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Optimal designs minimize the number of

experimental runs (samples) needed to accurately

estimate model parameters, resulting in algorithms

that, for instance, efficiently minimize parameter

estimate variance. Governed by knowledge of past

observations, adaptive approaches adjust sampling

constraints online as model parameter estimates are

refined, continually maximizing expected information

gained or variance reduced. We apply adaptive

Bayesian inference to estimate transition rates of

Markov chains, a common class of models for

stochastic processes in nature. Unlike most previous

studies, our sequential Bayesian optimal design is

updated with each observation and can be simply

extended beyond two-state models to birth–death

processes and multistate models. By iteratively

finding the best time to obtain each sample, our

adaptive algorithm maximally reduces variance,

resulting in lower overall error in ground truth

parameter estimates across a wide range of Markov

chain parameterizations and conformations.

1. Introduction
Using experimental data to infer parameters is essential

for accurate quantitative models of natural phenomena.

Inherent stochasticity in most physical systems

compounds this difficulty, clouding the link between

2023 The Authors. Published by the Royal Society under the terms of the
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data and ground truth in ways experimentalists cannot control. Not only does noise cause

uncertainty in model parameter estimates, it can also slow the process of model refinement. As a

result, researchers historically utilized statistical methods to design experiments that maximize

the information obtained from each experimental measurement [1–3]. In particular, Bayesian

experimental design, applied to a system with unknown parameters x, starts with a prior p(x),

constructs the associated posterior p(x|Θ , Ξ ) based on data Θ obtained from an experimental

design Ξ and finds the design that optimizes a specified objective, such as minimizing a

utility function (e.g. variance) that incorporates sampling-associated costs (e.g. time or resources

needed to take measurements) [4,5]. These methods have seen wide application in economics

[6], queueing theory [7], physics [8,9] and cognitive neuroscience [10,11]. In particular, Bayesian

experimental design for inferring transition rates in discrete-state Markov models has seen

great success when applied to simple epidemiological [12–14] and ecological [15,16] models.

Recent efforts have shown that adaptive designs can speed up the timescale of clinical drug or

intervention trials [17], providing an automated, model-based prescription that governs future

sampling.

One of the outputs of Bayesian experimental designs, for systems producing time series data,

is a sampling schedule, a set of times to measure the state of a system, chosen to optimize an

objective function (e.g. minimizing sample number for a fixed estimate tolerance, maximizing

sample information). When schedules are planned in advance of experiments, they may require

sampling continuously in time or periodically with a fixed sampling frequency [18], which

may be infeasible or inefficient given high sampling costs. For example, an ecologist studying

the dynamics of several interacting species may be restricted by seasonal patterns of animal

activity, the expense or time cost of field work, or a finite project timeline, such that they are

unable to implement a fixed schedule of sampling population sizes. In these situations, Bayesian

experimental design can be extended to incorporate sequential analysis [19], yielding iterative

and adaptive sampling schedules based on prior observations. While approximate versions of

these Bayesian adaptive designs have been applied to simple models [20], precise sequential

formulations applied to more complicated systems are often limited by intractable likelihood

functions. This difficulty has spawned advanced algorithms involving stochastic optimization

[21,22], Markov Chain Monte Carlo (MCMC) [5,23,24] and machine learning methods [25,26].

In this work, we develop an adaptive sequential Bayesian inference algorithm that successively

optimizes each process sample time to minimize the variance of transition rate parameter

estimates for discrete-state Markov processes with arbitrary numbers of states and transition

rates. An early version of this work focused on simple two-state processes with a single-transition

rate [27]. Starting with two-state Markov chains, we illustrate how sequentially chosen sampling

times are selected to minimize expected parametric posterior variance after each observation. We

compare the speed and accuracy of this adaptive algorithm to that of a fixed-period sampling

algorithm across transition rate parameter space. Considering more complex Markov chains, our

algorithm can be extended by minimizing the expected determinant of the covariance matrix

associated with the transition rate matrix. We apply this algorithm to three specific Markov

chain models: a ring of states, modelling the diffusive degradation of memory for a single

circular parameter [28,29], a birth–death process describing population dynamics of epidemics

and ecological groups [12] and a general Markov chain inference problem with a binarized

prior for each transition rate. Taken collectively, these results demonstrate a simple yet powerful

approach to efficiently inferring the dynamics of Markov models.

2. Methods: adaptive Bayesian design for Markov chains
Our Bayesian inferential approach to determining transition rates of a Markov chain from time

series observations relies on obtaining accurate representations of the parametric likelihood

functions from state observations. This is plausible in the case of simple Markov chains for which

likelihoods can be determined analytically. Of course, for continuous-time Markov chains, it
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is always possible to write down likelihood formulas, but computation becomes infeasible for

sufficiently large chains. In this section, we derive our algorithm for adaptive Bayesian inference

through a series of examples with increasing complexity. These examples culminate with our

derivation of the adaptive algorithm for general time-homogeneous, continuous-time Markov

chains.

(a) Inferring single-transition rates

We start by considering a continuous-time Markov process with two states X(t) ∈ {0, 1} and a

single-transition rate h0 > 0, so that

Pr(X(t + δt) = 1|X(t) = 0) = h0δt + o(δt), δt ↓ 0,

Pr(X(t + δt) = 0|X(t) = 1) = 0, ∀δt ≥ 0.

}

(2.1)

For this Markov process with a single-transition link, we will enforce the initial condition

X(0) = 0 to guarantee the possibility of observing a transition from X = 0 to X = 1. Our goal

is to design an algorithm for sampling from this process efficiently to optimally decrease the

estimate variance of the transition rate parameter h0 with each state sample (after reinitialization).

