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A B S T R A C T   

This study develops predictive models for adsorption of organic compounds (OC) by microplastics using linear 
solvation energy relationship (LSER). The adsorption mechanism of aromatic OCs by microplastics was inves
tigated by delineating the effect of molecular weight of the OCs, polymer type of MPs, and background water 
chemistry. The benchmark model for adsorption of OCs (n = 28) by polyethylene yielded an R2 = 0.85 (n = 28), 
RMSE = 0.38, Q2LOO = 0.73. Further narrowing the dataset down by decreasing the molecular weight cutoff to 
OCs < 192 g/mol improved the model to R2 = 0.98 (n = 13). Validation techniques tested the predictive strength 
of the benchmark model, which included new experimental adsorption data and performing leave-one-out cross 
validation. Among LSER model descriptors, the molecular volume was the most predominant descriptor in all 
scenarios, suggesting the importance of non-specific interactions and OC hydrophobicity. The results demon
strated that LSER is a promising approach for predicting the adsorption of aromatic OCs by MPs.   

1. Introduction 

Plastics are practical, durable, low cost, and lightweight materials 
providing benefits to almost every industry imaginable (Crawford and 
Quinn, 2016; Sun et al., 2022; Shen et al., 2021). They are also imper
ative for food packaging, safe medical services, inexpensive clothing, 
clean water storage that improve the standards of life around the world. 
Therefore, since the 1950s, society’s ever-increasing demand for plastics 
has boosted their global production rate by more than two orders of 
magnitude (Europe, 2021). During their environmental retention, 
plastic debris are exposed to natural weathering processes (e.g., UV 
irradiation, heat, mechanical stress, and biodisintegration), which break 
them down into microplastics (MPs) (Botterell et al., 2019). Given their 
small sizes within the optimal prey range (Galloway et al., 2017), MPs 
are mistaken by many aquatic species, resulting in intestinal damage 
(Lei et al., 2018), developmental inhibition (Zhang et al., 2022), energy 
budget disturbance (Wright et al., 2013); structural alterations, and 
oxidative stress (Vasanthi et al., 2021). Moreover, MPs are complex 
cocktails of polymers and chemical additives, which can be further 

exacerbated by the sorption of synthetic organic compounds (OCs) and 
pathogens owing to their high surface area and hydrophobicity 
(Galloway et al., 2017; Rochman et al., 2019; Huang et al., 2023; Liu 
et al., 2023). Thus, MPs are potential “Trojan Horses” for toxic pollut
ants; that could cause severe health implications (Pedà et al., 2016; 
Rainieri et al., 2018; Dong et al., 2023; Ricardo et al., 2021). In contrast, 
there has been conflicting evidence of decreased toxicity by the presence 
of MPs, proving that the ingestion of MPs is a negligible chemical uptake 
route compared to water exposure for fish (Schell et al., 2022). There
fore, it is imperative to explore the sorptive interactions between MPs 
and toxic OCs. These complex interactions are influenced by MP prop
erties (e.g., size, shape, crystallinity, hydrophobicity, functional groups, 
and additives) (Mei et al., 2020; Wang et al., 2021), OC’s characteristics 
(e.g., hydrophobicity, ionic property, and functional groups) (Li et al., 
2018; Zhang et al., 2018), and solution chemistry (e.g., ionic strength, 
pH, and natural organic matter) (Li et al., 2018; Ma et al., 2019; Scott 
et al., 2021; Wang et al., 2015). Given that all these factors concurrently 
affect the phase-transfer processes (ab- and adsorption), conducting 
laboratory experiments for 70,000 + OC is not practical. Currently, 
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equilibrium constants (Kd) for MPs are determined by sorption experi
ments, which take long equilibrium time, require trained staff, and lead 
to excessive cost. Developing predictive models based on solvation 
theory not only provides Kd values, but also unravels the sorption 
mechanism. Moreover, unraveling the mechanisms of the sorption 
process between MPs and OCs can provide insights for developing 
effective treatment technologies because plastics are commonly used in 
water and wastewater treatment plants as resins (e.g., polystyrene, 
acrylic polymers). 

The partitioning of OCs to MPs can take place by sorption, and the 
predominant mechanism varies for each polymer (Prajapati et al., 
2022). OCs can diffuse into loosely arranged polymer chains of amor
phous rubbery polymers (e.g., PE, PP) via absorption by weak van der 
Waals forces (Prajapati et al., 2022; Atugoda et al., 2020; Endo et al., 
2016). On the contrary, they are restricted in glassy amorphous poly
mers (e.g., PS, PVC) due to highly dense, cross-linked molecular struc
tures, which cease absorption into polymer matrix (Atugoda et al., 
2020). Instead, glassy polymers have internal nanoscale pores creating 
strong adsorption sites for OCs (Hartmann et al., 2017). Adsorption is 
generally the predominant process at low concentrations of OCs, while 
absorption takes over at high concentrations due to larger volume 
requirement to accommodate molecules (Prajapati et al., 2022; Hart
mann et al., 2017). Bearing in mind that polymer structure and OCs’ 
concentration in water are closely linked to the predominant mass 
transfer mechanism (adsorption and/or absorption), we refrained from 
differentiating the terms and used the term ‘sorption’ because this study 
aims at identifying the partitioning of OCs in a biphasic water- 
microplastic system (Endo et al., 2016; Hartmann et al., 2017). 

