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• For the first time, LSER approach was used
to predict adsorption of PFAS by MPs.

• Abraham's solvation parameters were
corrected to account for ionization of
PFCAs.

• The correction improves models' mecha-
nistic interpretation and prediction
strength.

• PFAS' MW,MPs' oxidation state, and water
type affect adsorption of PFAS by MPs.

• Polarizability and hydrophobicity of
PFCAs drive them onto PS MPs.
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Microplastics (MPs) could act as vectors of organic pollutants such as per- and polyfluoroalkyl substances (PFAS).
Therefore, understanding adsorptive interactions are essential steps towards unraveling the fate of PFAS in the natural
waters whereMPs are ubiquitous. Linear solvation energy relationships (LSER)-based predictive models are utilitarian
tools to delineate the complexity of adsorption interactions. However, commonly studied PFAS are in their ionic forms
at environmentally relevant conditions and LSER modeling parameters do not account for their ionization. This study
aims to develop the first LSERmodel for the adsorption of PFAS byMPs using a subset of ionizable perfluoroalkyl car-
boxylic acids (PFCA). The adsorption of twelve PFCAs by polystyrene (PS)MPs was used for model training. The study
provided mechanistic insights regarding the impacts of PFCA chain length, PS oxidation state, and water chemistry.
Results show that the polarizability and hydrophobicity of anionic PFCA are the most significant contributors to
their adsorption by MPs. In contrast, van der Waals interactions between PFCA and water significantly decrease
PFCA binding affinity. Overall, LSER is demonstrated as a promising approach for predicting the adsorption of ioniz-
able PFAS by MPs after the correction of Abraham's solute descriptors to account for their ionization.
1. Introduction

Plastics are pragmatic and versatile materials that benefit daily life
and industry (Sun et al., 2022; Crawford and Quinn, 2016). Since the
1950s, society's ever-increasing demand for plastics has boosted global
November 2022; Accepted 23 Nov
production by >100 times (Plastics Europe, 2021). This massive plastic
production has environmental and public health consequences. If the plas-
tic production and waste management remain unchanged, 12 billion tons
of plastic waste will be in the environment by 2050 (Ncube et al.,
2021; United Nations Environment Programme, 2018). Additionally,
plastic debris are exposed to natural weathering processes, which
break them down into microplastics (MPs) and make them easier to
enter the food chain (Botterell et al., 2019). MPs are complex mixtures
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of polymers and chemical additives, and their hazards may be further
exacerbated by the adsorption of synthetic organic compounds (SOC)
and pathogens (Rochman et al., 2019; Galloway et al., 2017). Thus,
MPs potentially act as vectors for organic pollutants, which can cause
severe health implications (Pedà et al., 2016; Rainieri et al., 2018;
Bhagat et al., 2022).

Per- and polyfluoroalkyl substances (PFAS) are a class of persistent
SOCs. Pollution of natural waters with PFAS is a contemporary environ-
mental crisis overwhelming the public, policy makers, researchers, and
practitioners. As a consequence, MPs and PFAS have been detected in
aquatic environments originated from numerous point and non-point
sources (Sonmez Baghirzade et al., 2021) both individually and in com-
bination (Cheng et al., 2021; Pramanik et al., 2021). Twenty-one PFAS
were detected on MPs collected from a river where total PFAS concen-
trations were >9.1 μg/g (Cheng et al., 2021). Moreover, adsorption of
PFAS increases as MPs age and biofilm forms on their surface (Scott
et al., 2021). Similarly, MPs preloaded with natural organic matter
(NOM) adsorb more PFAS than pristine MPs, due to complex formation
between NOM and PFAS (Ateia et al., 2020). These adsorptive interac-
tions can bring about serious health concerns when PFAS-laden MPs
are unintentionally ingested by organisms especially if they could
desorb in the digestive track (Rainieri et al., 2018; le Bihanic et al.,
2020; Sobhani et al., 2021).