By using Bayesian inference, we assume a prior distribution p0(h0) and obtain measurements

of the process ξi = (ti, X(ti)) = (ti, Xi), where i ∈ {0, 1, 2, . . .} represents the sample number index

and X evolves according to equation (2.1) and always taking X(0) = 0. These samples allow

us to construct the posterior pn(h0) = p(h0|ξ1:n). Sampling times ti are chosen to minimize the

expected posterior variance after each observation. The algorithm samples observations until a

predetermined threshold variance θ is reached. At this point, the transition rate estimator ĥ0 is

the maximum a posteriori estimator.

To illustrate the process of selecting each sample time tn, suppose we have previously observed

n − 1 measurements, ξ1:n−1 = {(t1, X1), . . . (tn−1, Xn−1)}. Given a particular planned subsequent

observation time tn, the expected posterior variance on the next (nth) timestep Varn(h0|ξ1:n−1, tn) is

given by marginalizing over the possible future measurements ξn (i.e. possible state observations

X(tn)) assuming the history of observations ξ1:n−1 and a sample time tn:

Varn(h0|ξ1:n−1, tn) = Var(h0|Xn = 0, tn, ξ1:n−1) Pr(Xn = 0|tn, ξ1:n−1)

+ Var(h0|Xn = 1, tn, ξ1:n−1) Pr(Xn = 1|tn, ξ1:n−1).

Note, that since we always reset X(0) = 0 preceding each sample, the relevant conditional

observation probabilities are as follows:

p(ξn|h0) =
{

1 − e−h0tn , X(tn) = 1

e−h0tn , X(tn) = 0
(2.2)

and

p(ξn|ξ1:n−1) =
∫∞

0
p(ξn|h0)pn−1(h0)dh0.

Thus, we obtain the expected variance formula:

Varn(h0|ξ1:n−1, tn) =
∫∞

0
pn−1(h0)

⎡

⎢

⎢

⎢

⎣

e−h0tn

⎧

⎪

⎪

⎨

⎪

⎪

⎩

h0 −

∫∞

0
h0 e−h0tn pn−1(h0) dh0

∫∞

0
e−h0tn pn−1(h0) dh0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

2

+(1 − e−h0tn )

⎧

⎪

⎪

⎨

⎪

⎪

⎩

h0 −

∫∞

0
h0(1 − e−h0tn )pn−1(h0) dh0

∫∞

0
(1 − e−h0tn )pn−1(h0) dh0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

2
⎤

⎥

⎥

⎥

⎦

dh0. (2.3)
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Algorithm 1. Single-transition adaptive Bayesian inference.

Require: n = 0, θ > 0, p0(h0) ⊲ p0: prior with support [0, ∞).

while Varn(h0) > θ do

n ← n + 1

tn ← arg mint≥0Varn(h0; t) ⊲ Calculate Varn using equation (2.3).

Draw ξn = (tn, Xn)

pn(h0) ← p(ξn|h0)pn−1(h0)∫∞
0 p(ξn|h0)pn−1(h0) dh0

end while

The sample time tn that minimizes equation (2.3) depends on the posterior pn−1, computed

from the sequence of previous observations of the stochastic process. Because each sample time

depends on the previous posterior distribution, this algorithm performs sequential and adaptive

Bayesian inference. The expected variance formula in equation (2.3) can be defined iteratively.

Moreover, once tn is chosen by minimizing equation (2.3) and an observation is made for Xn,

we can calculate the true variance after the nth observation as follows:

Varn(h0) =
∫∞

0
pn(h0)

{

h0 −
∫∞

0
h0pn(h0) dh0

}2

dh0, (2.4)

where

pn(h0) = pn−1(h0) ·
{

1 − e−h0tn , X(tn) = 1

e−h0tn , X(tn) = 0.

This leads us to propose algorithm 1. Unless otherwise noted, we will take the variance threshold,

which terminates the accumulation of observations, to be θ = 0.1 throughout this work.

(b) Multi-dimensional inference on simple chains

Our adaptive inference algorithm easily extends to chains with multiple transition rates, as we

simply need to compute the state probability distribution for the Markov chain and include that

in our Bayesian update. To illustrate, consider the same two-state Markov process, but with

transitions occurring bidirectionally with transition rates h0 (0 	→ 1) and h1 (1 	→ 0). Expanding

the inference problem beyond a single dimension requires defining a new objective function to

minimize, which will now involve multiple transition rate parameters: variability in the estimate

is now defined by the posterior covariance matrix Σ rather than the variance. There are several

ways to ‘minimize’ a covariance matrix [2,30]. Here, we take the approach of minimizing the

determinant of the expected covariance, known as a ‘D-optimal’ method in optimal experimental

design. Such an approach is also equivalent to maximizing the product of the eigenvalues of

the Fisher information matrix [31]. Maximizing information gain here is preferable to reducing

averaging variance (as in A-optimal designs), since there could be strong asymmetry in the

transition rate parameters.

The process is always guaranteed to eventually switch from one state to another as long as

both rates are non-zero, and the transition rate parameters can both be inferred to arbitrarily

small variances given enough observations. Thus, we avoid the need to reset the chain’s state

after each observation. For simplicity, we assume X0 = X(t0 = 0) = 0 to begin, but it is not difficult

to extend the algorithm to the case where X0 is chosen randomly, and we subsequently allow the

variable to evolve according to a Markov chain whose transition rates are chosen from the prior,

(h0, h1) ∼ p0(h0, h1). Thereafter, Xn = X(tn) is drawn and compared with Xn−1 = X(tn−1) to update

the posterior over the transition rates (h0, h1).

As with the adaptive inference procedure for a single-transition rate, we determine the next

sample time tn after the current time tn−1 by minimizing the determinant of the expected

covariance matrix. For an arbitrary subsequent sampling time tn, the expected covariance [Σn]ij ≡
Covn(hi, hj) is computed by marginalizing over the possible observations Xn and conditioning on
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Algorithm 2. Bidirectional two-state chain adaptive Bayesian inference.

