL model. A, top:

GCL output at different threshold levels. Bottom: relationship of

threshold level to learning accuracy (MSE) for Purkinje (P) cells fed

MFs directly (blue) or the output of the GCL (orange; error, standard

deviation). B, top left: P-cells were tasked with learning a complex

timeseries that could be rendered as an image recognizable to

humans, a cat with superimposed text. Top, right: if P-cells were fed

MF input directly, their best learning output was not recognizable as

a cat, despite seemingly low MSE of 0.02. Bottom: if P-cells were fed

GCL output, they learned timeseries that rendered a matching image,

with MSEs dependent on threshold, but varying between 0.0078 and

0.0016. This figure provides an intuitive sense of the practical differ-

ence between MSE of 0.02 and 0.0016, achieved with P-cells learn-

ing using MFs directly or with the support of GCL preprocessing. GC,

granule cell; GCL, granule cell layer; MF, mossy fiber; MSE, mean

squared error.

GCL TRANSFORMATIONS OF TIME-VARYING SIGNALS

J Neurophysiol � doi:10.1152/jn.00312.2022 � www.jn.org 167
Downloaded from journals.physiology.org/journal/jn at Univ of Colorado (132.174.250.143) on June 1, 2023.



should be possible to reconstruct the activity of MFs from

GCL activity (see METHODS for details on how this recon-

struction was performed). The variance retained is then

the mean-squared error between the actual MF input xt
and the reconstructed input, normalized by the MF input

variance:

R2 ¼ 1�

XT

t¼1
ðx̂t � xtÞ

2

XT

t¼1
Var½xt�

Our primary finding is that the GCL transmits nearly all of

the information present in the MF inputs even at fairly high

thresholds, but only if the GCL is sufficiently large relative to

the MF population. The threshold, feedforward architecture,

and relative balance of MF inputs and GC outputs all affect

the quality of the reconstruction. Variance retained by the

reconstruction layer decreased with the GC layer thresh-

old, since it masked some subthreshold input values (Fig.

5B). Allowing more MF inputs per GC recovered some of

this masked information, since some subthreshold values

are revealed through summing with sufficiently supra-

threshold values. However, these gains cease beyond a few

MF inputs per GC, since the exponential growth of MF

combinations rapidly exceeds the number that the GCs

can represent (20, 63).
To disentangle the information contained in the summed

inputs, many different combinations of inputs must be rep-

resented to disambiguate the contributions of each MF

input. Increasing the number of GCs generally increases the

variance retained, sincemore combinations of MF inputs are

represented and reveal subthreshold input values (Fig. 5C).

Interestingly, variance retained by the network varied non-

monotonically with the number of MF inputs (M) when the

number of GCs (N) was fixed. This is because having too few

MF inputs means there may not be a sufficient number of

combinations so that subthreshold values can be revealed

(by summing them with suprathreshold inputs), but having

too many saturates the information load of the GC layer (Fig.

5D). Lastly, when fixing the number of MF inputs and GCs,

there is an optimal number of MF inputs to each GC, which

aligns with the anatomical convergence factor of 4 MF/GC

(Fig. 5E), related to previous findings that suggest the best

way to maximize dimensionality in the GC output layer is to

provide sparse input from the mossy fibers (23, 25). Thus,

there are two key features that shape the information trans-

ferred to the GCL from theMF inputs. First, the way in which

MF inputs are combined to form the total input to each GC

determines how much information about subthreshold

inputs can be transferred through the nonlinearity. Second,

the total number of GC outputs determines how many MF

input combinations can be represented, so that, ultimately,

the random sums of MFs can be disentangled by the down-

stream reconstruction layer. Together, information transfer

requires a combined summation and downstream decorrela-

tion process accomplished by the three-layer feedforward

network.