Equilibrium constants can be predicted using single-parameter free 
energy relationships either based on octanol–water (log Kow) or 
hexadecane-water distribution coefficients (log Khw). However, wide 
diversity of chemicals makes single parameter approach insufficient and 
more comprehensive multiple parameter tools considering multiple as
pects of solutes are needed to make more precise predictions (Hüffer 
et al., 2018). Abraham’s linear solvation energy relationship (LSER) 
approach allows the investigation of individual molecular interactions 
and their contribution to overall sorption. Since 1990s, this approach 
has been used to predict adsorption of a variety of compounds by multi- 
walled carbon nanotubes (CNTs) (Apul et al., 2013; Ersan et al., 2016; 
Hüffer et al., 2014), single-walled CNTs (Apul, 2014; Wu et al., 2016), 
graphene (Xia et al., 2010), graphene oxide (Ersan et al., 2019), and 
black carbon (Su et al., 2018). Up to now, only four studies have used 
LSER approach to model the sorption of organic compounds by MPs 
(Hüffer et al., 2018; Wei et al., 2019; Xu et al., 2021; Hatinoglu et al., 
2023). Poly parameter approach has shed light on exploring the sorption 
mechanism in terms of the characteristics of the polymer, OCs, and 
water type. The first study developed a model for the adsorption of 21 
different OCs containing aliphatic and aromatics onto UV-aged PS MPs, 
yielding R2 = 0.95 (Hüffer et al., 2018). In line with most LSER studies 
using polymeric sorbents, hydrophobic attraction of OCs towards MPs 
was the most reported as the significant adsorption mechanism. 
Furthermore, OCs’ tendency to make H-bonds with water was higher 
than with UV-aged PS MPs because of oxygen-containing surface groups 
on aged PS MPs, which decreases the availability of sorption sites to MPs 
(Hüffer et al., 2018). The second study broadened the understanding by 
developing LSER models for different polymer types in different 
matrices, covering sorption by PE in seawater (n = 36, R2 = 0.91), PE in 
freshwater (n = 36, R2 = 0.91), PE in pure water (n = 35, R2 = 0.98), and 
PP in seawater (n = 35, R2 = 0.96). For all three PE models, hydrogen 
bond basicity and cavity formation effect were the governing mecha
nisms. For the PE in the seawater model, induced dipole effect was 
another prevailing mechanism due to high salinity. Unlike other poly
mers, sorption by PP in seawater was not significantly affected by cavity 
formation energy, which was attributed to the high crystallinity of PP 
(due to the methyl groups), reducing the energy need for cavity for
mation. In the third study, it was found for the first time that 

intermolecular interactions governing the adsorption mechanisms may 
vary depending on the polarity of MPs (Xu et al., 2021). Even though the 
sorption by polar MPs involved less hydrophobic interactions and van 
der Waals forces than non-polars (i.e., PCL < PBS < LDPE < PS), they 
had much greater adsorption capacities due to making stronger polar 
interactions such as H-bonding and p/π- π electron donor–acceptor in
teractions. In the most recent study, we introduced the applicability of 
LSER modelling for adsorption of ionizable perfluoroalkyl carboxylic 
acids (PFCAs) onto PS MPs by correcting Abraham’s descriptors (Hati
noglu et al., 2023). Results showed that polarizability and hydropho
bicity of anionic PFCA drive them to MPs while the van der Waals 
interactions between PFCA and water diminish PFCA’s binding affinity. 
The study was the first attempt to develop models by compiling data 
from literature and comparing LSER results side by side for different 
polymer types and water types (Hatinoglu et al., 2023). 

Furthermore, while previous efforts also elucidated the interactions 
between a wide range of organic compounds and water samplers and 
pipes (Uber et al., 2019; Uber et al., 2019; Egert and Langowski, 2022; 
Egert and Langowski, 2022), our study excluded the data pertaining 
bulk polymeric materials from our analysis to maintain the clarity and 
focus of our investigation on the MPs. As detailed in Table S1, no study 
has accomplished providing such mechanistic insights yet. This study 
introduces new perceptions to predictive model development literature 
by performing systematic data gathering, and classification aiming at 
data homogeneity. This novel approach enables conveying predictions 
specific to each element of sorptive interactions between MPs and OCs, 
by changing only one variable at a time. 

The objectives of this study are to investigate the mechanisms and 
the corresponding impacts of: (i) OCs’ molecular weight; (ii) MPs’ 
polymer type; and (iii) background water type on the adsorption of OCs 
by MPs using LSER approach and by comparing our findings within the 
literature. Moreover, LSER models were internally validated, and 
experimental adsorption data was generated to externally validate the 
benchmark model. 

2. Materials & methods 

2.1. OCs and MPs used for model training 

An exhaustive literature review was conducted to compile all the 
partition coefficients (log KD) related to the sorption of neutral aromatic 
OCs by PE MPs in deionized water. Log KD values at the Henry’s region 
(i.e., most linear portion) of the isotherms were analyzed to represent 
sorption at diluted concentrations. Moreover, the last data points in 
isotherms were used to calculate log KD values at saturated concentra
tions. The linear partition model allowing the attainment of KD values is 
given in eq (1): 

qe = KD • Ce (1) 

Where qe is the amount of adsorbate on the MPs (mg/g), Ce is the 
amount of adsorbate remaining in the solution (mg/L), and KD is the 
linear partition coefficient (L/kg) under equilibrium. Partition co
efficients obtained from the two ends of the isotherm were used to test 
the impact of surface area normalization on model predictivity. 