Require: n = 0, θ > 0, p0(h0, h1) ⊲ p0: prior with support [0, ∞)2.

while det (Covn(h0, h1)) > θ do

n ← n + 1

tn ← arg mint≥tn−1
det
(

Covn(h0, h1; t)
)

⊲ Calculate Covn using Eq. (2.6).

Draw ξn = (tn, Xn)

pn(h0, h1) ← p(ξn|h0,h1)pn−1(h0,h1)∫∫
R

2
≥0

p(ξn|h0,h1)pn−1(h0,h1) dh0 dh1

end while

the past observations ξ1:n−1:

Covn(hi, hj) = Covn(hi, hj|Xn = 0, tn, ξ1:n−1)p(Xn = 0|tn, ξ1:n−1)

+ Covn(hi, hj|Xn = 1, tn, ξ1:n−1)p(Xn = 1|tn, ξ1:n−1).

Now, marginalizing over transition probabilities from the previous state Xn−1, which we can

define for all possible cases

p(Xn = j|Xn−1 = i) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

h1

h0 + h1
+ h0

h0 + h1
e−(h0+h1)(tn−tn−1), i = j = 0

h0

h0 + h1
− h0

h0 + h1
e−(h0+h1)(tn−tn−1), i = 0, j = 1

h1

h0 + h1
− h1

h0 + h1
e−(h0+h1)(tn−tn−1), i = 1, j = 0

h0

h0 + h1
+ h1

h0 + h1
e−(h0+h1)(tn−tn−1), i = j = 1

, (2.5)

yields the expected future covariance

Covn(hi, hj; tn) =
1
∑

k=0

∫∫
R

2
≥0

⎡

⎢

⎢

⎢

⎣

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

hi −

∫∞

0
hi

(∫∞

0
p(Xn = k|Xn−1)pn−1(h0, h1)2 dhj

)

dhi∫∫
R

2
≥0

p(Xn = k|Xn−1)pn−1(h0, h1)2 dh0 dh1

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

×

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

hj −

∫∞

0
hj

(∫∞

0
p(Xn = k|Xn−1)pn−1(h0, h1)2 dhi

)

dhj∫∫
R

2
≥0

p(Xn = k|Xn−1)pn−1(h0, h1)2 dh0 dh1

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

× p(Xn = k|Xn−1)pn−1(h0, h1)2
]

dh0 dh1. (2.6)

Note the extra factor of the posterior from the previous sequence of observations pn−1 appears to

properly weight the probability of transitioning from Xn−1 to Xn. Using the determinant of the

expected covariance as computed by equation (2.6), we modify algorithm 1 to obtain the multi-

dimensional adaptive inference algorithm shown in algorithm 2. After a sample ξn = (tn, Xn), the

resulting covariance is

Covn(hi, hj) =
∫∫

R
2
≥0

[{

hi −
∫∫

R
2
≥0

hipn(h0, h1) dhj dhi

}

×
{

hj −
∫∫

R
2
≥0

hjpn(h0, h1) dhi dhj

}

pn(h0, h1)

]

dh0 dh1.
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(c) Adaptive Bayesian inference for arbitrary Markov chains

While the algorithms proposed earlier considered chains with two states, we can generalize

our approach to arbitrary chains by considering systems with higher-dimensional covariance

matrices whose determinants we treat as our objective function. Let X(t) be a discrete-state

Markov process with m states and d transition rates, denoting Xn as the nth state sample, the state

k ∈ {0, . . . , m − 1}, and the transition rate hi indexed by i ∈ {1, . . . , d}. Note that we could index

transition rates as hij using the ordered pair for the rate of transition from state Xj → Xi, but the

single index formulation leads to a more concise form in the terms hereafter. Moreover, we do not

always consider Markov chains with complete digraph transition rate conformations that would

benefit from ordered pair notation.

To infer the d-dimensional vector h of transition rates, we construct a posterior distribution,

for instance, after the (n − 1)th sample from the sequence ξ1:n−1 = {(t1, X1), . . . , (tn−1, Xn−1)} with

a covariance matrix Σn−1 ≡ Covn−1 ∈ R
d×d having entries [Σn−1]ij ≡ Covn−1(hi, hj) defining the

covariance between the estimates of the transition rates hi and hj. Our algorithm then proceeds

in choosing the next sample time tn that minimizes the determinant of the expected covariance

matrix det(Covn(t)). By marginalizing over possible observable states Xn ∈ {0, . . . , m − 1}, the

entries of Covn, averaged for a particular choice of the next sample time tn, are given by

Covn(hi, hj) =
m−1
∑

k=0

Covn(hi, hj|Xn = k, tn, ξ1:n−1) Pr(Xn = k|tn, ξ1:n−1). (2.7)

As mentioned earlier, we consider the marginalization in equation (2.7) in the context of

transitions from the previous (known) state Xn−1. This requires introducing the transition

probabilities p(Xn = k|Xn−1, h) and the posterior pn−1 into equation (2.7). Formulas for the

transition probabilities can be obtained explicitly in a number of cases, but they are not as concise

as in the case of two state chains. In general, the explicit update rule for the entries of the expected

covariance matrix will be

Covn(hi, hj) =
m−1
∑

k=0

∫∫
R

2
≥0

⎡

⎢

⎢

⎣

⎧

⎪

⎪

⎨

⎪

⎪

⎩

hi −

∫∞

0
hi

(∫∞

0
p(Xn = k|Xn−1, h)pn−1(h)2 dd−1

i h

)

dhi

∫∞

0
p(Xn = k|Xn−1, h)pn−1(h)2 ddh

⎫

⎪

⎪

⎬

⎪

⎪

⎭

×

⎧

⎪

⎪

⎨

⎪

⎪

⎩

hj −

∫∞

0
hj

(∫∞

0
p(Xn = k|Xn−1, h)pn−1(h)2 dd−1

j h

)

dhj

∫∞

0
p(Xn = k|Xn−1, h)pn−1(h)2 ddh

⎫

⎪

⎪

⎬

⎪

⎪

⎭

×
∫∞

0
p(Xn = k|Xn−1, h)pn−1(h)2 dd−2

ij h

]

dhi dhj. (2.8)

