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Abstract—Convolutional Neural Networks (CNNs) are used
extensively for artificial intelligence applications due to their
record-breaking accuracy. For efficient and swift hardware-based
acceleration, CNNs are typically quantized to have integer in-
put/weight parameters. The acceleration of a CNN inference task
uses convolution operations that are typically transformed into
vector-dot-product (VDP) operations. Several photonic microring
resonators (MRRs) based hardware architectures have been
proposed to accelerate integer-quantized CNNs with remarkably
higher throughput and energy efficiency compared to their
electronic counterparts. However, the existing photonic MRR-
based analog accelerators exhibit a very strong trade-off between
the achievable input/weight precision and VDP operation size,
which severely restricts their achievable VDP operation size for
the quantized input/weight precision of 4 bits and higher. The
restricted VDP operation size ultimately suppresses computing
throughput to severely diminish the achievable performance
benefits. To address this shortcoming, we for the first time
present a merger of stochastic computing and MRR-based
CNN accelerators. To leverage the innate precision flexibility of
stochastic computing, we invent an MRR-based optical stochastic
multiplier (OSM). We employ multiple OSMs in a cascaded
manner using dense wavelength division multiplexing, to forge
a novel Stochastic Computing based Optical Neural Network
Accelerator (SCONNA). SCONNA achieves significantly high
throughput and energy efficiency for accelerating inferences of
high-precision quantized CNNs. Our evaluation for the inference
of four modern CNNs at 8-bit input/weight precision indicates
that SCONNA provides improvements of up to 66.5×, 90×,
and 91× in frames-per-second (FPS), FPS/W and FPS/W/mm2,
respectively, on average over two photonic MRR-based analog
CNN accelerators from prior work, with Top-1 accuracy drop of
only up to 0.4% for large CNNs and up to 1.5% for small CNNs.
We developed a transaction-level, event-driven python-based
simulator for the evaluation of SCONNA and other accelerators
(https://github.com/uky-UCAT/SC ONN SIM.git).

I. INTRODUCTION

Deep Neural Networks (DNNs) have revolutionized the

implementation of various artificial intelligence tasks, such as

image recognition, language translation, autonomous driving

[1], [2], due to their high inference accuracy. Convolutional

Neural Networks (CNNs) are specific types of DNNs [3].

CNNs are computationally intensive, and hence, require a

long inference time. In CNNs, around 80% of the total

processing time is taken by convolution operations that can be

decomposed into vector dot product (VDP) operations [4]. The

ever-increasing complexity of CNNs has pushed for highly

customized CNN hardware accelerators [5]. Often, for efficient

and swift hardware-based acceleration, CNNs are typically

quantized to have integer input/weight parameters [6]. Among

CNN hardware accelerators, silicon-photonic accelerators have

shown great promise to provide unparalleled parallelism, ultra-

low latency, and high energy efficiency [7]–[12]. Typically, a

silicon-photonic CNN accelerator consists of multiple Vector

Dot Product Cores (VDPCs) that perform multiple VDP

operations in parallel. Several VDPC-based optical CNN ac-

celerators have been proposed in prior works based on various

silicon-photonic devices, such as Mach Zehnder Interferometer

(MZI) (e.g., [13], [14], [15]) and Microring Resonator (MRR)

(e.g., [9], [12], [16], [17]).

Among these optical VDPC-based CNN accelerators from

prior work, the MRR-enabled VDPC-based accelerators (e.g.,

[7]–[9], [12], [17], [18]) have shown disruptive performance

and energy efficiencies, due to the MRRs’ compact footprint,

low dynamic power consumption, and compatibility with

cascaded dense-wavelength-division-multiplexing (DWDM).

Among these MRR-enabled accelerators, some accelerators

utilize digital VDPCs (e.g., [18]), whereas some others employ

analog VDPCs (e.g., [9], [12], [17]). In general, a VDPC

(analog or digital) transforms convolution operations into

vector dot product (VDP) operations by decomposing the input

tensors into vectors (1D tensors). In an analog VDPC, such

VDP operations are also analog in nature, and they are per-

formed on the individual VDP elements (VDPEs), which are

the main MRR-enabled hardware components in the VDPCs.

Multiple VDPEs in an analog VDPC can perform multiple

analog VDP operations in parallel. The results of these analog

VDP operations are converted into the digital format using

analog-to-digital converters (ADCs). These results can be

summed together (if and when needed) using a partial-sum

(psum) reduction network, which can be employed outside of

the VDPCs as part of the post-processing components of the

CNN accelerator. The functioning of the analog VDPCs and

their constituent VDPEs in the ultra-high-speed, analog-optical

domain results in disruptive throughput for performing analog

VDP operations.

We observe that two factors govern the performance of

such analog optical VDPCs: (1) the achievable bit-precision

(B) and (2) the achievable scalability of the VDPCs, i.e., the

achievable count of the individual VDPEs per VDPC (M) and
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the individual VDPE size (the number of multiplications that

can be generated and summed up per VDPE) (N). In an analog

VDPC, the achievable B affects the inference accuracy of the

processed CNNs, whereas the achievable VDPC scalability

(i.e., N and M) directly defines the throughput of the VDPC for

processing CNNs. Prior works [19] and [20] studied various

factors such as optical power budget in waveguides, inter-

channel spacing of wavelengths, crosstalk at cascaded MRRs,

resolution of ADCs, and photodetector responsivity, to deter-

mine the bounds of the achievable B and scalability in analog

optical VDPCs. Furthermore, prior work [21] characterized

the very strong trade-off between the maximum achievable

VDPC size N and B in analog optical VDPCs. From [21],

the analog optical VDPCs from prior works cannot support N
greater than 44 for B>=4-bit [21]. Achieving such low N can

seriously hurt the performance for processing modern CNNs.

This is because modern CNNs employ tensors with as high

as 4608 points (parameters) per tensor [22]. Processing such

large tensors on a VDPC with N≤44 results in a large number

of psums, resulting in a very high latency overhead in the psum
reduction network.

