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Abstract—Recent years have seen a rapid increase in research
activity in the field of DRAM-based Processing-In-Memory (PIM)
accelerators, where the analog computing capability of DRAM
is employed by minimally changing the inherent structure of
DRAM peripherals to accelerate various data-centric applica-
tions. Several DRAM-based PIM accelerators for Convolutional
Neural Networks (CNNs) have also been reported. Among these,
the accelerators leveraging in-DRAM stochastic arithmetic have
shown manifold improvements in processing latency and through-
put, due to the ability of stochastic arithmetic to convert multi-
plications into simple bit-wise logical AND operations. However,
the use of in-DRAM stochastic arithmetic for CNN acceleration
requires frequent stochastic to binary number conversions. For
that, prior works employ full adder-based or serial counter-
based in-DRAM circuits. These circuits consume large area and
incur long latency. Their in-DRAM implementations also require
heavy modifications in DRAM peripherals, which significantly
diminishes the benefits of using stochastic arithmetic in these
accelerators. To address these shortcomings, this paper presents
a new substrate for in-DRAM stochastic-to-binary number
conversion called AGNI. AGNI makes minor modifications in
DRAM peripherals using pass transistors, capacitors, encoders,
and charge pumps, and re-purposes the sense amplifiers as
voltage comparators, to enable in-situ binary conversion of
input statistic operands of different sizes with iso latency. Our
evaluations, based on detailed SPICE simulations (https://github.
com/uky-UCAT/AGNI SPICE.git), show that AGNI can achieve
savings of at least 8× in area, at least 28× energy-delay product
(EDP), and at least 21× in area× latency, compared to two in-
DRAM stochastic-to-binary conversion circuits from prior works.
These circuit-level benefits are demonstrated to propagate at the
system-level to achieve at least 3.9× gain in performance across
four deep CNN models.

Index Terms—convolutional neural networks, processing-in-
memory, stochastic to binary conversion.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have gained im-
mense popularity in recent times and are extensively used in
many real-world applications related to machine learning (ML)
and Artificial Intelligence (AI) [1] [2]. These CNNs mimic the
structure and behavior of the human brain in visual recognition
tasks. In general, CNNs use a large number of computationally
complex arithmetic operations such as multiply-accumulate
(MAC), nonlinear activation, and pooling. Although these
CNN functions can be accelerated due to their high degree
of compute parallelism, their acceleration using conventional
ASIC platforms (e.g., Dadiannao [1], EIE [3]) is challenging
due to the memory wall problem while accessing their large
number of operands [2].

In modern deep CNNs, such as RESNET-50 [4] and
GoogLeNet [5], MAC operations are the most compute and
memory intensive operations. Therefore, to accelerate MAC
operations, several prior works have explored Processing-In-
Memory (PIM) designs. Among these, some PIM designs are
based on the emerging non-volatile memory (NVM) crossbar
technologies (e.g., ISAAC [2], PRIME [6], XNOR-RRAM
[7]), some are based on the traditional DRAM technology
(e.g., DRISA [8], SCOPE [9], DRACC [10], LACC [11]), and
some are based on the SRAM technology (e.g., [12] [13] [14]).
These PIM solutions work to prevent data migration in order
to balance memory performance and computational efficiency
while processing CNNs locally.

Among these PIM designs from prior works, the DRAM-
based PIM designs are more favorable. This is because, com-
pared to NVM, DRAM is more dominant memory technology
for main memory in current computing systems, which makes
adopting the DRAM-based PIM accelerators in current com-
puting systems naturally more appealing. Moreover, compared
to NVM, DRAM provides lower latency. DRAM is also more
tolerant to frequent writing of partial results. On the other
hand, SRAM is also prevalent in current computing systems,
but the high area cost and low capacity of SRAM makes
SRAM-based PIM accelerators less suitable for modern large-
scale, deep CNNs. Due to these reasons, DRAM-based PIM
accelerators are preferred by the industry as well [15] [16].

DRAM-based PIM accelerators for CNNs break a MAC
operation into multiple functionally complete memory opera-
tion cycles (MOCs). However, these accelerators require huge
number of MOCs per MAC, e.g., DRISA requires 222 MOCs
per MAC [8]. Each MOC can incur up to 49ns latency and
consume up to 4nJ of energy. Therefore, to reduce the required
number of MOCs per MAC, SCOPE [9] and ATRIA [17]
employed stochastic arithmetic. In ATRIA and SCOPE, the
use of stochastic arithmetic could reduce the multiplication
operations into simple bit-wise logical AND operations, which
in turn reduced the per-MAC MOCs to 5/16 for ATRIA [17]
and 25 for SCOPE [9].