In equation (2.8), we use the notation
∫

· dx
y1y2...

z to denote that the integral is x-dimensional, and

the directions {y1, y2, . . . } are the directions not integrated over. For example,
∫

· dd−1
i h indicates we

integrate over all directions in h except hi. Note that for conservation, the number of subindices

yi and the dimension of the integral x must add to the dimension of the space z. To use equation

(2.8) to infer a network’s transition rates, we substitute this covariance update in place of equation

(2.6) in algorithm 2 and modify the normalization step of the posterior appropriately to define

algorithm 3. In the following, we apply this generalized algorithm to infer transition rates to

perform rate inference in some canonical Markov chain models.

(d) Numerical implementation of adaptive Bayesian inference algorithms

To numerically implement algorithms 1–3, we must specify a method for finding the optimal

sampling times tn and for updating the posterior density after an observation. To solve the

optimization problem of finding the sampling time tn that minimizes the expected covariance
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Algorithm 3. Adaptive Bayesian inference for general Markov chains.

Require: n = 0, θ > 0, p0(h) ⊲ p0: prior with support [0, ∞)d.

while det (Covn(h)) > θ do

n ← n + 1

tn ← arg mint≥tn−1
det
(

Covn(h; t)
)

⊲ Calculate Covn using Eq. (2.8).

Draw ξn = (tn, Xn)

pn(h) ← p(ξn|h)pn−1(h)∫∫
R

d
≥0

p(ξn|h)pn−1(h) dh

end while

Covn, subject to the constraint tn ≥ 0, we used MATLAB’s fminbnd, which combines golden

section search and parabolic interpolation to find optima on a bounded interval. Each successive

guess is generated as a convex linear combination of two endpoints of the proposed interval in

which the optimum lies [32]. We found that standard constrained optimization routines, such

as fmincon in MATLAB or scipy.optimize.minimize in Python, provided good results.

However, we also found that using a bounded optimization routine provided more accurate

results for a sufficiently large upper bound on tn. To update the posterior density, we first

constructed a prior density p0 on a mesh of possible transition rates h and then calculated the

posterior update on the same mesh using the exact update rule for the chain configuration

(see equation (3.4)). Because we have access to the exact posterior update rule for any finite-

state Markov chain, we were able to avoid the usual computational concerns associated with

evaluating posterior densities. For further information about our numerical implementations, see

https://github.com/nwbarendregt/AdaptMarkovRateInf.

3. Results: adaptive Bayesian inference applied to classic Markov chain models
Having developed our adaptive Bayesian inference algorithm for arbitrary discrete-state Markov

chains, we now proceed to study the algorithm’s performance on a variety of Markov chain

models. In all our results, we run the inference algorithm until it has converged, which we

define as the first time the determinant of the posterior covariance (or, in the case of inferring a

single-transition rate, the posterior variance) drops below a threshold θ . To measure algorithm

performance, we use two metrics: (1) the number of samples ξ needed for the algorithm to

converge, which we define as Ns, and (2) the mean-squared error (MSE) of the final posterior

output of the algorithm after convergence. The MSE associated with a transition rate hi is defined

with respect to the whole posterior, not just the maximum likelihood or the posterior mode:

MSEi =
∫∞

0
(hi − htrue

i )2

[∫∞

0
pNs

(h) dd−1
i h

]

dhi. (3.1)

In equation (3.1), Ns is the total number of samples to convergence and htrue
i is the true transition

rate, and the integral notation
∫

· dd−1
i h has the same meaning as in equation (2.8). Note that

we use MSE as a measure of inference error rather than the posterior covariance. Posterior

covariance is used to guide sampling time choice and as the convergence criterion since it implies

reduction of uncertainty. It is therefore equal across converged algorithms. However, posterior

covariance does not necessarily imply how well the algorithm can recover a ground truth model

generating observations. In fact, some parameter fitting procedures can lead to biased estimates,

in which case uncertainty implied by the parametric posterior is reduced by maximum likelihood

estimates straying from the ground truth [33]. This is why we use MSE to evaluate algorithm

performance, but this quantity requires knowledge of the true transition rate, which we have

access to in our simulation-based studies. Alternatively, an experimentalist who wants to study

algorithmic performance applied to a given physical system, in which the true transition rates

may be unknown, could instead use a performance metric that measures how well the algorithm’s

output replicates experimental data, such as Bayes factor analysis [34].
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Figure 1. Inferring single-transition rates. (a) Schematic of two-state Markov process with single-transition rate h0. Inset

plot shows realizations of the optimal sampling interval computed by the adaptive inference algorithm. (b) Scatter plot of

algorithms’ performance metrics, measured in the number of samples to converge (Ns) and average error (MSE) for inferring

the transition rate h0 = 1. Green diamond shows performance of the adaptive algorithm, and each orange dot shows the

performance of the periodic algorithm for a different fixed sampling period T . Periodic algorithm dots that lie in the upper-

right quadrant relative to the adaptive algorithm have strictly worse performance than the adaptive algorithm. (c) Average

performance comparison between adaptive and fixed-period algorithms, taken over 103 values of h0. The periodic algorithm

only outperforms the adaptive algorithm 6% of the time. (d) Average number of samples to converge Ns of adaptive algorithm

as a function of fixed transition rate h0. Averages taken over 10
3 realizations with the same h0. (e) MSE of adaptive algorithm as

a function of h0, using the same simulations as in (d).

