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ABSTRACT
Recommendation systems aim to predict users’ feedback on items
not exposed to them yet. Confounding bias arises due to the pres-
ence of unmeasured variables (e.g., the socio-economic status of
a user) that can a�ect both a user’s exposure and feedback. Exist-
ing methods either (1) make untenable assumptions about these
unmeasured variables or (2) directly infer latent confounders from
users’ exposure. However, they cannot guarantee the identi�ca-
tion of counterfactual feedback, which can lead to biased predic-
tions. In this work, we propose a novel method, i.e., identi�able
deconfounder (iDCF), which leverages a set of proxy variables
(e.g., observed user features) to resolve the aforementioned non-
identi�cation issue. The proposed iDCF is a general deconfounded
recommendation framework that applies proximal causal inference
to infer the unmeasured confounders and identify the counterfac-
tual feedback with theoretical guarantees. Extensive experiments
on various real-world and synthetic datasets verify the proposed
method’s e�ectiveness and robustness.
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1 INTRODUCTION
Recommendation systems play an essential role in a wide range of
real-world applications, such as video streaming [5], e-commerce
[36], web search [32]. Such systems aim to expose users to items
that align with their preferences by predicting their counterfactual
feedback, i.e., the feedback users would give if they were exposed
to an item. Looking at the recommendation problem from a causal
perspective [21], a user’s counterfactual feedback on an item can
be seen as a potential outcome where exposure is the treatment.
However, predicting potential outcomes by estimating the corre-
lation between exposure and feedback can be problematic due to
confounding bias. This occurs when unmeasured factors that a�ect
both exposure and feedback, such as the socio-economic status of
the user, are not accounted for. For example, on an e-commerce
website, users of higher socio-economic status are more likely to
be exposed to expensive items because of their history of higher-
priced consumption. These users might also tend to give negative
feedback for products due to their higher standards for item qual-
ity. Without proper adjustment for this unmeasured confounder,
recommendation models may pick up the spurious correlation that
expensive items are more likely to receive negative feedback. As a
result, it is essential to mitigate the confounding bias to guarantee
the identi�cation of the counterfactual feedback which is a pre-
requisite for the accurate prediction of a user’s feedback through
data-driven models in recommender systems.

Recent literature has proposed various methods to address the
issue of confounding bias in recommender systems. These methods
can be broadly split into two settings: measured confounders and
unmeasured confounders. For the measured confounders (e.g., item
popularity and video duration) that can be obtained from the dataset,
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previous work applies standard causal inference methods such as
backdoor adjustment [20] and inverse propensity reweighting [23]
to mitigate the speci�c biases [27, 34, 35].

In practice, it is more common for there to be unmeasured con-
founders that cannot be accessed from the recommendation datasets
due to various reasons, such as privacy concerns, e.g., users usually
prefer to keep their socio-economic statuses private from the sys-
tem. Alternatively, in most real-world recommendation scenarios,
one even does not know what or how many confounders exist.
In general, it is impossible to obtain an unbiased estimate of the
potential outcome, i.e., the user’s counterfactual feedback, without
additional related information about unmeasured confounders [14].

As a result, previous methods have relied on additional assump-
tions regarding unmeasured confounders. For example, RD-IPS [4]
assumes the bounded impact of unmeasured confounders on item
exposure and performs robust optimization for deconfounding. In-
variant Preference Learning [30] relies on the assumption of several
abstract environments as the proxy of unmeasured confounders and
applies invariant learning for debiasing. However, these methods
heavily rely on assumptions about unmeasured confounders and do
not provide a theoretical guarantee of the identi�cation of the po-
tential outcome [20] . Another line of methods, such as [24, 33, 37],
assume the availability of an additional instrumental variable (IV),
such as search log data, or mediator, such as click feedback to per-
form classical causal inference, such as IV-estimation and front door
adjustment [20]. However, it is hard to �nd and collect convincing
instrumental variables or mediators that satisfy the front door cri-
teria [8, 20] from recommendation data. Di�erent from previous
methods, Deconfounder [29] does not require additional assisted
variables and approximates the unmeasured confounder with a
substitute confounder learned from the user’s historical exposure
records. Nevertheless, it has the inherent non-identi�cation issue
[3, 6], which means Deconfounder cannot yield a unique prediction
of the user’s feedback given a �xed dataset. Figure 1 shows such
an example where the recommender model yields di�erent feasible
predictions of users’ feedback due to the non-identi�cation issue.

Hence, a glaring issue in the current practice in the recommender
systems falls onto the identi�ability of the user’s counterfactual
feedback (potential outcome) in the presence of unmeasured con-
founders. This paper focuses on identifying the potential outcome
by mitigating the unmeasured confounding bias.

As the user’s exposure history is helpful but not enough to in-
fer the unmeasured confounder and identify the counterfactual
feedback, additional information is required. Fortunately, such in-
formation can be potentially accessed through users’ features and
historical interactions with the system. Using the previous example,
while the user’s socio-economic status (unmeasured confounder)
cannot be directly accessed, we can access the user’s consump-
tion level from his recently purchased items, whose prices will be
bene�cial in inferring the user’s socio-economic status.

To this end, we formulate the debiasing recommendation prob-
lem as a causal inference problem with multiple treatments (dif-
ferent items to be recommended), and utilize the proximal causal
inference technique [26] which assumes the availability of a proxy
variable (e.g., user’s consumption level), which is a descendant of
the unmeasured confounder (e.g., user’s socio-economic status).
Theoretically, the proxy variable can help infer the unmeasured

Figure 1: When predicting the user’s feedback, the non-
identi�cation of the user’s counterfactual feedbackwillmake
the recommendation method yield di�erent feasible predic-
tions (probabilities in the interval) that are compatible with
the given dataset and will not converge, even with in�nite
data, leading to the uncertainty of the user’s feedback. See
Example 3.1 for more details.

confounder and the e�ects of exposure and confounders on the
feedback. This leads to the identi�cation of the potential outcome
(see our Theorem 4.3), which is crucial for accurate predictions
of users’ counterfactual feedback to items that have not been ex-
posed. Practically, we choose user features as proxy variables since
they are commonly found in recommender system datasets and the
theoretical requirement of proxy variables is easier to be satis�ed
compared with the instrumental variables and mediators [17].

Speci�cally, we propose a novel approach to address unmeasured
confounding bias in the task of debiasing recommender system,
referred to as the identi�able deconfounder (iDCF). The proposed
method is feedback-model-agnostic and can e�ectively handle situ-
ations where unmeasured confounders are present. iDCF utilizes
the user’s historical interactions and additional observable proxy
variables to infer the latent confounder e�ectively with identi�a-
bility. Then, the learned confounder is used to train the feedback
prediction model that estimates the combined e�ect of confounders
and exposure on the user’s feedback. In the inference stage, the
adjustment method [21] is applied to mitigate confounding bias by
taking the expectation over the learned confounder.

