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data (see Fig. 1). For example, a pressure sensor has a diaphragm as

the sensing structure and uses a capacitor plate as the transducer

to convert the displacement of the diaphragm into an electrical

signal. The converted understandable data is ideally proportional

to physical input signals. Mathematically, if the sensed physical

input signal is 𝑆𝑖𝑛 and the corresponding converted data from the

transducer is 𝑆𝑐𝑜𝑛 , we can write 𝑆𝑐𝑜𝑛 as follows:

𝑆𝑐𝑜𝑛 = 𝑘 × 𝑓 {𝑆𝑖𝑛} (1)

where 𝑘 is a proportionality constant and 𝑓 {𝑆𝑖𝑛} is a function

of the 𝑆𝑖𝑛 . It is important to note that 𝑓 {𝑆𝑖𝑛} can be a function of

any type. For example, for a Hall sensor, 𝑓 {𝑆𝑖𝑛} is a linear function

of input magnetic fields and for a p-n junction temperature sensor,

𝑓 {𝑆𝑖𝑛} is an exponential function of input temperature 𝑇 (i.e., 𝑒𝑇 ).
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Figure 1: A basic overview of the sensor physics.

2.2 Sensor electronics

Though sensing structure and transducer are common in all sen-

sors, most sensors have other additional electronics to improve the

sensed signal quality (see Fig. 1). The converted understandable

data 𝑆𝑐𝑜𝑛 is typically an analog signal, which is given as an input to

a differential amplifier to remove the common mode noise. A single

or multiple stages of signal conditioning filters are applied after-

ward, which is followed by an analog-to-digital converter (ADC)

for the data digitization. Filters are typically LPF used to remove

high-frequency noise signals from the measurement. Typically, ana-

log sensors output the analog signals from the differential amplifier

or filters directly, while digital sensors contain the LPF and ADC.

2.3 Operating region and saturation region

As mentioned in Sections 2.1 and 2.2, the shape of the data 𝑆𝑐𝑜𝑛
from the transducer can be linear, exponential or any other types

and is given as an input to different filtration blocks (see Fig. 1). As

these filters are powered by a finite power supply, the maximum

value of 𝑆𝑐𝑜𝑛 the filters can handle is limited by the power supply.

In fact, the output 𝑆� from the filtration block will begin to �atten

when the 𝑆𝑐𝑜𝑛 is too large and the power supply limits are reached.

The region, where the output 𝑆� is not �attened, is known as the

operating region of the sensor (see Fig. 2). This region is typically

linear between the signal 𝑆𝑐𝑜𝑛 and 𝑆� . In contrast, the region, where

the output 𝑆� is �attened, is known as the saturation region of the

sensor. Please note that the exact value of the input 𝑆𝑐𝑜𝑛 cannot be

recovered while the filter output 𝑆� is in the saturation region.
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Figure 2: Operating and saturation region of a sensor.

2.4 Sensor physics from security perspective

Entry point for an attacker: Over the last three decades, trans-

ducers and sensing structures have been technically improved in

terms of stability, accuracy, and sensitivity; however, to the best

of our knowledge, designers still do not consider security as one

of the fundamental requirements while designing transducers and

sensing structures of sensors. As a result, it is noteworthy that all

the transducers and sensing structures are naive, and they cannot

differentiate between legitimate input signals and malicious fake

input signals. As a consequence, if an adversary injects malicious

fake input signals into the sensing structure, the injected fake input

signals are converted into understandable data by transducers and

then propagate up to the system controller. The system controller

blindly trusts signals coming from sensors. Therefore, this can be

an entry point for an attacker. An attacker can noninvasively inject

fake input signals to the transducers or sensing structures and can

fool the system controller, resulting in a catastrophic failure, system

shutdown, or disruption of the system’s normal behavior.

Systematization of the attack signal:We need to emphasize

again that the only reason that facilitates this attack is that the

sensor structure and the transducer cannot differentiate between

the legitimate input signals and the malicious fake input signals.