Four classification criteria were implemented for OC and MP type 
selection. First, modelling efforts were focused on aromatic compounds 
because most data are for aromatics in literature. Second, ionized 
compounds were out of the scope of this study as traditional LSER 
models are not capable of predicting them. Third, only the data associ
ated with virgin MPs were considered and the ones undergone any 
natural (i.e., MPs extracted from an environmental media) or artificial 
(e.g., UV irradiation, ozonation) weathering process were omitted from 
the study as surface functionalization of MPs can affect the adsorption 
interactions of OCs (Hüffer et al., 2018; You et al., 2021). Fourth, 
datasets were not narrowed down to particle sizes because MP sizes were 
found not to be a limiting factor for the adsorption process. 
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Following these assumptions yielded a database containing log KD’s 
for the sorption of 31 neutral aromatic OCs from 18 studies and it was 
used to examine the impact of OCs’ molecular weight (MW) on the 
sorption process (Table S2). Figure S1 shows the MW distribution of 31 
OCs in the database. The right-skewed histogram indicates that most 
OCs in the dataset has MWs in lower range. MW is related to OCs’ mo
lecular volume, and it is the most influential parameter in adsorption 
process (Apul et al., 2013; Apul et al., 2020). Therefore, the database 
was first subgrouped into seven different MW cutoffs by excluding three 
of the largest MW OCs from the dataset systematically for each cutoff. 
Then, the prediction strengths of seven models were compared and the 
model yielding highest R2 with greatest number of data points was 
selected as the benchmark model (MW < 404 g/mol, R2 = 0.85, n = 28). 
Furthermore, the benchmark model was verified by internal and 
external validation techniques as described in Section 2.3. 

The second database was generated to examine the impact of poly
mer type and contained data for adsorption of 25 aromatic OCs by PS 
MPs, which are all contained in the starting database as well. Among 25 
compounds, 22 of them were at the same MW cutoff with benchmark 
model (<404 g/mol) (Table S3). Therefore, the models created for the 
sorption of same 22 compounds by PE and PS were compared side by 
side (log KD values are given in Table 2). 

Finally, two more datasets were generated for the sorption of 17 PCB 
by PE MPs in freshwater and seawater to examine the impact of water 
type (Table 3). Here, the freshwater was a synthetically prepared solu
tion containing calcium chloride, magnesium sulfate, sodium hydrogen 
carbonate, and potassium hydrogen carbonate, while seawater was a 
real sample with salinity of 3.4% and dissolved organic carbon (DOC) of 
0.17 mg/L. Moreover, the diameter of PE microspheres was 99 ± 39 µm 
(Velzeboer et al., 2014). 

2.2. Descriptor collection 

Abraham’s LSER approach is used to create a linear poly parametric 
model and describe solvation or directly related activities by using 
compounds’ physicochemical properties. The model provides mecha
nistic insights because it reveals the intermolecular interactions between 
the sorbent and sorbates as well as quantifying their relative individual 
contribution to the sorption process. A typical LSER model that describes 
the sorption of neutral OCs is given in eq (2): 

Log KD = c + eE + sS + aA + bB + vV (2) 

where ‘log KD’ is partitioning coefficient between MPs and water 
under equilibrium conditions; ‘E’ is the excess molar refraction in units 
of (cm3 mol−1)/10 representing non-specific van der Waals forces; ‘S’ is 
the polarizability/dipolarity parameter, ‘A’ and ‘B’ are the hydrogen 
bond donating (acidity) and accepting (basicity) abilities, respectively; 
and ‘V’ is the molecular volume or McGowan’s volume in units of (cm3 

mol−1)/100. Lastly, ‘c’ is the regression constant, and ‘e’, ‘s’, ‘a’, ‘b’, and 
‘v’ are the fitting coefficients indicating the contribution of each inter
action on the adsorption mechanism (Xu et al., 2021; Apul et al., 2020). 
In this study, all solvatochromic descriptors were obtained from the 
Helmholtz Centre for Environmental Research (UFZ) database (Ulrich 
et al., 2022). Figure S2 shows the descriptors that were used as inde
pendent variables to train our benchmark model. 

2.3. Statistical methods for model development and evaluation 

Paired t-test was performed to compare log KD values of different 
datasets. Multiple linear regressions were conducted by assigning log KD 
as dependent variable and Abraham solvation descriptors as indepen
dent variables using Microsoft Excel. The regression models were eval
uated by the p-values obtained from analysis of variance (ANOVA). 
Independent variables with a p-value less than 0.05 were accepted as 
statistically significant in predicting the dependent variable. The mul
ticollinearity of independent variables was quantified by variance 

inflation factor (VIF) as shown in eq (3): 

VIF =
1

1 − r2
i

(3) 

where, ri
2 is the squared correlation coefficient of the ith coefficient 

when the ith descriptor was regressed against all other descriptors. 
Higher VIF values indicated more severe correlations with one or more 
of the remaining independent variables. The independent variables were 
accepted as correlated if the VIF values were larger than 10 (Midi et al., 
2010). The goodness of the fit was examined by the coefficient of 
determination (R2). The predictive precision of the models was quanti
fied by the root mean squared error (RMSE) as shown in eq (4): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − ŷi)
2

n

√

(4) 

where, n is the number of compounds in the training set. yi and ̂yi are 
experimental and predicted log KD values for the ith compound in the 
training set, respectively. RMSE is used to measure the distance between 
predicted and actual values, and so it quantifies how concentrated the 
data is around the line of best fit. Smaller RMSE values indicated a 
stronger prediction tendency of a model. 