We evaluate the e�ectiveness of iDCF on a variety of datasets,
including both real-world and synthetic, which demonstrate its
encouraging performance and robustness regarding di�erent con-
founding e�ects and data density in predicting user feedback. More-
over, on the synthetic dataset with the ground-truth of the unmea-
sured confounder known, we also explicitly show that iDCF can
learn a better latent confounder in terms of identi�ability.

Our main contributions are summarized as follows:
• We highlight the importance of identi�cation of potential out-
come distribution in the task of debiasing recommendation sys-
tems. Moreover, we demonstrate the non-identi�cation issue of
the Deconfounder method, which can lead to inaccurate feedback
prediction due to confounding bias.
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• We propose a general recommendation framework that utilizes
proximal causal inference to address the non-identi�cation issue
in the task of debiasing recommendation systems and provides
theoretical guarantees for mitigating the bias caused by unmea-
sured confounders.

• We conduct extensive experiments to show the superiority and
robustness of our methods in the presence of unmeasured con-
founders.

2 RELATEDWORK
2.1 Deconfounding in Recommendation
As causal inference becomes a popular approach in debiasing recom-
mendation systems and examining relationships between variables
[20, 21], researchers now focus more on the challenge of confound-
ing bias. Confounding bias is prevalent in recommendation systems
due to various confounding factors. For example, item popularity
can create a popularity bias and be considered as a confounder.
Several studies have addressed speci�c confounding biases, such as
item popularity [27, 31, 35], video duration [34], video creator [7],
and selection bias [15].

However, many unmeasured confounders may also exist, which
make the classical deconfounding methods like inverse propensity
weighting (IPW) not applicable. To deal with the confounding bias
in the presence of unmeasured confounders, [4] assumes a bounded
confounding e�ect on the exposure and applies robust optimization
to improve the worst-case performance of recommendation models,
[24, 33, 37] take additional signals as mediators or instrumental
variables to eliminate confounding bias. [30] assumes the existence
of several environments to apply invariant learning. As shown
in our later experiments, these additional strong assumptions on
unmeasured confounders can lead to sub-optimal recommenda-
tion performance. Moreover, they also fail to provide a theoretical
guarantee of the identi�cation of users’ counterfactual feedback.

There is also another line of work [29, 38] that considers the
multiple-treatment settings [28] and infers substitute confounders
from the user’s exposure to incorporate them into the preference
prediction models. However, these methods cannot guarantee the
identi�cation of the user’s preference, which may lead to inconsis-
tent, thus poor recommendation performance.

2.2 Proximal Causal Inference
Proximal causal inference [14, 16, 18, 26] assumes the existence of
proxy variables of unmeasured confounders in the single-treatment
regime, and the goal is to leverage proxy variables to identify causal
e�ects. Kuroki and Pearl [14] study the identi�cation strategy in
the di�erent causal graphs. Miao et al. [16] generalize their strategy
and show nonparametric identi�cation of the causal e�ect with two
independent proxy variables. Miao et al. [18] further use negative
control exposure/outcome to explain the usages of proxy variables
intuitively. However, these methods usually rely on informative
proxy variables to infer the unmeasured confounders, while our
method formulates the recommendation problem in the multiple
treatment setting, which enables us to leverage information from
the user’s exposure to infer the unmeasured confounder. This re-
laxes the requirement on the proxy variables and still theoretically
guarantees the identi�cation of the potential outcome [17].

3 PROBLEM FORMULATION
In this section, we �rst analyze the recommendation problem from
a causal view in the presence of unmeasured confounders. Then
we show that Deconfounder [29], one of the widely-used meth-
ods for recommendations with unobserved confounder, su�ers the
non-identi�cation issue, i.e., it cannot predict the user’s prefer-
ence consistently, through an illustrative example. This observation
motivates our method, which we will detail in the next section.

3.1 Notations
We start with the notations used in this work. Let scalars and vectors
be signi�ed by lowercase letters (e.g., 0) and boldface lowercase
letters (e.g., a), respectively. Subscripts signify element indexes. For
example, 08 is the 8-th element of the vector a. The superscript of a
potential outcome denotes its corresponding treatment (e.g., AaD8 ).

We adopt the potential outcome framework [22] with multiple
treatments [28] to formulate the problem. The causal graph is shown
in Figure 2. Let U = {D} and I = {8} denote the set of users and
items, respectively with |U| =<, |I | = =. We de�ne the following
components of the framework:
• Multiple treatments: aD = [0D1,0D2, . . . ,0D=] 2 {0, 1}= is the
observed exposure status of user D, where 0D8 = 1 (0D8 = 0)
means item 8 was exposed to user D (not exposed to user D) in
history.

• Observed outcome: AD8 denotes the observed feedback of the
user-item pair (D, 8) and rD = [AD1, ..., AD=] signi�es the observed
feedbacks of user D.

• Potential outcome: AaD8 denotes the potential outcome 1 that would
be observed if the user’s exposure had been set to the vector value
a 2 {0, 1}= . Following previous work [29], we assume AaD8 is only
a�ected by the exposure of item 8 to user D.

• Unmeasured confounder: zD 2 R3 (e.g., the user’s socio-economic
status) denotes the d-dimensional unmeasured confounder that
causally in�uences both user’s exposures aD and feedback rD .

Problem Statement. Given observational data {aD , rD }D2U , a rec-
ommendation algorithm aims to accurately predict the feedback of
user D on item 8 if the item had been exposed to D, i.e., the expecta-
tion of the potential outcome ⇢ [AaD8 ], where 08 = 1. Practically, for a
user D, items are ranked by the predicted ⇢ [AaD8 ] such that the user
will likely give positive feedback to items ranked in top positions.

However, in real-world scenarios, as the data of the recommenda-
tion system is naturally collected as users interact with the recom-
mended items without randomized controlled trials, there usually
exists some confounder, zD as shown in Figure 2, which a�ects
both the user D’s exposure status aD (i.e., the treatment) and the
user’s feedback on items rD (i.e., the outcome), resulting in possible
spurious correlations when the user’s feedback is simply estimated
by ? (AD8 |aD ). For instance, the user’s socio-economic status can
lead to confounding bias when predicting the user’s counterfactual
feedback (See the example in Section 1).

Previous work [19, 27, 34, 35] takes zD as a speci�c factor, for
example, item popularity, video duration, video creators, etc. But
under most real-world circumstances, we cannot access the com-
plete information of zD . Thus, this work focuses on a more general

1The distribution of potential outcome AaD8 is equivalent to ? (AD8 |3> (a) ) in the
structural causal model (SCM) framework.
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Observed Variable Unmeasured Variable

zD

0D1 0D2 · · · 0D=

AD1 AD2 · · · AD=

(a) Without proxy variables

zDwD

0D1 0D2 · · · 0D=

AD1 AD2 · · · AD=

(b) With a proxy variable

Figure 2: Causal graphs with multiple treatments for rec-
ommendation systems. aD8 : exposure of user D to item 8, AD8 :
feedback of user D on item 8, zD : the unmeasured confounder,
wD : a proxy variable of the confounder.

problem setting where zD is an unmeasured confounder. As shown
in Section 3.1, zD is a latent variable represented by a shaded node.