(a) Single-transition rate inference

We compared the performance of adaptive inference for the two-state, single-transition rate chain

schematized in figure 1a, defined by algorithm 1, to that of an algorithm using a predetermined,

fixed sampling period T, which for a general Markov chain is given by algorithm 4. Randomly

selecting parameters from a gamma-distributed prior with hyperparameters (α, β) = (2, 1), we

determined the average number of samples for both algorithms to converge and the average

mean-squared error (MSE) of both algorithms once they have converged. Note that the periodic

algorithm’s performance will depend on the choice of the fixed sampling period T; for the

adaptive inference algorithm, which does not take T as an input, performance will be independent

of T. Comparing the performance of both algorithms across a range of values of T, we found that

the adaptive algorithm tended to strongly outperform the periodic algorithm in convergence time

and inference error. This performance advantage can be clearly observed both when inferring a

single ground truth transition rate parameter (figure 1b) and across many realizations of transition

rates (figure 1c). In addition, the adaptive algorithm inherently identifies the best choice of

the sampling time for each sample based on the posterior over transition rates inferred so far,

integrating the process of parameter inference with sampling method as an online experimental

design. We also measured the number of samples required and the MSE of the adaptive

algorithm for fixed h0 to investigate any systematic biases in adaptive inference. Inferring larger

transition rates require more samples (figure 1d) due to (a) the sensitivity of the posterior to state

observations at short observation times and (b) low prior likelihood due to their place in the tail

of the gamma distribution. Inference error, defined as the MSE between the posterior and true

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

1
 J

u
n
e 

2
0
2
3
 



9

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

479:20220453
..........................................................

Algorithm 4. Fixed-period inference algorithm.

Require: n = 0, θ > 0, p0(h), T > 0 ⊲ p0: prior with support [0, ∞)d.

while det (Covn(h)) > θ do

n ← n + 1

tn ← tn−1 + T ⊲ Update sample time using fixed-period input T.

Draw ξn = (tn, Xn)

pn(h) ← p(ξn|h)pn−1(h)∫∫
R

d
≥0

p(ξn|h)pn−1(h) dh

end while

transition rates, was uniformly low across all values of h0 (figure 1e). Note that termination at low

posterior variance does not ensure low MSE, since observations could guide the mean estimate

away from the true value, and Bayesian inference of parameters with insufficient sample sizes or

priors can be strongly biased [33].

(b) Higher-dimensional inference on two-state chains

To assess the adaptive algorithm’s performance on a slightly higher-dimensional problem, we

considered a two-state Markov chain with two transition rates (schematized in figure 2a) and

compared algorithm 2 to a fixed-period sampling algorithm, identifying the best period for a

given prior. To mirror the gamma prior used previously, we chose a bivariate gamma prior with

joint distribution function [35]

p0(h0, h1) = CΓ (b)(h0h1)c−1

(

h0

µ1
+ h1

µ2

)((a−1)/2)−c

exp

{

−1

2

(

h0

µ1
+ h1

µ2

)}

× Wc−b+((1−a)/2),c−(a/2)

(

h0

µ1
+ h1

µ2

)

, (3.2)

where C is given by
1

C
= (µ1µ2)cΓ (c)Γ (a)Γ (b),

c = a + b, and W is the Whittaker function given by

Wλ,µ(a) = aµ+(1/2)e−(a/2)

Γ
(

µ − λ + 1
2

)

∫∞

0
tµ−λ− 1

2 (1 + t)µ+λ− 1
2 e−at dt.

We will take µ1 = µ2 = 2 and a = b = 1 throughout when using the bivariate gamma prior given

by equation (3.2). Sampling different pairs of transition rates (h0, h1) from this prior, we compared

the convergence time and inference error of both algorithms using the same approach we

implemented for the single-transition problem (figure 2b,c). For this higher-dimensional inference

problem, the adaptive algorithm still showed better performance across a range of different

transition rate pairs. Because an experimentalist cannot know the best sampling period a priori,

these results suggest the adaptive algorithm is generally faster and more accurate than the naive

approach.

Does increasing the dimension of the inference problem introduce any new biases in adaptive

inference? We measured average convergence time (figure 2d) and average inference errors

(figure 2e,f ) of the adaptive inference algorithm for fixed transition rates using the same bivariate

gamma prior. Similar to the single-transition network in §3a, inferring larger transition rates takes

more samples, as these rates are in the tails of the bivariate gamma prior and observables (state

sequences) are less sensitive to subtle changes in parameters (transition rates). In addition, the

average MSE associated with the each rate is consistently low across most of parameter space.

The notable exception to this low-error behaviour is when one of the transition rates (hi) is

identically zero in which case the estimate of the other transition rate (hj) is poor. To understand

this behaviour, consider a network where h0 = 0 and h1 ≥ 0. If the initial state is X0 = 0, then no
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Figure 2. Inferring multiple transition rates. (a) Schematic of two-state Markov process with two transition rates h0, h1
(originating from state 0 and 1, respectively). Inset plot shows realizations of the optimal sampling interval computed by the

adaptive inference algorithm. Note the distinct dichotomous nature of the set of time choices. (b) Scatter plot of algorithms’

performancemetrics,measured in thenumber of samples to converge (Ns) and averagenormof the error (||MSE||1) for inferring
the transition rate pair (h0, h1)= (1, 1). Green diamond shows performance of the adaptive algorithm, and each orange dot

shows theperformanceof theperiodic algorithmfor adifferentfixed samplingperiod T . Periodic algorithms that lie in theupper-

right quadrant relative to the adaptive algorithm have strictly worse performance than the adaptive algorithm. (c) Average

performance comparison between adaptive and fixed-period algorithms, taken over 103 pairs of (h0, h1). The periodic algorithm

only outperforms the adaptive algorithm 11% of the time. (d) Mean number of samples Ns required for adaptive algorithm to

reach the covariance determinant threshold as a function of fixed true transition rates h0, h1. Averages taken over 10
3 realizations

with the same pair of transition rates. (e)MSE for h0 inference of adaptive algorithmas a function of h0, h1, taken using the same

simulations as in (d). (f ) Same as (e), but for MSE for h1 inference.