Therefore, this type of attack is denoted by the transduction attack

[13, 32]. Let’s denote malicious fake input signals by 𝑆
�
𝑖𝑛 . Therefore,

the output 𝑆𝑐𝑜𝑛 from the transducer in Eqn. 1 can be written as:

𝑆
�
𝑐𝑜𝑛 = 𝑘 × 𝑓 {𝑆𝑖𝑛 + 𝑆

�
𝑖𝑛} (2)

where 𝑆
�
𝑐𝑜𝑛 is the output from the transducer after the injection

of the malicious fake input signals 𝑆
�
𝑖𝑛 . The term 𝑆

�
𝑐𝑜𝑛 can propa-

gate from the transducer to the upper level as the existing sensor

electronics blindly believe what is coming from the transducer.

Scope of our work:We consider only those attacks that origi-

nate from the fake signal injection into the sensing structures and

transducers. Let us give an example to clarify the scope of our

work. A pressure sensor can measure room pressure. If an attacker

changes the room pressure by switching on/off the heating, ven-

tilation, and air conditioning (HVAC) unit of the room, the room

pressure changes. As a result, the pressure sensor measures a cor-

rupted room pressure. We are not considering this type of attack on

the pressure sensor. Instead, we are considering that type of attack,

where the attacker directly injects fake signals into the sensing

structure (i.e., diaphragm) and transducer of the pressure sensor.

3 SENSOR ATTACK MODEL

The basic components of the sensor attack model is explained below

and also shown in Fig. 3.

i. Attacker’s capability: The attacker may not get a long time

to modify the sensor like a lunch-time attack [14]. Instead, the

attacker may get a brief access near the sensor to inject the fake

input signal 𝑆
�
𝑖𝑛 from a close distance. The fake input signal 𝑆

�
𝑖𝑛 is a

physical signal coming from the physical domain in different forms,

such as acoustics, ultrasound, infrared, visible light, magnetic field,

and electric field, and impacting the cyber domain [11] of the sensor

and connected systems.

ii. Noninvasive and stealthy attack: The attacker is not al-

lowed to invasively access and modify any hardware and software
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Table 1: Summary of the notable published work on sensor attack. (In-band = fake and legitimate signal share same frequency

band; Out-band = fake and legitimate signal share different frequency band)

Sl. Paper Year Sensor type Sensor Injected signal Injected signal pattern Industry

1 [3] 2020 Magnetic Hall Magnetic field In-band, out-band Power grid

2 [21] 2013 Magnetic Hall Magnetic field In-band Automotive

3 [30] 2017 Inertial Accelerometer & Gyroscope Ultrasound Out-band resonant frequency AR/VR

4 [25] 2015 Inertial Gyroscope Sound wave Out-band resonant frequency Drone

5 [26] 2017 Inertial Accelerometer Ultrasound Out-band resonant frequency Smart device

6 [27] 2018 Inertial Accelerometer & Gyroscope Sound wave Out-band resonant frequency Smart device

7 [10] 2018 Inertial Shock sensor Sound wave Out-band Hard disk

8 [5] 2022 Pressure Pressure sensor Sound wave Out-band resonant frequency NPR

9 [28] 2021 Pressure Pressure sensor EMI Out-band In�ation pump

10 [17] 2016 Optical Optical sensor Infrared Out-band Infusion pump

11 [12] 2016 Optical Camera & Lidar Light In-band UAV

12 [19] 2017 Optical Lidar Light In-band Automotive

13 [35] 2017 Acoustic Microphone Ultrasound Out-band Smart device

14 [33] 2016 Acoustic Ultrasound Ultrasound In-band Automotive

15 [16] 2013 Analog Defibrillator EMI In-band Medical device

of the sensor using physical tempering. This type of physical in-

vasive attack is out of the scope of our study. Instead, our attack

considers a scenario where the attacker injects a fake input signal to

noninvasively perturb the sensor’s transducer in a stealthy manner.
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f
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Target Sensor

+
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Figure 3: Basic components of the sensor attack model.

iii. Attack’s outcome: As mentioned in Section 2.3, a sensor

has a linear operating region and a �attened saturation region. The

attacker can inject a fake input signal 𝑆
�
𝑖𝑛 to spoof the sensor output

in its linear region or drive the sensor output to its saturation region.