To avoid this undesired outcome, we advocate for such an

architecture of MRRs-based CNN accelerator that achieves

significantly larger VDPC size N along with weakened

interdependence between N and B. To that end, for the

first time, we leveraged the inherent precision flexibility of

stochastic computing to come up with a novel, MMRs-

enabled Stochastic Computing based Optical Neural Network

Accelerator (SCONNA). SCONNA employs our invented

MRR-based Optical Stochastic Multipliers (OSMs) to realize

manifold improvements in the throughput and energy effi-

ciency of processing integer-quantized CNNs.

Our key contributions in this paper are summarized below:

• To enable stochastic computing in the optical domain, we

present (i) a novel design of optical stochastic multiplier

(OSM), and (ii) a novel photo-charge accumulator (PCA)

circuit (Section IV);

• We present detailed modeling and characterization of

our invented OSM and PCA using foundry-validated,

commercial-grade, photonic-electronic design automation

tools (Section IV);

• We employ our designed OSMs and PCAs to forge a

highly scalable CNN accelerator named SCONNA, which

employs OSM and PCA-based scalable VDPCs (Section

IV);

• We perform a comprehensive scalability analysis for our

SCONNA VDPCs, to determine their achievable max-

imum size N, operating speed, and error susceptibility

(Section V);

• We implement and evaluate SCONNA at the system-

level using our in-house simulator (https://github.com/

uky-UCAT/SC ONN SIM.git), and compare its per-

formance and inference accuracy for processing 8-bit

integer-quantized CNNs with two widely-known MRR-

based analog CNN accelerators from prior works (Section

VI).

II. PRELIMINARIES

A. Convolutional Neural Networks (CNNs)

CNNs are specific types of DNNs that have shown re-

markable accuracy for image classification. In general, a

CNN consists of multiple convolutional layers, pooling layers,

and fully connected layers. As shown in Fig. 1, a typical

convolutional layer consists of one input tensor I(H,W,D)

and L kernel tensors F(K,K,D). All of the L kernel tensors

convolve over the input tensor using stride (ψ) to produce the

output tensor O(HOut,WOut,L).

The computation required to produce each point O(i, j, l)
in the output tensor O(Hout,Wout,L) can be given as Eq. 1.

O(i, j, l) =
D∑

d=1

K∑
q=1

K∑
r=1

F (r, q, d)I(i×ψ+r, j×ψ+q, d) (1)

Here, d=[1,D], q=[1,K], r=[1,K], i=[1,HOut], l=[1,L], and

j=[1,WOut] are various indices and their value ranges for

the kernel and output tensors. O(i,j,l) in Eq. 1 is the sum

of a total of K×K×D products (products of the individual

points of tensors F and I(K,K,D); I(K,K,D) is the gray-

highlighted part of I(H,W,D) in Fig. 1). Thus, producing

O(i,j,l) requires K×K×D point-wise multiplications (to pro-

duce K×K×D point-wise products) and one sum-of-products

operation. The combination of these point-wise multiplications

and the corresponding sum-of-products operation is mathemat-

ically equivalent to a Vector Dot Product (VDP) operation.

A VDP operation typically occurs between two vectors. This

implies that I and F in Eq. 1 are vectors, which are basically

flattened (in 1D) versions of tensors I(K,K,D) and F(K,K,D)

respectively. Note that vectors I and K have a total of S =

K × K × D points each. Henceforth, We refer to I and K as

input vector and kernel vector, respectively.

Fig. 1: Illustration of a convolution operation.

B. Processing Convolutions on VDPCs

Producing the output tensor O(HOut,WOut,L) (Fig. 1) re-

quires that the VDP operation shown in Eq. 1 is implemented

multiple times, i.e., a total of HOut × WOut × L times. In

Eq. 1, the output O(i,j,l) is the result of the VDP operation

between the corresponding input vector and kernel vector, each

of size S = K × K × D (Section II.A). Typically, for a CNN,

the values K and D vary dramatically across different kernel

tensors of the CNN. Therefore, S = K × K × D also varies

dramatically. The value S for CNNs can be as large as 4608

(e.g., ResNet50 [21]). Because of such large S, to accelerate

VDP operations on a VDPC, it is intuitive to have the size N of
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the constituent VDPEs of the VDPC (defined as the number of

point-wise multiplications a VDPE can concurrently perform)

to be as large as S. However, it is hardly possible to have

N to be equal to S in optical MRR-based analog VDPCs.

Therefore, input vector and kernel vector are generally divided

into multiple decomposed input vectors (DIVs) (this and other

abbreviations are defined in Table III) and decomposed kernel

vectors (DKVs) first, and then these DIVs and DKVs are

processed on the VDPEs (Section III.A). Having to decompose

the input vector and kernel vector into multiple DIVs and

DKVs raises several challenges as discussed in Section III.A.

C. Optical Analog VDPC-Based CNN Accelerators

Most of the optical MRR-enabled analog, incoherent CNN

accelerators from prior work employ multiple optical analog

VDPCs that work in parallel. A brief review of prior works on

optical accelerators is provided in Section VII. Typically, an

analog VDPC implements the decomposed VDP operations of

a convolution operation using DKVs and DIVs (Section II.A).

In general, a VDPC consists of five blocks (Fig. 2(a)): (i) a

laser block that consists of N laser diodes (LDs) to generate

N optical wavelength channels; (ii) an aggregation block that

aggregates the generated optical wavelength channels into a

single photonic waveguide through dense wavelength division

multiplexing (DWDM) (using an N×1 multiplexer) and then

splits the optical power of these N wavelength channels

equally into M separate waveguides (using a 1×M splitter);

(iii) a modulation block, also referred to as DIV block,

that employs M arrays of MRRs (one array per waveguide,

with each array having N MRRs; each array referred to as

DIV element) to imprint M DIVs of N points each onto

the N×M wavelength channels by modulating the analog

power amplitudes of the wavelength channels; (iv) another

modulation block, referred to as DKV block, that employs

another M arrays of MRRs (one array per waveguide, with

each array having N MRRs; each array referred to as DKV
element) to further modulate the N×M wavelength channels

with DKVs, so that the analog power amplitudes of the

individual wavelength channels then represent the point-wise

products of the utilized DKVs and DIVs; and (v) a summation

block (SB) that employs a total of M summation elements

(SEs), with each SE having two balanced photodiodes (PDs)

upon which the point-wise-product-modulated N wavelength

channels are incident to produce the output current that is

proportional to the result of the VDP operation between the

corresponding DKV and DIV. The laser block and SB are

typically positioned at the two ends of the VDPC, with the

aggregation, modulation (DIV), and modulation (DKV) blocks

placed in between them.