3.2 Identi�cation with unmeasured confounder
To learn the counterfactual feedback from user D on item 8 , i.e.,
⇢ [AaD8 ], the identi�cation of the potential outcome distribution
? (AaD8 ) from observational data is required. In general, accurately
predicting a user’s feedback through data-driven models is only
possible when causal identi�ability has been established.

When all confounders are measured, ? (AaD8 ) can be identi�ed
through the classical g-formula2 [21] as follows:

? (AaD8 ) = ⇢zD [? (AD8 |a, zD )] . (1)

When an unmeasured confounder exists, as shown in Section 3.1, it
becomes much more challenging to identify ? (AaD8 ) as the g-formula
is no longer applicable. Previously, Wang et al. [29] assumed the
unmeasured confounder zD is a common cause of each exposure
0D8 and proposed Deconfounder to learn ? (AaD8 ) with unmeasured
confounders. Deconfounder �rst learns a substitute confounder ẑD
from the exposure vector aD to approximate the true confounder
zD , and directly applies the g-formula in Eq. (1) to learn ? (AaD8 ).
Non-Identi�cation of Deconfounder. While the high-level idea
is promising, Deconfounder fails to guarantee the identi�cation of
? (AaD8 ) [3, 6]. As shown by the following example, even in a relatively
optimistic case where the substitute confounder ÎD can be uniquely
determined from the exposure vector aD , Deconfounder cannot
identify ? (AaD8 ). In other words, ? (AaD8 ) takes di�erent values under
di�erent circumstances, leading to the inconsistent prediction of
the user’s feedback.

Example 3.1 (Failure of Deconfounder [29] in identi�cation.). Con-
sider a recommendation scenario following the causal graph in
Figure 2, with the confounder ID , the exposure status 0D8 , and the
feedback AD8 assumed to be binary random variables.

We assume = � 3 to ensure a unique factorization of ? (aD ) [13],
such that the inferred substitute confounder ÎD in Deconfounder
can be uniquely identi�ed from exposure vector a. In other words,
? (ÎD = 1) and ? (ÎD = 1|a) are known. Besides, ? (AD8 = 1|a),
2g-formula is equivalent to the backdoor adjustment in the SCM framework.

the probability that user D will give positive feedback to the item 8
condition on exposure vector a, can also be inferred given a dataset.

Recall that Deconfounder learns ? (AaD8 ) by applying the g-formula
in Eq. (1) with the inferred substitute confounder ÎD as follows:

? (AaD8 = 1) =
Õ
I2{0,1} ? (ÎD = I)? (AaD8 = 1|a, ÎD = I)

=
Õ
I2{0,1} ? (ÎD = I) ? (A

a
D8=1,ÎD=I |a)
? (ÎD=I |a) .

(2)

For ease of illustration, we denote ?01 |a := ? (ÎD = 0, AD8 = 1|a), cÎD=1 :=
? (ÎD = 1), cÎD=1 |a := ? (ÎD = 1|a), cAD8=1 |a := ? (AD8 = 1|a) in the
rest of the paper, then we get:

? (AaD8 = 1) = (1 � cÎD=1)
?01 |a

1 � cÎD=1 |a
+ cÎD=1

?11 |a
cÎD=1 |a

(3)

As we assumed before, cÎD=1 and cÎD=1 |a are known, thus it
remains to identify ?01 |0 , and ?11 |0 to calculate ? (AaD8 = 1). However,
?01 |0 and ?11 |0 can not be uniquely determined since there are four
unknown entries {?IA |0, I, A 2 {0, 1}} with three constraints:’

I

’
A

?IA |0 = 1,
’
A

?1A |0 = cÎD=1 |0,
’
I

?I1 = cAD8=1 |0, (4)

where the �rst constraint is the normalization of joint probabilities,
and the next two are marginal constraints. For example, the second
constraint is due to

? (ÎD = 1, AD8 = 0|a) + ? (ÎD = 1, AD8 = 1|a) = ? (ÎD = 1|a). (5)

When cÎD=1 |a is not degenerated, i.e.,cÎD=1 |a < 1 or 0, which holds
in the recommendation scenario, the four unknown entries cannot
be uniquely determined because there remains one degree of free-
dom [25]. For example, if we take ?11 |0 as the free variable, then it
can be any value in the following feasible range:

max{0, cÎD=1 |a + cAD8=1 |a � 1}  ?11 |0  min{cÎD=1 |a, cAD8=1 |a},
implying ? (AaD8 = 1) calculated as in Eq. (3) will also be in a range.
In other words, ? (AaD8 = 1) cannot be identi�ed.

To make it more explicit, consider this concrete example. Assum-
ing cÎD=1 = 0.5, cÎD=1 |a = 0.2, cAD8=1 |a = 0.6, then ?11 |a can be any
value in [0, 0.1], leading to the feasible range of ? (AaD8 ) 2 [0.33, 0.78].
When the commonly used prediction threshold of 0.5 is applied,
one will get an inconsistent prediction of the user D’s preference
over item 8 , since ? (AaD8 = 1) = 0.78 implies user D will prefer the
item 8 , while ? (AaD8 = 1) = 0.33 not. Obviously, the distortion will
be even larger when directly ranking items according to ? (AaD8 = 1)
when its identi�cation cannot be guaranteed.

4 METHOD
In this section, we show how proximal causal inference [26] can
help ensure the identi�cation of user’s counterfactual feedback
? (AaD8 ). We start by showing that with a proxy variable (e.g., user
features), one can identify ? (AaD8 ) in Example 3.1. We then propose
a feedback-model-agnostic framework iDCF, for the identi�cation
of user’s counterfactual feedback with unmeasured confounders in
general recommendation scenarios with a theoretical guarantee.

4.1 Framework
A natural question following Example 3.1 is: How to �x the identi�-
cation issue of ? (AaD8 ) so as to predict users’ counterfactual feedback
uniquely and accurately? Intuitively, if more information about the
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unmeasured confounder can be provided, i.e., more constraints in
Eq. (4), ? (AaD8 ) can be uniquely determined, which motivates the
usage of proximal causal inference [26].

Inspired by the above intuition, we reformulate the recommen-
dation problem with the unmeasured confounder from the view
of proximal causal inference. Speci�cally, we assume that one can
observe additional information of user D, called proxy variableFD ,
which is directly a�ected by the unmeasured confounder zD and
independent of the feedback AD8 given the unmeasured confounder
zD and the exposure vector aD , i.e.,:

wD = 6(zD ),wD ? AD8 | (zD , aD ),
where 6 is an unknown function. Fortunately, in the recommen-
dation scenario, such a proxy variable can be potentially accessed
through the user’s features, including user pro�les summarized
from interaction history. For example, when the unmeasured con-
founder zD is the user’s socio-economic status, which usually can-
not be directly accessed, possibly due to privacy concerns, one can
take the proxy variable as the average price of items that the user
recently purchased, which is pretty helpful in inferring the user’s
socio-economic status since high consumption often implies high
socio-economic status. Moreover, such a proxy variable will not di-
rectly a�ect the user’s feedback if the user’s socio-economic status
is already given.

