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This study develops predictive models for adsorption of organic compounds (OC) by microplastics using linear
solvation energy relationship (LSER). The adsorption mechanism of aromatic OCs by microplastics was inves-
tigated by delineating the effect of molecular weight of the OCs, polymer type of MPs, and background water
chemistry. The benchmark model for adsorption of OCs (n = 28) by polyethylene yielded an R? = 0.85 (n = 28),
RMSE = 0.38, Q?LOO = 0.73. Further narrowing the dataset down by decreasing the molecular weight cutoff to
0Cs < 192 g/mol improved the model to R = 0.98 (n = 13). Validation techniques tested the predictive strength

of the benchmark model, which included new experimental adsorption data and performing leave-one-out cross
validation. Among LSER model descriptors, the molecular volume was the most predominant descriptor in all
scenarios, suggesting the importance of non-specific interactions and OC hydrophobicity. The results demon-
strated that LSER is a promising approach for predicting the adsorption of aromatic OCs by MPs.

1. Introduction

Plastics are practical, durable, low cost, and lightweight materials
providing benefits to almost every industry imaginable (Crawford and
Quinn, 2016; Sun et al., 2022; Shen et al., 2021). They are also imper-
ative for food packaging, safe medical services, inexpensive clothing,
clean water storage that improve the standards of life around the world.
Therefore, since the 1950s, society’s ever-increasing demand for plastics
has boosted their global production rate by more than two orders of
magnitude (Europe, 2021). During their environmental retention,
plastic debris are exposed to natural weathering processes (e.g., UV
irradiation, heat, mechanical stress, and biodisintegration), which break
them down into microplastics (MPs) (Botterell et al., 2019). Given their
small sizes within the optimal prey range (Galloway et al., 2017), MPs
are mistaken by many aquatic species, resulting in intestinal damage
(Lei et al., 2018), developmental inhibition (Zhang et al., 2022), energy
budget disturbance (Wright et al., 2013); structural alterations, and
oxidative stress (Vasanthi et al., 2021). Moreover, MPs are complex
cocktails of polymers and chemical additives, which can be further
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exacerbated by the sorption of synthetic organic compounds (OCs) and
pathogens owing to their high surface area and hydrophobicity
(Galloway et al., 2017; Rochman et al., 2019; Huang et al., 2023; Liu
et al., 2023). Thus, MPs are potential “Trojan Horses” for toxic pollut-
ants; that could cause severe health implications (Peda et al., 2016;
Rainieri et al., 2018; Dong et al., 2023; Ricardo et al., 2021). In contrast,
there has been conflicting evidence of decreased toxicity by the presence
of MPs, proving that the ingestion of MPs is a negligible chemical uptake
route compared to water exposure for fish (Schell et al., 2022). There-
fore, it is imperative to explore the sorptive interactions between MPs
and toxic OCs. These complex interactions are influenced by MP prop-
erties (e.g., size, shape, crystallinity, hydrophobicity, functional groups,
and additives) (Mei et al., 2020; Wang et al., 2021), OC’s characteristics
(e.g., hydrophobicity, ionic property, and functional groups) (Li et al.,
2018; Zhang et al., 2018), and solution chemistry (e.g., ionic strength,
pH, and natural organic matter) (Li et al., 2018; Ma et al., 2019; Scott
etal., 2021; Wang et al., 2015). Given that all these factors concurrently
affect the phase-transfer processes (ab- and adsorption), conducting
laboratory experiments for 70,000 + OC is not practical. Currently,
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equilibrium constants (K4) for MPs are determined by sorption experi-
ments, which take long equilibrium time, require trained staff, and lead
to excessive cost. Developing predictive models based on solvation
theory not only provides Kq values, but also unravels the sorption
mechanism. Moreover, unraveling the mechanisms of the sorption
process between MPs and OCs can provide insights for developing
effective treatment technologies because plastics are commonly used in
water and wastewater treatment plants as resins (e.g., polystyrene,
acrylic polymers).

The partitioning of OCs to MPs can take place by sorption, and the
predominant mechanism varies for each polymer (Prajapati et al.,
2022). OCs can diffuse into loosely arranged polymer chains of amor-
phous rubbery polymers (e.g., PE, PP) via absorption by weak van der
Waals forces (Prajapati et al., 2022; Atugoda et al., 2020; Endo et al.,
2016). On the contrary, they are restricted in glassy amorphous poly-
mers (e.g., PS, PVC) due to highly dense, cross-linked molecular struc-
tures, which cease absorption into polymer matrix (Atugoda et al.,
2020). Instead, glassy polymers have internal nanoscale pores creating
strong adsorption sites for OCs (Hartmann et al., 2017). Adsorption is
generally the predominant process at low concentrations of OCs, while
absorption takes over at high concentrations due to larger volume
requirement to accommodate molecules (Prajapati et al., 2022; Hart-
mann et al., 2017). Bearing in mind that polymer structure and OCs’
concentration in water are closely linked to the predominant mass
transfer mechanism (adsorption and/or absorption), we refrained from
differentiating the terms and used the term ‘sorption’ because this study
aims at identifying the partitioning of OCs in a biphasic water-
microplastic system (Endo et al., 2016; Hartmann et al., 2017).