Based on the order in which these intermediate blocks

(aggregation, modulation (DIV), modulation (DKV) blocks)

are positioned between the laser block and SB, we classify the

MRR-based VDPC organizations from prior work as MAM

(Modulation, Aggregation, Modulation) (e.g., [7], [19]) or

AMM (Aggregation, Modulation, Modulation) (e.g., [11], [8],

[9]). Fig. 2 illustrates MAM and AMM VDPC organizations.

From Fig. 2(a), the AMM VDPC organization positions the

aggregation block first after the laser block, and then the DIV
modulation block followed by the DKV modulation block.

In contrast, the MAM VDPC in Fig. 2(b) positions the DIV
modulation block first after the laser block, and then positions

the aggregation block followed by the DKV modulation block.

Note that the MAM DIV block is structurally different from

the AMM DIV block. The MAM DIV block employs only one

MRR per waveguide, and as a result, it can imprint only one

DIV with N points onto the N wavelength channels. This one

DIV is shared among all DKVs in the MAM VDPC, whereas

each DKV can have a different DIV corresponding to it in

the AMM VDPC. Most MAM and AMM VDPCs from prior

works have M=N.

Fig. 2: Illustration of common analog optical VDPC organizations:
(a) AMM VDPC, (b) MAM VDPC. (c) Summation Element.

In both the AMM and MAM VDPC organizations, we refer

to the combination of a DKV element and the corresponding

SE as VDP element (VDPE). However, the size and point-wise

product precision of MRR-based VDPEs have certain limi-

tations (discussed in Section III). These limitations demand

exploration of new computing options to improve MRR-based

VDPCs, and stochastic computing is an attractive option.

D. Stochastic Computing

Stochastic Computing (SC) is an unconventional form of

computing that represents and processes data in the form

of probabilistic values called stochastic numbers (SNs) [23]–

[25]. In SC’s unipolar format, an SN W is a bit-stream of

N bits that represents a real-valued variable υ ∈ [0, 1] by

encoding υ through the ratio N1/N , where N1 is the number

of 1’s in W. SC offers several advantages over conventional

binary computing such as high error tolerance, low power

consumption, small circuit area, and low-cost arithmetic op-

erations consisting of standard digital logic components [25].

For example, multiplication can be performed by a stochastic

circuit consisting of a single AND gate.
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Fig. 3: Multiplication between unipolar stochastic numbers I and W.

Fig. 3 illustrates a multiplication between two unipolar

stochastic bit-streams I and W using an AND gate. The

probabilities of seeing ’1’s in the bit-streams I and W are

(4/8) and (6/8), respectively. The AND gate performs bit-

wise logical AND operation on the bit-streams to produce

the output bit-stream A. In A, the probability of seeing ’1’s is

(3/8), which is equal to (4/8)×(6/8), i.e., the multiplication (or

product) of the input probabilities. Note that for the AND gate

to produce an error-free multiplication output, the marginal

probability of one bit-stream (i.e., I or W) should be equal

to its conditional probability given the other bit-stream (i.e.,

I given W or W given I) [26]. Also note that, because of its

advantages, SC has been adopted in stochastic deep CNNs

[27]–[29], GEMM computation [26], and image processing

[30]. We use stochastic computing in this paper to relax the

inherently strong scalability-precision trade-off in the optical

VDPCs. This trade-off is explained in the next section.

III. MOTIVATION

A. Scalability Limitations of MRR-Based Analog VDPCs

Prior works [31], [21], and [19] have analysed the scalability

(i.e., achievable value of VDPE size N under the constraints

of bit precision and data rate) of AMM and MAM VDPCs.

Table I reproduces the supported values of VDPE size N
(considering M=N) for AMM and MAM VDPCs at various

data rates (DRs) and bit precision from [21]. From Table 1, the

maximum N=44 is obtained for MAM VDPC across all tested

DR and B values. For MAM VDPC for 1 GS/s, maximum

N reduces from 44 to 12 as we increase the input/weight

precision from 4-bit to 6-bit. The reason for such strong trade-

off between N and achievable input/weight precision (referred

to as B, henceforth) in MAM and AMM VDPCs is that both

B and N strongly depend on the number of distinguishable

analog optical power levels [21] [31], which is proportional to

N × 2B . Hence, for a fixed number of distinguishable analog

optical power levels, which is defined by the analog optical

power resolution of the utilized summation elements (SEs)

(see SEs in Fig. 2) the supported N drastically decreases with

an increase in B. As a result, N decreases all the way to 1

when B increases to 8-bit [21].

Due to such strong trade-off between N and B, the MAM

and AMM type of analog VDPCs face two consequences.

First, they produce high number of partial sums and incur

significantly high latency for partial sum reduction. For exam-

ple, a VDPE with N=44 for B=4-bit can only produce a VDP

operation between two 44-point vectors. Therefore, producing

a VDP operation between an input vector and kernel vector

with S=4608 (e.g., ResNet50 [22] [21]) requires that the input

vector is first decomposed into a total of C=Ceil(S/N)=105

DIVs of N=44 points each. Similarly, the kernel vector also

needs to be decomposed into a total of C=Ceil(S/N)=105

DKVs of N=44 points each. Then, a total of 105 VDPEs

TABLE I: VDPE size N for input/weight precision={4,6}-bit at data
rates (DRs)={1,3,5,10}GS/s, for AMM and MAM VDPCs.

VDPC Precision Datarate(DR)
1 GS/s 3 GS/s 5 GS/s 10 GS/s

AMM 4-bit 31 20 16 11
6-bit 6 3 2 1

MAM 4-bit 44 29 22 16
6-bit 12 7 5 3

TABLE II: Total number of kernels (TL) of different DKV sizes (S)
for various CNNs. The TL values were extracted for trained CNN
models from Keras Applications [32].

Model TL S Model TL S

ResNet50 1 S≤44 GoogleNet 13 S≤44
26562 S>44 7554 S>44

VGG16 69 S≤44 DenseNet 1 S≤44
4168 S>44 10242 S>44

can be employed to perform 105 VDP operations between

105 pairs of DKVs and DIVs, to consequently produce a total

of 105 intermediate VDP results (i.e., partial sums (psums)).