General Statistical Features of GCL Population Activity

We were ultimately interested in which features of GCL

signal processing account for learning. As a first step, we

examined a variety of population metrics across threshold

levels, which had previously been proposed to support per-

ceptron learning. The first set of metrics related to pattern

separation are 1) dimensionality (Dim), 2) the number of ex-

planatory principal components (PCs), 3) spatiotemporal

sparseness (STS), and 4) population variability (See METHODS

for details). Most of these pattern separation metrics, (Dim,

PCs, and STS) showed nonmonotonic relationships with

threshold and peaked at thresholds ranging between 0.5 and

1.5 (Fig. 6, A and B). Population variability, however,

decreased with increasing thresholds (Fig. 6C). Intuitively,

this relationship captures the effect of low thresholds allow-

ing GC activity to relay themean input, with no pattern sepa-

ration occurring. With increasing threshold, GC activity is

driven by coincidence detection, leading to higher dimen-

sional population output. At high thresholds, inputs rarely

summate to threshold, leading to lost representation that

drives a roll-off in pattern separation within the population.

Notably, Dim, PCs, and STS peaked at higher thresholds

than peak learning performance, which was best at threshold

zero, thus none of these three pattern separation metrics

alone map directly to learning performance. Population vari-

ability (i.e., GCL variance per unit) is thought to aid classifi-

cation and separability of GCL output (23). This metric’s

Figure 4. Learning speed increases with GCL. A: example of learned predictions after 1, 5, and 50 trials of learning, with predictions in red and target

function in black. B: example learning trajectory of MSE fit with a double exponential. Black circles: MSE of network output on each trial. Red line: double

exponential fit MSE during learning. Here, step size was 10
�6

and z-scored GCL threshold was 0. We use the exponents k from the exponential fit to

measure learning speed. C: learning speed as a function of GCL threshold (red dots). Blue line: learning speed in networks lacking GCL, i.e., mossy fibers

directly innervate output Purkinje unit, gradient descent step size was 10
�6

. GCL, granule cell layer; MSE, mean squared error.
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decrease with increasing threshold was likely due to the

decrease in overall representation by each unit due to spars-

ening and diminishing the dynamic range of GC rates due to

threshold subtraction (Figs. 2A, top, and 6C).
The second set of metrics are related to sparseness that

include 1) temporal sparseness and 2) spatial sparseness.

Temporal sparseness is defined by the exponential decay of

GC autocovariance, where smaller values typify signals that

change quickly with time decreased as a function of thresh-

old because of sparsened representation at higher thresholds

(Fig. 6D). Spatial sparseness is defined as the mean pairwise

GC correlation shared a drop-off after a threshold of 0, but

increased again at high thresholds because only a few MF

signals were retained at high threshold and thus were highly

correlated (Fig. 6E). By experimental design, decorrelation

was already maximized in OU inputs. Similar to the pattern

separationmetrics, these sparseness metrics did not show an

obvious relationship to the U-shaped learning performance

seen in Fig. 3A, bottom.
Finally, we examined three metrics of lossiness defined to

quantify 1) the fraction of the total epoch with no activity in

any GC unit (e.g., with “temporal lossiness” of 0.1, 10% of the

total epoch has no activity in any GCs), 2) the proportion of

granule cells with any activity over the entire epoch (“popu-

lation lossiness”), and 3) the mean fraction of the epoch in

which each granule cell is active (“temporal cover”). Not sur-
prisingly, each lossiness metric increased with high thresh-
olds (Fig. 6F). However, despite diminishing activity in

individual GCs with increasing threshold (the blue curve Fig.
6F), each GC was resistant to becoming completely silent
(green curve drop, Fig. 6F), owing to a few dominant inputs.

Notably, none of these metrics alone obviously tracked

the U-shaped learning performance (Fig. 3A). However, col-
lectively, these descriptive statistics of model GCL popula-
tion activity set the stage for analyzing how information
preprocessing by the basic GCL architecture relates to learn-

ing time series, explored below.