Equilibrium constants can be predicted using single-parameter free
energy relationships either based on octanol-water (log Kyw) or
hexadecane-water distribution coefficients (log Kpy). However, wide
diversity of chemicals makes single parameter approach insufficient and
more comprehensive multiple parameter tools considering multiple as-
pects of solutes are needed to make more precise predictions (Hiiffer
et al.,, 2018). Abraham’s linear solvation energy relationship (LSER)
approach allows the investigation of individual molecular interactions
and their contribution to overall sorption. Since 1990s, this approach
has been used to predict adsorption of a variety of compounds by multi-
walled carbon nanotubes (CNTs) (Apul et al., 2013; Ersan et al., 2016;
Hiiffer et al., 2014), single-walled CNTs (Apul, 2014; Wu et al., 2016),
graphene (Xia et al., 2010), graphene oxide (Ersan et al., 2019), and
black carbon (Su et al., 2018). Up to now, only four studies have used
LSER approach to model the sorption of organic compounds by MPs
(Hiiffer et al., 2018; Wei et al., 2019; Xu et al., 2021; Hatinoglu et al.,
2023). Poly parameter approach has shed light on exploring the sorption
mechanism in terms of the characteristics of the polymer, OCs, and
water type. The first study developed a model for the adsorption of 21
different OCs containing aliphatic and aromatics onto UV-aged PS MPs,
yielding R? = 0.95 (Hiiffer et al., 2018). In line with most LSER studies
using polymeric sorbents, hydrophobic attraction of OCs towards MPs
was the most reported as the significant adsorption mechanism.
Furthermore, OCs’ tendency to make H-bonds with water was higher
than with UV-aged PS MPs because of oxygen-containing surface groups
on aged PS MPs, which decreases the availability of sorption sites to MPs
(Hiiffer et al., 2018). The second study broadened the understanding by
developing LSER models for different polymer types in different
matrices, covering sorption by PE in seawater (n = 36, R%=0.91), PEin
freshwater (n = 36, R%2= 0.91), PE in pure water (n = 35, R?= 0.98), and
PP in seawater (n = 35, R2 = 0.96). For all three PE models, hydrogen
bond basicity and cavity formation effect were the governing mecha-
nisms. For the PE in the seawater model, induced dipole effect was
another prevailing mechanism due to high salinity. Unlike other poly-
mers, sorption by PP in seawater was not significantly affected by cavity
formation energy, which was attributed to the high crystallinity of PP
(due to the methyl groups), reducing the energy need for cavity for-
mation. In the third study, it was found for the first time that
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intermolecular interactions governing the adsorption mechanisms may
vary depending on the polarity of MPs (Xu et al., 2021). Even though the
sorption by polar MPs involved less hydrophobic interactions and van
der Waals forces than non-polars (i.e., PCL < PBS < LDPE < PS), they
had much greater adsorption capacities due to making stronger polar
interactions such as H-bonding and p/zn- « electron donor-acceptor in-
teractions. In the most recent study, we introduced the applicability of
LSER modelling for adsorption of ionizable perfluoroalkyl carboxylic
acids (PFCAs) onto PS MPs by correcting Abraham’s descriptors (Hati-
noglu et al., 2023). Results showed that polarizability and hydropho-
bicity of anionic PFCA drive them to MPs while the van der Waals
interactions between PFCA and water diminish PFCA’s binding affinity.
The study was the first attempt to develop models by compiling data
from literature and comparing LSER results side by side for different
polymer types and water types (Hatinoglu et al., 2023).

Furthermore, while previous efforts also elucidated the interactions
between a wide range of organic compounds and water samplers and
pipes (Uber et al., 2019; Uber et al., 2019; Egert and Langowski, 2022;
Egert and Langowski, 2022), our study excluded the data pertaining
bulk polymeric materials from our analysis to maintain the clarity and
focus of our investigation on the MPs. As detailed in Table S1, no study
has accomplished providing such mechanistic insights yet. This study
introduces new perceptions to predictive model development literature
by performing systematic data gathering, and classification aiming at
data homogeneity. This novel approach enables conveying predictions
specific to each element of sorptive interactions between MPs and OCs,
by changing only one variable at a time.

The objectives of this study are to investigate the mechanisms and
the corresponding impacts of: (i) OCs’ molecular weight; (ii) MPs’
polymer type; and (iii) background water type on the adsorption of OCs
by MPs using LSER approach and by comparing our findings within the
literature. Moreover, LSER models were internally validated, and
experimental adsorption data was generated to externally validate the
benchmark model.

2. Materials & methods
2.1. OCs and MPs used for model training

An exhaustive literature review was conducted to compile all the
partition coefficients (log Kp) related to the sorption of neutral aromatic
OCs by PE MPs in deionized water. Log Kp values at the Henry’s region
(i.e., most linear portion) of the isotherms were analyzed to represent
sorption at diluted concentrations. Moreover, the last data points in
isotherms were used to calculate log Kp values at saturated concentra-
tions. The linear partition model allowing the attainment of K, values is
given in eq (1):

g. =KpeC, (@)

Where g, is the amount of adsorbate on the MPs (mg/g), C, is the
amount of adsorbate remaining in the solution (mg/L), and K is the
linear partition coefficient (L/kg) under equilibrium. Partition co-
efficients obtained from the two ends of the isotherm were used to test
the impact of surface area normalization on model predictivity.

Four classification criteria were implemented for OC and MP type
selection. First, modelling efforts were focused on aromatic compounds
because most data are for aromatics in literature. Second, ionized
compounds were out of the scope of this study as traditional LSER
models are not capable of predicting them. Third, only the data associ-
ated with virgin MPs were considered and the ones undergone any
natural (i.e., MPs extracted from an environmental media) or artificial
(e.g., UV irradiation, ozonation) weathering process were omitted from
the study as surface functionalization of MPs can affect the adsorption
interactions of OCs (Hiiffer et al., 2018; You et al., 2021). Fourth,
datasets were not narrowed down to particle sizes because MP sizes were
found not to be a limiting factor for the adsorption process.
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Following these assumptions yielded a database containing log Kp’s
for the sorption of 31 neutral aromatic OCs from 18 studies and it was
used to examine the impact of OCs’ molecular weight (MW) on the
sorption process (Table S2). Figure S1 shows the MW distribution of 31
OCs in the database. The right-skewed histogram indicates that most
OCs in the dataset has MWs in lower range. MW is related to OCs’ mo-
lecular volume, and it is the most influential parameter in adsorption
process (Apul et al., 2013; Apul et al., 2020). Therefore, the database
was first subgrouped into seven different MW cutoffs by excluding three
of the largest MW OCs from the dataset systematically for each cutoff.
Then, the prediction strengths of seven models were compared and the
model yielding highest R? with greatest number of data points was
selected as the benchmark model (MW < 404 g/mol, R’= 0.85,n = 28).
Furthermore, the benchmark model was verified by internal and
external validation techniques as described in Section 2.3.