Despite the concerns, there are only few studies reporting the ad-
sorption of PFAS by MPs (Bakir et al., 2014; Llorca et al., 2018; Wang
et al., 2015). These studies deliver some mechanistic insights into the
adsorption process (Llorca et al., 2018); however, given the vast variety
of PFAS types, polymer characteristics, and environmental conditions, it
is critical to generate systematic knowledge to unravel the adsorptive
mechanisms. Conducting laboratory experiments to reveal intermolecu-
lar interactions would be expensive, time consuming and laborious,
which also prompts the model development. Up till now, one article
modeled the adsorption of PFAS by MPs using molecular dynamics sim-
ulations techniques and reported that H-bonding, van der Waals forces,
and electrostatic interactions contribute to adsorption (Enyoh et al.,
2022). Moreover, the partitioning of PFAS to fluid-fluid interfaces was
modeled using tools such as quantitative structure-property relation-
ship analysis (Brusseau and van Glubt, 2021; Brusseau, 2019; Lyu
et al., 2022) and group-contribution model (Le et al., 2022; Le et al.,
2021). Linear solvation energy relationships (LSER), on the other
hand, has never been implemented for adsorption of PFAS by MPs.
LSER uses a predetermined set of solute properties that are established
based on the solvation theory and quantify the molecular interactions
of a compound with its surroundings (Apul et al., 2020; Egert and
Langowski, 2022). Since the early 1990s, this approach has been used
to predict adsorption of a large array of compounds by carbon nano-
tubes (CNT) (Iijima, 1991), multi-walled CNTs (Hüffer et al., 2014;
Apul et al., 2013), single-walled CNTs (Apul, 2014), graphene (Xia
et al., 2010), and graphene oxide (Ersan et al., 2019). LSER is pragmatic
for predicting the adsorptive interactions of PFAS by MPs as a prelimi-
nary tool prior to conducting experimental work (Hüffer et al., 2018;
Uber et al., 2019a; Uber et al., 2019b; Xu et al., 2021; Wei et al.,
2019). Along with their predictive properties, it can also provide mech-
anistic insights into molecular level interactions. However, existing
LSER methods are limited to neutral compounds and have not
attempted to train for ionizable PFAS. Therefore, the objectives of this
study are to train the first LSER models for adsorption of ionizable
PFAS by MPs and to delineate the impacts of perfluoroalkyl carboxylic
acids' (PFCA) molecular weight (MW); water type; and MPs' oxidation
state (i.e., presence of carboxylic acid group, -COOH) on adsorption.
Despite the limited dataset, this article is the first attempt to predict
adsorption of PFAS by MPs, which yielded promising modeling out-
comes and provided useful insights for the design of future experimental
studies. To provide a preliminary predictive tool and reveal molecular
level insights, it is of urgent matter to share the preliminary outcomes
of the developed models with researchers in MPs and PFAS literature.
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2. Materials and methods

2.1. Collection and corrections for Abraham descriptors

Abraham's LSER approach describes solvation or related activities by
the compounds' physicochemical properties. These models provide
mechanistic insights because they reveal intermolecular interactions
between adsorbents and adsorbates as well as quantifying their relative
individual contribution to the adsorption. A typical LSER model that
describes the adsorption of neutral organic compounds by using a set
of predetermined independent descriptors is shown in Eq. (1):

Log Kd ¼ cþ eE þ sSþ aAþ bBþ vV (1)

where ‘log Kd’ is partitioning coefficient between MPs and water
under equilibrium conditions. ‘E’ is the excess molar refraction in
units of (cm3mol−1)/10 representing non-specific van der Waals forces;
‘S' is the polarizability/dipolarity parameter, ‘A’ and ‘B’ are the hydro-
gen bond donating and accepting abilities, respectively; and ‘V’ is the
molecular volume or McGowan's volume in units of (cm3 mol−1)/100.
Lastly, ‘c’ is the regression constant, and ‘e’, ‘s’, ‘a’, ‘b’, and ‘v’ are the
fitting coefficients indicating the contribution of each interaction on
adsorption (Apul et al., 2020; Xu et al., 2021).