We �rst show that the user’s counterfactual feedback ? (AaD8 ) in
Example 3.1 can be identi�ed with a proxy variablewD .

Example 4.1 (Success in identifying ? (AaD8 ) with proxy variable).
Following the settings in Example 3.1, we introduce an observable
proxy variable FD that indicates the user’s consumption level af-
fected by the socio-economics status ID in the recommendation
platform, the corresponding causal graph is shown in Figure 2b. We
assumeFD is a Bernoulli random variable with mean ` (zD ) 2 (0, 1)
andFD is correlated with ID condition on aD .

Similar to Example 3.1, ? (AD8 = 1|a,FD ), the probability that user
D will give positive feedback to item 8 with given exposure status a
and consumption levelFD , can be inferred from the given dataset,
and ? (ÎD |a,FD ) is assumed to be uniquely determined by factor
models. Again, for the ease of illustration, we denote cAD8=1 |a,F :=
? (AD8 = 1|aD = a,FD = F) and cÎD=1 |a,F := ? (ÎD = 1|aD = a,FD =
F). Now, while there are still four unknown entries {?IA |0, I, A 2
{0, 1}} as in Eq. (4), the number of constraints increases from three
to four with the two conditional marginal distributions cAD8=1 |a,F=0
and cAD8 |a,F=1, i.e.,Õ

I
Õ
A ?IA |a = 1,

Õ
I ?I1 |a

cÎD=I |a,F=1
cÎD=I |a

= cAD8=1 |a,F=1,Õ
A ?1A |a = cÎD=1 |a,

Õ
I ?I1 |0

cÎD=I |a,F=0
cÎD=I |a

= cAD8=1 |a,F=0 .
(6)

The following lemma shows the identi�cation result of ? (AaD8 ).
L���� 4.2. There exists a unique solution of {?IA |0, I, A 2 {0, 1}}

from Eq. (6), leading to the identi�cation of the potential outcome
? (AaD8 ) calculated from Eq. (2).

General framework of identifying the user’s counterfactual
feedback ? (AaD8 ) with proxy variables. Next, we show how to
identify ? (AaD8 ) with proxy variables in general. Observing that

? (AaD8 ) = ⇢ẑD [? (AD8 |a, ẑD )] =
π
z
? (ẑD = z)? (AD8 |a, ẑD = z)3z, (7)

Figure 3: The framework of the proposed method iDCF.
the key is to infer ? (ẑD ) and ? (AD8 |a, ẑD ), yielding the following
two-step procedure of the proposed method iDCF:
• Learning Latent Confounder: This stage aims to learn a latent
confounder ẑD with the help of proxy variables, such that the
learned ẑD is equivalent to the true unmeasured confounder zD up
to some transformations [9, 17] and can provide additional con-
straints to infer the user’s feedback AD8 , which cannot be achieved
by the substitute confounder in Deconfounder. Speci�cally, we
aim to learn its prior distribution, i.e., ? (ÎD ). Since

? (ẑD = I) = ⇢aD ,wD [? (ẑD |aD ,wD )], (8)

and ? (aD ,wD ) is measured from the dataset, thus the main chal-
lenge is to learn ? (ÎD |aD ,wD ), which can be learned by recon-
structing the exposure vector aD based solely onwD , since:

? (aD |wD ) =
π
z
? (aD |ẑD = z)? (ẑD = z |aD ,wD )3z. (9)

For example, we can apply the widely-used iVAE [9] model, then
? (ẑD |aD ,wD ) and ? (aD |ẑD ) are estimated by the encoder and the
decoder respectively.

• Feedback with given latent confounder: This stage aims to
learn ? (AD8 |aD , ẑD ), i.e., user D’s feedback on item 8 under the
�xed exposure vector aD and latent confounder ẑD . With the
help of ? (ẑD |aD ,wD ) learned in the �rst stage, one can infer it by
directly �tting the observed users’ feedback ? (AD8 |aD ,wD ), since:

? (AD8 |aD ,wD ) =
π
I
? (AD8 |ÎD = I, aD )? (ÎD = I |aD ,wD )3I. (10)

Then the potential outcome (i.e., the user’s counterfactual feed-
back) distribution ? (AaD8 ) is identi�ed by applying Eq. (7). The fol-
lowing theorem shows the general theoretical guarantee on identi-
�cation of ? (AaD8 ) through the aforementioned two-step procedure.

T������ 4.3 (I������������� ���� ����� �������� [17]). Un-
der the consistency, ignorability, positivity, exclusion restriction, equiv-
alence, and completeness assumptions, for any latent joint distribution
? (aD , ẑD |wD ) that solves ? (aD |wD ) =

Ø
z ? (aD , ẑD = z |wD )3z, there

exists a unique solution ? (AD8 |ẑD , aD ) to the equation Eq. (10) and the
potential outcome distribution is identi�ed by Eq. (7).

R����� 1 (A���� �����������). Note that Theorem 4.3 relies
on several assumptions: consistency, ignorability, positivity, exclusion
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restriction, equivalence, and completeness. The �rst 3 assumptions are
standard assumptions in causal inference [27, 34]. Informally, exclu-
sion restriction requires the proxy variable to be independent of the
user’s feedback conditioned on the confounder and exposure, which
can be reasonable in a recommendation system since the proxy vari-
able (e.g., user’s consumption level) is mainly used to implicitly infer
the hidden confounder (e.g., user’s income) that directly a�ects user’s
feedback. Equivalence requires the unmeasured confounder can be
identi�ed from the dataset up to a one-to-one transformation, which is
also feasible with various factor models [9, 13]. Completeness requires
that the proxy variable contains enough information to guarantee
the uniqueness of the statistic about the hidden confounder, which
can also be feasible in recommendation scenarios since the variability
in the unmeasured confounders (e.g., user’s socio-economics status)
is usually captured by variability in the user features (e.g., user’s
consumption level).

4.2 Practical Implementation
Next, we describe how the proposed iDCF implements the identi�-
cation steps described in Section 4.1 practically. We need to specify:
• Training Stage: (1) How to learn the latent confounder, i.e.,
? (ẑD ) in Eq. (8)? As discussed in Section 4.1, the main challenge
is to learn ? (ÎD |aD ,wD ). (2) How does our method learn users’
feedback with the given latent confounder, i.e., ? (AD8 |aD , ẑD )?

• Inference Stage. With ? (ẑD ) and ? (AD8 |aD , ẑD ) learned in the
training stage, how does the proposed iDCF framework infer the
unbiased feedback of users following Eq. (7)?