transitions will occur. Obtaining the same Xn = 0 measurements implies either (1) the rate h0 is

small or (2) the rate h1 is large. The posterior of the adaptive algorithm converges to account

for both of these possibilities, which results in small errors in h0 inference and potentially large

errors in h1 inference. Heuristically, we can explain this behaviour by noting that repeated Xn = 0

measurements means that, in the large-sample limit and for fixed inter-sample interval δt, the

posterior scales as powers of the first term in equation (2.5):

pn(h0, h1) ∝
[

h1

h0 + h1
+ h0

h0 + h1
e−(h0+h1)δt

]n

.

Fixing h1 ≥ 0, this posterior is maximized at h0 = 0, so as n increases, pn will asymptotically

converge to a delta distribution along the h0 dimension at h0 = 0. Simultaneously, for fixed

h0 → 0, pn appears as a flat distribution along the h1 dimension, implying the posterior contains

no information about h1. These results demonstrate that achieving accurate inference requires

utilizing a prior with dimension equal to the dimension of the problem.

(i) Effect of convergence tolerance on adaptive inference

So far we have investigated the adaptive algorithm’s convergence speed and inference error for a

fixed convergence tolerance θ . However, the choice of θ may impact the algorithm’s performance.

By using the simple two-state Markov processes discussed earlier, we measured the convergence

time (figure 3a) and inference error (figure 3b) of the adaptive inference algorithm as θ is varied.

Changing θ leads to a trade-off between the error in the estimate and the number of samples
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Figure 3. Performance of adaptive algorithm for varied convergence tolerances. (a) Average number of samplesNs required for

the adaptive algorithm to converge for different tolerances θ applied to both two-state networks in §§3(a) and 3(b). Averages

taken over 103 transition rates drawn from aΓ (2, 1) prior for the unidirectional network and 103 pairs of rates from the bivariate

gamma prior, equation (3.2), for the bidirectional network. (b) Mean-squared error MSE of adaptive algorithm with varied θ

applied to the same networks and sampled transition rates as in (a).

required for convergence: lower (tighter) tolerances require more samples to converge, but yield

low-error estimates. By comparing the algorithm’s performance between unidirectional versus

bidirectional Markov chains, we found that inferring multiple transition rates requires fewer

samples than inferring a single transition for nearly all values of θ . This trend is likely a result

of the increase in the inference problem’s dimension: convergence in the multi-dimensional

inference algorithm is measured using covariance as opposed to variance, and minimizing the

determinant of the covariance can be achieved both by minimizing the individual variances and

by maximizing the correlations between the two rate estimations.

(c) Multi-dimensional inference on complex chains

(i) Inferring birth and death rates in an M/M/1 queuing process

We start by considering an M/M/1 queue (birth–death process) Markov chain X(t) ∈ {0, 1, 2, . . .}
(m → ∞), schematized in figure 4a, with birth rates λ ≥ 0 and death rates µ > 0, with the restriction

µ > λ for boundedness, so that

Pr(X(t + δt) = i + 1|X(t) = i) = λδt + o(δt), ∀i ≥ 0,

Pr(X(t + δt) = i − 1|X(t) = i) = µδt + o(δt), ∀i ≥ 1,

Pr(X(t + δt) = i|X(t) = i) = 1 − (λ + µ)δt + o(δt), ∀i ≥ 0.

One can show (see [36] for details) that the transition probabilities p(X(tn) = j|X(tn−1) = i, λ, µ) for

this M/M/1 queue are given by the formula involving the time interval �t = tn − tn−1 and states

i and j:

p(X(tn) = j|X(tn−1) = i, λ, µ) = e−(λ+µ)�t

×

⎧

⎨

⎩

ρ(j−i)/2Ij−i(a�t) + ρ(j−i−1)/2Ij+i+1(a�t) + (1 − ρ)ρj
∞
∑

k=j+i+2

ρ−(k/2)Ik(a�t)

⎫

⎬

⎭

, (3.3)

where ρ = λ/µ < 1 by the condition placed on the birth/death rates, Ik is the modified Bessel

function of the first kind and a = 2
√

λµ. By substituting equation (3.3) into equation (2.8), we can

proceed with inferring the transition rates λ and µ using algorithm 3. As mentioned, restricting

possible transition rates so that µ > λ guarantees a well-defined and finite stationary distribution

for the Markov chain. We accomplish this restriction by drawing the birth λ and death µ rates

from a truncated version of the bivariate gamma prior from equation (3.2) which ensures death

rates are always larger.
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Figure 4. Inferring transition rates in a basic queueing process. (a) Schematic of an M/M/1 queue process with ‘birth rates’ λ

and ‘death rates’µ. (b) Average number of samples Ns required for the adaptive algorithm to infer fixed transition ratesµ,λ,

with restrictionλ < µ. Average taken over 102 realizations with the same pair of transition rates. (c) Mean-squared error MSE

estimatingµ, inferred using the adaptive algorithm for fixed transition rates, taken over the same samples as in (b). (d) Same

as (c), but for MSE estimatingλ.

To determine how adaptive inference fares in specifying the birth and death rates of this

countably infinite Markov chain, we again quantify estimation error and convergence time.