Improved Learning with GCL Transformations

With the knowledge that thresholding drives changes both
in learning time series (Figs. 3 and 4) and in GC population

metrics that are theorized to modulate learning (Figs. 5 and
6), we next directly investigated the relationships of these
metrics to learning performance. To test this, we used

LASSO regression to identify variables driving learning per-
formance, taken from the metrics described in Figs. 5 and 6
(Fig. 7, A and C). We found that a three-term model using
the most explanatory variables, STS, the number of explana-

tory PCs, and variance retained (Fig. 7, B, C, and D),
accounted for 91% of learning variance. The three-term

Figure 5. Recovering inputs with an optimal linear readout. A: network model schematic. Granule cell (GC, red, center) layer thresholds the sum of (4

here) randomly chosen mossy fiber (MF, black, left) inputs, which are then fed into a reconstruction layer which uses the optimal weighting from all N

GCs to approximate each of theM inputs (compare blue readouts to gray inputs). B: increasing the threshold of the GC layer (N = 500 outputs) decreases

the explained variance (i.e., variance retained) of the best reconstruction layer (M = 50), but the effect is reduced with an intermediate number of MF

inputs per GC. C: variance retained increases with the ratio of GCs per MF but gains from increasing the number of inputs to each GC are limited (max at

4 inputs). Here, there are M = 50 MF inputs at the threshold = 0. D: for a fixed number of GC outputs N, there is an optimal number of MF inputs (M) for

which the variance retained of the reconstruction layer is maximized. Ei: for a fixed number of GC outputs N and MF inputs M = 50, there is an optimal

number of inputs per G (around 4) for maximizing variance retained. ii: same as i, but with each value normalized to its maximum to show maximized val-

ues at inputs = 4. MF, mossy fiber.
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model performance is plotted against the observed MSE over

a range of thresholds in Fig. 7D, showing strong similarity.
Although this model accounted for most learning, its per-

formance was notably poorer at threshold ranges where the

GCL-based learning was best. We reasoned that interactions

between GCL statistical metrics might account for this devia-

tion. To select potential metric interactions while constrain-

ing a regression model, we used Bayesian information criteria

(BIC) stepwise regression to identify variables that accounted

for learning (See METHODS for normalization methods; Fig.

7E). This model produced a better approximation of learning

(Fig. 7F). We found that a handful of competing variables (i.e.,

pattern separation competing with retention of lossless repre-

sentation) provided a small but crucial representation of

learning, which offset the poor learning between thresholds

of �1 to 1 in the purely linear model (Fig. 7D vs. Fig. 7F).

Although these interaction components were necessary to

produce the best fitting model for learning, the interactions

were not the dominant regressors, as indicated by their rela-

tively small b values, and PCs and population variance

remained top features explaining learning, similar to the lin-

earmodel.
These results were somewhat surprising given prior stud-

ies showing benefits of population sparseness or decorrela-

tion to learning. We noted that with the GCL filter model we

could not clamp specific population metrics to determine

their contribution to learning, thus to interrogate this seem-
ing disparity, we constructed fictive GCL population activity
that had specific statistical features and used these as inputs

to P-cells. Consistent with previous reports, decorrelation
and temporal sparseness improved learning accuracy, with
complete decorrelation and temporally sparse supporting
the best performance (Supplemental Fig. S3; 64). Thus, on

their own, population, temporal, and idealized spatiotempo-
ral sparseness do modulate learning when their contribution
is independent. Nevertheless, these features did not emerge

as features driving learning using GCL output from OU
inputs to learn time series. This discrepancy raises the possi-
bility that the pattern separation metrics that drive learning

may be dependent onMF input statistics.

GCL Properties That Enhance Learning in Naturalistic
Tasks

Together, these models suggest that the GCL can refor-

mat inputs in ways that support rapid and accurate time-
series learning. We next asked whether the GCL metrics
that drive best learning change when inputs were inher-
ently matched to outputs. This question is motivated by

the topographical modules that characterize the real cere-
bellum, each with associated specialized afferents (65, 66).

Figure 6. Statistical features of GCL output. A: GCL dimensionality (red) and MF dimensionality (blue) as a function of threshold. Note peak near a thresh-

old of 1 for the GCL. B: two metrics of pattern separation in GCL output—STS (light orange) and PCs (dark orange)—as a function of threshold. Note peaks

near 1.5 and 0.5, respectively. C: the sum of GCL variance produced by the model as a function of threshold. Note monotonic decrease with threshold.