Learning Latent Confounder.We use iVAE [9] to learn the latent
confounder, since it is widely used to identify latent variables up to
an equivalence relation (see the De�nition 2 in [9]) by leveraging
auxiliary variables which are equivalent to proxies. Speci�cally,
we simultaneously learn the deep generative model and approxi-
mate posterior @q (ẑD |aD ,wD ) of the true posterior ?\ (ẑD |aD ,wD )
by maximizing L(\ ,q), which is the evidence lower bound (ELBO)
of the likelihood log ?\ (aD |wD ):

⇢ [log ?\ (aD |wD )] � L(\ ,q) :=
=⇢ [⇢@q (ẑD |aD ,wD ) [log?\ (ẑD |wD ) � log@q (ẑD |aD ,wD )]|                                                              {z                                                              }

�

+ ⇢@q (ẑD |aD ,wD ) [log?\ (aD |ẑD )]|                                  {z                                  }
� �

] .
(11)

where according to the causal graph in Figure 2b, log?\ (aD , ẑD |wD )
is further decomposed as follows:

log ?\ (aD , ẑD |wD ) = log ?\ (aD |ẑD ,wD ) + log?\ (ẑD |wD )
= log?\ (aD |ẑD ) + log?\ (ẑD |wD ).

(12)

Following [9], we choose the prior ?\ (ẑD |wD ) to be a Gaussian
location-scale family, and use the reparameterization trick [11] to
sample ÎD from the approximate posterior @q (ẑD |aD ,wD ) as

?\ (ẑD |wD ) := # (`F (wD ), EF (wD )),
@q (ẑD |aD ,wD ) := # (`0F (aD ,wD ), E0F (aD ,wD )),

(13)

where `F , EF , `0F , E0F are modeled by 4 di�erent MLP models.
To this end, the calculation of the expectation � of Eq. (11) can be

converted to the calculation of the Kullback-Leibler divergence of
two Gaussian distributions:

⇢@q (ẑD |aD ,wD ) [log?\ (ẑD |wD ) � log@q (ẑD |aD ,wD )]
= �  !(# (`0F (aD ,wD ), E0F (aD ,wD ),# (`F (wD ), EF (wD ))) .
As for � � , since the hidden confounder directly a�ects each ele-

ment of the exposure vector, we use a factorized logistic model as
?_ (aD |zD ), i.e., ?_ (aD |zD ) =

Œ=
8=1 ⌫4A=>D;;8 (aD8 |zD ), which is also

modeled by a MLP `I (z). Then the log-likelihood log ?\ (aD |ẑD )
becomes the negative binary cross entropy:

log?\ (aD |ẑD ) =
=’
8=1

aD8 log(`I (zD )8 ) + (1 � aD8 ) log(1 � `I (zD )8 ) .

Then, through maximizing Eq. (11), we are able to obtain the
approximate posterior of latent confounder @q (ẑD |aD ,wD ).
Feedback with given latent confounder. As shown in Eq. (9),
with @q (ẑD |aD ,wD ) estimated through iVAE, the user’s feedback
on item 8 with the latent confounder ẑD , i.e., ? (AD8 |aD , ẑD ), can be
learned by �tting a recommendation model on the observed users’
feedback. Following the assumption in Section 3.1 where AaD8 is only
a�ected by the exposure of item 8 to user D, we use a point-wise
recommendation model 5 (D, 8, zD ;[) parameterized by [ to esti-
mate ? (AD8 |aD , ẑD ). Speci�cally, we adopt a simple additive model
5 (D, 8, ẑD ;[) = 51 (D, 8) + 52 (ẑD , 8) that models the user’s intrinsic
preference and the e�ect of the latent confounder separately. The
corresponding loss function is:

L8⇡⇠� ([) =
1
|D|

’
(D,8 )2D

; (⇢@q (ẑD |aD ,wD ) [5 (D, 8, ẑD ;[)], AD8 ),

(14)
where ; (·, ·) is one of the commonly-used loss functions for recom-
mendation systems, e.g., MSE loss and BCE loss.
Inference Stage. In practice, for most real-world recommenda-
tion datasets, the user’s featurewD is invariant in the training set
and test set. Therefore, identifying ? (AaD8 ) is equivalent to identify-
ing ? (AaD8 |wD ) since ? (AaD8 ) =

Ø
F ? (A

a
D8 |wD = F)? (wD = F)3F and

? (wD = F) = 1 for those speci�c F associated with user D. The
corresponding identi�cation formula becomes:

? (AaD8 |wD ) =
π
z
? (ẑD = z |wD )? (AD8 |a, ẑD = z)3z

= ⇢ẑD |wD
[? (AD8 |a, ẑD )],

(15)

where ? (AD8 |a, ẑD = z) is estimated by the learned recommenda-
tion model 5 (D, 8, zD ;[) and ? (ẑD = z |wD ) is approximated by the
encoder @q (ẑD |aD ,wD ).

In summary, we �rst apply iVAE to learn the posterior distri-
bution of the latent confounder ? (ÎD |aD ,wD ) for each user D, then
leverage it to learn the user’s feedback estimator 5 (D, 8, zD ;[) in
the training phase. Finally, we apply Eq. (15) to predict the decon-
founded feedback in the inference phase. The pseudo-code of iDCF
is shown in Algorithm 1.

5 EXPERIMENTS
In this section, we conduct experiments to answer the following
research questions:
• RQ1 Does the proposed iDCF outperform existing deconfound-
ing methods for debiasing recommendation systems?
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Table 1: The statistic of Coat, Yahoo!R3, and KuaiRand.

Dataset #User #Item #Biased Data #Unbiased Data
Coat 290 300 6,960 4,640

Yahoo! R3 5,400 1,000 129,179 54,000
KuaiRand 23,533 6,712 1,413,574 954,814

• RQ2What is the performance of iDCF under di�erent confound-
ing e�ects and dense ratios of the exposure matrix?

• RQ3 How does the identi�cation of latent confounders impact
the performance of iDCF?

5.1 Experiment Settings
Dataset. Following previous work [4, 29, 30], we perform experi-
ments on three real-world datasets: Coat 3, Yahoo!R3 4 andKuaiRand5
collected from di�erent recommendation scenarios. Each dataset
consists of a biased dataset of normal user interactions, and an
unbiased uniform dataset collected by a randomized trial such that
users will interact with randomly selected items. We use all biased
data as the training set, 30% of the unbiased data as the validation
set, and the remaining unbiased data as the test set. For Coat and
Yahoo!R3, the feedback from a user to an item is a rating ranging
from 1 to 5 stars. We take the ratings � 4 as positive feedback, and
others as negative feedback. For KuaiRand, the positive samples are
de�ned according to the signal "IsClick" provided by the platform.

Moreover, to answer RQ2 and RQ3, we also generate a synthetic
dataset with groundtruth of the unmeasured confounder known
for in-depth analysis of the iDCF .
Baselines.We compare our method 6 with the corresponding base
models and the state-of-the-art deconfounding methods that can
alleviate the confounding bias in recommendation systems in the
presence of unmeasured confounders.
• MF [12] & MF with feature (MF-WF). We use the classical Matrix
Factorization (MF) as the base recommendation model. Since our
method utilizes user features, for a fair comparison, we consider
MF-WF, a variant of MF model augmented with user features.