Despite these advantages, the use of stochastic arithmetic
in ATRIA and SCOPE for CNN acceleration requires fre-
quent stochastic-to-binary (StoB) number conversions; one
StoB conversion is required for every point in the per-layer
output tensor. In these accelerators, StoB conversions consume
substantial latency and energy, even though ATRIA’s StoB
operations are hidden from the critical path to some extent.
SCOPE and ATRIA use a parallel pop counter (Parallel PC)
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and Serial pop counter (Serial PC)-based StoB conversion,
respectively. Parallel PC circuits require full adders, which
can take up non-trivial area in DRAM peripherals [18]. On
the other hand, Serial PC circuits require high-speed counters.
The implementations of full adders and counters in DRAM
cannot be optimized for area, latency and energy, due to
the constraints of DRAM processes which are significantly
different from the standard CMOS logic processes [19]. As
a result, the advantages of using stochastic arithmetic are
severely diminished in ATRIA and SCOPE.

To address these shortcomings, this paper presents a new
substrate for in-DRAM StoB number conversion called AGNI.
AGNI makes minor modifications in DRAM peripherals using
pass transistors, capacitors, encoders, and charge pumps, to
divide the StoB conversion process into four distinct steps: (i)
DRAM row activation, (ii) stochastic to analog conversion,
(iii) analog to transition-coded unary conversion, and (iv)
transition-coded unary to binary conversion. Each step utilizes
a distinct set of DRAM timing signals to orchestrate charge-
sharing among various DRAM components, such as sense
amplifiers, DRAM cells, bitlines, and capacitors. Moreover,
for the ”analog to transition-coded unary conversion” step,
AGNI re-purposes the sense amplifiers as voltage comparators.
Through all these steps, AGNI enables in-situ binary conver-
sion of input statistic operands of different sizes.

The organization of this paper is as follows: Section II
provides preliminaries; Section III describes the structure
of our AGNI substrate; Section IV explains the four op-
erational steps of AGNI substrate in detail, using the re-
sults of our conducted SPICE simulations (https://github.
com/uky-UCAT/AGNI SPICE.git); Section V discusses the
overheads, SPICE simulations-based and CNN benchmarks-
driven performance analysis, error analysis, and comparison
with prior works, for AGNI; Section VI concludes the paper.

II. PRELIMINARIES

A. Stochastic versus Transition-Coded Unary Numbers

In the unipolar format of unary computing [20], a unary
number W is a bit-stream of N bits that represents a real-
valued variable υ ∈ [0, 1] by encoding υ through the ratio
N1/N , where N1 is the number of 1’s in W. As shown in
Fig. 1, a unary number (e.g., υ=0.5) can be presented in the
stochastic format (also known as rate-coded unary format)
(Fig. 1(left)) or in the transition-coded unary format (Fig.
1(right)). As evident from the figure, in the stochastic format
the ’1’s in the bit-stream do not appear in a group, whereas
in the transition-coded unary format the ’1’s in the bit-stream
appear in group.

Fig. 1: The stochastic (rate-coded unary) representation (left) and the
transition-coded unary representation (right) of a real value υ=0.5.

Fig. 2: Flash ADC with (a) Vin = 0.5VDD , and (b) Vin = 0.25VDD .

B. Flash ADC via Transition-Coded Unary Values

Fig. 2 shows a schematic of flash ADC (analog-to-digital
converter) with 3-bit binary output. The figure shows the
conversion of two example input values. As evident, a B-
bit flash ADC employs one voltage divider, a total of 2B

comparators and one 2B :B priority encoder (B=3 in Fig. 2).
Thus, each circuit in Fig. 2 has eight voltage comparators (i.e.,
C1, C2, C3, C4, C5, C6, C7, and C8). The positive terminals of
all comparators are connected to the analog input Vin. The
negative terminal of the comparators are connected to the
VREF derived from the resistor-ladder based voltage divider.
Suppose a scenario where Vin = 0.5 VDD (Fig. 2(a)). In
this case, the output of the priority encoder is binary four,
and upon observation, the output of the comparators that is
input to the priority encoder (i.e., the bit sequence 00001111)
represents 0.5 in the transition-coded unary format. Similarly,
if Vin = 0.25 VDD (Fig. 2(b)), the output of the priority
encoder is binary two, and the output of the comparators (i.e.,
the bit sequence 00000011) represents 0.25 in the transition-
coded unary format. Thus, a flash ADC undertakes analog
to binary conversion in two phases: first, analog to unary
connversion through the comparators, and second, unary to
binary conversion through the priority encoders. Note that, as
discussed later in the paper, our AGNI substrate re-purposes
the sense amplifiers in DRAM tiles to implement this first phase
of analog to binary conversion.