The second database was generated to examine the impact of poly-
mer type and contained data for adsorption of 25 aromatic OCs by PS
MPs, which are all contained in the starting database as well. Among 25
compounds, 22 of them were at the same MW cutoff with benchmark
model (<404 g/mol) (Table S3). Therefore, the models created for the
sorption of same 22 compounds by PE and PS were compared side by
side (log Kp values are given in Table 2).

Finally, two more datasets were generated for the sorption of 17 PCB
by PE MPs in freshwater and seawater to examine the impact of water
type (Table 3). Here, the freshwater was a synthetically prepared solu-
tion containing calcium chloride, magnesium sulfate, sodium hydrogen
carbonate, and potassium hydrogen carbonate, while seawater was a
real sample with salinity of 3.4% and dissolved organic carbon (DOC) of
0.17 mg/L. Moreover, the diameter of PE microspheres was 99 + 39 um
(Velzeboer et al., 2014).

2.2. Descriptor collection

Abraham’s LSER approach is used to create a linear poly parametric
model and describe solvation or directly related activities by using
compounds’ physicochemical properties. The model provides mecha-
nistic insights because it reveals the intermolecular interactions between
the sorbent and sorbates as well as quantifying their relative individual
contribution to the sorption process. A typical LSER model that describes
the sorption of neutral OCs is given in eq (2):

LogKp =c+eE+sS+aA+bB+vV 2)

where ‘log Kp’ is partitioning coefficient between MPs and water
under equilibrium conditions; ‘E’ is the excess molar refraction in units
of (cm® mol1)/10 representing non-specific van der Waals forces; ‘S’ is
the polarizability/dipolarity parameter, ‘A’ and ‘B’ are the hydrogen
bond donating (acidity) and accepting (basicity) abilities, respectively;
and ‘V’ is the molecular volume or McGowan’s volume in units of (cm>
mol1)/100. Lastly, ‘c’ is the regression constant, and ‘e’, ‘s’, ‘a’, ‘b’, and
‘v’ are the fitting coefficients indicating the contribution of each inter-
action on the adsorption mechanism (Xu et al., 2021; Apul et al., 2020).
In this study, all solvatochromic descriptors were obtained from the
Helmholtz Centre for Environmental Research (UFZ) database (Ulrich
et al., 2022). Figure S2 shows the descriptors that were used as inde-
pendent variables to train our benchmark model.

2.3. Statistical methods for model development and evaluation

Paired t-test was performed to compare log Kp values of different
datasets. Multiple linear regressions were conducted by assigning log Kp
as dependent variable and Abraham solvation descriptors as indepen-
dent variables using Microsoft Excel. The regression models were eval-
uated by the p-values obtained from analysis of variance (ANOVA).
Independent variables with a p-value less than 0.05 were accepted as
statistically significant in predicting the dependent variable. The mul-
ticollinearity of independent variables was quantified by variance
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inflation factor (VIF) as shown in eq (3):

1

2
1—r

VIF =

3

where, riz is the squared correlation coefficient of the it coefficient
when the i descriptor was regressed against all other descriptors.
Higher VIF values indicated more severe correlations with one or more
of the remaining independent variables. The independent variables were
accepted as correlated if the VIF values were larger than 10 (Midi et al.,
2010). The goodness of the fit was examined by the coefficient of
determination (R%). The predictive precision of the models was quanti-
fied by the root mean squared error (RMSE) as shown in eq (4):

Zinzl(}’i - 5’1)2

n

RMSE = 4

where, n is the number of compounds in the training set. y; and y; are
experimental and predicted log Kp values for the ith compound in the
training set, respectively. RMSE is used to measure the distance between
predicted and actual values, and so it quantifies how concentrated the
data is around the line of best fit. Smaller RMSE values indicated a
stronger prediction tendency of a model.

2.3.1. Internal validation

Two different internal validation techniques were used to evaluate
the robustness of the benchmark model. First, the benchmark dataset (n
= 28) was ranked in decreasing order of log K values; 21 compounds
were then selected for the training and 7 for validation of the LSER
model by following the randomization pattern of VITT (V: validation; T:
training).

Second, leave-one-out (LOO) cross validation was carried out by
using the benchmark model’s dataset. In this technique, each compound
was left out once and an LSER model was fit with the remainder of the
data until all 28 compounds had been predicted. RMSE of LOO
(RMSE;00) and LOO validated R? (Qfo0) were calculated as the crite-
rion. Qfoo was calculated using eq (5):

Sy — ?i)2
>y — yi)z

where, ¥ is the average experimental log Kp value of the training set.
A high value of Q700 (Q%00 > 0.5) was considered as proof of the high
predictive ability of the model (Ding et al., 2016).

In addition to the benchmark model, LOO cross validation was also
carried out for the models shown in Fig. 4 and Fig. 5. Cross validation
results are shown in Figure S5.