D: temporal sparseness as a function of thresholding. Note monotonic decrease in GCL with thresholding. E: mean pairwise correlation of the population

plotted as a function of threshold. Note trough near 1. F: three forms of lossiness in GCL output as a function of threshold. Each metric had differential sen-

sitivity to thresholding but note that all decrease with increasing threshold. Across metrics, function maxima and minima ranged widely and were not obvi-

ously related to thresholds of optimized learning. GCL, granule cell layer; MF, mossy fiber; PC, principal component; STS, spatiotemporal sparseness.
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Might these specialized afferents with specific statistical

structure be especially suited to support P-cell tuning for
specific behaviors?

To examine whether statistical features that drive learning
are sensitive to intrinsic input-output relationships, we
tested whether model inputs with naturalistic, behaviorally
correlated statistics, derived from electromyogram (EMG)
signaling could support learning movement kinematics. In
this assay, “MF inputs” were EMG signals from human sub-
jects performing a point-to-point reaching task. We tested
whether the model could learn associated limb kinematics
from this input (Fig. 8,A and B; 12, 57, 67, 68).

Consistent with our previous observations, model P-cell
output better learned kinematic target functions when EMG
inputs were preprocessed by the model GCL rather than fed
directly to P-cells (Fig. 8A). Moreover, thresholds that sup-
ported best learning were comparable to those using OU
functions as inputs (Fig. 8A vs. Fig. 3A) and the accuracy of
the learned outputs strongly resembled the recorded kine-
matic positions (Fig. 8B). We observed a slight negative shift
in thresholds supporting best performance using EMG, sug-
gesting that GCL population statistics that retain more of
their inherent relationship to kinematics (i.e., that the EMG
alone predicted kinematics well), facilitated by lower thresh-
old, might be beneficial to learning kinematics. However,
some EMG-kinematic pairings had stronger intrinsic rela-
tionships than others. We used this variability to assay
whether the strength of the intrinsic relationship influenced
which population metrics supported best learning. We first
identified which population statistics drove learning using
RIDGE regression, which preserves even small contributions
of regressor variables to the model. We then looked at the
slope of regressors that predicted learning as a function of
the MSE of MFs alone. We found that when the P-cell MSE

was already low with direct MF inputs, the information
retention (Fig. 5) emerged as a key predictor of learning (i.e.,
GCL MSE, Fig. 8C, green). Conversely, whenMF-based learn-
ing was poor (high MSE), a pattern separation metric, num-
ber of explanatory PCs, became a more important driver of
learning (Fig. 8C, orange). This observation is captured in
themetric “Regression Coeff. Ratio” in Fig. 8C, which quanti-
fies the coefficient of the variance retained or explanatory
PC regressor divided by the sum of all regressor coefficients
computed in the RIDGE regression. In effect, this method
shows the normalized size of their impact on the regression.
Together this suggests that different population statistical
features of GCL reformatting may serve learning under dif-
ferent conditions. When intrinsic relationships are strong,
the GCL’s preservation of MF input variance (variance
retained) is an important population statistical feature;
when MF activity is more arbitrary relative to what the P-
cell needs to encode, explanatory PCs (a pattern separation
feature) are more valuable for learning. Thus, “pattern sep-
aration” by the GCL is not one universal transform that
has broad utility. This observation raises the possibility
that regional circuit specializations within the cerebellar
cortex, such as density of unipolar brush cells (37, 40),
Golgi cells, or neuromodulators could bias GCL informa-
tion reformatting to be more suitable for learning of differ-
ent tasks.

Figure 7. Relationship between GCL population statistics and MSE. A:

LASSO regression was used to identify GCL population metrics that pre-

dicted learning performance. A: the model selection as a function of pro-

gression of the Lambda parameter (which is the penalty applied to each

regressor). The following potential regressors were used: dimensionality

(Dim.), spatiotemporal sparseness (STS), explanatory principal compo-

nents of the GC population (PCs), population variability (Pop. Var.), spatial

sparseness (S. Sparse.), temporal sparseness (T. Sparse.), temporal lossi-

ness (T. Loss.), population lossiness (P. Loss), and input variance retained

(Var. Ret; Fig. 5). Arrow shows selection point of LASSO regression MSE

using “1SE” (1 standard error) method (see METHODS, purple lines, black

dot, and arrow indicating the selected model, with red arrow showing

selection point in the parameter reduction plot, red). B: relationship

between LASSO model (predicted relative MSE) against the observed rel-

ative MSE (ratio of GC MSE to MF alone MSE) with fit line and variance

explained by regression (R2 = 0.91). C: regression slopes of the selected

LASSO model from A, showing that STS, PCs, and input variance retained

are the selected regressors, with Var. Ret. being the largest contributing fac-

tor. All factors normalized to a normal distribution for comparison. D: the out-

put of the selected model and the observed MSE plotted against threshold

for a comparison of fits, demonstrating high accuracy in the 0–2 range, but

less accuracy in the �2 to 0 range. E and F: similar to C and D except using

Bayesian information criteria stepwise regression model to select metrics

that explain learning. GCL, granule cell layer; MSE, mean squared error.
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DISCUSSION

Here, we asked a simple question: how does the cerebellar

granule layer support temporal learning? The question of the
function of GCL architecture has captivated theorists for deca-

des, leading to a hypothesis of cerebellar learning that posits
that the GCL reformats information to best suit associative

learning in Purkinje cells. Recent work has called many of
these foundational ideas into question, including the sparse-

ness and dimensionality of GCL activity and what properties

of pattern separation best support learning (23, 63, 69–71). To
reconcile empirical observations with theory, we hypothe-

sized that input statistics and task structures influence how
the GCL supports learning. Here, we used naturalistic and ar-

tificial time-varying inputs to amodel GCL and identified pat-
tern-separation features that supported learning time series,

with an arbitrary but temporally linked input-output map-
ping, recapitulating important features of physiological cere-

bellar learning tasks (33, 43, 72). Here, we attempt to bridge

these findings by examining naturalistic challenges faced by
the real circuit. Several important observations stemmed

from these simulations: 1) with naturalistic input statistics,
the GCL produces temporal basis sets akin to those hypothe-

sized to support learned timing with minimal assumptions; 2)
this reformatting is highly beneficial to learning at intermedi-

ate thresholds; 3) maximal pattern separation does not sup-
port the best learning; 4) rather, trade-offs between loss of

information and reformatting favored best learning at inter-
mediate network thresholds; and finally 5) different learning

tasks are differentially supported by diverse GCL population

statistical features. Together these findings provide insight
into the granule cell layer as performing pattern separation of

inputs that transform information valuable for gradient
descent-like learning.

Emergence of Spatiotemporal Representation and
Contribution to Learning

A perennial question in cerebellar physiology is how the

granule cell layer produces temporally varied outputs that

could support learned timing (3). Although cellular and syn-

aptic properties have been shown to contribute (32–36, 38–

40, 42, 44–49), we observed that with naturalistic inputs,
temporal basis set formation is a robust emergent property

of the feedforward architecture of the cerebellum coupled

with a threshold-linear input-output function of granule
cells receiving multiple independent time-varying inputs

(Fig. 1, B–D). But is this reformatting beneficial to learning?

We addressed this question by comparing learning of a com-
plex time-series in model Purkinje cells receiving either

mossy fibers alone or reformatted output from the GCL. We

found that indeed the GCL outperformed MFs alone in all
tasks (Figs. 3, 4, and 7). Nevertheless, we wondered what fea-

tures of the population activity accounted for this improved

learning. Although sparseness, decorrelation, dimensional-
ity, and lossless encoding have been put forward as prepro-

cessing steps supporting learning, we found that none of

these alone accounted for the goodness of model perform-
ance. Rather, disparate pattern-separation metrics appear to

strike a balance between maximizing sparseness without

trespassing into lossy encoding space that severely, and nec-
essarily, degrades learning of time series.