• DCF [29]. Deconfounder (DCF) addresses the unmeasured con-
founder by learning a substitute confounder to approximate the
true unmeasured confounder and applying the g-formula for
debiasing. However, as discussed before, it fails to guarantee
the identi�cation of users’ feedback, leading to the inconsistent
prediction of users’ feedback.

• IPS [23] & RD-IPS [4]. IPS is a classical propensity-based decon-
founding method that ignores the unmeasured confounder and
directly leverages the exposure to estimate propensity scores to
reweight the loss function. RD-IPS is a recent IPS-based decon-
founding method that assumes the bounded confounding e�ect
of the unmeasured confounders to derive bounds of propensity
scores and applies robust optimization for robust debiasing. The
implementation of the two methods leverages a small proportion
of unbiased data to get more accurate propensity scores.

3https://www.cs.cornell.edu/ schnabts/mnar/
4https://webscope.sandbox.yahoo.com/
5https://kuairand.com/
6https://github.com/BgmLover/iDCF

• InvPref [30]. InvPref assumes the existence of multiple envi-
ronments as proxies of unmeasured confounders and applies
invariant learning [1, 2] to learn the user’s invariant preference.

• DeepDCF-MF. DeepDCF [38] extends DCF by applying deepmod-
els and integrating the user’s feature into the feedback prediction
model to control the variance of the model. For a fair comparison,
we adapt their model with MF as the backbone model.

• iDCF-W. iDCF-W is a variant of iDCF that does not leverage proxy
variables. We adopt VAE [11] to learn the substitute confounder
in such a scenario, with other parts staying the same with iDCF.

Implementation details. Due to space limitations, please refer to
Appendix B.

5.2 Performance Comparison (RQ1)
The experimental results on the three real-world datasets are shown
in Table 2. We can observe that:
• The proposed iDCF consistently outperforms the baselines with
statistical signi�cance suggested by low p-values w.r.t. all the
metrics across all datasets, showing the gain in empirical perfor-
mance due to the identi�ability of counterfactual feedback by
inferring identi�able latent confounders. This is further veri�ed
by experimental results in the synthetic dataset (see Section 5.3).

• DCF, DeepDCF-MF, iDCF-W and iDCF achieve better perfor-
mance than the base models (MF and MF-WF) in Yahoo!R3 and
KuaiRand. This implies that leveraging the inferred hidden con-
founders to predict user preference can improve the model per-
formance when the sample size is large enough. Moreover, deep
latent variable models (VAE, iVAE) perform better than the sim-
ple Poisson factor model in learning the hidden confounder with
their ability to capture nonlinear relationships between the treat-
ments and hidden confounders.

• However, the poor performance of DeepDCF-MF, iDCF-W, and
DCF in Coat shows the importance of the identi�cation of the
feedback through learning the identi�able latent confounders.
While the proposed iDCF provides the guarantee on the identi�-
cation of the counterfactual feedback in general, these methods
cannot guarantee the identi�cation of the feedback. Therefore,
iDCF outperforms DeepDCF-MF in all cases, even though they
take the same input and use similar MF-based models for feed-
back prediction.

• MF-WF slightly outperforms MF in all cases, showing that in-
corporating user features into the feedback prediction model
improves the performance. Moreover, DeepDCF-MF outperforms
iDCF-W in all datasets except Yahoo!R3. Note that DeepDCF-MF
incorporates user features into the feedback prediction model
while iDCF-W does not. This implies that the e�ectiveness of
incorporating user features into feedback prediction depends on
whether the user features are predictive of the user preference.
For example, in Yahoo!R3, the user features are from a question-
naire that contains questions about users’ willingness to rate
di�erent songs that might in�uence their exposure but are not
directly related to their feedback. DeepDCF-MF directly incor-
porates such user features into the feedback prediction model,
which introduces useless noise. This may explain why DeepDCF-
MF is outperformed by iDCF-W in this dataset.
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Table 2: Recommendation performances on Coat, Yahoo!R3 and KuaiRand. The p-value under t-test between iDCF and the best
baseline on each dataset is also provided.

Datasets Coat Yahoo!R3 KuaiRand
NDCG@5 RECALL@5 NDCG@5 RECALL@5 NDCG@5 RECALL@5

MF 0.5524 ± 0.0144 0.5294 ± 0.0227 0.5629 ± 0.0100 0.7129 ± 0.0106 0.3748 ± 0.0018 0.3247 ± 0.0013
MF-WF 0.5529 ± 0.0101 0.5341 ± 0.0143 0.5649 ± 0.0073 0.7144 ± 0.0086 0.3762 ± 0.0014 0.3255 ± 0.0013
IPS 0.5450 ± 0.0161 0.5260 ± 0.0191 0.5490 ± 0.0058 0.6967 ± 0.0096 0.3696 ± 0.0011 0.3224 ± 0.0009

RD-IPS 0.5448 ± 0.0147 0.5240 ± 0.0157 0.5550 ± 0.0051 0.7020 ± 0.0068 0.3690 ± 0.0016 0.3207 ± 0.0011
InvPref 0.5405 ± 0.0135 0.5295 ± 0.0225 0.5928 ± 0.0038 0.7414 ± 0.0052 0.3778 ± 0.0020 0.3283 ± 0.0014
DCF 0.5509 ± 0.0093 0.5329 ± 0.0152 0.5675 ± 0.0047 0.7116 ± 0.0059 0.3751 ± 0.0015 0.3243 ± 0.0012

DeepDCF-MF 0.5373 ± 0.0066 0.5141 ± 0.0113 0.6395 ± 0.0044 0.7729 ± 0.0056 0.4078 ± 0.0013 0.3491 ± 0.0010
iDCF-W 0.5255 ± 0.0137 0.4971 ± 0.0183 0.6410 ± 0.0029 0.7712 ± 0.0033 0.4072 ± 0.0009 0.3481 ± 0.0011

iDCF (ours) 0.5744 ± 0.0122 0.5504 ± 0.0126 0.6455 ± 0.0023 0.7837 ± 0.0035 0.4093 ± 0.0004 0.3513 ± 0.0009
p-value 74�4 24�2 24�3 14�4 54�3 14�4

5.3 In-depth Analysis with Synthetic Data (RQ2
& RQ3)

Our method relies on the inference of the unmeasured confounder.
However, in real-world datasets, the ground truth of unmeasured
confounders is inaccessible. To study the in�uence of learning iden-
ti�able latent confounders on the recommendation performance,
we create a synthetic dataset (see Appendix B for details) to provide
the ground truth of the unmeasured confounder.

There are three important hyper-parameters in the data genera-
tion process: U controls the density of the exposure vector, a larger
U means a denser exposure vector. V is the weight of the confound-
ing e�ect of the user’s preference, a larger V means the confounder
has a stronger e�ect on the user’s feedback. W controls the weight
of the random noise in the user’s exposure, a larger W means the
user’s exposure is more random. Similar to the real-world datasets,
for each user, we randomly select 15 items and collect these data
as the unbiased dataset. The data pre-processing is the same as the
experiments on real-world dataset in Section 5.1-5.2.
RQ2: Performance of iDCF under di�erent confounding ef-
fects and dense ratio of the exposure matrix. We conduct
experiments on the simulated data to study the robustness of our
method. The results show that iDCF is robust and can still perform
well under varying confounding e�ects and dense ratios.
E�ect of confounding weight. We �x the dense ratio U = 0.1
and the exposure noise weight W = 0 , then vary the confounding
weight V . Recall a larger V means a stronger confounding e�ect.