2.3.1. Internal validation 
Two different internal validation techniques were used to evaluate 

the robustness of the benchmark model. First, the benchmark dataset (n 
= 28) was ranked in decreasing order of log KD values; 21 compounds 
were then selected for the training and 7 for validation of the LSER 
model by following the randomization pattern of VTTT (V: validation; T: 
training). 

Second, leave-one-out (LOO) cross validation was carried out by 
using the benchmark model’s dataset. In this technique, each compound 
was left out once and an LSER model was fit with the remainder of the 
data until all 28 compounds had been predicted. RMSE of LOO 
(RMSELOO) and LOO validated R2 (Q2

LOO) were calculated as the crite
rion. Q2

LOO was calculated using eq (5): 

Q2
LOO = 1 −

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (5) 

where, y is the average experimental log KD value of the training set. 
A high value of Q2

LOO (Q2
LOO > 0.5) was considered as proof of the high 

predictive ability of the model (Ding et al., 2016). 
In addition to the benchmark model, LOO cross validation was also 

carried out for the models shown in Fig. 4 and Fig. 5. Cross validation 
results are shown in Figure S5. 

2.3.2. External validation 
For external validation, isotherms were experimentally generated for 

the sorption of triclosan and 2,3,6-trichlorophenol by PE MPs. The 
predictive precision of the benchmark model was evaluated by calcu
lating RMSE. PE MPs (density: 0.935 g/cm3) used in sorption experi
ments were purchased from a local water tank manufacturer in Turkey 
in shredded form, and characterization was performed by METU Central 
Laboratory. The polymer type was confirmed by diamond crystal ATR- 
FTIR analysis using IFS/66S, Hyperion 1000. The crystallinity and 
melting temperature (Tm) of PE were measured by Perkin Elmer Dia
mond Differential Scanning Calorimetry (DSC) (Heating rate: 10 ◦C/ 
min, Temperature range: 30 ◦C to 300 ◦C, Under N2 atmosphere). Spe
cific surface area of MPs was measured using multi-point N2 BET method 
(for 24 h degassing at 50 ◦C). Particle size distribution of MPs was 
determined by using ASTM method (Astm, 2017), which involved 
passing the MPs through a stack of sieves with mesh openings ranging 
from 2.0 to 0.106 mm, and weighing the particles retained on each sieve 
(Astm, 2017). Finally, zeta potential of PE was measured to determine 
the point of zero charge (pHpzc) using MALVERN Nano ZS90. The 
characteristics of MPs are summarized in Table 1 and the detailed results 
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are given in Figure S6. 
Triclosan (MW: 289.5 g/mol) and 2,3,6-trichlorophenol (MW: 197.4 

g/mol) were two aromatic OCs selected to conduct sorption experiments 
for external validation of the benchmark model. These compounds fit 
the benchmark model because (i) their MWs are <404 g/mol and (ii) 
they are neutral at experimental conditions (pH = 6 for triclosan and pH 
= 4 for 2,3,6-trichlorophenol). The benchmark model was already 
trained by literature sorption data for triclosan, while no 2,3,6-trichlor
ophenol data was contained in the model training. Physicochemical 
properties of both compounds are given in Table S4. 

Isotherm experiments for triclosan and PE MPs were performed by 
changing the MP amount (i.e., solid: liquid, S/L) in the sorption vials (i. 
e., 0.5, 1, 2, 4, 5, 10, 15, 20 g/L). Prepared amber vials were shaken 
horizontally at 200 rpm and 25 ◦C ± 2 ◦C via incubating shaker (N- 
Biyotek NB-205 VL model). It was observed from kinetic sorption ex
periments that the equilibrium time was 24 h for triclosan at pH 6 
(Figure S7). As experimental pH was smaller than its pKa, triclosan 
existed in its undissociated form. The same shaking conditions were also 
applied for 2,3,6-trichlorophenol, but initial pH was 4. Sorption 
isotherm experiments for 2,3,6-trichlorophenol and PE MPs were per
formed by changing the initial concentration from 1 to 60 ppm at pH =
4, where the compound existed in its undissociated form. Tricosan and 
2,3,6- trichlorophenol were measured directly using a UV/Vis Spectro
photometer (HACH DR6000) at the wavelength of their maximum 
absorbance, i.e., 279 and 289 nm, respectively. 