Across all transition rates considered, the adaptive algorithm quickly converges to an accurate

estimate of the transition rates (figure 4b). As in the simple networks discussed earlier, the

algorithm converges slower when the transition rates are in the tails of the prior. In addition, as

in the two-state network (figure 2e), the algorithm has poor accuracy for inferring µ when λ = 0

(figure 4c). For this pure death process, the chain will always eventually converge to the absorbing

state X = 0 for all µ > 0, yielding little information about the magnitude of µ itself. However,

unlike the two-state network (figure 2f ), the algorithm had very low error in inferring λ for all

values considered (figure 4d). The adaptive algorithm is effective in inferring the parameters of

this birth–death process, particularly when the two parameters have similar value but the death

rate is still larger than the birth rate.

(ii) Inferring transition rates in a ring network

Every chain we have considered so far has shared a key feature: we can introduce an absorbing

state in the chain by setting one of the transition rates to zero. Cutting a single link of the chain

causes one state to have no link out of it. This can lead to high errors in inference for both the two-

state (figure 2e,f ) and M/M/1 queue (figure 4c) networks. To move away from these cases, we

consider a ring chain with identical clockwise transition rates h+ and counterclockwise transition

rates h− (figure 5a). This chain, which is equivalent to a periodic random walk, possesses

absorbing states only if h+ and h− are identically zero, so we can further test if adaptive inference

error increases due to the reduction in a problem’s dimension. For such a ring network with

m states, the transition probabilities from state j to i given a time interval and the clockwise

and counterclockwise transition rates, p(X(tn) = j|X(tn−1) = i, h+, h−), are given by the matrix

exponential [37]

p(X(tn) = j|X(tn−1) = i, h+, h−) = [eA(h+,h−)�t]ij, (3.4)
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Figure 5. Inferring transition rates in a symmetric ring network. (a) Schematic of a ring network of sizem= 3 with clockwise

transition rates h+ and counterclockwise transition rates h−. (b) Average number of samples Ns required for the adaptive
algorithm to infer transition rates given a ring of size m. Averages taken over 102 sampled pairs of transition rates generated

from the bivariate gamma prior, equation (3.2). (c) Mean-squared error MSE in estimating the transition rates of the ring chain

using the adaptive algorithm for varied network sizem and the samenetwork realizations from (b). (d)Meannumber of samples

Ns required for the adaptive algorithm’s estimate of the transition rates to converge in a network of sizem= 8 for a fixed pair

(h−, h+) of true counterclockwise and clockwise transition rates. Averages at each parameter set value taken over 102 trials. (e)
Mean-squared error MSE in the estimate of h+ as the two transition rates are varied. Averages taken using the same trials as in

(d). (f ) Same as (e), but for MSE estimating h−.

where �t = tn − tn−1 and A ∈ R
m×m is the infinitesimal generator matrix for the network. In the

case of an m-state ring network, A(h+, h−) is given by

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−(h++h−) h+ 0 . . . 0 h−
h− −(h++h−) h+ 0 . . . 0

0
. . .

. . .
. . .

...
...

0
... . . . 0 h− −(h++h−) h+

h+ 0 . . . 0 h− −(h++h−)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

We were first interested in how the size of the Markov chain affected the error in inference and

the time for the algorithm to converge. Recall that inference of the transition rate parameters

converged faster in the M/M/1 queue chain than in the simple two-state chain, which we

attributed to an increase in the number of chain states (i.e. increase in the possible measurements),

allowing for a more refined sampling of the stochastic dynamics of the chain with each

observation. We looked to see if this trend extended to the context of a chain with ring topology,

computing the convergence time (figure 5b) and error (figure 5c) in transition rate estimation as

a function of chain size. The results suggest that increasing the chain size does in fact speed up

convergence of the adaptive algorithm. Moreover, this speed-up does not generate any additional

error in rate inference, as the adaptive algorithm displays uniformly low error for all chain sizes

considered.

We also looked further at how strong asymmetries in the true transition rate parameters

impacted the performance of the adaptive algorithm on the rate inference problem on the ring. To

do so, we fixed the ring size m = 8 and measured convergence time (figure 5d) and inference errors

of each transition rate (figure 5e,f ) for different fixed pairs of h+ and h−. As we observed in all
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previous chains, the adaptive algorithm takes longer to converge when the true transition rates

are large and fall in the tails of the bivariate gamma prior (equation (3.2)). Unlike the previous

examples we studied, the average inference error for both transition rates is uniformly low

across the range of values considered. These findings provide further credence to our speculation

that the appearance of absorbing states in Markov chains can drastically increase the error in

rate parameter inference. The only way for the ring chain to become absorbing would be for

both transition rates to be identically zero, causing the system to be frozen in the initial state

from the start. Otherwise, the observations of the Markov chain are guaranteed to span the

entire state space and continually provide new information about both transition rates to the

adaptive algorithm. In addition, because the only absorbing network occurs when h+ = h− = 0,

the algorithm quickly infers this configuration by obtaining repeated measurements of the same

state, so even these parameters can be rapidly inferred to high precision.

(iii) Inferring network structure

As a final test of the adaptive algorithm, we considered the problem of inferring the structure of

a Markov chain with a strongly restrictive prior on the rates, requiring that they are either 0 or 1.

Doing so isolates the problem of identifying the presence or absence of a link in the Markov chain

without the further problem of inferring the amplitude of the rate. Thus, each transition rate is a

binary variable drawn independently from the set {0, 1} with Bernoulli parameter p (figure 6a). In

this way, we reduce the set of possible chain link conformations by only allowing for one possible

non-zero value for all transition rates. The transition probabilities p(X(tn) = j|X(tn−1) = i, h) for

these networks are given by the same matrix exponential as in the case of ring chains, described

in equation (3.4), where the infinitesimal generator matrix A is changed to reflect the specific

chain’s structure. To measure our algorithm’s performance on this class of chains, we compute the

average number of samples required to converge and, due to the binary prior over the transition

rates, measure inference using MAE, given by a normalized L1 error:

MAE =
∑dmax

k=1 |hk − ĥk|
dmax

, (3.5)

where dmax = m(m − 1) is the maximum number of possible non-zero transition rates for a chain

of size m, hk is the true value of the k-th transition rate and ĥk is the maximum a posteriori estimate

of the kth transition rate. To account for the fact that the initial determinant of the covariance

matrix changes as dmax increases, we modified the convergence threshold to depend on this initial

covariance determinant. For example, if the initial determinant for a simulation was D, we ran our

adaptive algorithm until the covariance determinant was less than θD. We took θ = 10−2 for all

simulations on these binarized networks.