These observations are interesting in light of a long history

of work on granule layer function. Marr, Albus, and others

proposed that the granule cell layer performs pattern separa-
tion useful for classification tasks. In this framework, sparse-

ness is the key driver of performance and could account for

the vast number of granule cells. Nevertheless, large-scale
GCL recordings unexpectedly showed high levels of correla-

tion and relatively nonsparse activity (69–71). Despite meth-

odological caveats, alternate recording methods seem to
support the general conclusion that sparseness is not as high

as originally thought (54, 73, 74). Indeed, subsequent theo-

retical work showed that sparseness has deleterious proper-
ties (23, 50), also observed in the present study, that may

explain dense firing patterns seen in vivo. Here, we found

that the best learning occurred when individual granule cell
activity occupied around half of the observed epoch (Fig. 6F,

blue trace), achieved with intermediate thresholding levels.

Figure 8. Relationship of MF input to learned output influences how GCL supports learning. A, top: schematic of model task, using recorded EMGs as an

input to the model GCL to predict kinematics. Bottom: MSE of model as a function of threshold when using EMG alone (MFs; blue) or GCL (red) as input

to model P-cell. At a range of thresholds, P-cells that receive GCL input outperform P-cells receiving MFs alone. B: example of learned kinematic position

after training for MF alone (blue line) and GCL network (red) showing goodmetric fit by the GCL model.C: plot showing the strength of different GCL pop-

ulation statistical features driving learning that vary as a function of how well MFs intrinsically support learned P-cell output (MF alone MSE). When MFs

are already excellent predictors, information retention (variance retained) has a high regression slope (RIDGE regression method). When MFs are poorer

intrinsic predictors, the number of explanatory PCs (a pattern separation metric) emerges as a stronger driver of learning performance. Goodness of fit

(R
2
) was between 0.83 and 0.95 across all MF- alone MSEs used. GCL, granule cell layer; MF, mossy fiber; P-cell; Purkinje cells.
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We also observed temporal organization that is consistent

with the firing patterns observed in vivo. Although these
findings seem to suggest that sparseness is not the “goal” of
GCL processing, our findings and others (23, 25) suggest that
pattern separation broadly is a positive modulator of GCL
support of learning processes.

Previous work proposed that time-series prediction was
possible with access to a diverse set of geometric functions
represented in the GC population (27). However, that study
left open the question of how such a diverse collection of ba-
sis functions would emerge. The GCL model used here
minimized free parameters by incorporating very few inde-
pendent circuit elements, suggesting that a single transform
is sufficient to produce a basis set which is universally able
to learn arbitrary target functions. We used a simple thresh-
old-linear filter with a singular global threshold that relied
on sparse sampling to produce spatiotemporally varied pop-
ulation outputs. This simple function worked to support
learning at a broad range of inputs and thresholding values,
ultimately allowing the Purkinje cells downstream to associ-
ate the spatiotemporally sparser inputs with feedback to
learn arbitrary and complex target functions. The emergence
of this basis set is remarkable given the very simple assump-
tions applied, but is also physiologically realistic, given the
simple and well characterized anatomical properties of the
MF divergence and convergence patterns onto GCs, which
are among the simplest neurons in the brain (17, 19, 75).
Although we suggest that the key regulator of thresholding
in the system is the feedforward inhibition from Golgi cells,
many factors may regulate the transformation between
input and GC output in the network, allowing for multiple
levels and degrees of control over the tuning of the filter or
real mechanism that controls the outcomes of GCL transfor-
mations. Golgi cell dynamics may prove critical for enforcing

the balance between pattern-separation metrics and lossy
encoding (76) and thus are critical players in mean thresh-
olding found here to optimize learning. Additional mecha-
nistic considerations may also play a role, including short-
term synaptic plasticity (34, 77), network recurrence (78–81),
and unipolar brush cells (37), allowing for a more nuanced
and dynamic regulatory system than the one shown here.

Recapturing Input Information in the Filtered GCL
Output

Two schools of thought surround what information is
relayed to Purkinje cells through GCs. Various models
assume that Purkinje cells inherit virtually untransformed
MF information capable of explaining kinematic tuning in P-
cells (61, 82, 83). This view is in contrast to suggestions of
Marr and Albus, where the GCL sparsens information to
such a degree that Purkinje cells receive only a small rem-
nant of the sensorimotor information present in mossy fiber
signals. These divergent views have never been reconciled to
our knowledge. We addressed this disconnect by determin-
ing the fraction ofMF input variance recoverable in GCL out-
put. Interestingly, the GCL population retains sufficient
information to recovermore than 90% the input variance de-
spite filtering out 50% or more of the original signal (Fig. 5).