Qoo =1- 5)

2.3.2. External validation

For external validation, isotherms were experimentally generated for
the sorption of triclosan and 2,3,6-trichlorophenol by PE MPs. The
predictive precision of the benchmark model was evaluated by calcu-
lating RMSE. PE MPs (density: 0.935 g/cm3) used in sorption experi-
ments were purchased from a local water tank manufacturer in Turkey
in shredded form, and characterization was performed by METU Central
Laboratory. The polymer type was confirmed by diamond crystal ATR-
FTIR analysis using IFS/66S, Hyperion 1000. The crystallinity and
melting temperature (Tp,) of PE were measured by Perkin Elmer Dia-
mond Differential Scanning Calorimetry (DSC) (Heating rate: 10 °C/
min, Temperature range: 30 °C to 300 °C, Under N, atmosphere). Spe-
cific surface area of MPs was measured using multi-point Ny BET method
(for 24 h degassing at 50 °C). Particle size distribution of MPs was
determined by using ASTM method (Astm, 2017), which involved
passing the MPs through a stack of sieves with mesh openings ranging
from 2.0 to 0.106 mm, and weighing the particles retained on each sieve
(Astm, 2017). Finally, zeta potential of PE was measured to determine
the point of zero charge (pHp,) using MALVERN Nano ZS90. The
characteristics of MPs are summarized in Table 1 and the detailed results
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Table 1
Characteristics of PE MPs used in validation experiments.

Density Tm Crystallinity =~ SSA PHpz.  Particle size

0.935g/cm®  126°C  49.4% 0.103m%g ~22  250-500 um

Tm; melting temperature; SSA: specific surface area; pHy,: point of zero charge.

are given in Figure S6.

Triclosan (MW: 289.5 g/mol) and 2,3,6-trichlorophenol (MW: 197.4
g/mol) were two aromatic OCs selected to conduct sorption experiments
for external validation of the benchmark model. These compounds fit
the benchmark model because (i) their MWs are <404 g/mol and (ii)
they are neutral at experimental conditions (pH = 6 for triclosan and pH
= 4 for 2,3,6-trichlorophenol). The benchmark model was already
trained by literature sorption data for triclosan, while no 2,3,6-trichlor-
ophenol data was contained in the model training. Physicochemical
properties of both compounds are given in Table S4.

Isotherm experiments for triclosan and PE MPs were performed by
changing the MP amount (i.e., solid: liquid, S/L) in the sorption vials (i.
e, 0.5, 1, 2, 4,5, 10, 15, 20 g/L). Prepared amber vials were shaken
horizontally at 200 rpm and 25 °C + 2 °C via incubating shaker (N-
Biyotek NB-205 VL model). It was observed from kinetic sorption ex-
periments that the equilibrium time was 24 h for triclosan at pH 6
(Figure S7). As experimental pH was smaller than its pK,, triclosan
existed in its undissociated form. The same shaking conditions were also
applied for 2,3,6-trichlorophenol, but initial pH was 4. Sorption
isotherm experiments for 2,3,6-trichlorophenol and PE MPs were per-
formed by changing the initial concentration from 1 to 60 ppm at pH =
4, where the compound existed in its undissociated form. Tricosan and
2,3,6- trichlorophenol were measured directly using a UV/Vis Spectro-
photometer (HACH DR6000) at the wavelength of their maximum
absorbance, i.e., 279 and 289 nm, respectively.

Table 2

Comparison of polymer type for log Kp values using the compounds in bench-
mark model (n = 28) and model for sorption by PS MPs (n = 22) in deionized
water at MW cutoff 404 g/mol.

MW log K
Compound (@mol) log K ,,, PE 7S
carbendazim 191.2 1.50 0.7 :l n/a
carbofuran 221.3 1.97 24 | n/a
diethyl phthalate 2222 2.47 14 ] 11
atrazine 215.7 2.61 22 1 n/a
diuron 233.1 2.68 18 Al o3
triadimefon 293.8 2.77 21 W n/a
1-naphthol 1442 2.85 12 [AF] 1
bromobenzene 157.0 2.99 2. 2:'_7
azoxystrobin 403.4 3.09 23 Iﬂ 4
benzophenone-3 2442 3.18 238 1 23
1-nitronaphthalene 173.2 3.19 23 ].:12 2
m-xylene 106.2 3.20 2. s3]
naphthalene 128.2 3.30 27 I 3]
bisphenol A 2283 3.32 05 [1 0.1
2-tertbutyl-4-methyl phenol 164.2 3.60 1.8 W] 16
n-propylbenzene 120.2 3.69 2.7 |m
picoxystrobin 367.3 3.83 2L6 1 d4
1-methylnaphthalene 1422 3.87 I
2,3,5-trimethyl phenol 136.2 4.00 1 5 [l 14
1-chloronaphthalene 162.6 4.00 3 4 J
biphenyl 154.2 4.01 I_
17B-estradiol 2724 4.01 2 El.j 2
diisobutyl phthalate 2783 4.11 I
pyraclostrobin 387.0 423 3.7 IG: |
phenanthrene 178.2 4.46 4.2 136 |
dibutyl phthalate 2783 4.50 34 ]
triclosan 289.5 5.00 2.8 n/a
dichlorodiphenyltrichloroethane 354.5 6.36 Sal I n/a

*Compounds were ranked in ascending order of their log K,,, values. n/a: not
available.