3. Results & discussion 

3.1. Overview of literature for sorption of OCs by MPs 

Table 2 compares log KD values of PE and PS MPs at MW cutoff <
404 g/mol. In general, the log KD values for both polymers showed a 
relationship with log Kow values of OCs indicating the important role 
that hydrophobic interactions play in sorption. Although the polymer 
structures of PE and PS differ greatly, there is no statistically significant 
difference between the log KD values of 22 neutral aromatic OCs by PE 
and PS MPs (p > 0.05). This indicates that sorption by MPs may not be 
mainly controlled by polymer related properties. PE is a simple linear 
molecule and a rubbery amorphous polymer (i.e., glass transition tem
perature, Tg, is below ambient temperature, Tamb) that can absorb 
compounds uniformly due to the relatively high flexibility of polymer 
segments (Atugoda et al., 2020; Endo et al., 2016). In contrast, PS is a 
glassy amorphous polymer (Tg > Tamb) containing benzene groups in its 
structure. Sorption by PS MPs is rather an adsorption-like or pore-filling 
process resulting in nonlinear isotherms to occur (Endo et al., 2016). 
Contrary to literature (Wei et al., 2019), benzene group of PS making π- π 
interactions with aromatic OCs did not cause PS to exhibit significantly 
higher log KD values than PE. Additionally, PE MPs’ ability to induce 
diffusion of OCs into polymer matrix did not help them surpass sorption 
capacity of PS MPs. A more conclusive side by side comparison would 
only be possible if the MPs’ size, shape, additive content, and surface 
oxygen contents were kept constant. 

Table 3 compares log KD values of 17 PCBs for PE MPs in seawater 
and freshwater. In general, log KD and log Kow values of PCBs increase 
with MW of compounds in both water types. Moreover, the distribution 
pattern of log KD values for each PCB is the same for each water type. For 
most PCBs, sorption by PE MPs was greater in seawater than in fresh
water, and the difference between the entire groups was statistically 
significant at the 95% confidence level. The improved sorption affinity 
in seawater has also been previously reported for PFAS and was attrib
uted to salting out effect (i.e., decreasing water solubility of PFAS) or 
cation bridging in the presence of ions in seawater (Llorca et al., 2018). 
Unlike PFAS, PCBs exist in neutral forms at experimental pH and their 
water solubility is very low, therefore mechanisms leading to this 

Table 1 
Characteristics of PE MPs used in validation experiments.  

Density Tm Crystallinity SSA pHpzc Particle size 

0.935 g/cm3 126 ◦C  49.4% 0.103 m2/g  ~2.2 250–500 µm 

Tm; melting temperature; SSA: specific surface area; pHpzc: point of zero charge. 

Table 2 
Comparison of polymer type for log KD values using the compounds in bench
mark model (n = 28) and model for sorption by PS MPs (n = 22) in deionized 
water at MW cutoff 404 g/mol.  

*Compounds were ranked in ascending order of their log Kow values. n/a: not 
available. 
Colored bars were obtained by conditional formatting, and they demonstrate 
relative magnitude of log KD values of PE and PS. 

Table 3 
Comparison of water type for log KD values using 17 PCB adsorbed by PE MPs in 
seawater and freshwater.  

a Compounds were ranked in ascending order of their log Kow values; b Data from 
(Velzeboer et al., 2014); c non-planar PCB; d planar PCB; n/a: not available. 
Colored bars were obtained by conditional formatting, and they demonstrate 
relative magnitude of log KD values of PE in seawater and freshwater. 
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behavior should be different, such as DOC content of seawater. More
over, planar PCBs are sorbed by PE stronger than non-planar PCB con
geners because they can move closer to the surfaces (Velzeboer et al., 
2014). 

Fig. 1 shows the log Kow (octanol–water partition coefficient) versus 
log KD values for compounds at MW cutoff < 404 g/mol. The correla
tions for PE (R2 = 0.58) and PS (R2 = 0.39) indicate that the sorption of 
OCs by MPs cannot be explained by hydrophobic interactions alone. It is 
necessary to consider the impact of multiple parameters (e.g., sorbent 
and solute related properties) simultaneously to predict the sorption 
mechanism. In contrast, the correlation for PCB was comparatively 
higher as they are a family of compounds. Especially, it was stronger for 
freshwater (R2 = 0.94) than in seawater (R2 = 0.72), indicating that the 
interactions in seawater can be more complex than in freshwater relying 
mainly on hydrophobic sorption. In seawater, dipole interactions may be 
observed between salt ions and MPs’ surfaces, that may weaken the 
correlation. This speculation will be further tested later and elaborated 
more in Section 3.5. 

3.2. Training and internal validation of benchmark model 

The impact of OCs’ MW on LSER models was investigated using the 
datasets with different MW cutoffs. The model parameters obtained 
from the sorption by PE MPs in deionized water are shown in Table 4. 
Excluding three compounds with highest MWs from 31 aromatic OCs 
(Figure S3) remarkably changed the model predictivity in terms of (i) R2, 
(ii) relative importance of coefficients, and (iii) the sign of coefficients. 
From MW cutoff < 544 to < 404 g/mol, R2 increased from 0.50 to 0.85 
and it was the most significant improvement achieved by MW cutoff 
testing. R2 value stayed almost stable until MW cutoff < 223 g/mol, and 
it reached to its maximum value (i.e., 0.98) at MW cutoff < 192 g/mol. 
This can be attributed to the increasing similarity of OCs as it was shown 
in right-skewed histogram (Figure S1), but not to changes in the number 
of OCs because adjusted R2 values’ trend is parallel with R2. Despite the 

very high goodness of the fit, the number of data (n = 13) was small 
which would limit the application domain of the developed model. 
Therefore, MW cutoff < 404 g/mol was selected to be the benchmark 
model of this study. While ‘E’ and ‘S’ were insignificant terms in the 
model of the raw dataset (n = 31), all five descriptors turned out to be 
significantly influencing the sorption process in the benchmark model 
(p < 0.05). However, it should be noted that there are only three OCs 
and to determine an actual MW cutoff, more data points are required. 