Although these 105 VDP operations can be parallelized over

105 VDPEs, producing the final VDP result of S=4608 would

require the accumulation of the 105 psums. Doing so can incur

very high latency and energy consumption, which should be

avoided using a more efficient VDPC design.

As the second consequence, the throughput of the MAM

and AMM VDPCs decreases at higher bit precision (higher

value of B). This is because to avoid a drastic decrease in

N as B increases beyond 4-bit, the AMM and MAM type

of analog VDPCs typically operate at B=4-bit [21]. However,

using at least 8-bit precision (B=8-bit) for the integer-quantized

CNN models is recommended to achieve competitive infer-

ence accuracy, while also reducing the computational effort,

memory requirements, and energy consumption [6]. To meet

this requirement, analog VDPCs from [7] (an MAM VDPC)

and [9] (an AMM VDPC) employ bit-slicing of input/weight

parameters. They slice each 8-bit integer input/weigh param-

eter into two slices of 4-bit each. Then, they employ two

VDPCs in parallel; each VDPC processes one 4-bit slice of

the input/weight parameters. The corresponding 4-bit VDP

results from these two 4-bit VDPCs are then combined using

shifters and adders to produce the final 8-bit results. Thus,

performing VDP operations using bit slices reduces the total

number of VDP results that can be produced by a fixed number

of VDPCs, because multiple VDPCs are needed to produce

a single set of VDP results. This can severely degrade the

throughput of such VDPCs. Such undesired outcome should

be avoided by designing a more efficient VDPC.

B. Need for Stochastic Computing

Table II reports the counts of kernel tensors according to

their sizes S (S<=44 and S>44) for four modern CNN models.

From Table II, more than 98% of the kernel tensors across all

four CNNs have S>44, and thus, they require VDPEs with

size N>44 to process their corresponding VDP operations.

But, from Table I, the maximum achievable N for analog

VDPCs at 4-bit precision (B=4-bit) is limited to 44; therefore,

processing the VDP operations corresponding to more than

98% of kernel tensors that have S>44 would lead to high
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psum reduction latency (see Section III-A). However, reducing

this psum reduction latency in analog VDPCs is challenging,

as they have a strong trade-off between N and B, and this is

because the required number of analog optical power levels

(i.e., 2B) to support a specific B consumes a large part of the

available dynamic range of optical power in analog VDPCs. To

this end, the remaining dynamic range of optical power within

the total allowable optical power budget restricts the supported

N in analog VDPCs. This limitation can be addressed by

performing VDP operations in the digital domain [18]. There

is no need to support any analog optical power levels in the

digital domain; therefore, most of the available dynamic range

of optical power in a digital VDPC can be used to support a

higher N. But, the MRR-based binary digital VDPCs (e.g.,

[18], [33]) suffer from very high hardware complexity, and

their multiply-accumulate and bit-shifting circuits consume

huge area. These drawbacks motivate the need to examine

new options for realizing optical digital VDPCs.

One such option is stochastic computing. In stochastic

computing, multiplications can be replaced with simple bitwise

AND operations [25]. This can be leveraged to perform point-

wise multiplications between DKVs and DIVs (Section II-C)

with less hardware complexity than binary digital VDPCs. In

addition, since stochastic computing is also implemented in

the digital domain (non-binary), a stochastic computing based

optical VDPC can support a large N due to the large available

dynamic range of optical power, just as discussed above for a

binary digital VDPC. Moreover, a stochastic computing based

optical VDPC can attain different precision levels by merely

changing the number of bits in the stochastic bit-streams,

without requiring different analog optical power levels. There-

fore, to utilize these advantages of stochastic computing, prior

works [34] and [35] proposed stochastic computing based

photonic acceleration. [34] reports acceleration of Markov

Random Field Inference and [35] employs photonic crystals

and MZIs to build an edge detection filter. However, none of

the prior works have employed stochastic computing based

photonic acceleration for neural network inference. To fill this

gap, we invent an MRR-based optical stochastic multiplier

(OSM) and employ multiple OSMs to forge a novel Stochastic

Computing Optical Neural Network Accelerator (SCONNA).

The following section discusses our SCONNA architecture.

IV. OUR PROPOSED SCONNA ARCHITECTURE

A. Overview of SCONNA VDPC

Fig. 4(a) illustrates the VDPC organization of our SCONNA

architecture. Like the VDPCs of analog optical accelerators, a

SCONNA VDPC also implements multiple VDP operations in

parallel. For that, an array of total N single-wavelength laser

diodes (LDs) are used, with each LD sourcing optical power

of P in
λi

amount at a distinct wavelength λi. The total power

from all N LDs (λ1 to λN ) multiplexed into a single photonic

waveguide through wavelength division multiplexing (WDM).

These multiplexed wavelengths split into M input waveguide

arms (IWAs). Every IWA receives N-wavelength optical power

and guides it to a VDPE. There are a total of M IWAs and M
VDPEs in the SCONNA VDPC (Fig. 4(a)).

Each VDPE consists of three components: (i) a cascade of

N Optical Stochastic Multipliers (OSMs); (ii) a bank of filter

MRRs; (iii) a Photo-Charge Accumulator (PCA) pair. Each

OSM performs stochastic multiplication between an input bit-

stream I (corresponding to a point in an N-point DIV) and

weight bit-stream W (corresponding to a point in an N-point

DKV). Each OSM receives its bit-streams I and W from its

corresponding peripherals at a supported bitrate (BR). Bit-

stream W provides a weight value along with a sign bit. Bit-

stream I provides the RELU-activated output value from the

previous CNN layer, without a sign bit as RELU has a non-

negative output. The detailed design of OSMs and their periph-

erals is explained in Section IV-B. Each OSM performs a bit-

wise logical AND operation between the I and W bit-streams

to produce a resultant optical bit-stream that represents the

stochastic multiplication between the I and W bit-streams. The

N optical bit-streams from the cascade of N OSMs, with each

bit-stream carrying a stochastic multiplication result, reach the

bank of filter MRRs. In this bank, each filter MRR operates

on a distinct optical bit-stream λi. Each filter MRR receives

the sign bit from the peripheral W of its corresponding OSM

(Fig. 4(a)). The sign bit operates the filter to steer the incoming

optical bit-stream λi to the output waveguide arm OWA (if the

sign bit is ’0’) or OWA’ (if the sign bit is ’1’). Thus, the OWA

and OWA’ of a VDPE guide the optical bit-streams, carrying

the stochastic multiplication results, to PCAs. A PCA is a

circuit that collects all the optical bit-streams (i.e., stochastic

multiplication results) from its corresponding OWA (or OWA’)

and generates the accumulation result in the binary format

(details about PCA in Section IV-C). In a VDPE, the OWA-

coupled PCA combines with the corresponding OWA’-coupled

PCA to generate a signed accumulation result.