The result is shown in Table 3 and we �nd that:
• The proposed method iDCF outperforms the baselines in all cases
with small standard deviations.

• As the confounding e�ect V increases, the performance gap be-
tween iDCF and the best baselines becomes more signi�cant,
measured by both the mean NDCG@5, Recall@5 and the p-value.
This justi�es the e�ectiveness of deconfounding of iDCF .

E�ect of density of exposure vector. Next, we investigate the
performance of iDCF under di�erent dense ratios U by �xing V =
2.0,W = 0. Due to space limitations, we only report NDCG@5 of the
best four methods in Table 3 in Figure 4a. It can be found that:
• Overall, all the recommendation methods achieve better perfor-
mances with less sparse data as U increases.

• Similar to the observations in the Coat dataset, iDCF is more
robust than the baselines when exposure becomes highly sparse.
At the same time, iDCF-W and DeepDCF-MF achieve very poor
performance with highly sparse data with small U . This further
veri�es the e�cacy of learning identi�able latent confounders.

(a) (b)
Figure 4: Recommendation performance on the simulated
datasets with di�erent (a) exposure density ratios and (b) ex-
posure noise weights. A larger U means denser user exposure.
A larger W means the exposure contains more random noise.

(a) Ground truth. (b) iDCF (ours). (c) iDCF-W.

Figure 5: The visualization of the true unmeasured con-
founder and the learned latent confounders using iDCF and
iDCF-W. The colors correspond to the user’s featurewD .
RQ3: In�uence of learning identi�able latent confounders.
The synthetic dataset enables us to visualize the true unmeasured
confounder and study the in�uence of the identi�ability of the
learned confounders on the model performance. Here, we show the
identi�cation of the latent confounder by visualization, and conduct
experiments to study the robustness of iDCF against di�erent expo-
sure noise weights W with �xed U = 0.1 and V = 2.0. The empirical
results show that our method can better identify the unmeasured
confounder, leading to more accurate feedback predictions.
Visualization of the learned latent confounder. Figure 5a shows
the conditional distributions of the two-dimensional ground truth
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Table 3: Recommendation performances on the simulated datasets with di�erent confounding e�ects. A larger V results in a
stronger confounding e�ect. The p-value under t-test between iDCF and the best baseline is also reported.

Datasets V = 1.0 V = 2.0 V = 3.0
NDCG@5 RECALL@5 NDCG@5 RECALL@5 NDCG@5 RECALL@5

MF 0.7911 ± 0.0022 0.6724 ± 0.0020 0.8029 ± 0.0018 0.6593 ± 0.0018 0.8217 ± 0.0026 0.6423 ± 0.0023
MF-WF 0.7914 ± 0.0021 0.6716 ± 0.0020 0.8028 ± 0.0023 0.6588 ± 0.0019 0.8220 ± 0.0030 0.6414 ± 0.0029
DCF 0.7904 ± 0.0019 0.6720 ± 0.0013 0.8024 ± 0.0025 0.6593 ± 0.0029 0.8223 ± 0.0031 0.6423 ± 0.0035
IPS 0.7890 ± 0.0026 0.6706 ± 0.0017 0.7982 ± 0.0014 0.6552 ± 0.0020 0.8159 ± 0.0038 0.6379 ± 0.0028

RD-IPS 0.7878 ± 0.0058 0.6694 ± 0.0029 0.8001 ± 0.0022 0.6569 ± 0.0027 0.8193 ± 0.0026 0.6396 ± 0.0021
InvPref 0.7953 ± 0.0027 0.6761 ± 0.0033 0.7985 ± 0.0029 0.6556 ± 0.0036 0.8144 ± 0.0051 0.6358 ± 0.0039

DeepDCF-MF 0.7917 ± 0.0017 0.6715 ± 0.0019 0.8060 ± 0.0032 0.6601 ± 0.0029 0.8220 ± 0.0026 0.6421 ± 0.0028
iDCF-W 0.7901 ± 0.0010 0.6703 ± 0.0015 0.8050 ± 0.0029 0.6590 ± 0.0040 0.8226 ± 0.0015 0.6420 ± 0.0008

iDCF (ours) 0.7973 ± 0.0023 0.6735 ± 0.0020 0.8168 ± 0.0013 0.6683 ± 0.0015 0.8368 ± 0.0019 0.6549 ± 0.0025
p-value 14�1 64�2 24�8 64�7 84�13 14�9

Table 4: Themean correlation coe�cients (MCC) between the
true confounder and the latent confounders learned by iDCF
and iDCF-Wmodel. A larger MCCmeans a larger correlation
with the true unmeasured confounder.

Model W = 0. W = 5.0 W = 10.0 W = 15.0 W = 20.0
iDCF-W 0.6050 0.3374 0.1023 0.1001 0.0682

iDCF (ours) 0.8394 0.8052 0.6955 0.6914 0.6062
of the unmeasured confounder % (zD |wD ) with the exposure noise
weight W = 0. We use iDCF and iDCF-W to learn the corresponding
latent confounders, respectively, and we plot the posterior distri-
butions ? (ẑD |aD ,wD ) and ? (ẑD |aD ) in Figures 5b and 5c. It can be
shown that iDCF can identify a better latent confounder than iDCF-
W does, which helps to explain the observation that iDCF is better
than iDCF-W in previous experiments.
Impact of the exposure noise on the learned confounder.Next,
we vary the exposure noise weight W to study the impact of the W on
the learned latent confounder. The intuition behind this experiment
is that as the weight of the noise increases, there will be more
randomness in the exposure vectors, making it more challenging
to infer the unmeasured confounders.

To assess the accuracy of the learned confounders in approximat-
ing the ground truth, we compute the mean correlation coe�cients
(MCC) between the learned confounders and the ground truth.
MCC is a widely accepted metric in the literature for evaluating
the identi�ability of learned latent variables [9]. The results are
presented in Table 4. As observed in the table, the results suggest
that as the noise level increases, it becomes increasingly di�cult
to approximate the ground truth using the learned confounders,
while iDCF is much more robust regarding to the increasing noise
level, compared to iDCF-W.
Impact of exposure noise on the feedback prediction.More-
over, we conduct experiments to investigate how the performance
of iDCF varies with the exposure noise weight W . We choose MF
and iDCF-W as the baselines because (1) MF is an empirically sta-
ble recommendation model and (2) iDCF-W is the same as iDCF
except it does not guarantee the identi�ability of the learned con-
founders. We report NDCG@5 in Figure 4b. The results indicate
that, in general, as the exposure noise increases, it becomes more
challenging to identify latent confounders, which in turn makes
it more di�cult to predict counterfactual feedback. These results,

along with those in Table 4, show that a better approximation of
the ground truth confounders often leads to better estimation of
the true user feedback.