In the linear region, the attacker can force the sensor to work at a

particular operating point and can cause an adversarial control. For

example, an attacker can use magnetic fields to spoof a Hall sensor

in its linear region located in a solar inverter and can intentionally

change the power of the solar inverter [2–4].

In the saturation region, the input-output linear relationship

of sensors gets �attened, and sensors go completely blind to any

variation of the input. This may cause catastrophic failure in the

normal operation of the connected systems resulting in a DoS attack.

Typically, the attacker requires a stronger fake input signal to drive

the sensor output to its saturation region [7].

4 CURRENT PROGRESS

Sensor security is comparatively a new domain in the security

community that has ongoing research for the last two decades.

However, over the last decades, the research on sensor security has

been accelerated due to the advent of the smart sensing systems

in autonomous vehicles (AV), internet-of-things (IoT), and smart

automation systems. Our paper broadly classifies the ongoing re-

search on sensor security into two categories: (i) current progress

on sensor attack and (ii) current progress on sensor defense.

4.1 Current progress on sensor attack

We discuss sensor attacks in the following broad categories. A

summary of the most notable published work on sensor attack is

given in Table 1 with their publication years.

Attack on magnetic sensors: Barua et al. [3] demonstrated a

noninvasive attack on Hall sensors located in a solar inverter using

a magnetic field from a close distance, resulting in a shutdown of a

weak micro-grid. Shoukry et al. [21] showed a disruptive magnetic

spoofing attack on a Hall sensor located in an anti-lock braking

system (ABS) of a vehicle, resulting in a possible brake failure.

Attack on inertial sensors:Wang et al. [30] used an ultrasonic

gun to spoof different inertial sensors, such as MEMS accelerome-

ters and gyroscopes, at their resonant frequencies to create havoc

in the connected systems. Son et al. [25] used a powerful sound

wave to spoof the gyroscope of a drone at its resonance frequency,

making the drone uncontrollable. Trippel et al. [26], and Tu et al.

[27] showed an adversarial control over MEMS accelerometers and

gyroscopes using acoustic signals at their resonant frequencies.

Bolton et al. [10] showed how acoustic signal can compromise the

MEMS shock sensor located in a hard disk drive.

Attack on pressure sensors: Barua et al. [5] demonstrated

a spoofing attack on pressure sensors located in a negative pres-

sure room (NPR), using acoustic signal at the sensor’s resonant

frequency. Tu et al. [28] showed a deliberate electromagnetic inter-

ference (EMI) attack on an in�ation pump’s pressure sensor while

impacting the system’s actuation.

Attack on optical sensors: Park et al. [17] used infrared to

spoof optical sensors of an infusion pump to deliver overdose to

patients. Davidson et al. [12] reported how spoofing optical sensors

of an unmanned aerial vehicle (UAV) can compromise its complete

control. Shin et al. [19] showed a spoofing attack on Lidar to create

illusions of objects appearing closer in automotive systems.

Attack on acoustic sensors: Zhang et al. [35] injected inaudible

commands into a microphone using ultrasonic carriers. Yan et al.

[33] showed an attack on ultrasonic sensors of a vehicle using

acoustic waves to impair vehicle safety.

Attack on other analog sensors: Kune et al. [16] spoofed

sensors by EMI to induce defibrillation shocks on cardiac devices.

It is just a matter of time before more attacks on sensors will

emerge from different attack surfaces as sensors are getting complex

and sophisticated nowadays without improving their security.