Fig. 2a demonstrates the relative distribution of regression co
efficients in the benchmark model (<404 g/mol, n = 28) and Fig. 2b 
depicts the corresponding plot of experimentally measured vs. predicted 
log KD values generated by this dataset (RMSE = 0.38). In this model, ‘v’ 
was the most influential parameter and positively correlated with the 
sorption process, indicating the importance of hydrophobic or non- 
specific interactions between OCs and PE MPs. It implies that adsorp
tion capability onto MPs increases as the compounds get larger. The 
second and third most significant coefficients were ‘b’ and ‘a’, respec
tively and were both negatively correlated with the sorption. This can be 
attributed to the capability of PE MPs for making H bond interactions 
with OCs is lower than that of bulk water. This agrees with the polymer’s 
nonpolar property (–CH2), and the virgin structure not containing any 
functional groups that can make hydrogen bonds with OCs. The term ‘s’ 
was the fourth strong factor and negatively correlated with the 
adsorption, meaning that dipolarity of OCs does not favor their sorption 
to MPs. It can be ascribed to that MPs have much lower dipolarity 
compared to water, causing them to have a weaker ability for making 
dipole/induced-dipole interactions with OCs. Finally, the slightly posi
tive ‘e’ indicates that OCs has greater ability for polarizing effects to
ward PE MPs than bulk water. The model that Wei et al. (2019) 
developed for adsorption by PE MPs in deionized water has similarities 
with our benchmark model in terms of dominating descriptors and their 
signs, which are descriptor ‘V’ and ‘B’. Contrary to ours, that study omits 
‘A’, ‘E’ and ‘S’ in their model due to having a dissimilar training dataset 
that contains both aliphatic and aromatic OCs. On the other hand, the 

Fig. 1. Log Kow vs. log KD for sorption of neutral aromatic OCs by PE (n = 28) and PS MPs (n = 22) in DI water, 17 PCB by PE MPs in seawater and freshwater at MW 
cutoff < 404 g/mol. r: the Pearson correlation coefficient and R2: the coefficient of determination. 
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model that Xu et al. (2021) developed for adsorption of 18 neutral ar
omatic OCs by LDPE MPs contains the same driving descriptors and signs 
with our study, but the coefficients’ order of relative significance slightly 
differs at both equilibrium concentrations (i.e., 1 and 10% of water 
solubility). The similarities obtained from studies with different training 
datasets may be an indication of less complex interactions between OCs 
and PE MPs, especially when the medium is deionized water. Further
more, although Egert and Langowski (2022)’s model was not specif
ically developed for MPs, the adsorption of a large group of compounds 
(n = 156, MW range = 32 to 722 g/mol) containing both aliphatic and 
aromatic OCs by LDPE films showed the same coefficient signs as our 
benchmark model but differed slightly in the significance order of the 

descriptors. Table S5 compares the predictive strength of our benchmark 
model with Egert and Langowski (2022)’s model for our MW < 404 g/ 
mol dataset. 

Lastly, from 404 g/mol to lower MW cutoffs, the signs of descriptors 
do not change but relative importance of ‘a’, ‘b’ and ‘s’ slightly changes 
(Table 4). This means that MW cutoff may not cause a fundamental 
change in the sorption process when compounds are smaller. 

Then, the benchmark model was split into training (n = 21) and 
validation (n = 7) datasets for internal validation using VTTT approach. 
Fig. 2c shows the descriptors of randomized training and validation 
datasets and Fig. 2d shows the corresponding prediction curve. Here, log 
KD values of 7 OCs were predicted using the model trained by 21 OCs. 

Table 4 
LSER model parameters for the sorption of neutral aromatic OCs by PE MPs in deionized water at different molecular weight 
cutoffs.  

*Relative absolute significance of each coefficient is comparatively visualized in Figure S4. 
Shaded row shows the selected benchmark model. 

Fig. 2. (a) LSER equation and the corresponding regression coefficients’ relative distributions in the benchmark model; (b) experimentally measured vs. predicted 
log KD values generated by the combination of training and validation datasets (i.e., benchmark model, n = 28); (c) Box and Whisker plot for LSER descriptors of 
training (n = 21) and validation (n = 7, denoted by prime) dataset of benchmark model; (d) experimentally measured vs. predicted log KD values for training and 
validation datasets. 
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Although the classification was randomized, the ranges of two sets’ 
descriptors coincided with each other. This indicates that the training set 
includes a wide range of compounds and therefore can serve for the 
prediction of variety of compounds. This argument was supported by 
low RMSE value (RMSE = 0.38). 

Finally, LOO cross validation (Figure S5) performed for the bench
mark dataset (n = 28) resulted that RMSELOO and Q2

LOO were 0.51 and 
0.73, respectively. Low RMSE and high Q2

LOO (Q2 > 0.5) proved the high 
predictive ability of the model (Ding et al., 2016). 

3.3. External validation of the benchmark model 

Fig. 3(a, b) shows two example adsorption isotherms produced for 
triclosan and 2,3,6-trichlorophenol, respectively. Sorption of both 
chemicals on MPs showed a good fit to Freundlich model with an R2 of 
0.986 and 0.976 for triclosan and 2,3,6-trichlorophenol, respectively. 