B. Optical Stochastic Multiplier

Our Optical Stochastic Multiplier (OSM) consists of pe-

ripherals and an Optical ’AND’ Gate (OAG) (Fig. 5). The

peripherals convert a binary input value Ib and binary weight

value Wb into unipolar stochastic bit-streams I and W, and

OAG performs multiplication-equivalent bitwise AND opera-

tion between the stochastic bit-streams I and W.

From Fig. 5, the peripherals of our OSM use a lookup table

and serializers to generate a combination of unipolar stochastic

bit-streams I and W. From [26], two unipolar stochastic bit-

streams, for their eventual error-free multiplication using an

AND gate, should be generated in combination with each

other, so that they are uncorrelated, i.e., the marginal probabil-

ity of one bit-stream (i.e., I or W) is equal to its conditional

probability given the other bit-stream (i.e., I given W or W
given I). For our OSM, we propose to generate all possible

combinations of uncorrelated bit-streams I and W a priori

(offline) using the unipolar circuit from [26], and then store

these bit-streams in the bit-vector (bit-parallel) format in the

lookup table (Fig. 5). As a result, each entry in the lookup table

stores a combination of uncorrelated bit-vectors Iv and Wv .

To index into this lookup table, our OSM creates a unique

identifier for each combination of binary values Ib and Wb

(that are accessed from a buffer (a scratchpad memory); Fig.
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Fig. 4: Schematics of (a) Our SCONNA VDPC (b) Photo-Charge Accumulator (PCA) Circuit.

5) by performing an XOR-based hash function Ib⊕Wb. Thus,

our OSM uses a Ib⊕Wb value to fetch the desired combination

of Iv and Wv from the lookup table. Then, it pushes these Iv
and Wv through dedicated high-speed serializers, to generate

bit-streams I and W. Lookup table size: If precision B=8-bit

for binary Ib and Wb, there are 2B entries in the lookup table,

with each entry storing two 2B-bits long bit-vectors.

The stochastic bit-streams I and W, generated by the pe-

ripherals of our OSM, are then fed to the OAG via high-

speed drivers for their stochastic multiplication (Fig. 5). The

design of our OAG is illustrated in Fig. 6(a). Our OAG is an

add-drop microring resonator (MRR), which has two operand

terminals (realized as embedded PN-junctions) that can take

two stochastic bit-streams I and W (Fig. 6(a)) as inputs at

a predefined bitrate (BR). Fig. 6(b) shows the passbands

of the MRR for different operand inputs and temperature

conditions. The MRR’s temperature can be increased using

the integrated microheater (Fig. 6(a)), to consequently tune

its operand-independent resonance from its fabrication-defined

initial position γ to its programmed position η, relative to the

input optical wavelength position λin (Fig. 6(b)). For each

bit combination at the operand terminals ((I,W) = (0,1), (1,0),

or (1,1)), the MRR’s resonance passband electro-refractively

moves to an operand-driven position (red and blue passbands

in Fig. 6(b)). Based on the MRR resonance passband’s pro-

grammed position η relative to λin, the drop-port transmission

(T(λin)) of the MRR provides bit-wise logical AND operation

between the inputs I and W.

Fig. 5: Schematic of our Optical Stochastic Multiplier (OSM).

To validate our OAG, we performed transient analysis with

two pseudo-random numbers as shown in Fig. 6(c). For

that, we modelled and simulated our OAG using the
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Fig. 6: (a) Schematic of our Optical AND Gate (OAG), (b) operation
of OAG, (c) results of OAG’s transient analysis.

foundry-validated tools from the Ansys/Lumerical’s DEVICE,

CHARGE, and INTERCONNECT suites [36]. Fig. 6(c) shows

two input bit-streams (I, W) applied to the two PN junctions

of our OAG at BR=10 Gbps. By looking at the output optical

bit-stream T(λin) in Fig. 6 (c), we can say T(λin) = I AND

W, which validates the functionality of our OAG as a logical

AND gate. Thus, since the input bit-streams I and W are in

the unipolar stochastic format, the output optical bit-stream

at the drop port of the OAG provides the unipolar stochastic

multiplication between I and W.

C. Photo Charge Accumulator (PCA)

From Section IV-A, the stochastic multiplication bit-streams

generated by OSMs are guided to a PCA, where they are

accumulated to generate a binary output value equivalent to

the VDP result. Our PCA is inspired from the time integrating

receiver (TIR) design from [37] and the photodetector-based

optical-pulse accumulator design from [38]. A PCA circuit,

shown in Fig 4(c), has two stages: (i) a stochastic-to-analog

conversion stage; (ii) an analog-to-binary conversion stage.

The stochastic-to-analog stage employs a photodetector and

two TIR circuits (one TIR circuit remains redundant, enabled

by the demux and mux; Fig 4(b)). The photodetector generates

a current pulse for each optical logic ‘1’ incident upon it. This

current pulse accumulates a certain amount of charge on the

capacitor of the active TIR circuit (e.g., the circuit with C1

capacitor); as a result, the capacitor accrues an analog voltage

level. Hence, when one or more output optical bit-streams

are incident upon the photodetector, the total accumulated

charge (and thus, the accrued analog voltage level) on the

active capacitor (e.g., C1) is proportional to the total number

of ‘1’s in the incident bit-streams. The number of 1’s that

can be accumulated in such manner might be limited, as the

charge across the capacitor of TIR circuit (Fig. 4(b)) might

saturate (this is further analysed in section V-C). Once the

TIR output saturates, a discharge of the active capacitor (e.g.,

C1) is needed to prepare the circuit for the next accumulation

phase. While capacitor C1 is discharging, capacitor C2 of the

redundant TIR circuit mitigates the discharge latency by allow-

ing a continuation of a concurrent accumulation phase. The

output analog voltage computed by the stochastic-to-analog

conversion stage represents the unipolar unscaled addition [26]

of the stochastic bit-streams. To convert this analog voltage

into a binary value, the analog-to-binary stage of the PCA

circuit employs an analog-to-digital converter (ADC). This

binary value is the VDP result.