4.2 Current progress on sensor defense

We discuss sensor defense in the following broad categories. A

summary of the most notable sensor defenses is given in Table 2.
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Table 2: Summary of the notable published work on sensor defense. (In-band = fake and legitimate signal share same frequency

band; Out-band = fake and legitimate signal share different frequency band)
Sl. Paper Year Sensor type Sensor Defense technique Research challenge

1 [3] 2020 Magnetic Hall Shielding Not scalable, bulky

2 [21] 2013 Magnetic Hall PyCRA Can be bypassed

3 [30] 2017 Inertial Accelerometer & Gyroscope Noise cancellation Not for in-band signal, not for saturation

4 [25] 2015 Inertial Gyroscope Sound wave Not for in-band signal, not for saturation

5 [26] 2017 Inertial Accelerometer Randomized and 1800 out-of-phase sampling Not for in-band signal, DC attack signal

6 [27] 2018 Inertial Accelerometer & Gyroscope LPF and dampening Not for in-band signal, not for saturation

7 [10] 2018 Inertial Shock sensor Sensor fusion Costly, redundant, not for saturation

8 [5] 2022 Pressure Pressure sensor LPF Not for in-band signal

9 [28] 2021 Pressure Pressure sensor Transduction shield Finite physical distance, not for saturation

10 [17] 2016 Optical Optical sensor PyCRA Can be bypassed

11 [12] 2016 Optical Camera & Lidar Modified optical �ow algorithm Not applicable

12 [19] 2017 Optical Lidar Sensor fusion, redundancy Costly, not for saturation

13 [35] 2017 Acoustic Microphone Noise cancellation Not for in-band signal

14 [33] 2016 Acoustic Ultrasound Acoustic noise reduction (ANR) For acoustic only, Not for out-band signal

15 [16] 2013 Analog Defibrillator Adaptive filter, LPF Not for saturation

Defense formagnetic sensors: Barua et al. [3] proposed strong

magnetic shielding with a secure surrounding to prevent the mag-

netic spoofing attack on Hall sensors. Shoukry et al. [21] proposed

PyCRA to randomize the transmission and reception of signals to

prevent magnetic spoofing attacks on ABS sensors of automotive.

However, PyCRA only works for active sensors [21].

Defense for inertial sensors: Trippel et al. [26] proposed ran-

domized and 1800 out-of-phase sampling to nullify acoustic spoof-

ing signals injected into MEMS accelerometers. Son et al. [25] pro-

posed resonance tuning using a feedback capacitor to prevent the

out-band resonant frequency. Wang et al. [30] proposed to use an

external microphone to detect the resonating sound and perform

noise cancellation. Tu et al. [27] proposed low-pass filtering (LPF)

along with the dampening of the injected ultrasound.

Defense for pressure sensors: Barua et al. [5] used an LPF to

filter out the sound wave from pressure sensors to prevent acoustic

spoofing on pressure sensors. Tu et al. [28] used a transduction

shield to measure the fake signal first and then subtract it from the

corrupted signal to recover the legitimate signal.

Defense for optical sensors: Park et al. [17] measured the light

intensity to detect the attack and used PyCRA to prevent it. Shin

et al. [19] propose sensor fusion and redundancy to prevent the

optical attack on a lidar.

Defense for acoustic sensors: Zhang et al. [35] used a mod-

ulation - demodulation based noise canceling technique to cancel

out the injected ultrasound. Yan et al. [33] proposed shielding and

acoustic noise reduction (ANR) by emitting a sound with minor

phase and amplitude adjustment.

Defense for other analog sensors: Kune et al. [16] proposed

adaptive filtering to estimate the spoofing attack signal first and

then subtract the estimated attack signal from the original signal

to clean up the original signal.

5 RESEARCH CHALLENGES

The defense techniques described in Section 4.2 have research chal-

lenges. A summary of research challenges is given in Table 2.

Shielding and dampening: Barua et al. [3] and Tu et al. [27]

proposed shielding to dampen the injected fake magnetic field and

fake ultrasound, respectively. Though shielding is a cheap and quick

countermeasure for a few of the fake injected signals, such as sound

wave, ultrasound, and infrared, shieldingmight fail for other signals,

such as magnetic fields. For example, a strong shield again may fail

to a stronger magnetic field injected by an attacker. To increase

the shielding property of a shield so that it can work for a stronger

attack signal, the designer may need to increase the thickness of

the shield. As even a thick shield can be penetrated by a stronger

magnetic field, there is no sweet spot for shielding to claim that

it can prevent a magnetic field of any strength. Therefore, only

shielding cannot be considered as a sole defense for sensors.