As shown in Fig. 3(c), these two compounds lie in the interquartile 
ranges of training dataset’s solvatochromic descriptors, therefore, it is 
likely that our external validation is within the applicability domain of 
the developed model. External validation of the benchmark model 
showed that log KD of triclosan and 2,3,6-trichlorophenol can be pre
dicted with 0.1 and 7.5% error, respectively (Fig. 3(d)). Moreover, 
RMSE for external validation set was 0.09. Despite the limited size of the 
external dataset, these statistical evaluations align with those of internal 
validation. This collective affirmation may demonstrate that the devel
oped benchmark model is a potential tool for predicting the sorption of 
aromatic organic compounds with MW cutoff < 404 g/mol by PE MPs. 

The reason for good external validation strength was traced back to the 
similarity in properties of PE MPs used in this study with those in 
literature. Figure S8(b) shows that MPs used in studies that make up our 
benchmark model has SSA ranging from 0.257 to 12.1 m2/g, particle 
sizes from 9.5 to 5000 µm, and crystallinity from 35 to 61.5%. Our 
model MPs’ particle size and crystallinity lie in the interquartile ranges, 
while SSA is even lower than the outlier of the literature data. Never
theless, the developed LSER model was successful for predicting the 
experimental sorption data, which might be due to less importance of 
SSA in sorption of neutral aromatic OCs by PE MPs. The impact of SSA 
will be further investigated in Section 3.4 in surface area normalization 
of log KD values. 

3.4. The effect of MPs’ surface area and polymer type on LSER models 

Partition coefficients were normalized to examine whether surface 
area was a controlling factor for the sorption of aromatic OCs by PE MPs 
at MW cutoff < 404 g/mol using a common approach in literature (Apul 
et al., 2013; Apul et al., 2020; Zhou et al., 2015). This was only tested for 
10 compounds as specific surface area information for MPs was only 
provided in those studies. Normalization efforts did not improve the 
model fitting indicating that surface area might not be a controlling 
factor, as also resulted in Section 3.3 (Table S6and S7). This has been 
observed in literature for different adsorbents such as single-walled 
CNTs (Apul et al., 2015), multi-walled CNTs (Apul et al., 2013), and 
graphene oxide (Shan et al., 2017) and was attributed to the much larger 
surface areas of the adsorbents compared to the necessary area required 

Fig. 3. Sorption isotherms for (a) triclosan and (b) 2,3,6-trichlorophenol; (c) distribution of solvatochromic descriptors of benchmark model (n = 28), triclosan and 
2,3,6-trichlorophenol; (d) experimentally measured vs. predicted log KD values for training and external validation datasets. 
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for accommodating each adsorbate on their surfaces. This evidence also 
supports our argument not to classify log KD data based on particle sizes. 
However, it should be noted that the majority of first data points 
were<1% of OC solubility and the most saturated data point was<5% of 
OC solubility. At these concentrations, surface area may not be limited; 
thus, may not be controlling adsorption. At the plateau of the isotherm, 
the conclusion may change. 

The impact of polymer type was examined by comparing two models 
for the sorption of 22 neutral aromatic compounds at MW cutoff < 404 
g/mol by PE and PS MPs, which yielded similar prediction strength (R2 

≌ 0.90). Both models were internally validated using LOO approach, 
which resulted in RMSELOO = 0.42 and Q2

LOO = 0.77 for PE and RMSE
LOO = 0.51 and Q2

LOO = 0.80 for PS. Obtaining high values of Q2
LOO (Q2

LOO 
> 0.5) for both models affirmed their high predictive strength. This 
enables us to make side by side comparison of the two models’ outputs. 

Fig. 4 shows the solvatochromic descriptors of compounds used to 
train these models and the corresponding regression coefficients. All 5 
descriptors had statistically significant importance in both models 
because compounds’ descriptors lie within a wide range (Fig. 4a). 
Furthermore, the relative contribution of each mechanism to sorption 
was determined by dividing the absolute values of each coefficient by 
the sum of all coefficients. Unlike PE, the parameter ‘s’ was much more 
impactful than ‘a’ and ‘e’ in the PS model, and this has also been 
observed by Xu et al. (2021), where the models were developed for LDPE 
and PS MPs. This can be attributed to that although both MP types have 
weaker abilities of dipole/induced-dipole interactions with OCs 
compared to water, PS has less potential than PE. However, despite the 
differences in the two MPs’ polymeric structure, the signs of coefficients 
did not change with the polymer type, which may conclude that the 
polymer chemistry does not primarily govern the compounds’ affinity 
towards them, as the literature earlier reported for the comparison 

between PS and LDPE MPs (Xu et al., 2021). This suggests that the 
benzene group of PS, along with its potential π-π interactions with aro
matic OCs, does not appear to be strong enough to alter the direction of 
any of the adsorption mechanisms exhibited by PE MPs with the same 
set of OCs. However, more conclusive discussion can only be possible 
upon attainment of further MPs-related information. 