Solvatochromic descriptors for PFASwere obtained from the Helmholtz
Centre for Environmental Research (Ulrich et al., 2022). The compounds'
SMILES (PubChem, 2022) were inserted into the computational tool to cal-
culate the descriptors. This tool provides descriptors only for the neutral
forms of the compounds. However, all PFAS contained in this study, except
one (i.e., FOSA, perfluorooctane sulfonamide), exist in almost completely
ionized forms in experimental conditions (Table S1). Therefore, collected
descriptors were corrected to account for the ionization of PFCA using a
set of equations (Text S1 in SI) suggested by Abraham and Acree (2016)
for carboxylic acids. In addition, a new descriptor ‘J−’ was introduced to
the LSER model as an ionization switch as there are both ionic and neutral
PFAS in the dataset. The final form of the model used throughout this study
is shown in Eq. (2).

Log Kd ¼ cþ eE0 þ sS0 þ aA0 þ bB0 þ vV þ j− J− ð2Þ

2.2. Collection of adsorption descriptors

Partitioning coefficients (Kd) for the adsorption of PFAS by polystyrene
(PS) MPs in various water types were collected from Llorca et al. (2018).
Modeling efforts did not focus on high density polyethylene (HDPE) MPs
in that paper due to the insufficiency of Kd data to train LSER. Kd's were
generated at 20 °C based on 7 days concentrations of compounds that
reached adsorption percentage lower than 15% between day 7 to 50. Data-
base was created for adsorption of 13 PFAS ranging between C4-C18. Ad-
sorption data for PS MP using 11 PFAS (10 PFCA+FOSA) and 7 PFCA
were obtained for seawater and freshwater, respectively. The database for
PS-COOH MP was slightly different, containing 10 PFAS (9 PFCA+FOSA)
and 9 PFAS (8 PFCA+FOSA) for seawater and freshwater, respectively.
The inclusion of neutral FOSA aims to provide the models with ability to
differentiate the ionization. Both MPs are virgin (i.e., pristine) and 10 μm
in size. Physicochemical properties of freshwater and seawater are given
in Table S2. Physicochemical properties and Kd's of these compounds are
listed in Tables S1 and S3, respectively. Additionally, Log Kd values for 13
non-ionizable polycyclic aromatic hydrocarbons (PAH) adsorbed by PS
MPs in deionized water was obtained from our earlier review article
(Costigan et al., 2022) and listed in Table S4. PAH data was combined
with the PFCA dataset for freshwater to demonstrate the importance of de-
scriptor correction on model strength.
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2.3. Statistical model development

Multiple linear regressions were conducted by assigning Log Kd as
dependent variable and the modified Abraham solvation descriptors as in-
dependent variables using Microsoft Excel. The goodness-of-fit was exam-
ined by coefficient of determination (R2). The predictive precision of the
models was quantified by the prediction error sum of squares (PRESS)
and the root mean squared error (RMSE). Smaller PRESS and RMSE values
indicated a stronger prediction tendency of a model. The multicollinearity
of independent variables was quantified by variance inflation factor
(VIF). Higher VIF values (>10) indicated severe correlations with one or
more of the remaining independent variables. Four modeling scenarios
were created to examine the impact of PFCA MW, water type, and PS
MPs' oxidation state on the adsorption mechanism. The modeling scenarios
are presented in Table S5. Furthermore, one-way ANOVA analysis was
performed using Microsoft Excel to show the statistical significance of the
predictive improvement achieved after descriptor correction inmodels con-
taining PAHs and PFCAs.
3. Results and discussion

3.1. Analysis of PFAS adsorption by microplastics

Fig. 1a shows the Log Kd values for PFAS adsorption with respect
to PFAS chain length. First, PFCA with longer carbon chains show higher
Kd values, in both water types, ascribed to increasing hydrophobic interac-
tions (Sörengård et al., 2020). However, the longest-chain compounds:
perfluorohexadecanoic acid (PFHxDA, 16C) and perfluorooctadecanoic
acid (PFODA, 18C) disrupt this trend, which can be attributed to semi-
micelle formation; or strong binding to dissolved organic carbon in water
(Campos Pereira et al., 2018). Second, PFCA adsorb onto MPs more
strongly in seawater than in freshwater, regardless of the oxidation state
of PS. This can be due to the ionic strength of seawater that enhances the
likelihood of adsorption either by decreasing the water solubility of
PFCA or developing cation bridges between MPs and PFCA. Unlike PFCA,
FOSA's adsorption capacity is not influenced by the water type, which
was attributed to its neutral state at the corresponding pH values minimiz-
ing the electrostatic interactions. The total organic carbon of seawater is 1.8
folds greater than that of freshwater (Llorca et al., 2018), indicating the
adsorption of protonated PFAS is not impacted by NOM competition.
Similarly, the adsorption of FOSA on polyethylene (PE) and PS MP is not
significantly influenced by ionic strength as it is mainly governed by hydro-
phobic interactions (Wang et al., 2015). In contrast, PFOS' adsorption
Fig. 1. Partition coefficients (Log Kd) for adsorption of PFCA by PS and PS-COOHMPs in
(b) Log Dow. Data from Llorca et al. (2018) and Christensen et al. (2022). Bubble sizes in
the trendlines related to PS in Seawater, PS-COOH in Seawater, PS in Freshwater and P
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affinity is increased at higher ionic strength, confirming the importance
of electrostatic interactions for ionizable PFAS (Wang et al., 2015).