Colored bars were obtained by conditional formatting, and they demonstrate
relative magnitude of log Kp values of PE and PS.
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3. Results & discussion
3.1. Overview of literature for sorption of OCs by MPs

Table 2 compares log Kp values of PE and PS MPs at MW cutoff <
404 g/mol. In general, the log Kp values for both polymers showed a
relationship with log Ky, values of OCs indicating the important role
that hydrophobic interactions play in sorption. Although the polymer
structures of PE and PS differ greatly, there is no statistically significant
difference between the log Kp values of 22 neutral aromatic OCs by PE
and PS MPs (p > 0.05). This indicates that sorption by MPs may not be
mainly controlled by polymer related properties. PE is a simple linear
molecule and a rubbery amorphous polymer (i.e., glass transition tem-
perature, Tg, is below ambient temperature, Tayp) that can absorb
compounds uniformly due to the relatively high flexibility of polymer
segments (Atugoda et al., 2020; Endo et al., 2016). In contrast, PS is a
glassy amorphous polymer (Tg > Tamp) containing benzene groups in its
structure. Sorption by PS MPs is rather an adsorption-like or pore-filling
process resulting in nonlinear isotherms to occur (Endo et al., 2016).
Contrary to literature (Wei et al., 2019), benzene group of PS making - &
interactions with aromatic OCs did not cause PS to exhibit significantly
higher log Kp values than PE. Additionally, PE MPs’ ability to induce
diffusion of OCs into polymer matrix did not help them surpass sorption
capacity of PS MPs. A more conclusive side by side comparison would
only be possible if the MPs’ size, shape, additive content, and surface
oxygen contents were kept constant.

Table 3 compares log Kp values of 17 PCBs for PE MPs in seawater
and freshwater. In general, log Kp and log Ky, values of PCBs increase
with MW of compounds in both water types. Moreover, the distribution
pattern of log Kp values for each PCB is the same for each water type. For
most PCBs, sorption by PE MPs was greater in seawater than in fresh-
water, and the difference between the entire groups was statistically
significant at the 95% confidence level. The improved sorption affinity
in seawater has also been previously reported for PFAS and was attrib-
uted to salting out effect (i.e., decreasing water solubility of PFAS) or
cation bridging in the presence of ions in seawater (Llorca et al., 2018).
Unlike PFAS, PCBs exist in neutral forms at experimental pH and their
water solubility is very low, therefore mechanisms leading to this

Table 3
Comparison of water type for log Kp values using 17 PCB adsorbed by PE MPs in
seawater and freshwater.

. MW log K"
Compound (g/mol) log Ko Seawater Freshwater
PCB-28 257.5 5.7 62 | 5.3]
PCB-31 257.5 5.7
PCB-44 292.0 5.8
PCB-52 292.0 5.8
PCB-74° 292.0 6.2
PCB-77¢ 292.0 6.4
PCB-101° 326.4 6.4
PCB-105 326.4 6.4
PCB-118 326.4 6.7
PCB-126° 326.4 6.7
PCB-149 360.9 6.7
PCB-138° 360.9 6.8
PCB-153° 360.9 6.9
PCB-156 360.9 7.2
PCB-170 395.3 73
PCB-169° 360.9 7.4
PCB-180° 395.3 7.4

2 Compounds were ranked in ascending order of their log K, values; ® Data from
(Velzeboer et al., 2014); € non-planar PCB; ¢ planar PCB; n/a: not available.
Colored bars were obtained by conditional formatting, and they demonstrate
relative magnitude of log Kp values of PE in seawater and freshwater.
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behavior should be different, such as DOC content of seawater. More-
over, planar PCBs are sorbed by PE stronger than non-planar PCB con-
geners because they can move closer to the surfaces (Velzeboer et al.,
2014).

Fig. 1 shows the log K, (octanol-water partition coefficient) versus
log Kp values for compounds at MW cutoff < 404 g/mol. The correla-
tions for PE (R? = 0.58) and PS (R? = 0.39) indicate that the sorption of
OCs by MPs cannot be explained by hydrophobic interactions alone. It is
necessary to consider the impact of multiple parameters (e.g., sorbent
and solute related properties) simultaneously to predict the sorption
mechanism. In contrast, the correlation for PCB was comparatively
higher as they are a family of compounds. Especially, it was stronger for
freshwater (R? = 0.94) than in seawater (R%> = 0.72), indicating that the
interactions in seawater can be more complex than in freshwater relying
mainly on hydrophobic sorption. In seawater, dipole interactions may be
observed between salt ions and MPs’ surfaces, that may weaken the
correlation. This speculation will be further tested later and elaborated
more in Section 3.5.

3.2. Training and internal validation of benchmark model

The impact of OCs’ MW on LSER models was investigated using the
datasets with different MW cutoffs. The model parameters obtained
from the sorption by PE MPs in deionized water are shown in Table 4.
Excluding three compounds with highest MWs from 31 aromatic OCs
(Figure S3) remarkably changed the model predictivity in terms of (i) R?,
(ii) relative importance of coefficients, and (iii) the sign of coefficients.
From MW cutoff < 544 to < 404 g/mol, R? increased from 0.50 to 0.85
and it was the most significant improvement achieved by MW cutoff
testing. R? value stayed almost stable until MW cutoff < 223 g/mol, and
it reached to its maximum value (i.e., 0.98) at MW cutoff < 192 g/mol.
This can be attributed to the increasing similarity of OCs as it was shown
in right-skewed histogram (Figure S1), but not to changes in the number
of OCs because adjusted R? values’ trend is parallel with R%. Despite the