III. OVERVIEW OF OUR AGNI SUBSTRATE

The purpose of our AGNI substrate is to enable in-situ con-
version of input stochastic operands (bit-vectors) into binary
numbers. To fulfill this purpose, the AGNI substrate employs
a few modifications in the structure of each tile of a com-
modity DRAM module. These modifications are highlighted
in Fig. 3(a). Evidently, our AGNI substrate logically groups
the bitlines of each DRAM tile into multiple bitline groups
(BLgroups). Each BLgroup corresponds to an input stochastic
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Fig. 3: Schematic layout of AGNI substrate and employed peripher-
als. Illustration of (a) an AGNI-modified DRAM tile, (b) an A to U
peripheral unit, (c) an S to A peripheral unit, and (d) a U to B
peripheral unit.

operand. Therefore, the number of bitlines in a BLgroup equals
the number of bits in an input stochastic operand (i.e., the size
of the input stochastic operand’s bit-vector). Consequently, if
the size of each input stochastic operand is N bits, and if each
DRAM tile has a total of L bitlines (L is 256 or 512 typically),
then each DRAM tile contains a total of L/N logical BLgroups,
with each BLgroup having a total of N bitlines.

Further, to enable stochastic-to-binary number conversion
of input operands, AGNI employs additional peripherals in
each DRAM tile atop the already existing sense amplifiers
(SAs). As shown in Fig. 3(a), these peripherals include per-
bitline S to A units, per-bitline A to U units, per-BLgroup
U to B units, and per-BLgroup analog lanes (see LANEs
in the figure). Each LANE is horizontally laid out across a
BLgroup and has a capacitor at the end. From Fig. 3(c), Each
S to A unit contains two transistors (Fig. 3(c)), whereas each
A to U unit contains one transistor (Fig. 3(b)). Each U to B
unit contains one isolation transistor (ISO) per bitline (i.e., N
ISOs per BLgroup) along with one priority encoder (PE) and
a latch (Fig. 3(d)). All S to A and A to U units belonging
to a BLgroup connect their corresponding bitlines and SAs
to the corresponding LANE and analog lane capacitor. The
N S to A units of a BLgroup enable stochastic-to-analog
number conversion; the N A to U units of the same BLgroup
enable analog-to-unary (transition coded unary) number con-
version; and the U to B unit of the same BLgroup enables
unary-to-binary number conversion. Thus, the additional pe-
ripherals of AGNI enable one stochastic-to-analog-to-unary-
to-binary number conversion per BLgroup, thereby enabling a
total of L/N such conversions in-parallel per DRAM tile. The
operation of our AGNI substrate that enables such conversions

is discussed next.

Fig. 4: Schematic of AGNI substrate for N = 4, consisting of
peripherals such as S to A units, A to U units and U to B unit.

IV. OPERATION OF OUR AGNI SUBSTRATE

As implied from the previous section, AGNI substrate
undertakes stochastic-to-binary conversion of input operands
in the following three sequential steps: (i) stochastic to analog
(S to A) conversion, (ii) analog to transition-coded unary
(A to U) conversion, and (iii) transition-coded unary to binary
(U to B) conversion. For these steps to work for an input
stochastic operand, the operand needs to be read into the
SAs of its corresponding BLgroup, which can be achieved by
activating the DRAM row that contains the stochastic operand.
Thus, a DRAM row activation must precede the above three
steps, to constitute a sequence of a total of four steps for the
operation of AGNI substrate for achieving stochastic-to-binary
number conversion.

To realize these four steps, our AGNI substrate utilizes
several timing signals. The timing signals required for the first
step (i.e., DRAM row activation) include the standard DRAM
operation signals [21] [22]. The remaining three steps require
additional new timing signals to control the added peripherals
of the AGNI substrate. The definitions and exact uses of these
signals are summarized in Table I. These signals affect various
hardware units of the AGNI substrate. This is illustrated in Fig.
4 for an example BLgroup of AGNI substrate with N = 4.