Fig. 1b shows the Log Kd versus octanol water distribution coefficient
(Log Dow) of PFCAs. As demonstrated by Dow, longer chain PFCAs are lipo-
philic (Gagliano et al., 2020). However, Fig. 1b does not include the longest
chain PFCAs (13C, 14C, 16C, and 18C) due to a lack of experimental pKa

values in literature, which are required to convert octanol water partition
coefficient (Log Kow) to Log Dow. Moderate correlations were observed
between Log Kd and Log Dow in all of the datasets, which supports that
hydrophobic repulsion from water is an important mechanism governing
the adsorption of PFCAs with 4C to 12C by MPs. However, PFAS have
unique characteristics hampering the capability of single parameters such
as Dow or chain length to predict this interaction, especially when the
chain length gets longer (Coffin et al., 2021). Compound properties such
as Dow or solubility can be useful for modeling SOC partitioning in deion-
ized water, and do not necessarily reflect complex molecular interactions.
However, water chemistry plays notable roles in adsorption process in the
natural environment (Costigan et al., 2022). Therefore, LSER models
containing multiple PFAS identifiers is imperative to develop reliable
mechanistic insights for PFAS' interactions with MPs. The traditional
LSER models are not designed to predict ionizable compounds. Therefore,
this study demonstrates corrections for PFCA descriptors for LSER training
in the subsequent sections.

3.2. Investigating the mechanistic impact of descriptor correction on LSERmodels

A dataset containing PFCAs and non-ionizable PAHs was created to in-
vestigate the impact of descriptor correction on the model predictivity.
This test was performed using PAHs due to their non-polar and non-
ionizable nature making them relatively more straightforward to model
with the LSER approach. So that the descriptor correction efforts could
focus on PFCAs, and the importance of correction could be better under-
stoodwithout further complexity. Fig. 2 comparesmodels trained by uncor-
rected and corrected descriptors of PFCA (Table S6) at three different MW
cutoffs. All PFCA descriptors were first corrected and then parameter ‘J−’
was assigned to both PFCAs and PAHs. The correction increased adjusted
R2 by 3 % compared to uncorrected models in each MW cutoff, which is a
statistically significant increase at 95 % level of significance (Fig. 2a,
Table S7). Adjusted R2 was selected for comparison because the corrected
model contains an additional independent variable. PRESS and RMSE
values of uncorrected model were 15.02 and 0.87; and those of corrected
models were 11.59 and 3.19, respectively. More importantly, the relative
significance of parameters remarkably changed after correction (Fig. 2b).
Coefficient ‘a’, indicating the H-bond donating ability, experienced the
seawater and freshwater with respect to (a) number of C atoms in PFAS chain; and
(a) represent the relative number of data in four different datasets listed. R2 values of
S-COOH in Freshwater on the panel (b) are 0.50, 0.64, 0.69, and 0.91, respectively.