10
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very high goodness of the fit, the number of data (n = 13) was small
which would limit the application domain of the developed model.
Therefore, MW cutoff < 404 g/mol was selected to be the benchmark
model of this study. While ‘E’ and ‘S’ were insignificant terms in the
model of the raw dataset (n = 31), all five descriptors turned out to be
significantly influencing the sorption process in the benchmark model
(p < 0.05). However, it should be noted that there are only three OCs
and to determine an actual MW cutoff, more data points are required.
Fig. 2a demonstrates the relative distribution of regression co-
efficients in the benchmark model (<404 g/mol, n = 28) and Fig. 2b
depicts the corresponding plot of experimentally measured vs. predicted
log Kp values generated by this dataset (RMSE = 0.38). In this model, ‘v’
was the most influential parameter and positively correlated with the
sorption process, indicating the importance of hydrophobic or non-
specific interactions between OCs and PE MPs. It implies that adsorp-
tion capability onto MPs increases as the compounds get larger. The
second and third most significant coefficients were ‘b’ and ‘a’, respec-
tively and were both negatively correlated with the sorption. This can be
attributed to the capability of PE MPs for making H bond interactions
with OCs is lower than that of bulk water. This agrees with the polymer’s
nonpolar property (-CHy), and the virgin structure not containing any
functional groups that can make hydrogen bonds with OCs. The term ‘s’
was the fourth strong factor and negatively correlated with the
adsorption, meaning that dipolarity of OCs does not favor their sorption
to MPs. It can be ascribed to that MPs have much lower dipolarity
compared to water, causing them to have a weaker ability for making
dipole/induced-dipole interactions with OCs. Finally, the slightly posi-
tive ‘e’ indicates that OCs has greater ability for polarizing effects to-
ward PE MPs than bulk water. The model that Wei et al. (2019)
developed for adsorption by PE MPs in deionized water has similarities
with our benchmark model in terms of dominating descriptors and their
signs, which are descriptor ‘V’ and ‘B’. Contrary to ours, that study omits
‘A’, ‘E’ and ‘S’ in their model due to having a dissimilar training dataset
that contains both aliphatic and aromatic OCs. On the other hand, the

Seawater-PE, r=0.85, R>=0.72

g9 ® Freshwater-PE, r=0.97, R*=0.94

log K,
a

{1 ® Dl water-PE, r=0.76, R =0.58
DI water-PS, r=0.62, R> = 0.39

log K,,,,

Fig. 1. Log K,y vs. log Kp, for sorption of neutral aromatic OCs by PE (n = 28) and PS MPs (n = 22) in DI water, 17 PCB by PE MPs in seawater and freshwater at MW
cutoff < 404 g/mol. r: the Pearson correlation coefficient and R% the coefficient of determination.
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Table 4
LSER model parameters for the sorption of neutral aromatic OCs by PE MPs in deionized water at different molecular weight
cutoffs.
ignificant
MW A Signific
cutoff* M R* Ry c e s a b v terms
(p<0.05)

<544 31 050 039 13405 -02+04 0.5£0.6 -1.6£0.5 -1.3+04 1.140.5 c,a,b,v
<404 28 0.85 0.82 02404 0803 -1.2+0.5 -1.5:0.3 -2.240.3 2.6£04 e,s,a,b,v
<355 25 0.86 0.82 0+04 11404 -1.6+0.7 -1.740.3 -1.9+0.4 2.8404 e s,a,b,v
<279 22 083 0.78 -0.1£0.5 12+04 -1.6£0.7 -1.940.3 -1.7+0.5 2.840.5 e,s,a,b,v
<245 19 084 0.77 0+0.8 11204 -1.74#0.7 -2.1404 -1.7+0.5 2.940.8 e,s,a,b,v
<223 16 090 0.85 -0.8+0.7 1.6£04 27407 -2.1404 -1.7+0.5 3.840.7 e,s,a,b,v
<192 13 098 096 -0.7£0.4 1.5+0.3 -2.1404 -1.740.3 -2.6£04 3.5404 e,s,a,b,v

*Relative absolute significance of each coefficient is comparatively visualized in Figure S4.

Shaded row shows the selected benchmark model.
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Fig. 2. (a) LSER equation and the corresponding regression coefficients’ relative distributions in the benchmark model; (b) experimentally measured vs. predicted
log Kp values generated by the combination of training and validation datasets (i.e., benchmark model, n = 28); (c) Box and Whisker plot for LSER descriptors of
training (n = 21) and validation (n = 7, denoted by prime) dataset of benchmark model; (d) experimentally measured vs. predicted log Kp values for training and

validation datasets.

model that Xu et al. (2021) developed for adsorption of 18 neutral ar-
omatic OCs by LDPE MPs contains the same driving descriptors and signs
with our study, but the coefficients’ order of relative significance slightly
differs at both equilibrium concentrations (i.e., 1 and 10% of water
solubility). The similarities obtained from studies with different training
datasets may be an indication of less complex interactions between OCs
and PE MPs, especially when the medium is deionized water. Further-
more, although Egert and Langowski (2022)’s model was not specif-
ically developed for MPs, the adsorption of a large group of compounds
(n = 156, MW range = 32 to 722 g/mol) containing both aliphatic and
aromatic OCs by LDPE films showed the same coefficient signs as our
benchmark model but differed slightly in the significance order of the

descriptors. Table S5 compares the predictive strength of our benchmark
model with Egert and Langowski (2022)’s model for our MW < 404 g/
mol dataset.

Lastly, from 404 g/mol to lower MW cutoffs, the signs of descriptors
do not change but relative importance of ‘a’, ‘b’ and ‘s’ slightly changes
(Table 4). This means that MW cutoff may not cause a fundamental
change in the sorption process when compounds are smaller.

Then, the benchmark model was split into training (n = 21) and
validation (n = 7) datasets for internal validation using VTTT approach.
Fig. 2c shows the descriptors of randomized training and validation
datasets and Fig. 2d shows the corresponding prediction curve. Here, log
Kp values of 7 OCs were predicted using the model trained by 21 OCs.
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Although the classification was randomized, the ranges of two sets’
descriptors coincided with each other. This indicates that the training set
includes a wide range of compounds and therefore can serve for the
prediction of variety of compounds. This argument was supported by
low RMSE value (RMSE = 0.38).