6 CONCLUSION AND FUTUREWORK
In this work, we studied how to identify the user’s counterfac-
tual feedback by mitigating the unmeasured confounding bias in
recommendation systems. We highlight the importance of iden-
ti�cation of the user’s counterfactual feedback by showing the
non-identi�cation issue of the Deconfounder method, which can
�nally lead to inconsistent feedback prediction. To this end, we
propose a general recommendation framework that utilizes prox-
imal causal inference to address the non-identi�cation issue and
provide theoretical guarantees for mitigating the bias caused by
unmeasured confounders. We conduct extensive experiments to
show the e�ectiveness and robustness of our methods in real-world
datasets and synthetic datasets.

This work leverages proxy variables to infer the unmeasured
confounder and users’ feedback. In the future, we are interested in
trying more feasible proxy variables (e.g., item features) and how
to combine di�erent proxy variables to achieve better performance.
It also makes sense to apply our framework to sequential recom-
mendations and other downstream recommendation scenarios (e.g.,
solving the challenge of �lter bubbles).
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A ALGORITHM

Algorithm 1: Identi�able Deconfounder (iDCF)
Input : {aD ,wD },8D 2 U, {AD8 },8(D, 8) 2 D

1 Training phase:
// Learning Latent Confounder

2 Calculate the latent confounder distribution @q (ẑD |aD ,wD )
for each user D by maximizing Eq. (11);

// Feedback with given latent confounder
3 Initialize a recommendation model 5 (D, 8, ẑD ;[) with

parameters [;
4 while Stop condition is not reached do
5 Fetch (D, 8) from D;
6 Minimize the loss Eq. (14) to optimize [;
7 end
8 Inference phase:
9 Calculate the prediction of user’s feedback ÂD8 according to

Eq. (15) for each (D, 8) pair.

B EXPERIMENT DETAILS
Data Generation Process. The simulated dataset consists of 2,000
users and 300 items. For each userD, the unmeasured confounder zD
is a two-dimensional representation of the user’s socio-economic
status sampled from a mixture of �ve independent multivariate
Gaussian distributions. The proxy variable FD 2 {1, 2, 3, 4, 5} is
a one-dimensional categorical variable indicating the user’s con-
sumption level, which is determined by zD such that the prior of
FD is uniformly distributed and the conditional distribution of zD
follows:

z:D |FD ⇠ # (`: (FD ),f2: (FD )),: 2 {1, 2}, (16)

where zD: is the j-th element of zD .
The exposure of the pair (D, 8) is generated by

0D8 ⇠ ⌫4A=>D;;8 (68 (zD )),
68 (z) = U · B86<>83 (!40:~'4;D (zS4I8 ) + Wn)

(17)
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where" is a 2 ⇥ 2 matrix, and each element of" is sampled from
a uniform distribution. 4I8 is a randomly generated item-wise 2-
dimensional embedding vector, U is a hyper-parameter that controls
the sparsity of the exposure vector aD , n is random noise, and W is
the corresponding weight of the noise.

The true feedback of user D on item 8 is AD8 = 5= (4)D 48 + VI)D 4I8 +
nD8 ), where 5= : R! {1, 2, 3, 4, 5} is a normalization function, nD8
is an i.i.d. random noise, and V is a hyper-parameter controlling the
weight of the confounding e�ect.
Implementation Details.
Outcome Model. Our method is model-agnostic in the sense that it
works with any outcome prediction model. For ease of comparison,
we follow the recent work on unmeasured confounders [29], and
adopt matrix factorization (MF) as the backbone model. Speci�cally,
we take 5 (D, 8, ẑD ;[) = 51 (D, 8) + 52 (ẑD , 8) in Eq. (14), where

51 (D, 8) = e)D e8 + 1D + 18 , 52 (ẑD , 8) = ẑ)D c8 , (18)

where e8 , c8 are di�erent embeddings of item 8 , eD is embedding
representation of user D, 1D ,18 are the user preference bias term
and item preference bias term, respectively. During training, ẑD is
sampled from @q (ẑD |aD ,wD ) to approximate the integral in Eq. (9).

In the inference phase, we direct take z̄D = ⇢@q (ẑD |aD ,wD ) [ẑD ]
and estimate the user’s feedback on item 8 as follows:

ÂD8 = e)D e8 + z̄)D c8 + 1D + 18 . (19)

Hyper-parameter search. For all recommendation models, we use
grid search to select the hyper-parameters based on the model’s per-
formance on the validation dataset. The learning rate is searched
from {1e-3, 5e-4, 1e-4, 5e-5, 1e-5}, and the weight decay is cho-
sen from {1e-5, 1e-6}. We adopt their codes for the baselines with
public implementation and follow the suggested range of hyper-
parameters. The public implementation of IPS and RD-IPS [4] relies
on a small set of unbiased data to obtain the propensity scores, we

follow their procedure and extract the same proportion of unbiased
data from the validation set. For a fair comparison, we use ADAM
[10] for the optimization of all models.
Evaluation Metrics are #⇡⇠⌧@ and '420;;@ . We report the
average value and standard deviation for each method with 10
di�erent random seeds. The p-value of the T-test between our
method and the best baseline is also reported.

C SUPPLEMENTARY PROOF
P���� �� L���� 4.2. There are 4 unknown values {?IA |0, I, A 2

{0, 1}} with 4 linear constraints:

(1)ÕI
Õ
A ?IA |a = 1, (2)ÕI ?I1 |a

cÎD=I |a,F=1
cÎD=I |a

= cAD8=1 |a,F=1,

(3)ÕA ?1A |a = cÎD=1 |a, (4)ÕI ?I1 |0
cÎD=I |a,F=0
cÎD=I |a

= cAD8=1 |a,F=0 .

(20)
By solving (1) and (3):

?10 = cÎD=1 |a � ?11, ?00 = 1 � ?01 � cÎD=1 |a . (21)
Then it remains to solve ?01 and ?11 from (2) and (4). and the unique
solution from (2) and (4) requires that

cÎD=0 |a,F=1
cÎD=0 |a

cÎD=1 |a,F=0
cÎD=1 |a

�
cÎD=1 |a,F=1
cÎD=1 |a

cÎD=0 |a,F=0
cÎD=0 |a

< 0

cÎD=1 |a,F=1 (1 � cÎD=1 |a,F=0) � cÎD=1 |a,F=0 (1 � cÎD=0 |a,F=1) < 0
cÎD=1 |a,F=1 � cÎD=1 |a,F=0 < 0.

(22)

SinceFD is assumed to be correlated with ID condition on a, and
ÎD is learned from the unique factorization ? (aD ), which means ÎD
is also correlated withFD condition on a.

Therefore, the condition in Eq. (22) is satis�ed, i.e., {?IA |0, I, A 2
{0, 1}} have a unique solution. And AaD8 is also uniquely determined
by Eq. (2).

⇤
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