3.5. The effect of water type on LSER models 

The impact of water type was examined by comparing two models 
for the sorption of 17 PCB by PE MPs in freshwater (synthetic) and 
seawater at MW cutoff < 404 g/mol. The goodness of fit for the fresh
water model (R2 = 0.89, RMSE = 0.29) surpassed that of seawater (R2 =

0.65, RMSE = 0.47), which can be attributed to the DOC content and 
salinity of seawater, complicating the interactions due to dissimilar re
sponses of PCB congeners. Fig. 5 shows the solvatochromic descriptors 
of compounds used to train these models and the corresponding 
regression coefficients. Descriptors ‘A’ and ‘B’ of PCBs had such a narrow 
range that they did not have a meaningful contribution to the model 
predictivity and thus were excluded from the model equations. In the 
freshwater model, ‘s’ was the most influential parameter which was 
followed by ‘v’ and ‘e’. In seawater, the relative absolute significance of 
‘v’ was slightly higher than ‘s’, and ‘e’ was the least important param
eter. The coefficients’ signs were the same in both models, indicating 
that water type is not reversing the direction of the interactions between 
compounds and MPs. The relative importance of ‘e’ and ‘s’ were the 
same for both models, meaning that the strength of PE MPs’ polarizing 
effect towards PCBs is not influenced by water type. Moreover, both 
freshwater and seawater are highly dipolar while PE has a much weaker 
ability for dipole/induced-dipole interactions. Therefore, the difference 
in water chemistry of the two water types might not trigger dipolar 

Fig. 4. LSER equations and the corresponding regression coefficients’ relative distributions for (a) PE model (n = 22) and (b) PS model (n = 22); (c) Solvatochromic 
descriptors of 22 neutral aromatic OCs used in the models examining the impact of polymer type. All VIF values are smaller than 10, and the details are given 
in Table S8. 
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interactions. ‘v’ was the only parameter rendering the sorption of PCB by 
PE MPs being higher in seawater than that in freshwater, which was 
supported by the good correlation obtained between log Kow and log KD 
(Fig. 1). This can be attributed to that the presence of ionic strength and 
DOC attached onto PE surfaces in seawater contributed to hydrophobic 
interactions and this mechanism overweighs that of represented by ‘e’ 
and ‘s’. Furthermore, none of the coefficients were statistically signifi
cant in seawater (p > 0.05), while only ‘c’ and ‘s’ were significant in 
freshwater (p < 0.05). Therefore, LSER approach may not be fully 
addressing the sorption mechanism between PCBs and MPs, which can 
be due to compounds’ (i) very similar properties making it difficult to be 
differentiated from each other; (ii) insignificant interactions with MPs. A 
similar comment could also be made for other families of compounds, 
regardless of their ionization status, such as perfluoroalkyl carboxylic 
acids (PFCAs) (Hatinoglu et al., 2023). Furthermore, it is unrealistic to 
extend the findings to every MPs-OCs combination due to the inconsis
tency of training datasets across studies. For example, Wei et al. (2019) 
trained their models that predict the adsorption by PE MPs with both 
ionic and neutral OCs by overlooking the difference in model domains 
for seawater and freshwater. In contrast, we kept the model domains the 
same for different water types to clearly study the water impact by 
changing only one variable at a time. As a result, the descriptors driving 
the models in our study differed from theirs, except ‘v’ being the 
dominant coefficient in both studies, which has the highest coverage of 
interactions. 

4. Conclusion 

Poly-parameter LSER equations were developed for the sorption of 
neutral aromatic OCs by MPs to investigate the effect of compounds’ 

MW cutoff, MPs’ polymer type, and water type on the sorption mecha
nism. This study extensively investigates the complex interactions 
occurring between MPs, OCs, and water components, and reveals the 
following major outcomes. First, as MW cutoff gets smaller, model’s 
prediction strength increases. However, the relative importance of the 
intermolecular interactions stays the same throughout the cutoffs 
(except for < 544 g/mol), emphasizing the fact that the model is 
comprehensive enough to predict diverse compounds. Furthermore, 
neutral aromatic OCs with MWs smaller than 404 g/mol are not 
distinctive enough to change the direction of the sorptive interactions. 
Second, the internally and externally validated benchmark model (MW 
< 404 g/mol, n = 28) makes strong predictions for the sorption of 
neutral aromatic OCs by PE MPs in DI water with R2 = 0.85, RMSE =
0.38, Q2

LOO = 0.73 and RMSELOO = 0.51. Third, the comparison between 
the models for PE and PS shows that the benzene ring of the polymer 
does not govern the compounds’ (n = 22) affinity towards them in DI 
water. Fourth, hydrophobicity is the predominant mechanism covered 
by LSER models that alters the sorption affinity of PCBs towards PE MPs 
in different water types. 

Further research is warranted to extend the findings to environ
mentally realistic MPs to account for the impact of surface weathering 
and biofilm formation. Furthermore, increasing the diversity of com
pounds in datasets can significantly improve our understanding and 
prediction of environmentally relevant fate of compounds. Therefore, 
LSER descriptors should be generated for ionizable compounds by 
experimentally or computationally correcting those available for neutral 
forms of compounds. Moreover, sorption experiments in literature 
mostly lack in providing MP properties, which makes it challenging to 
investigate the mechanism. Future studies should systematically report 
all necessary properties to clarify the understanding of scientific 

Fig. 5. LSER equations and the corresponding regression coefficients’ relative distributions for (a) seawater model and (b) freshwater model. (c) Solvatochromic 
descriptors of 17 PCB used in the models examining the impact of water type. All VIF values are smaller than 10, and the details are given in Table S7. 
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