V. SCALABILITY ANALYSIS OF SCONNA ARCHITECTURE

To understand the scalability of our SCONNA architecture,

in this section, we analyze the achievable operating speed of

the OSMs, achievable size N of the SCONNA VDPC, and the

accumulation capacity of the PCA circuits.

A. Operating Speed and Latency Overhead of OSM

The peripherals of an OSM can incur some latency for

accessing the scratchpad buffer and eDRAM-based lookup

table. We consider 2ns latency each for the scratchpad

buffer [39] and eDRAM-based lookup table [40]. Beyond

this latency, the speed of an OSM depends on the achiev-

able operating speed (bit-rate (BR)) of the constituent OAG.

Analysis of OAG’s BR: For the output optical bit-stream

T(λin) in Fig. 6(c), the optical modulation amplitude (OMA)

is the output power difference between the highest logic ’0’

power level and the lowest logic ’1’ power level. OMA should

be at least equal to or greater than the sensitivity of the

photodetector in the PCA circuit, to ensure that the photode-

tector in the PCA circuit can produce a distinguishably higher-

amplitude current pulse for an optical logic ’1’ bit compared

to an optical logic ’0’ bit. Keeping the OMA to be greater

than or equal to the given photodetector sensitivity (PPD−opt=-

28dBm; Section V-B) depends on the OAG’s BR and FWHM

(full passband width at half maximum). Therefore, to analyze

this dependency, we simulated BR and FWHM duplets for

which OMA = -28 dBm, as shown in Fig. 7(a). As evident,

supported BR increases as FWHM increases. However, at

(FWHM≈0.8nm), BR saturates at 40 Gbps. Therefore, we aim

to operate our OAG at BR<=40Gbps for FWHM<=0.8nm.

B. Achievable Size of SCONNA VDPC

We consider optimistic free-spectral range (FSR) of 50 nm

[19] for the constituent MRR-based OAGs of our SCONNA

VDPC. In addition, we consider the inter-wavelength gap

of 0.25 nm. This allows the N for our SCONNA VDPC

to be 200 (=FSR/0.25nm), theoretically. However, even if

we consider FSR=50nm to be practically achievable for our

OAGs, achieving N=200 for our SCONNA VDPC might not

be possible in practice. This is because when we aim to operate

our OAGs at a high BR of <= 40 Gbps, for FWHM <= 0.8

nm, the total power penalty for our SCONNA VDPC might

increase significantly owing to the increased impacts of optical

crosstalk effects at OSMs, signal truncation at MRR filters, and

BR-dependent increase in the photodetector sensitivity [41]–

[43]. This increase in power penalty can reduce N to be less

than 200. Therefore, to determine the achievable N for our

SCONNA VDPC at B=8-bit precision, we adopt the scalability
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Fig. 7: (a) Bitrate versus FWHM for our OSM/OAG, (b) Our PCA’s
analog output voltage versus α

.

analysis equations (Eq. 2, Eq. 3, and Eq. 4) from [19], [21].

Table III reports the definitions of the parameters and their

values used in these equations. Since our SCONNA VDPC

processes stochastic bit-streams, which are digital in format,

it requires the bit resolution of BRes = 1-bit in the equations.

Moreover, we conservatively choose to operate OSMs/OAGs

at BR=30Gbps. We consider M=N. We first solve Eq. 2 and

Eq. 3 for datarate (DR)=BR∗2B , to find PPD−opt to be -28

dBm. Then, we solve Eq. 4 for N, to find N=M=176, which is

a very large N compared to analog VDPCs that have N<=44.

Such large N significantly improves the overall throughput and

energy efficiency (Section VI).

BRes =
1

6.02

[
20log10(

R× PPD−opt

β
√

DR√
2

− 1.76

]
(2)

β =

√
2q(RPPD−opt + Id) +

4kT

RL
+R2P 2

PD−optRIN (3)

PLaser =
10

ηWG(dB)[N(dOSM )]

10 M

ηSMF ηECILi/p−OSM
× PPD−opt

ηWPEILMRR

× 1

(OBLOSM )N−1(ELsplitter)log2M

× 1

(OBLMRR)N−1(ILpenalty)

(4)

C. Accumulation Capacity and Error Susceptibility of PCA

From Section V-B, our SCONNA VDPC has N=176. For

precision B=8, each optical bit-stream in a SCONNA VDPC

has 2B=256 bits. Therefore, each PCA in a SCONNA VDPC

needs to be able to accumulate a total N × 2B=176×256

optical ’1’ bits, at the least. We modeled the photodetector

of our PCA circuit using the INTERCONNECT tool from

Ansys/Lumerical [36] for RPD=1.2 A/W and PPD−opt=-28

dBm, and extracted the current pulse values corresponding

optical ’1’s and ’0’s that are consumed by the photodetector.

We then imported these values in our MultiSim [44] based

model of the TIR circuit of the PCA, to find out that our PCA

should have R=50Ω, C=250pF, and voltage amplifier gain=80.

For these parameters, we simulated to the analog output

voltage at the PCA using MultiSim [44] for different valus of

α=(actual # of ’1’s in incident bit-streams/176×256)×100%.

The results are shown in Fig. 7(b). As evident, the analog

output voltage increases linearly with α without saturating at

α=100%. This outcome shows that our PCA can efficiently

support the accumulation of N=176 bit-streams. Note that

the analog output voltage from the amplifier of the PCA

circuit does not incur any errors in computation. But, the ADC

introduces errors in the generated binary result (we evaluate

mean absolute percentage error to be 1.3% for the ADC),

and we later evaluate the impact of these errors on the CNN

inference accuracy (Section VI).