Randomization of transmission (PyCRA): Shoukry et al [22]

proposed PyCRA; however, PyCRA only works for active sensors,

not for passive sensors. Moreover, Shin et al. [20] showed that the

implemented authentication mechanism of PyCRA can be success-

fully bypassed with a low-cost circuit. This proves that there is

currently no effective, robust and generalizable defense scheme

against active sensor spoofing attacks.

Randomized and 1800 out-of-phase sampling: These two

techniques from [26] only work for out-band resonant frequency

attack signals. However, they do not work other than a specific

resonant frequency, for example, any attack frequency. Moreover,

they do not work against a DC forged signal because randomized

sampling cannot filter out a DC signal. In addition, they do not

work when the sensor output is �attened in the saturation region.

Adaptive �lter and transduction shield: Both of these de-

fense techniques from [16, 28] work similarly by estimating the

spoofing attack signal first and then subtracting the estimated at-

tack signal from the original signal to clean up the original signal.

These techniques will fail in the following two scenarios: (i) Be-

cause of the finite physical distance between the adaptive filter or

transduction shield and the compromised sensor, the adaptive filter

or transduction shield cannot measure the exact amplitude of the

external attack signals. This is why we can not simply subtract the

estimated attack signals from the original signals to recover the

original signal. (ii) They do not work when the sensor output is

�attened in the saturation region.

LPF and other �ltering techniques: LPF and other filtering

techniques in [5, 16] only work as a successful defense when the

fake attack signal has a predicable frequency spectrum and is an out-

band signal. If the injected fake signal shares the same frequency

band as the legitimate signal, LPF or other filtering techniques

cannot accurately filter out the fake attack signals. The reason
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behind this is that while filtering the attack signals, they also filter

out the same band of legitimate signals.

Machine learning (ML) techniques:Machine learning (ML)

techniques require complex computations to converge for attack

detection and recovery, requiring powerful hardware resources.

Therefore, they are not suitable for low-power real-time sensor

systems with constrained resources. In addition, they may not work

against a time-varying magnetic spoofing as a time-varying signal

may create oscillations between two safe states of the controller,

and they are incapable of handling these oscillations in real-time.

5.1 Area of focus

If we analyze all the notable defenses from Table 2 published

throughout the last decade, we can conclude the following points:

� The defenses were proposed on an ad-hoc basis. For example,

the researchers first find a security issue with the sensor and then

try to come up with a defense to overcome it. Researchers only

focus on a specific security issue rather than focusing on all the

corner cases from all the attack surfaces. Therefore, a proposed

defense for a particular type of sensor is not applicable to other

types. For example, the randomized and 1800 out-of-phase sampling

[26], which are applicable for MEMS inertial sensors to nullify out-

band resonant attack frequency, is not applicable for magnetic Hall

sensors because Hall sensors can have in-band attack frequency

other than a specific out-band resonant frequency [3].

� There is no defense technique exists in the literature that can

prevent sensors from going into the saturation region or recover

information from the sensor’s saturation region.

� There is no defense, which can contain a fake injected signal

having the same frequency as the legitimate signal.

� As PyCRA [22] can be bypassed, there is no defense in the

literature for active sensors till to date.

Therefore, sensor security is still a malnourished domain, which

requires more attention from security researchers.

6 FUTURE ROADMAP

Sensor heterogeneity: The fundamental challenge of designing

and modeling a robust and secured sensor is the heterogeneity of

sensor types. The heterogeneity of sensors exists because of the

sensor’s signal modality, which differs from the sensor to sensor. For

example, a Hall sensor handles magnetic fields and a pressure sensor

handles pressure waves as the signal modality. As sensors differ

from each other in terms of signal modality, the proper selection of

transducers and sensor electronics also differ from sensor to sensor

depending on the signal modality. Therefore, a single generalized

defense technique that is applicable to all sensors will be quite

complicated. However, it is still worth giving it a try from a sensor

security research point of view because the future days will be the

days for smart sensors, and security will be a big concern for them.