The BLgroup illustrated in Fig. 4 has 4 bitlines, i.e.,
BL0, BL1, BL2, and BL3. These bitlines correspond to four
DRAM bit-cells, i.e., mb0, mb1, mb2, and mb3, respectively.
From Fig. 4, each bitline is connected to a SA (highlighted
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in light yellow) and a pre-charge unit (highlighted in light
orange). Additionally, each bitline connects to one S to A
unit (highlighted in light red) and a A to U unit (highlighted
in light green). Moreover, all four bitlines of the BLgroup
(i.e., BL0, BL1, BL2, and BL3) connect to one U to B unit
(highlighted in grey), which consists of one N:log2N priority
encoder, one log2N-bit latch, N isolation transistors (ISOs),
one resistor ladder based voltage divider, and N multiplexers
that select the VREF values for corresponding SAs. A VREF

value is either VDD/2 or an appropriate level from the voltage
divider. The selection of VREF values from the voltage divider
enables the SAs to operate as voltage comparators that can
provide analog-to-unary conversion (just like flash ADC; Fig.
2). In the following subsections, we explain how the toggling
of various timing signals listed in Table I has to be AGNI
signals orchestrated to realize the four operational steps of
AGNI substrate.

The exact time stamps for the toggling of these signals are
summarized in Table II. The time evolution of these signals
are also depicted in Fig. 5. Note that at the initialization, these
signals are in the OFF state. The time evolution of these signals
triggers the voltage levels corresponding to various DRAM
structures (e.g., bitlines, analog capacitor, bit-cells) to evolve,
which is also illustrated in Fig. 5. We have evaluated various
timing and voltage signals depicted in Fig. 5 by modeling and
simulating the circuit shown in Fig. 4 using LTSpice.

A. DRAM Row Activation (Step 1)

The DRAM row activation step employs EQ, WL, and
sense n (sense p) signals to read the input stochastic operands
into the SAs of their corresponding BLgroups. For this step,
EQ is first toggled ON (to a higher voltage level in Fig.
5) at 0 ns. At 0 ns, we consider that SEL has been ON;
therefore, at 0 ns, VREF for the SAs has already been selected
to be VDD/2. As a result, the voltage on the bitlines swiftly

TABLE I: Definitions and uses of various timing signals employed
by AGNI substrate.

Standard DRAM Operation Signals

WL
Signal to turn on a DRAM wordline to

enable charge sharing between
a row of DRAM cells and corresponding bitlines

sense p
sense n

Complementary signals that are used with each SA to
enable the sensing and amplification of the

bitline voltage perturbation

EQ Signal for the precharge unit to
equalize the BL voltages

Newly Added Timing Signals

K1
Signal to turn on S to A units to
enable charge flow from the SAs

of a BLgroup to the analog LANE capacitor

B1
Signal to turn on A to U units to enable charge flow from

the analog LANE capacitor of a BLgroup to
the bitlines

ISO
Signal to turn on/off the isolation transistors, to

connect/disconnect the priority encoder from
a BLgroup

SEL Signal to the MUXEs that enables the selection of
a SA reference voltage (VREF )

L1 Signal to enable the latch for the binary result

settles to VDD/2 after 0 ns time-stamp (see the evolution of
voltage on the bitlines in Fig. 5(d)). This step is conventionally
known as bitline pre-charging. We are able to achieve swift
bitline pre-charging in AGNI because we consider short bitline
DRAM architecture with only 8 cells per bitline [21]. After
pre-charging, EQ is toggled OFF at 5 ns. Then, at 7 ns, WL
is toggled ON. As a result, the DRAM cells (see mb0, mb1,
mb2, and mb3 in Fig. 4) connect to their respective bitlines
(see BL0, BL1, BL2, and BL3 in Fig. 4) to start sharing
their charge with the bitlines. Due to this charge sharing, the
voltage on the DRAM cells dips (see Fig. 5(e) at 7 ns) and
the voltage on the bitlines is perturbed (see Fig. 5(d) at 7 ns).

Then, at 9ns, sense n (sense p) is toggled ON (see Fig.
5(f)), which enables the SAs to sense the perturbed bitline
voltage and amplify it to the full swing. In Fig. 5(d), since
the bitline voltage perturbation is in the positive direction
(corresponding to logic ’1’ stored in the DRAM cells), the
bitline voltage is swung to VDD by the SAs. After this
full-swing amplification of bitline voltage perturbation, the
SAs complete replenishing the DRAM cell voltage at 11
ns. The perturbation amplification and cell replenishing both
occur swiftly because we consider the short bitline DRAM
architecture for AGNI. Then, at 12 ns, WL is toggled OFF, to
disconnect the DRAM cells from the bitlines, to mark the end
of the DRAM row activation step.

Note, during this step, the bitline voltage evolution encoun-
ters transient noise at two events, due to parasitic effects. First,
at 5 ns when EQ is toggled OFF. This event is labeled as
glitch 1 in Fig. 5(d). Second, at 12 ns when WL is toggled
OFF (labeled as glitch 2 in Fig. 5(d)).