Fig. 2. (a) Adjusted R2 values of models trained by corrected and uncorrected descriptors at different MW cutoffs. (b) The signs and relative importance of model coefficients
for the corrected and uncorrected descriptors (n=20 i.e., 13 PAH and 7 PFCA). Detailed results are provided in Tables S8 and S9. Coefficient ‘e’ is the excessmolar refraction,
‘s’ is the polarizability/dipolarity parameter, ‘a’ and ‘b’ are the hydrogen bond donating and accepting abilities, respectively, ‘v’ is the molecular volume or McGowan's vol-
ume, and ‘j−’ is the ionization switch.
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most notable change in both sign and relative importance as the model
gained ability to differentiate anionic PFCA from neutral PAHs. This en-
abled the model to differentiate H-bonding tendencies as the prevailing
Fig. 3.Regression coefficients for models examining the effect of (a) PFAS' MW cutoff; (b
FOSA. (Plots for datasets containing FOSA are given in Fig. S1). Detailedmodel results in
and S13. (d) Box and whisker plot for the raw and corrected solvatochromic descriptors
ones are denoted by prime. Data is shown in Table S6. N/A: Not available.
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factor, which dominated other adsorption mechanisms. The correction of
PFCA descriptors improved the model in terms of mechanistic interpreta-
tion and slightly increased its prediction strength.
) water type; and (c) PSMPs' oxidation state. Datasets of these models do not include
cluding the coefficients and statistical analyses are provided in Tables S10, S11, S12,
. The raw descriptors are given the usual symbols and the corresponding corrected
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3.3. Corrected LSER for adsorption of PFAS by microplastics

After demonstrating the utility of descriptor correction, models for only
PFAS were developed to investigate the mechanisms governing their ad-
sorption ontoMPs under varying conditions. Eqs. (3) and (4) show the gen-
eral forms of the modified LSER models that predicts all scenarios created
for PFAS datasets without and with FOSA, respectively. The prime denotes
the descriptors that are corrected for model training. It should be noted that
the models do not include statistically insignificant parameters.

Log Kd ¼ c−eE0 þ sS0 þ vV 0 ð3Þ

Log Kd ¼ c−eE0 þ sS0−bB0 þ vV 0 ð4Þ

The results of LSER models (Eq. (3)) are shown in Fig. 3a, b, and c. The
relative contribution of each mechanism to adsorption was determined by
dividing absolute values of each coefficient by the sum of all coefficients.
Dipolar interactions (‘S’) between MPs and PFCAs are the most significant
mechanisms on the adsorption process. This finding affirms the importance
of electrostatic forces between the permanent dipoles of PFCAs and MPs.
The second most influential factor was ‘E', which was negatively correlated
indicating that refractive index decreases the adsorption of PFCAs ontoMPs
because bulk water has higher polarization induction effect on PFCAs than
MPs (Uber et al., 2019a). Finally, ‘V’ was positively correlated with the
adsorption, which can be either due to the hydrophobic repulsion of
PFCAs demonstrating the greater cavity formation demand of larger mole-
cules in water or non-specific van der Waals attraction between PFCAs and
MPs. The LSERmodel parameters cannot differentiate the twomechanisms,
but the model demonstrates that the size of PFCAs is important to predict
their partitioning onto MPs. When FOSA was included in the dataset
(Eq. (4), Fig. S1), ‘B’ became negatively correlated with adsorption, which
was attributed to FOSA's basicity. The coefficients' order of relative
absolute magnitude was the same with the dataset without FOSA
(except the ‘b’ coefficient as the least influential one). The presence of
‘b’ term in the model indicates that water is a better H-bond donor
(Apul et al., 2013) for PFAS than MPs.

Fig. 3d shows the uncorrected and corrected descriptors that were used
as independent variables to train our models in this study. The outliers
showing up after the correction of ‘A’, ‘B’, and ‘J−’ belong to FOSA, proving
that correction efforts differentiate PFCA from neutral compounds. The
largest change is observed in descriptor ‘B’, which indicates the conversion
from acidic to anionic form.A large and positive ‘B’ demonstrates that PFCA
are anionswith a high H-bond accepting ability. Correspondingly, there is a
slight decrease in ‘A’ since PFCA are losing their H-donating ability. Simi-
larly, ‘J−’ is a descriptor differentiating PFAS in the dataset depending on
their ionization state. On the other hand, the changes in ‘E’ and ‘V’ are
minimal as only one H+ is lost from the molecule with negligible impact
on energy requirement for cavity formation. Finally, the value of ‘S' in-
creases moderately as the molecules' polarizability increases with a nega-
tive ion on the head group of PFCA. Since all PFCA have the same
functional group (i.e., -COOH) in their structure, their corrected ‘A’,
‘B’ and ‘J−’ values are similar across the database with negligible impact
on regression (p > 0.05). Therefore, they were excluded from the model,
resulting in ‘E’, ‘S’, and ‘V’ being the sole governing parameters for the
models with the dataset without FOSA. It should be noted that in some
cases, keeping insignificant parameters may have a value for capturing
underwhelming intermolecular interactions.