6.1 Golden reference for sensor defense

The next generation of research on sensor security should have to

consider the security from designing the transducer to the imple-

mentation of the sensor electronics. Instead of implementing an

ad-hoc defense, researchers must ensure a checklist before finally

adopting a technique as a sensor defense. We name this checklist

by the Golden reference for a sensor defense against a transduction

attack. This golden reference has the following points.

(i) The defense should simultaneously work for in-band and out-

band fake injected input signals.

(ii) The defense should prevent a sensor from going into the satura-

tion region because of the injection of fake input signals.

(iii) The defense should contain a fake injected signal even it has the

same frequency as the legitimate input signal.

(iv) The defense should work for active and passive sensors. If a

single defense does not simultaneously work for both sensors,

there should be a defense targeting an active sensor and another

separate defense targeting a passive sensor.

(v) The defense should be hard real-time.

(vi) The defense should not hamper the existing data processing

speed or bandwidth of the sensor.

6.2 Roadmap to achieve the Golden reference

The Golden reference for sensor defense can not be achieved alone

by only hardware or only software modification; instead, a hard-

ware/software (HW/SW) co-design approach is required in the sen-

sor domain. The sensors should be redesigned from the transducer

level to the sensor electronics level. A smart transducer should be

built instead of a naive one, and an intelligent and low-complexity

algorithm should be adopted in the sensor electronics. We explain

the roadmap to achieve the Golden reference below.

6.2.1 Encrypted analog signal: The main reason for sensor vul-

nerability is that the legitimate analog signal 𝑆𝑖𝑛 , which is going

to be measured by the sensor, is not encrypted before going into

the transducer. Therefore, the attacker can use a fake signal 𝑆
�
𝑖𝑛 to

corrupt the legitimate signal 𝑆𝑖𝑛 . This problem can be solved by

encrypting the legitimate analog signal with a key in the analog

domain and decrypting the legitimate signal in the transducer side

or in the sensor electronics using the same key. The analog domain

encryption can be achieved using the following ways:

� First, an orthogonal noise can be padded with the legitimate

signal 𝑆𝑖𝑛 to hide the information from the attack surface. This

method is known as analog scrambling [18].

� Second, the legitimate signal 𝑆𝑖𝑛 can be mapped into the broad

spectrum. This technique is known as frequency hopping spread

spectrum [15] and can be adopted in the sensor domain.

� Third, the legitimate signal 𝑆𝑖𝑛 can be encrypted in the analog

domain using a pseudo-noise, which is the original key. More keys

can be generated using the original key to decrypt the signal [24].

Please note that encryption of the legitimate analog signal is

the ultimate solution for a robust sensor. This defense technique

would achieve the points i-iv of the Golden reference in Section 6.1;

however, it may ormay not hamper the data processing speed (point

v) and real-time requirement (point vi) of the sensor depending

upon the encryption complexity.

6.2.2 Modifying the transducer: The transducer must be re-

silient enough to reject the injected fake signal 𝑆
�
𝑖𝑛 . As a transducer

is an entry point to the sensor, if a transducer can reject the fake

signal, this approach would diminish the burden of using a complex

encryption algorithm in the sensor hardware. Industry is adopt-

ing this scheme nowadays where ever it is feasible. For example,
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Hall current sensors use a Hall element as a transducer. Two Hall

elements (see Fig. 4) are placed inside of a Hall current sensor in

a differential manner to reject common-mode noise [1]. As the in-

jected fake signal 𝑆
�
𝑖𝑛 is common to the differential Hall element,

the injected fake signal 𝑆
�
𝑖𝑛 can be considered as common-mode

noise and can be eliminated from the sensor at the transducer level.