VI. SYSTEM-LEVEL IMPLEMENTATION AND EVALUATION

A. System-Level Implementation of SCONNA

Fig. 8 illustrates the system-level implementation of our

SCONNA accelerator. It consists of global memory for storing

CNN parameters, and a preprocessing and mapping unit for

decomposing the tensors into DIVs/DKVs and mapping them

onto VDPEs. It has a mesh of tiles connected to routers, and

this mesh network facilitates parameter communication among

tiles. Each tile consists of 4 SCONNA VDPCs interconnected

(via H-tree network) with output buffer, activation, and pooling

units. In addition, each tile also contains a psum reduction

network.

Fig. 8: System-level overview of our SCONNA CNN accelerator.

B. Simulation Setup

For evaluation, we model our SCONNA accelerator from

Fig. 8 using our developed custom, transaction-level, event-

driven python-based simulator (https://github.com/uky-UCAT/

SC ONN SIM.git). Using the simulator, we simulated the

inference four CNN models (with batch size of 1): GoogleNet

[50], ResNet50 [22], MobileNet V2 [51], and ShuffleNet V2

[52]. We evaluate the metrics such as Frames per second

(FPS), FPS/W (energy efficiency) and FPS/W/mm2 (area

efficiency). We also evaluate the impact of PCA error on

Top-1 and Top-5 inference accuracy of the CNN models for

ImageNet validation dataset [53].

We compared our accelerator with the analog optical accel-

erators AMM (DEAPCNN [9]) and MAM (HOLYLIGHT [7])

at 8-bits integer quantization for CNN inference. We omitted

comparison with CMOS-based digital CNN accelerators as
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TABLE III: List of abbreviations and their full forms used in this paper. Definition and values of various parameters (obtained from [19])
used in Eq. 2, Eq. 3, and Eq. 4 for the scalability analysis of our SCONNA VDPCs.

Abbreviations Full form Parameter Definition Value
VDPC Vector Dot Processing Core PLaser Laser Power Intensity 10 dBm
PCA Photo Charge Accumulator RPD PD Responsivity 1.2 A/W
OAG Optical AND Gate RL Load Resistance 50 Ω
SE Summation Element Id Dark Current 35 nA
SC Stochastic Computing T Absolute Temperature 300 K

DKV Decomposed Kernel Vector BR Bitrate 30 Gbps
DIV Decomposed Input Vector RIN Relative Intensity Noise -140 dB/Hz
VDP Vector Dot Product ηWPE Wall Plug Efficiency 0.1

S Size of DKV ILSMF (dB) Single Mode Fiber Insertion Loss 0
psum Partial Sum ILEC (dB) Fiber to Chip Coupling Insertion Loss 1.6
OSM Optical Stochastic Multiplier ILWG(dB/mm) Silicon Waveguide Insertion Loss 0.3
DR Data rate ELSplitter(dB) Splitter Insertion Loss 0.01

VDPE Vector Dot Product Element ILOSM (dB) Optical Stochastic Multiplier (OSM) Insertion Loss 4
N Size of VDPE OBLOSM (dB) Out of Band Loss Optical Stochastic Multiplier 0.01
M Number of VDPEs per VDPC Unit ILMRR(dB) Microring Resonator(MRR) Insertion Loss 0.01

OMA Optical Modulation Amplitude ILpenalty(dB) Network Penalty 7.3
B Binary Bit Precision dOSM Gap between two adjacent OSMs 20 μm

BRes Bit Resolution PPD−opt Output Photodetector Sensitivity -

TABLE IV: Peripherals Parameters for Accelerators [6].
Power (mW) Area (mm2) Latency

Reduction Network 0.05 3.00E-05 3.125ns
Activation Unit 0.52 6.00E-04 0.78ns

IO Interface 140.18 2.44E-02 0.78ns
Pooling Unit 0.4 2.40E-04 3.125ns

eDRAM 41.1 1.66E-01 1.56ns
Bus 7 9.00E-03 5 cycles

Router 42 0.151 2 cycles
AMM/MAM

DAC [45] 30 0.034 0.78ns
ADC [46] 29 0.103 0.78ns

SCONNA
ADC [47] 2.55 0.002 0.78ns

Serializer per OSM [48] 5 5.9 0.03ns
LUT per OSM [49] 0.06 0.09 2ns

PCA [44] 0.02 0.28 -

prior analog optical photonic CNN accelerators have outper-

formed them [9], [12]. We simulate analog optical accelerators

for 5 GS/s [31] and from Section III-A, at B=4-bit precision,

we set N=16 for AMM (DEAPCNN), and N=22 for MAM

(HOLYLIGHT). Prior works, AMM (DEAPCNN) and MAM

(HOLYLIGHT) employ weight stationary dataflow, therefore

our evaluation is based on weight stationary dataflow. For fair

comparison, we perform area proportionate analysis. In the

area proportionate analysis, we altered the VDPE count of

each analog optical accelerator, across all of the accelerator’s

VDPCs, to match with the area of the SCONNA accelerator

having 1024 VDPEs. The scaled VDPE count of MAM

(HOLYLIGHT) and AMM (DEAPCNN) are 3971 and 3172,

respectively.

Table IV gives the parameters used for evaluating the

overhead of the peripherals in our evaluated accelerators. We

consider each laser diode to emit input optical power of

10 mW (10 dBm) (Table III) [9], multiplexer and splitter

parameters are taken from [7].

C. Evaluation Results

Fig. 9(a) compares the FPS values (log scale) achieved by

each accelerator across various CNNs. SCONNA significantly

outperforms the analog optical accelerators MAM (HOLY-

LIGHT) and AMM (DEAPCNN) by 66.5× and 146.4×,

respectively, on gmean across the CNNs. These benefits are

mainly associated with the superior N and higher BR of

SCONNA compared to the analog optical accelerators. Be-

cause of the high N, SCONNA requires less number of psums
for DKVs with S>44 (refer Table II), while generating the

final VDP result. The reduced psums drastically reduces the

psum reduction latency. The higher operating BR=30Gbps

compensates for the lengthy stochastic bit-streams of 2B=256

bits used by SCONNA. The improvements for SCONNA

are more evident for large CNNs such as GoogleNet [50]

and ResNet50 [22] compared to smaller CNNs such as Mo-

bileNet V2 [51] and ShuffleNet V2 [52]. This is due to the

fact that MobileNet V2 [51] and ShuffleNet V2 [52] employ

depthwise separable convolutions which use DKVs with S<44

more frequently than large CNNs. Overall, SCONNA gives

exceedingly better FPS compared to the analog optical accel-

erators.