3.3.1. Model training for PFCA with different molecular weight cutoffs
The impact of PFCA's MW and thus the chain length on LSER models

was investigated using datasets with different MW cutoffs. This factor was
only possible to be examined for PS-COOH MPs in seawater due to data
availability. The results are shown in Fig. 3a (without FOSA) and Fig. S1a
(with FOSA). These models trained without FOSA yield R2 = 0.66 (at
MW cutoff <1000 g/mol, n = 9) and 0.85 (MW cutoff <800 g/mol, n =
7). It should be noted that the number of data points and the uniformity
5

of intermolecular interactions decrease as the MW cutoff decreases. More-
over, as the MW cutoff decreases, coefficient of ‘V’ decreases, and ‘E’ in-
creases. Indeed, the ‘V’ term captures both hydrophobically driven
repulsion and size dependent non-specific attraction to MP surface. In this
scenario, although ‘E’ increases, there is an overall decrease in the ‘V’
meaning that decreasing chain length causes relatively weak hydropho-
bic interactions. When FOSA is included in the datasets, changes in both
R2 and regression coefficients between MW cutoffs remains similar with
the former dataset (Fig. S1a). Consequently, as the PFCA chain length
gets shorter, the importance of hydrophobic interactions decreases,
and electrostatic attractions become more predominant.

3.3.2. The effect of water type and polymer's oxidation state
The impact of water type was investigated by comparing the models for

PS-COOH in freshwater and seawater. The regression coefficients for
datasets with and without FOSA are shown in Figs. 3b and S1b, respec-
tively. The impact of water chemistry differs depending on the MW cutoff.
For example, at MW < 1000 g/mol, the relative contribution of ‘E’ is higher
in seawater than in freshwater. Amore negative coefficient ‘e’ can be due to
dipolar interactions between PFCA and ions in seawater, which decreases
their adsorption affinity ontoMPs.On the other hand, ‘V’ ismore influential
in freshwater than in seawater. Again, considering the two terms that ‘V’
captures, the positive coefficient ‘v’ is a direct sign for a larger hydrophobic-
ity driven adsorption onto PS-COOHMPs in freshwater. This can be attrib-
uted to NOM content of freshwater that covers the MP surface and attracts
PFCA via hydrophobic interactions. The impact of NOM can diminish
adsorption in seawater by competing with PFCA for the surface of MPs.
When it is <800 g/mol, the impact of water chemistry on the adsorption
mechanism decreases, and the relative importance of parameters be-
comes almost identical. As a result, NOM content of water can govern
the hydrophobic interactions, however its influence is influenced by
chain length of PFAS.

Furthermore, the impact ofMP surface oxidationwas examined by com-
paring the model coefficients for PS versus PS-COOH in seawater at differ-
ent MW cutoffs (i.e.,<1000 and<800 g/mol) with FOSA (shown in Fig. 3c)
and without FOSA (shown in Fig. S1c). Regardless of having FOSA in
datasets, the impact of ‘V’ is two times greater for PS-COOH than PS, and
that of ‘E’ is smaller for PS-COOH than PS at a MW cutoff <1000 g/mol.
Moreover, the relative importance of ‘S’ is not influenced by the polymer's
oxidation state. Considering the ‘V’ term refers to two different mechanisms
mentioned, it can be inferred that the carboxylic acid group of PS MPs en-
hances the importance of hydrophobic interactions at this cutoff. This
could be attributed to the negatively charged surface functional groups re-
pelling the deprotonated PFAS that augments the importance of hydropho-
bic interactions. When MW cutoff is <800 g/mol, the impact of -COOH on
the adsorption process decreases. This can be ascribed to that chain length
is more influential factor than the oxidation level of MPs for the studied
datasets. Consequently, hydrophobic interactions become more visible for
carboxylated PS than plain PS and this difference disappears when PFAS
chain length gets shorter. Overall, LSER models show that the interplay be-
tween PFAS' MW cutoff, water type and polymer surface have a complex in-
fluence on their adsorption by PSMPs. For further decoding of the complex
intermolecular interactions, more adsorption data should be generated.
Considering that the models were developed using data obtained from a
certain size, type, and shape of virginMPs in this study, outcomes could dif-
fer if MPs had different characteristics. Moreover, although the compounds
used in this study cover most of PFCAs detected in the environment,
perfluoroalkyl sulfonic acids (PFSAs) or other PFAS are found in the envi-
ronment and their addition could improve the LSER model efforts.