Finally, LOO cross validation (Figure S5) performed for the bench-
mark dataset (n = 28) resulted that RMSE; oo and Q%o were 0.51 and
0.73, respectively. Low RMSE and high Q%y0 (Q? > 0.5) proved the high
predictive ability of the model (Ding et al., 2016).

3.3. External validation of the benchmark model

Fig. 3(a, b) shows two example adsorption isotherms produced for
triclosan and 2,3,6-trichlorophenol, respectively. Sorption of both
chemicals on MPs showed a good fit to Freundlich model with an R? of
0.986 and 0.976 for triclosan and 2,3,6-trichlorophenol, respectively.

As shown in Fig. 3(c), these two compounds lie in the interquartile
ranges of training dataset’s solvatochromic descriptors, therefore, it is
likely that our external validation is within the applicability domain of
the developed model. External validation of the benchmark model
showed that log Kp of triclosan and 2,3,6-trichlorophenol can be pre-
dicted with 0.1 and 7.5% error, respectively (Fig. 3(d)). Moreover,
RMSE for external validation set was 0.09. Despite the limited size of the
external dataset, these statistical evaluations align with those of internal
validation. This collective affirmation may demonstrate that the devel-
oped benchmark model is a potential tool for predicting the sorption of
aromatic organic compounds with MW cutoff < 404 g/mol by PE MPs.

(a)
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The reason for good external validation strength was traced back to the
similarity in properties of PE MPs used in this study with those in
literature. Figure S8(b) shows that MPs used in studies that make up our
benchmark model has SSA ranging from 0.257 to 12.1 m%/g, particle
sizes from 9.5 to 5000 um, and crystallinity from 35 to 61.5%. Our
model MPs’ particle size and crystallinity lie in the interquartile ranges,
while SSA is even lower than the outlier of the literature data. Never-
theless, the developed LSER model was successful for predicting the
experimental sorption data, which might be due to less importance of
SSA in sorption of neutral aromatic OCs by PE MPs. The impact of SSA
will be further investigated in Section 3.4 in surface area normalization
of log Kp values.

3.4. The effect of MPs’ surface area and polymer type on LSER models

Partition coefficients were normalized to examine whether surface
area was a controlling factor for the sorption of aromatic OCs by PE MPs
at MW cutoff < 404 g/mol using a common approach in literature (Apul
etal., 2013; Apul et al., 2020; Zhou et al., 2015). This was only tested for
10 compounds as specific surface area information for MPs was only
provided in those studies. Normalization efforts did not improve the
model fitting indicating that surface area might not be a controlling
factor, as also resulted in Section 3.3 (Table S6and S7). This has been
observed in literature for different adsorbents such as single-walled
CNTs (Apul et al., 2015), multi-walled CNTs (Apul et al., 2013), and
graphene oxide (Shan et al., 2017) and was attributed to the much larger
surface areas of the adsorbents compared to the necessary area required

(b)
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Fig. 3. Sorption isotherms for (a) triclosan and (b) 2,3,6-trichlorophenol; (c) distribution of solvatochromic descriptors of benchmark model (n = 28), triclosan and
2,3,6-trichlorophenol; (d) experimentally measured vs. predicted log K values for training and external validation datasets.



D. Hatinoglu et al.

(a) PE"‘

log K,=-0.8 + 1.1E - 1.2S - 1.4A - 3.2B + 3.5V
MW <404 g/mol, n = 22, R? = 0.89

T

(c)

3.0
2.54
2.0
1.51
1.01
0.5
0.0

Range

Chemical Engineering Science 282 (2023) 119233

(b) ,"

< T O OO0

log K, =-0.3 + 1.1E - 2.6S - 2.2A - 3.2B + 4.2V

MW <404 g/mol, n = 22, R? = 0.90

] 25%~75%
T Range within 1.51QR
— Median Line
Mean
+ Outliers

1

Descriptors

\"

Fig. 4. LSER equations and the corresponding regression coefficients’ relative distributions for (a) PE model (n = 22) and (b) PS model (n = 22); (c) Solvatochromic
descriptors of 22 neutral aromatic OCs used in the models examining the impact of polymer type. All VIF values are smaller than 10, and the details are given

in Table S8.

for accommodating each adsorbate on their surfaces. This evidence also
supports our argument not to classify log Kp data based on particle sizes.
However, it should be noted that the majority of first data points
were<1% of OC solubility and the most saturated data point was<5% of
OC solubility. At these concentrations, surface area may not be limited;
thus, may not be controlling adsorption. At the plateau of the isotherm,
the conclusion may change.

The impact of polymer type was examined by comparing two models
for the sorption of 22 neutral aromatic compounds at MW cutoff < 404
g/mol by PE and PS MPs, which yielded similar prediction strength (R
2 0.90). Both models were internally validated using LOO approach,
which resulted in RMSE; oo = 0.42 and Qfoo = 0.77 for PE and RMSE-
Loo = 0.51 and Q%o0 = 0.80 for PS. Obtaining high values of Qf00 (Q?00
> 0.5) for both models affirmed their high predictive strength. This
enables us to make side by side comparison of the two models’ outputs.

Fig. 4 shows the solvatochromic descriptors of compounds used to
train these models and the corresponding regression coefficients. All 5
descriptors had statistically significant importance in both models
because compounds’ descriptors lie within a wide range (Fig. 4a).
Furthermore, the relative contribution of each mechanism to sorption
was determined by dividing the absolute values of each coefficient by
the sum of all coefficients. Unlike PE, the parameter ‘s’ was much more
impactful than ‘a’ and ‘e’ in the PS model, and this has also been
observed by Xu et al. (2021), where the models were developed for LDPE
and PS MPs. This can be attributed to that although both MP types have
weaker abilities of dipole/induced-dipole interactions with OCs
compared to water, PS has less potential than PE. However, despite the
differences in the two MPs’ polymeric structure, the signs of coefficients
did not change with the polymer type, which may conclude that the
polymer chemistry does not primarily govern the compounds’ affinity
towards them, as the literature earlier reported for the comparison

between PS and LDPE MPs (Xu et al., 2021). This suggests that the
benzene group of PS, along with its potential -t interactions with aro-
matic OCs, does not appear to be strong enough to alter the direction of
any of the adsorption mechanisms exhibited by PE MPs with the same
set of OCs. However, more conclusive discussion can only be possible
upon attainment of further MPs-related information.