B. S to A Conversion (Step 2)

S to A conversion step (Step 2) employs sense n (sense p),
and K1 signals to conduct the conversion of the stochastic
operands (which are read into the SAs at the end of Step 1)
into analog quantities (analog voltage levels). These analog
quantities are accrued on respective analog capacitors; one
analog voltage level per capacitor per BLgroup. For that, the
analog capacitor of each BLgroup is forced to accrue charge
incoming from respective SAs by having K1 signal to operate
the S to A peripheral units of the BLgroup. Each S to A
unit consists of a pass transistor and a diode (realized as
the back-biased nmos transistor shown in Fig. 3(c) and Fig.
4). The presence of diode enables the connection of the SA
to the pass transistor only if the SA has latched logic ’1’,
i.e., if the corresponding bitline is at VDD. Consequently,
when K1 signal turns ON the pass transistors of all S to A

TABLE II: Toggle time stamps (↑ or ↓) for various timing signals to
realize the four operational steps of our AGNI substrate.

Activate 0ns (EQ ↑) 5ns (EQ ↓) 7ns (WL ↑) 9ns (sense n ↑) 12ns (WL ↓)

S to A 13ns (K1 ↑) 37ns (K1 ↓ sense n ↓)

A to U 38ns (EQ ↑)(SEL ↓) 42ns (EQ ↓) 43ns (B1 ↑) 45ns (sense n ↑)

U to B 45ns (ISO ↑) 51ns (L1 ↑) 52ns (L1 ↓) 55ns (B1 ↓ ISO ↓)
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Fig. 5: Signal evolution traces from SPICE simulations of our AGNI
substrate for N = 4. (a) voltages of the precharge units (VREF ), (b)
equalizer (EQ) and Latching (L1) signals, (c) wordline (WL) and SEL
signals, (d) bitline (BL) voltages, (e) DRAM cell capacitor voltage,
(f) sense n and isolation (ISO) signals, (g) K1 and B1 signals, and
(h) analog capacitor voltage.

units of a BLgroup, the SAs of the BLgroup that are storing
VDD connect to the corresponding analog capacitor via the
bitlines and analog LANE (Fig. 4). The SAs, if ON, then
can force the analog capacitor to accrue some charge, and
consequently, some analog voltage level. If SAs are kept ON
for a fixed period of time, the accrued analog voltage level
on the capacitor would be proportional to the number of SAs
that are connected to the capacitor. Since only the SAs that are
storing VDD can connect to the analog capacitor, the accrued
voltage level on the capacitor would be proportional to the
number of logic ’1’s in the stochastic operand read into the
SAs in Step 1. This is because only the SAs corresponding to
logic ’1’ bits of the stochastic operand would be storing VDD

after Step 1). Thus, the voltage level accrued on the analog
capacitor provides the analog representation of the stochastic

operand.
Discussing the signal time-stamps, K1 is toggled ON at 13

ns (Fig. 5(g)). At this time, sense n and sense p are already
ON, as they were toggled ON during Step 1 at 9 ns. We then
keep K1 and sense n (sense p) ON for 24 ns, during which
the SAs accrue a voltage level on the analog capacitor (see
Fig. 5(h)). In equilibrium, the analog LANE also accrues the
same voltage level as the analog capacitor. Then, at 37 ns, both
K1 and sense n (sense p) are toggled OFF (see Figs. 5(f) and
5(g)), to mark the end of Step 2. At the end, the voltage level
accrued on the analog capacitor and LANE provides the analog
representation of the stochastic operand.

During this step, for how long to keep K1 and sense n
(sense p) ON is really a design choice. But since a thorough
exploration of this design choice is beyond the scope of
this paper, we decided the duration of 24 ns based on a
coarse observation. We observe that our chosen duration of
24 ns is appropriate to provide sufficient noise margin so that
different analog voltage levels accrued on the analog capacitor
are unerringly distinguishable. We made this observation for
our example AGNI substrate with N=4 shown in Fig. 4. For
N=4, the total number of logic ’1’s in the input stochastic
operand can take a total of four distinct values, i.e., 1, 2, 3,
and 4. These four distinct values, respectively, correspond to
{mb0=0, mb1=0, mb2=1, mb3=0}, {mb0=1, mb1=0, mb2=0,
mb3=1}, {mb0=1, mb1=0, mb2=1, mb3=1}, and {mb0=1,
mb1=1, mb2=1, mb3=1} in Fig. 4. For these, we evaluate
how the analog voltage level accrued on the analog capacitor
evolves during the 24 ns period; the evolution traces are shown
in Fig. 6. For {mb0=mb1=mb2=mb3=1}, the accrued voltage
at 37 ns reaches the maximum value VMAX = 514 mV. For
other cases, it is evident that the accrued voltage level is
proportional to the number of ’1’s in the set {mb0, mb1,
mb2, mb3} (i.e., in the input stochastic operand). We extend
this analysis further and evaluate VMAX for N of 16, 32,
64, 128, and 256 (these N values respectively correspond to
binary number precision of 4-bit, 5-bit, 6-bit, 7-bit, and 8-bit).
The results of VMAX are presented in Table III. From these
results, we observed that that our chosen 24 ns duration was