Though this strategy is quite novel, it has its own implementation

challenge for all types of sensors. Research along this direction

would be influential in future for a secured sensor.

X

D1 D2

Signal in

Signal out

 D1 and D2 are two differential 
Hall element rejecting 
common mode noise

Zoom in

Figure 4: A basic overview of the differential sensing.

6.2.3 Preventing sensor saturation: As mentioned in Section 3,

if an attacker can drive the sensor to its saturation region, the output

gets �attened, and no information can be retrieved, resulting in a

DoS attack on sensors. This attack is known as saturation attack [7].

The core idea behind preventing a saturation attack is to generate

an internal signal, which has the same strength but in opposite

polarity to the injected fake signal, so that the internal signal can

nullify the injected fake signal. Barua et al. [7] conceptualized and

implemented this idea in the context of Hall magnetic sensors by

providing a defense named PreMSat. The idea of PreMSat can be

extended to other sensor types as well.

Original measured value before 
attack at t-1

Measured value when the attack 
happens at time t

- Injected 
error, E

Measured value after the 
attack happens at time t 

-
Original value 

after separating  
the injected error  

Low pass 
filter

Low pass 
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Figure 5: A basic overview of the improved algorithm [6].

6.2.4 Improving the adaptive filter and transduction shield:

The main bottleneck of using the adaptive filter and transduction

shield is the introduced error in the estimated attack signals for

the physical distance present between the sensor and the shield

(see Section 5). This problem can be solved by using an improved

defense algorithm proposed by Barua et al. [6]. The main idea of

this algorithm is that the difference between the measured signal

during the attack and before the attack gives the amount of injected

error after the attack. This algorithm tracks this difference all the

time and generates a feedback signal to nullify the injected error

by the attacker. The idea is illustrated in Fig. 5.

6.2.5 Context-aware anomaly detection: An injected fake sig-

nal can be considered as an anomaly. Traditional anomaly detection

algorithms are not low-power and hence, they are not suitable for

sensor hardware. Therefore, a low-power and low- complexity algo-

rithmmay be another feasible option to run on the sensor hardware

to detect injected fake signals. A low-power anomaly detection al-

gorithm named as Hierarchical Temporal Memory (HTM) can be

evaluated to detect context aware anomaly detection on the sensor

data [8, 9]. Moreover, the context-aware sensor association method

[34] can be evaluated further as a defense technique for sensors.

6.2.6 Control-theoretic approach: State estimation and state

recovery based control-theoretic defense approaches can be an-

other option to recover a system controller after the transduction

attack. Shoukry et al. [23] proposed reconstructing the sensor state

to recover from a sensor spoofing attack using the satisfiability

modulo theory (SMT). Wang et al. [29] demonstrated a graph-based

technique to track states in the system controller to detect an in-

trusion. However, the correct direction will be to incorporate the

sensor’s physics and physical knowledge of the system with the

control-theoretic approach for accurate estimation of the states.

6.2.7 Sensor fusion based context aware: Sensor fusion and

redundancy [10, 19, 30, 31] based approaches can be merged with

ML algorithm to create an appropriate context and abstraction of

the sensor data. Therefore, during an attack, the sensor data can

be recovered from a proper context using abstracted sensor data.

The data abstraction can be made intelligent and adaptive to tackle

the continuous change of the sensor environment. However, sensor

fusion adds extra price and complexity to the system; therefore,

designers try to avoid this unless it is arguably required.

7 CONCLUSION

In this paper, we present a notion of sensor security, whereby, we

focus on the importance of security measures that needs to be taken

while designing a sensor. We discuss that sensors are vulnerable to

external fake signals and give a summary of existing defenses in

the sensor domain. We point out the limitations of existing defense

techniques and emphasize that very little to no work exists in the

sensor security domain. Therefore, we emphasize that the next

generation of research on sensor security should have to ensure a

Golden reference before finally adopting a technique as a sensor

defense. We also provide a roadmap on how to achieve the Golden

reference checklist while designing a robust and resilient sensor.
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