This information recovery is achieved at the population level
and thus requires sufficient numbers of granule cells so that

the subset of signals that are subthreshold are also super-

threshold in other subsets of GCs through probabilistic
integration with other active inputs. Although variance re-
covery is not a true measure of mutual information, it is
indicative of the utility of the intersectional filtering per-
formed by the GCL. The expansion of representations in
the GCL population achieved by capturing the coincidence
of features in the input population creates a flexible repre-
sentation in the GCL output that has many beneficial prop-
erties, including the preservation of information through
some degree of preserved mutual information between the
GCL and its inputs. Yet despite this retention of input var-
iance by the GCL, its transformations nevertheless greatly
improve learning.

Faster Learning

Our model not only improved learning accuracy but also
speed, compared with MFs alone (Fig. 4). Both learning
speed and accuracy progressed in tandem; threshold pa-
rameter ranges that enhanced overall learning speed also
minimized mean-squared error, suggesting that speed and
accuracy are enhanced by similar features in GCL output.
Learning speed was well described by a double exponen-
tial function with a slow and fast component. This dual
time course in the model with only one learning rule is

interesting in light of observations of behavioral adapta-
tion that also follow dual time courses (1, 84). Some behav-
ioral studies have postulated that these time courses
suggest multiple underlying learning processes (10). Our
model indicates that even with a single learning rule and
site of plasticity, multiple time courses can emerge, pre-
sumably because when error becomes low, update rates
also slow down.

Another observation stemming from simulations study-
ing learning speed was that the behavior of the model var-
ied as a function of the learning “step size” parameter of
the gradient descent method (Supplemental Fig. S2). The
step size, i.e., the typically small, scalar regulating change
in the weights between GCs and P-cells following an error,
determined the likelihood of catastrophically poor learn-
ing. When the step size was too large, it led to extremely
poor learning because the total output “explodes” and fails
to converge on a stable output. Nevertheless, the model
tolerated large steps and faster learning under some condi-
tions, since the threshold also influenced the likelihood of
catastrophic learning. Generally, higher thresholds pre-
vented large weight changes from exploding, suggesting
that sparse outputs may have an additional role in speed-
ing learning by supporting larger weight changes in
Purkinje cells. Indeed, appreciable changes in simple spike
rates occur on a trial-by-trial basis, gated by the theorized
update signals that Purkinje cells receive, climbing fiber-
mediated complex spikes. These plastic changes in rate
could reflect large weight updates associated with error.
Moreover, graded complex spike amplitudes that alter the
size of trial-over-trial simple spike rate changes suggest
that update sizes are not fixed (82, 85, 86). Thus, although
gradient descent is not wholly physiological, this finding

predicts that the amplitude of synaptic weight changes fol-
lowing a complex spike might be set by tunable circuitry
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in the molecular layer to optimize learning speed relative

to the statistics of the GCL output.
Together, this study advances our understanding of how

the GCL may diversify time-varying inputs and informs

interpretation of empirical results. For instance, the time
course of learning varies widely across tasks. Eyeblink condi-

tioning (EBC) paradigms require hundreds of trials to learn

(87–89), whereas saccade adaptation and visuomotor adapta-
tion of reaches (90, 91), require just tens of trials (11, 68, 92,

93). A prediction from our study is that the temporal diver-

sity of the GCL basis set during a behavior influences learn-
ing speed. Time-invariant cues such as those seen in EBC

would be difficult, if not impossible, for our model GCL to

reformat and sparsen, as they are incompatible with thresh-
olding-based filtering of input signals. Supportive of this

view, recent work showed that EBC learning was faster if the

animal is locomoting during training (94). We hypothesize
that naturalistic time-variant signals associated with

ongoing movements entering the cerebellum support robust

temporal pattern separation in the GCL, enhancing learning
accuracy and speed, whereas time-invariant associative sig-

nals used in typical classical conditioning paradigms result

in an impoverished “basis,” making learning more difficult,
despite other circuit elements that may contribute to the

GCL basis formation.
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