3.5. The effect of water type on LSER models

The impact of water type was examined by comparing two models
for the sorption of 17 PCB by PE MPs in freshwater (synthetic) and
seawater at MW cutoff < 404 g/mol. The goodness of fit for the fresh-
water model (R® = 0.89, RMSE = 0.29) surpassed that of seawater R?=
0.65, RMSE = 0.47), which can be attributed to the DOC content and
salinity of seawater, complicating the interactions due to dissimilar re-
sponses of PCB congeners. Fig. 5 shows the solvatochromic descriptors
of compounds used to train these models and the corresponding
regression coefficients. Descriptors ‘A’ and ‘B’ of PCBs had such a narrow
range that they did not have a meaningful contribution to the model
predictivity and thus were excluded from the model equations. In the
freshwater model, ‘s’ was the most influential parameter which was
followed by ‘v’ and ‘e’. In seawater, the relative absolute significance of
‘v’ was slightly higher than ‘s’, and ‘e’ was the least important param-
eter. The coefficients’ signs were the same in both models, indicating
that water type is not reversing the direction of the interactions between
compounds and MPs. The relative importance of ‘€’ and ‘s’ were the
same for both models, meaning that the strength of PE MPs’ polarizing
effect towards PCBs is not influenced by water type. Moreover, both
freshwater and seawater are highly dipolar while PE has a much weaker
ability for dipole/induced-dipole interactions. Therefore, the difference
in water chemistry of the two water types might not trigger dipolar
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Fig. 5. LSER equations and the corresponding regression coefficients’ relative distributions for (a) seawater model and (b) freshwater model. (c) Solvatochromic
descriptors of 17 PCB used in the models examining the impact of water type. All VIF values are smaller than 10, and the details are given in Table S7.

interactions. ‘v’ was the only parameter rendering the sorption of PCB by
PE MPs being higher in seawater than that in freshwater, which was
supported by the good correlation obtained between log K, and log Kp
(Fig. 1). This can be attributed to that the presence of ionic strength and
DOC attached onto PE surfaces in seawater contributed to hydrophobic
interactions and this mechanism overweighs that of represented by ‘e’
and ‘s’. Furthermore, none of the coefficients were statistically signifi-
cant in seawater (p > 0.05), while only ‘c’ and ‘s’ were significant in
freshwater (p < 0.05). Therefore, LSER approach may not be fully
addressing the sorption mechanism between PCBs and MPs, which can
be due to compounds’ (i) very similar properties making it difficult to be
differentiated from each other; (ii) insignificant interactions with MPs. A
similar comment could also be made for other families of compounds,
regardless of their ionization status, such as perfluoroalkyl carboxylic
acids (PFCAs) (Hatinoglu et al., 2023). Furthermore, it is unrealistic to
extend the findings to every MPs-OCs combination due to the inconsis-
tency of training datasets across studies. For example, Wei et al. (2019)
trained their models that predict the adsorption by PE MPs with both
ionic and neutral OCs by overlooking the difference in model domains
for seawater and freshwater. In contrast, we kept the model domains the
same for different water types to clearly study the water impact by
changing only one variable at a time. As a result, the descriptors driving
the models in our study differed from theirs, except ‘v’ being the
dominant coefficient in both studies, which has the highest coverage of
interactions.

4. Conclusion

Poly-parameter LSER equations were developed for the sorption of
neutral aromatic OCs by MPs to investigate the effect of compounds’

MW cutoff, MPs’ polymer type, and water type on the sorption mecha-
nism. This study extensively investigates the complex interactions
occurring between MPs, OCs, and water components, and reveals the
following major outcomes. First, as MW cutoff gets smaller, model’s
prediction strength increases. However, the relative importance of the
intermolecular interactions stays the same throughout the cutoffs
(except for < 544 g/mol), emphasizing the fact that the model is
comprehensive enough to predict diverse compounds. Furthermore,
neutral aromatic OCs with MWs smaller than 404 g/mol are not
distinctive enough to change the direction of the sorptive interactions.
Second, the internally and externally validated benchmark model (MW
< 404 g/mol, n = 28) makes strong predictions for the sorption of
neutral aromatic OCs by PE MPs in DI water with R? = 0.85, RMSE =
0.38, Qfoo = 0.73 and RMSE; oo = 0.51. Third, the comparison between
the models for PE and PS shows that the benzene ring of the polymer
does not govern the compounds’ (n = 22) affinity towards them in DI
water. Fourth, hydrophobicity is the predominant mechanism covered
by LSER models that alters the sorption affinity of PCBs towards PE MPs
in different water types.

Further research is warranted to extend the findings to environ-
mentally realistic MPs to account for the impact of surface weathering
and biofilm formation. Furthermore, increasing the diversity of com-
pounds in datasets can significantly improve our understanding and
prediction of environmentally relevant fate of compounds. Therefore,
LSER descriptors should be generated for ionizable compounds by
experimentally or computationally correcting those available for neutral
forms of compounds. Moreover, sorption experiments in literature
mostly lack in providing MP properties, which makes it challenging to
investigate the mechanism. Future studies should systematically report
all necessary properties to clarify the understanding of scientific
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community.
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