Fig. 6: Analog capacitor voltage for different 4-bit stochastic num-
bers.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on August 21,2023 at 22:07:22 UTC from IEEE Xplore.  Restrictions apply. 



sufficient to provide a total of N distinguishable voltage levels
on the analog capacitor even for N=256. Thus, regardless of
the value N (i.e., the length of the input stochastic operand),
this S to A step can achieve the analog representation of an
input stochastic operand with iso-latency of 24 ns.

C. A to U Conversion (Step 3)

As shown in Fig. 3, a flash ADC undertakes analog to digital
(binary) conversion in two stages. In the first stage, an input
analog voltage is converted into the equivalent transition-coded
unary number using an array of voltage comparators. In the
second stage, the unary number is then converted into the
corresponding binary number using a priority encoder. The
A to U conversion step of our AGNI substrate implements
this second stage of a flash ADC by re-purposing the SAs
as comparators. This re-purposing of SAs as comparators
is realized using three phases of the A to U step of our
AGNI substrate. For that, signals EQ, SEL, B1, and sense n
(sense p) are employed.

In the first phase, SEL is toggled OFF at 38 ns, as shown
in Fig. 5(c), to select VREF values from the voltage divider
circuit in the precharge units of all N SAs of a BLgroup
(e.g., see VREFB0, VREFB1, VREFB2, and VREFB3 in Fig.
4). Then, in the second phase, EQ is toggled ON at 38 ns
and then toggled OFF at 42 ns, to precharge the bitlines of all
N SAs to their respective VREF values. As a result, between
the 38 ns and 42 ns time-stamps, as shown in Fig. 5(d), the
bitline voltages evolve to their respective VREF values. Then,
in the next phase, B1 is toggled ON at 43 ns so that the LANE
and analog capacitor are connected to the bitlines to enable
mutual charge sharing. As a result, the bitline voltages get
perturbed by the 45 ns time-stamp (Fig. 5(d)). If the bitline
corresponding to a SA (out of a total of N SAs) was precharged
to a voltage level greater (less) than the voltage level accrued
on the analog capacitor, the perturbation due to charge sharing
would increase (decrease) the voltage of that bitline. To sense
and amplify this perturbation, sense n (sense p) is toggled ON
at 45 ns. Consequently, the voltages on the bitlines evolve to
their full-swing values (VDD or 0V) at 50ns, depending on the
direction of the voltage perturbation. Therefore, some of the
N SAs end up storing logic ’1’ and the others end up stoting
logic ’0’, and the number of logic ’1’s out of N SAs provides
the unary representation of the voltage on the analog capacitor.

Note that the positions of the ’1’s in the unary representation
differ compared to the positions of the ’1’s in the input
stochastic operand. To understand this, suppose the voltage
accrued on the analog capacitor is 0.5VMAX for N=4. This
would really happen for the case where {mb0=1, mb1=0,
mb2=0, mb3=1}. In this case, the perturbation would increase
the voltages on only BL0 and BL1 in Fig. 4; the voltages on
BL2 and BL3 would actually decrease after the perturbation.
As a result, the SAs would sense and amplify logic ’1’s only
for BL0 and BL1, thereby providing the positions of ’1’s in
the unary representation to be 0011 (from the left to the right)
when the positions of ’1’s in the stochastic input operand
is 1001. This change in the positions of ’1’s in the unary

TABLE III: MAE, MAPE, RMSE, and VMAX for AGNI substrate
for different BLgroup sizes (different values of N).

N MAE MAPE% RMSE VMAX(mV )
16 0.28 3.58 0.41 630
32 0.41 3.93 0.50 715
64 0.37 1.58 1.03 735
128 0.29 0.97 0.43 755
256 0.20 0.59 0.35 785

representation favors the use of the priority encoder to convert
from unary to the binary number format. Without this change,
converting into the binary number format would require more
complex combinational logic, such as a parallel pop counter
used in [18] [9].