4. Environmental implications and overcoming the limitations of
LSER modeling for adsorption of PFAS by microplastics

This article introduces LSERmodeling for the adsorption of PFCAs by PS
and PS-COOH MPs in seawater and freshwater for the first time. Since re-
search on PFAS adsorption onto MPs is at early stages, the lack of data is
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a constraint in comprehensive model development for diverse conditions
and therefore developed models do not necessarily capture every MP type
in various waters. With decreasing cost of analysis and increasing attention
to the subject, we anticipate larger published datasets, which will enable
the development of more robustmodels in the near future.Wide applicabil-
ity of models can be improved by addressing the following three main
factors. First, MPs' polymer structure and weathering level can alter the
adsorption affinity of PFCAs especially if they have oxygen functional
groups that are either in the original polymeric structure or formed after
weathering in the environment. In this study, the models developed for
PS were tested for HDPE MPs (Table S14) and demonstrated relatively
weak predictions. Future studies should focus on producing adsorption
data for various MP types and apply the modified LSERmodeling approach
to overcome this limitation and reveal mechanistic insights. Furthermore,
environmental relevance of developedmodels can be improved by normal-
izing “Log Kd” values using surface area, and surface oxygen content. This
study involved normalizing “Log Kd” values for the model with the larg-
est dataset (Tables S15 and S16). Since the surface area information is
available for only one plastic type, surface area-based normalization
efforts did not change multiple linear regression results. When adsorp-
tion data is produced using different plastics, the impact of surface
area will be a determinant.

Second, LSERmodels were generated for two real water samples, which
might have limited their application domain. Even though properties of
background solution (i.e., pH, dissolved oxygen, conductivity, and NOM)
are known, a diverse set of water conditions need to be tested to reach
fundamental level conclusions. Adsorption experiments in synthetic waters
mimicking natural conditions with controlled complexities can help to
better evaluate the individual impact of each water component. However,
it should be noted that the aquatic chemistry conditions to be tested must
be environmentally relevant.

Third, PFCAs have carboxylic acid functional groups and the database
does not capture other functional groups such as sulfonic acids that are en-
vironmentally pertinent. In datasets containing PFCAs only, all compounds
have the same functional group, undergoing similar interactions with
neighboring molecules. Therefore, different classes of PFAS with different
functional groups can enhance the applicability domain of the predictive
model. However, extending our models' applicability domain to include
PFSAs can only be possible after producing correction equations for de-
scriptors of ionic PFSAs. In this work, in addition to PFCAs-specific
models, we added FOSA into the models to improve our understanding
of ionic property of PFCAs, without the need for descriptor correction as
FOSA exists in its neutral form under experimental conditions. Even
though data unavailability limited our attempt, mechanistic explana-
tions were still successfully acquired. For future work, adsorption data
can be attributed to semi-micelle formation; or strong binding to dis-
solved organic carbon in water. Therefore, an extra parameter describ-
ing micelle formation potential of PFAS can be added to the equation
or “Kd” value can be corrected by the critical micelle concentration of
each PFCA.

Developed models have an application domain different than those
reported in similar MPs studies, and therefore they are not directly com-
parable to make conclusive statements using either the model outputs or
the predictive precision. However, the predictive strength of our LSER
model surpasses that of a group-contribution model (Le et al., 2021),
which was developed using air-water surface tension data of PFAS
(Table S17). This paper is the first attempt of using LSER approach for
ionizable compounds in MPs literature and further studies are needed
to make reasonable comparisons.
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