How does adaptive inference handle this problem? For a fixed chain size, inferring the

structure is faster when the chain is more disconnected (figure 6b). More connected networks

provide a higher diversity of possible measurements, increasing the possible number of network

configurations that may generate those measurements. Note that because these networks have

binary transition rates, our algorithm does not have to infer the magnitude of a non-zero transition

rate and therefore avoids the errors shown in figure 2e,f. In addition, inference error heavily

depends on both the true connectivity of the network and the prior likelihood over each transition

rate (figure 6c). However, error is lowest when the true connectivity is aligned with the prior

(i.e. when both d/dmax < 0.5 and p < 0.5 or d/dmax > 0.5 and p > 0.5), and increases when the two

are mismatched (e.g. when p is closer to 1 but d is closer to 0). For a fixed prior, rate estimate

performance displays similar behaviours across different chain sizes if there are more than two

states: the algorithm converges faster when chains are more disconnected (figure 6d), and error

is lower when the chain structure and the prior agree (figure 6e). These performance trends are

consistent with our findings from applying adaptive inference to other Markov chain models:

transition rates in the tails of the prior or that are highly asymmetric take more measurements

to infer, but generally have low inference error. When some transition rates are set to zero,
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Figure 6. Inferring structure of Markov chains with rates drawn from binary sets. (a) Schematic of a sample binary chain of size

m= 3withd = 4non-zero transition rates. All transition rates are each independently chosen fromthe set{0, 1}withBernoulli
parameter p (see text for details). (b) Average number of samples Ns needed for the adaptive algorithm to infer the transition

rates to the required degree of accuracy, defined by equation (3.5), as a function of the number of non-zero transition rates d

with fixed network sizem= 3. Averages taken over 103 sampled network structures with independent Bernoulli parameter p;

several values ofp are superimposed (labelled). (c) Average inference error,measured usingmeanabsolute error (MAE, L1-error),

for varied d. Averages computed using the same trials as in (b). (d) Average number of samples Ns required for the adaptive

algorithm to converge to a set accuracy for different chain sizes (legend). Averages taken over 103 sampled network structures

with fixed Bernoulli prior p= 0.5. (e) Mean absolute error MAE to which the adaptive algorithm converges as the density of

links in the chain is increased for several different network sizes. Averages computed using the same data from (d).

creating absorbing states in the chain, inferring the existence of non-zero transition rates is less

difficult than inferring the magnitude of those rates. However, across a range of chain structures

and transition rate magnitudes, adaptive inference is able to rapidly and accurately infer state

transition dynamics.

4. Conclusion
In this work, we developed a simple algorithm to infer transition rates of arbitrary discrete-state

Markov processes that determines optimal sampling times to minimize a posterior covariance.

Starting with small chains made up of two states, we found that using a previously developed

adaptive algorithm by [27] had lower error than a naive algorithm that samples with a fixed

period. Because of the simplicity of our approach, we showed how to extend the adaptive

algorithm to infer generic structures of transition rates, where sample times are chosen to

minimize the determinant of the posterior covariance matrix. Applying this extension to more

complex Markov chains, we found that the adaptive algorithm rapidly converged to accurately

estimate rate parameters when the true chain structure was more likely according to the prior.

When the chain link conformation was less likely according to the prior, the adaptive algorithm

still converged fairly quickly, but inference error was higher for one or more of the transition rates.

Our work builds on previous development of sequential Bayesian methods for experimental

design, harnessing stepwise posterior updates to guide design parameter choices. In addition to

the work in traditional experimental design, our framework is also closely related to standard

approaches used in active learning [38], and leverages advances in classic Bayesian optimization

problems [39]. However, when inferring complex models, these fields are often faced with

likelihood functions that quickly become intractable and make posterior updates challenging,

much like the problems facing the experimental design studies we have previously mentioned.
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Here, we demonstrate that for the large class of models that can be described using Markov

chains, adaptive Bayesian design can be implemented to great effect, has analytically tractable

observational likelihoods and does not require specialized, computational techniques to perform

posterior updates. This moves considerably beyond a recent study of adaptive sampling for

Markov chains [20], which would update the sampling time after several samples rather than

each time, and only ensured asymptotic equivalence to optimal fixed time designs.

While we only considered Markovian networks with constant transition rates, our posterior-

covariance-minimization approach can theoretically be extended to transition rates of arbitrary

functional forms. These extensions could prove useful for inferring transition rates in stochastic

systems with variable rates, as found in chemical kinetic systems modelled by M/G/1 queueing

processes [40] and stochastic implementations of Hodgkin–Huxley neuronal dynamics with

voltage-dependent transition rates [41,42]. Our adaptive inference algorithm can also be adapted

to more complex chain structures, such as those used in age-structured epidemiological models

[43] and models for chaperone-assisted protein folding [44]. The only hard constraints to our

approach are that the possible transition functions be fully specified and the chain itself be

Markovian. However, our algorithm cannot escape the curse of dimensionality for more complex

chains. For a Markov chain with d distinct transition rates (or equivalently, d parameters that

specify the transition rate functions) and a numerical discretization that allows each transition

rate to take on n possible values, the size of the posterior grows as nd. Future work utilizing our

algorithm for more complex transition rate inference problems would necessitate efficient matrix

methods or posterior approximation techniques.
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