D. U to B Conversion (Step 4)

This step employs ISO, L1 and B1 signals as well as a
priority encoder (similar to the one discussed Section II-B), to
convert the unary number stored in the SAs at the end of Step 3
into its corresponding binary number. For that, ISO is toggled
ON at 45 ns (Fig. 5(f)), so that the ISO transistors turn ON to
connect the bitlines to the priority encoder (Fig. 4). Therefore,
when the SAs complete evolving the bitline voltages according
to their stored unary number at 50 ns (as discussed in Step 3),
the stored unary number reaches the priority encoder at 50 ns
through the bitlines via the ISO transistors. Immediately after
that, at around 51 ns, the priority encoder starts providing the
converted binary number at its output. Therefore, L1 is toggled
ON at 51 ns to enable latching of the priority encoder output
(i.e., the binary number result). Then, L1 is toggled OFF at
52 ns, B1 and ISO are toggled OFF at 55 ns, to mark the end
of the full operation cycle of AGNI.

Thus, AGNI can convert input stochastic number into the
binary format in 55 ns (from Step 1 to Step 4), irrespective of
the size of the input stochastic operand (i.e., the value of N).
Finally, at the end of 55 ns, each BLgroup of AGNI becomes
available to convert a new stochastic operand.

During this step, the bitline voltages experience another
glitch at 55 ns time-stamp (labeled as glitch 3 in Fig. 5(d)),
due to the toggling OFF of B1 that disconnects the bitlines
from the LANE and analog capacitor.

V. EVALUATION

A. Overheads of AGNI Substrate

To evaluate the area overheads of AGNI’s peripheral units,
we modeled our AGNI substrate on 2D DDR4 512 DRAM
organization at 45 nm technology node using CACTI [23].
Each DRAM cell consumes 6F 2 area, while the bitline pitch
is 3F. Further, the stripes of SAs, precharge units, and write
drivers have the heights of 117F, 90F, and 27F respectively
[24] [25]. Additionally, the heights of the peripheral units
of AGNI, such as S to A, A to U and U to B are 27F,
27F, and 110F, respectively. Therefore, the effective height
of the AGNI substrate per 2D DDR4 DRAM tile comes out
to be 164F. Therefore, AGNI’s total area overhead is 492F 2.
Moreover, we also evaluated the area and power overheads
of the charge pump circuits, which we utilized to realize
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TABLE IV: Charge pump (CP) area and power dissipation.

N Area of CP
(Acp)(µm2)

Dynamic
power per

CP (W)

total
wasted power
per CP (W)

16 0.0087 1.30E-09 3.91E-09
32 0.0186 2.74E-09 8.22E-09
64 0.038 5.55E-09 1.67E-08

128 0.077 1.12E-08 3.37E-08
256 0.158 2.28E-08 6.85E-08

the voltage divider circuit (depicted in Fig. 4) that provides
VREF values to the precharge units. We did this evaluation
for different values of N, using the methods from [26]. The
results of our evaluation are reported in Table IV.

B. Setup for Performance Evaluation

We modeled our AGNI substrate in LTSPICE for 45ηm
gpdk technology node for five BLgroup sizes, i.e., with N
= 16, 32, 64, 128, and 256. We considered the number of
bitlines (L) per DRAM tile to be 512. We will make our
LTSPICE models publicly available. For each N value, we
simulated all possible stochastic numbers as input operands
and simulated their conversion into binary numbers using our
AGNI substrate’s model in LTSPICE. Based on this exercise,
we evaluated the mean absolute error (MAE) (Eq. 1), mean
absolute percentage error (MAPE) (Eq. 2), and Root mean
square error (RMSE) (see Eq. 3) for our simulated stochastic
to binary conversions. In these equations (Eqs. 1 to 3), yi
is the predicted value, xi is the actual value, and n is the
total number of data points. Errors in AGNI substrate mainly
emanate from the noise fluctuations during the charge-sharing
phases, whenever such fluctuations are larger than the tolerable
margins. The resultant error numbers are provided in Table
III. In addition, as discussed earlier, the table also lists our
evaluated VMAX values.

