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pressure in an NPR, may use an audible sound having a resonant fre-
quency to create resonance in a DPS and generate a forged pressure
to perturb the normal readings of a DPS located in an NPR.

However, a sound having a single-tone resonant frequency will
create a "beep"-ish sound, which makes the attack easily identi�able
by the authority. Moreover, the HVAC and RPM systems cannot be
fooled by a simple resonance in DPS because these systems have a
slower response time compared to a resonance. Therefore, a simple
resonance in DPS is not enough to turn NPR’s negative pressure
into a positive pressure to leak airborne pathogens from an NPR.

To solve the above problems, this paper adopts a smart strategy
by disguising the resonant frequency band inside popular music.
The resonant frequencies are inserted as a segment into the music
for a certain duration in every speci�c interval. Every inserted
segment of the resonant frequency is ended at its peak. Therefore,
the corresponding pressure wave inside a DPS also ends at its peak.
As a DPS with a sampling tube is a second-order oscillating system
[41], the pressure wave does not instantly fall to zero from the peak
value. Instead, the pressure wave starts to attenuate from its peak
exponentially. If the interval between two consecutive segments is
small, the pressure wave never falls below a certain value. Therefore,
a forged pressure is always present inside a DPS having an average
value greater than zero. As a result, the malicious music injected
into the DPS can fool the controller of HVAC and RPM systems
connected with BMSs to change the negative pressure of an NPR
into a positive one. Moreover, the segments of resonant frequency
are camou�aged in the malicious music so that the attack is not
identi�able by the authority. Therefore, we name this attack as "the
wolf in sheep’s clothing" since this strategy ensures stealthiness.

The consequences of changing a negative pressure into a positive
one can be catastrophic. If the NPR has an infectious patient admit-
ted or an ongoing bioresearch, the attacker can control the timing
of the attack to leak a deadly pathogen from the NPR. Moreover,
an abnormal change in NPR’s pressure triggers an alarm that may
create chaos in the facility. An attacker can use this chaos to initiate
a stronger attack, such as stealing deadly microbes from the NPR
or physically attacking the biosafety cabinets in an NPR. Therefore,
our attack model is strong and impactful and has the potential to
cause tremendous losses in human lives and monetary resources.

Contributions: We have the following technical contributions:
(1)We evaluate eight industry-used pressure sensors from �ve

di�erent manufacturers to show that the pressure sensors used in
NPRs have resonant frequencies in the audible range.

(2)We design malicious music disguising the resonant frequen-
cies of DPSs inside of the music to fool the HVAC and RPM systems
of an NPR. We show through experiments that this strategy can
change the negative pressure of an NPR to a positive one.

(3)We show that the attacker can adversarially control the forged
pressure in DPSs by using the malicious music. Moreover, we show
that the attacker can also simultaneously attack multiple NPRs in a
facility using our attack model.

(4)We demonstrate our attack model at a real-world NPR located
in an anonymous bioresearch facility. The NPR is approved by the
Food and Drug Administration (FDA) and follows CDC guidelines.
We also provide countermeasures to prevent the attack on NPRs.

Demonstration: The demonstration of the attack is shown in
the following link: https://sites.google.com/view/awol�nsheepsclot
hing/home

2 BACKGROUND

2.1 NPR and its importance

An NPR [76] maintains lower pressure inside with respect to the
outside reference space. As air typically travels from higher pressure
areas to lower pressure areas, NPR ensures that clean air is drawn
into the room so that contaminated particles inside the room are
not able to escape. This is why NPRs are present in hospitals and
biosafety labs as they prevent airborne particles like bacteria and
viruses from spreading out from the facility. NPRs are also present
in safety-critical facilities, such as pharmacies and clean rooms.

Importance: The safety of NPRs is paramount as spreading air-
borne microbes fromNPRs may result in catastrophic consequences.
For example, a deadly fungus belonging to the genus Aspergillus is
an airborne pathogen that can cause Aspergillosis disease resulting
in acute pneumonia and abscesses of the lungs and kidneys [1]. It
has a mortality rate of ∼100% for people with neutropenia (i.e., low
neutrophils). Respiratory tract infections, such as in�uenza, swine
�u, and COVID-19, are great examples of airborne pathogens that
result in a worldwide pandemic. Recently, a conspiracy theory has
been rumored about the leakage of the COVID-19 as bioweapons
from a biolab [13]. In this context, imagine an attacker with the
intention of spreading infectious disease as bioweapons may target
NPRs, where either infected patients are admitted for isolation or
research is carried out on deadly pathogens. Therefore, the security
of NPRs is critical and is regulated with strict guidelines.

2.2 Regulations for NPRs

With rising concerns about bioterrorism and emerging infectious
diseases, there has been a greater emphasis on the proper regu-
lations of NPRs. NPRs must follow requirements established by
the CDC [53], ASHRAE [67], and healthcare design construction
guidelines [43] to correctly manage airborne infections. Di�erent
authorities follow their own regulations [2, 3, 5, 63] to maintain a
certain negative pressure in NPRs (see Table 1). For example, CDC
requires that NPRs must maintain a negative pressure di�erential
of at least ∼2.5 Pa (i.e., 0.01 inch water column) in a hospital or
biolabs and change the air at least 12 times per hour [53]. Moreover,
exhaust from NPRs must be allowed to exit directly outside without
contaminating exhaust from other locations. In addition, all exhaust
air must be discharged through a High-E�ciency Particulate Air
(HEPA) �lter to prevent any contamination in the environment.

Table 1: Regulations for a Negative Pressure Room (NPR).
Country Taiwan CDC(USA) AIA(USA) Australia

Negative pressure -8 Pa -2.5 Pa -2.5 Pa -15 Pa
Air change per hour (ACH) 8 -12 > 12 > 12 > 12

2.3 Types of pressure sensors used in NPRs

Traditionally, hot-wire anemometers [54] and ball pressure sensors
[57] were used to measure pressure in NPRs. However, they have
limitations, such as they are highly sensitive to dust, require pe-
riodic maintenance, and cannot be connected to a BMS or RPM
for real-time control. Therefore, transducer-based pressure sensors
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