Fig. 9: (a) FPS (Log Scale) (b) FPS/W (c) FPS/W/mm2 for SCONNA
versus MAM and AMM accelerators for B=8-bits.

Fig. 9(b) gives the energy efficiency (FPS/W) values for

each accelerator across various CNNs. It is evident that

SCONNA attains substantially better energy efficiency than

the analog optical accelerators. Our SCONNA gains 90×
and 183× better FPS/W against analog MAM (HOLY-
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TABLE V: Top-1 and Top-5 inference accuracy comparison of
SCONNA versus MAM for 8-bit quantized CNNs {GoogleNet
(GNet), ResNet50 (RNet50), MobileNet V2 (MNet V2), Shuf-
fleNet V2 (SNet V2)} and ImageNet dataset [53].

SCONNA
ACCURACY
DROP (%)

GNet
[50]

RNet
[22]

MNet V2
[51]

SNet V2
[52] Gmean

TOP-1 0.1 0.4 1.5 0.5 0.4
TOP-5 0.1 0.3 0.7 0.4 0.3

LIGHT) and AMM (DEAPCNN), respectively, on gmean

across the CNNs. These energy efficiency benefits are due

to the improved throughput and flexible precision support of

SCONNA VDPCs. The analog MAM (HOLYLIGHT) and

AMM (DEAPCNN), due to their limited 4-bit precision, em-

ploy two VDPEs to attain an 8-bit precision using bit-slicing.

This decreases the throughput and also increases the energy

consumption compared to SCONNA VDPCs. In addition,

during area proportionate analysis, MAM (HOLYLIGHT) and

AMM (DEAPCNN) get scaled to large VDPE counts (3971

and 3172), leading to overall higher static power consumption

compared to SCONNA. Therefore, SCONNA achieves better

energy efficiency compared to all the other tested accelerators.

Fig. 9(c) shows the area efficiency values (FPS/W/mm2)

for each accelerator across various CNNs. The area efficiency

results look similar to energy efficiency as we match the

area of all the accelerators to SCONNA (for the area pro-

portionate analysis). SCONNA gains 91× and 184× better

FPS/W/mm2 against analog MAM (HOLYLIGHT) and AMM

(DEAPCNN), respectively, on gmean across the CNNs. Over-

all, SCONNA significantly improves the throughput, energy

efficiency and area efficiency compared to the tested analog

optical accelerators.

D. Inference Accuracy Results

As discussed in Section IV-C, the ADC in the PCA circuits

of our SCONNA VDPCs incurs the mean absolute percentage

error of 1.3% on the computed binary results. To evaluate

the impact of these errors on the CNN inference accuracy,

we simulated the inference of four CNNs on SCONNA and

analog optical accelerator MAM (HOLYLIGHT). We inte-

grated our custom simulator with ML-framework PyTorch

[54] and performed the inference using ImageNet validation

dataset [55] (50k images and 1k classes). Table V reports

the Top-1 and Top-5 inference accuracies obtained for our

SCONNA and MAM for four 8-bit integer-quantized CNNs.

As evident, SCONNA yields Top-1 and Top-5 accuracy drop of

only 0.4% and 0.3%, respectively, on gmean across the tested

CNNs. The large CNN models ResNet50 [22] and GoogelNet

[50] have more tolerance to the errors, and hence, they show

minimal to zero drop in accuracy for SCONNA. Furthermore,

SCONNA’s accuracy drop can be improved by performing

stochastic computing aware training of the CNN models on

SCONNA [56]. Our SCONNA accelerator’s significant gains

in the FPS, FPS/W, and FPS/W/mm2, overshadows the minor

drop in the CNN inference accuracy.

VII. RELATED WORK ON OPTICAL CNN ACCELERATORS

To accelerate CNN inferences with low latency and low

energy consumption, prior works proposed various accelera-

tors based on photonic integrated circuits (PICs) (e.g., [7],

[11]–[14]). These accelerators employ PIC-based Vector Dot

Product Cores (VDPCs) to perform multiple parallel VDP

operations. Some accelerators implement digital VDPCs (e.g.,

[18], [31]), whereas some others employ analog VDPCs (e.g.,

[7], [9], [12], [17]). Different VDPC implementations employ

MRRs (e.g., [7], [9], [12], [57], [58]) or MZIs (e.g., [13]–

[15]) or both (e.g., [18], [31]). The analog VDPCs can be

further classified as incoherent (e.g., [7], [9], [12]) or coherent

(e.g., [59]–[64]). To set and update the values of the individual

input and kernel tensors used for vector dot product operations,

the incoherent VDPCs utilize the analog optical signal power,

whereas the coherent VDPCs utilize the electrical field ampli-

tude and phase. The coherent VDPCs achieve low inference

latency, but they suffer from control complexity, high area

overhead, low scalability, low flexibility, high encoding noise,

and phase error accumulation issues [65]. In contrast, the

MRRs-enabled incoherent VDPCs based accelerators achieve

better scalability and lower footprint, because they use PICs

that are based on compact MRRs [9], unlike the coherent

VDPCs that use PICs based on bulky MZIs. Various state-of-

the-art PIC-based optical CNN accelerators are well discussed

in a survey paper [66]. Because of the inherent advantages of

MRR-enabled incoherent VDPCs, there is impetus to design

more energy-efficient and scalable CNN accelerators employ-

ing MRR-enabled incohorent VDPCs.

VIII. CONCLUSIONS

To mitigate the very strong scalability versus bit-precision

trade-off innately present in analog optical CNN accelerators,

we demonstrated a merger of stochastic computing and MRR-

based CNN accelerators for the first time in this paper. We

invented an MRR-based optical stochastic multiplier (OSM)

and employed multiple OSMs to forge a novel stochastic

computing based CNN accelerator called SCONNA. Our

evaluation results for four CNN models show that SCONNA

provides improvements of up to 66.5×, 90×, and 91× in

throughput, energy efficiency, and area efficiency, respectively,

compared to two analog optical accelerators AMM and MAM,

with Top-1 accuracy drop of only up to 0.4% for large CNNs

and up to 1.5% for small CNNs.
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