MAE = (
n∑

i=1

|yi − xi|/n) (1)

MAPE =

(
1

n

) n∑
i=1

∣∣∣∣(xi − yi
xi

)∣∣∣∣ (2)

RMSE =

√(∑n
i=1(yi − xi)2

n

)
(3)

We also analyze the performance of our AGNI substrate
in terms of area (per BLgroup), energy-delay product (EDP)
(per conversion), and area × latency (per conversion). We
compare the results with two stochastic to binary conversion
designs from prior work: (1) the parallel pop counter circuit
from [18] (referred to as Parallel PC) which is employed by
the in-DRAM computing accelerator SCOPE [9], (2) the bit-
serial pop counter circuit from [18] (referred to as Serial PC)
which was employed by the in-DRAM computing accelerator
ATRIA [17]. The results are given in Fig. 7 (discussed
in the next subsection). System-level Evaluation: We also
leverage our in-house system-level simulator to evaluate the

latency (Fig. 8(a)) and EDP (Fig. 8(b)) for the inference of
four CNN benchmarks (i.e., Shufflenet V2, MobileNet V2,
DenseNet121, Inception V3) [27] for the Imagenet dataset.
Parallel PC and Serial PC were used to simulate the inference
on SCOPE [9] and ATRIA [17] respectively. We only evaluate
the StoB phases of these CNNs.

Fig. 7: Area× latency (top), energy-delay product (EDP) (middle),
and area consumption (bottom) results of prior works (red and yellow
columns) and our AGNI substrate (green columns).

C. Results and Discussion

The results from Table III show that AGNI achieves
MAE=0.28 for N=16 and MAE=0.2 for N=256. Similarly,
AGNI achieves MAPE=3.58% for N=16 and MAPE=0.8%
for N=256. For a given N, a total of 2N different stochastic
number values can be represented. Therefore, for a larger N,
the value n in Eqs. 1 and 2 increases exponentially, which
in turn decreases the error magnitudes despite the fact that
the decreased tolerance margin at a larger N increases the
magnitude of the numerators in Eqs. 1 and 2.

From Fig. 7, AGNI achieves 390× less area, 21× less
area× latency, and 28× less EDP compared to Parallel PC
for N=16. For higher values of N, AGNI showed significantly
greater savings in area, area×latency, and EDP. For example,
for N=256, AGNI has 923× less area, 247× less area ×
latency, and 350× less EDP compared to Parallel PC. Parallel
PC consumes substantially higher area, area × latency, and
energy because it needs to employ full adder circuits [18],
which increases its area and energy consumption. Note that
Parallel PC has a slight edge in the latency over AGNI, but this
drawback of AGNI can be tolerated for its excellent savings
in area, area× latency, and EDP.

Similarly, from Fig. 7, AGNI achieves 8× less area, 23×
less area × latency, and 59× less EDP compared to Serial
PC for N=16. For higher values of N, AGNI showed signif-
icantly greater savings in area, area × latency, and EDP.
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For example, for N=256, AGNI has 96× less area, 333×
less area× latency, and 930× less EDP compared to Serial
PC. Serial PC performs bit-by-bit counting at a clock rate,
which significantly increases its latency and energy consump-
tion compared to AGNI. Moreover, any implementation of a
counter logic in-DRAM cannot be optimized for performance
or area, due to the constraints of DRAM processes [19], which
increases the area overhead of Serial PC counters compared to
the peripherals of our AGNI substrate. Therefore, overall, we
observe AGNI to significantly gain in area, area × latency,
and EDP, compared to Serial PC.

System-level Results: Fig. 8 shows the normalized infer-
ence latency and EDP results for our considered CNNs. From
the figure, AGNI achieves 3.9× less latency than Serial PC
on Gmean. Further, AGNI achieves 397× and 1048× better
EDP than Parallel PC and Serial PC, respectively, on average
across all considered CNNs. The better EDP results for AGNI
confirms its advantages over Parallel PC and Serial PC.

Fig. 8: System-level results for four CNNs. (a) inference latency
normalized to the column for Parallel PC Inception V3, (b) inference
EDP normalized to the column for AGNI ShuffleNet V2. Parallel PC
= SCOPE [9], Serial PC = ATRIA [17].

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel DRAM-based substrate
called AGNI for in-situ StoB number conversion for Deep
learning applications. We discussed the structure and operation
of our AGNI substrate in this paper, using the results of
our conducted SPICE simulations. We also presented detailed
performance analysis results and overheads for our AGNI
substrate. Our evaluations show that AGNI can achieve savings
of at least 8× in area, at least 28× energy-delay product
(EDP), and at least 21× in area× latency, compared to two
in-DRAM stochastic-to-binary conversion circuits from prior
works. Future Work: There is a room for further reducing the
latency of AGNI substrate by tightly packing various timing
signals of AGNI substrate in a narrower window of time. The
capacitance value of the analog capacitor and the physical
implementation of the analog LANE also provide avenues for
future exploration, to maximize the analog voltage range and
noise margin.
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