Check for
Updates

Meta Policy Learning for Cold-Start Conversational
Recommendation

Zhendong Chu
University of Virginia
Charlottesville, VA, USA
zc9uy@virginia.edu

Bo Long
JD.COM
Beijing, China
bo.long@jd.com

ABSTRACT

Conversational recommender systems (CRS) explicitly solicit users’
preferences for improved recommendations on the fly. Most exist-
ing CRS solutions count on a single policy trained by reinforcement
learning for a population of users. However, for users new to the
system, such a global policy becomes ineffective to satisfy them, i.e.,
the cold-start challenge. In this paper, we study CRS policy learning
for cold-start users via meta reinforcement learning. We propose to
learn a meta policy and adapt it to new users with only a few trials
of conversational recommendations. To facilitate fast policy adap-
tation, we design three synergetic components. Firstly, we design a
meta-exploration policy dedicated to identifying user preferences
via a few exploratory conversations, which accelerates personalized
policy adaptation from the meta policy. Secondly, we adapt the item
recommendation module for each user to maximize the recommen-
dation quality based on the collected conversation states during
conversations. Thirdly, we propose a Transformer-based state en-
coder as the backbone to connect the previous two components. It
provides comprehensive state representations by modeling compli-
cated relations between positive and negative feedback during the
conversation. Extensive experiments on three datasets demonstrate
the advantage of our solution in serving new users, compared with
arich set of state-of-the-art CRS solutions.

CCS CONCEPTS

« Information systems — Recommender systems; - Comput-
ing methodologies — Markov decision processes.

KEYWORDS

Reinforcement Learning; Conversational Recommendation; Meta
Learning

ACM Reference Format:

Zhendong Chu, Hongning Wang, Yun Xiao, Bo Long, and Lingfei Wu. 2023.
Meta Policy Learning for Cold-Start Conversational Recommendation. In
Proceedings of the Sixteenth ACM International Conference on Web Search and

WSDM ’23, February 27-March 3, 2023, Singapore, Singapore
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9407-9/23/02.
https://doi.org/10.1145/3539597.3570443

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Hongning Wang
University of Virginia
Charlottesville, VA, USA
hw5x@virginia.edu

222

Yun Xiao
JD.COM Silicon Valley R&D Center
Mountain View, CA, USA
xiaoyunl@jd.com

Lingfei Wu

JD.COM Silicon Valley R&D Center

Mountain View, CA, USA
Iwu@email. wm.edu

Data Mining (WSDM °23), February 27-March 3, 2023, Singapore, Singapore.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3539597.3570443

1 INTRODUCTION

While traditional recommendation solutions infer a user’s pref-
erences only based on her historically interacted items [4-6, 18,
33, 34, 43], conversational recommender systems (CRS) leverage
interactive conversations to adaptively profile a user’s preference
[8, 26, 36]. The conversations in CRS focus on questions about
users’ preferences on item attributes (e.g., brands or price range),
in the form of pre-defined question templates [11, 26, 36] or timely
synthesized natural language questions [29, 51]. Through a series
of question answering, a profile about a user’s intended item can
be depicted, even when the user is new to the system [8], i.e., the
cold-start users, which gives CRS an edge in providing improved
recommendations.

Christakopoulou et al. [8] first proposed the idea of CRS. Their
solution focused on deciding what item to ask for feedback; and off-
the-shelf metrics, such as upper confidence bound [1], were lever-
aged for the purpose. Following this line, reinforcement learning
(RL) based methods become the mainstream solution recently for
CRS. Sun and Zhang [36] built a policy network to decide whether
to recommend an item, or otherwise which item attribute to ask
about in each turn of a conversation. However, in these two early
studies, the conversation is terminated once a recommendation is
made, no matter whether the user accepts it or not. Lei et al. [26]
studied multi-round conversational recommendation, where CRS
can ask a question or recommend an item multiple times before the
user accepts the recommendation (considered as a successful con-
versation) or quits (considered as a failed conversation). This is also
the setting of our work in this paper. To better address multi-round
CRS, Lei et al. [27] leveraged knowledge graphs to select more rel-
evant attributes to ask across turns. Xu et al. [45] extend [26] by
revising user embeddings dynamically based on users’ feedback
on attributes and items. And Deng et al. [11] unified the question
selection module and the recommendation module in an RL-based
CRS solution, which simplifies the training of CRS. However, all
aforementioned RL-based methods rely on existing user embed-
dings to conduct conversations and recommendations, which are
not applicable to new users.

Although CRS is expected to address the cold-start problem in
recommendation, by profiling a new user via eliciting her preference
about item attributes, how to acquire the most effective feedback to

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3539597.3570443
https://doi.org/10.1145/3539597.3570443
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3539597.3570443&domain=pdf&date_stamp=2023-02-27

WSDM °23, February 27-March 3, 2023, Singapore, Singapore

With an existing Chinese food lover With a new user

~ ~
s Do you like spicy food? @ Do you like spicy food? g
) L
hd {
([~ Yes! . u Not really. .
Do you like Mapo tofu? @ Do you like beef steak? @
) -
{ ma Of course! A4 1 am afraid not.
o g
I recommend Al recommend Sushi_bar. é
Sichuan Garden. oo
’ u I do not like this one.
‘ aa Sounds good!
Do you like red curry?
o L will give if a fryl] [
aa Many Thanks! J u Lo Conversation continues...

Figure 1: Example of cold-start CRS.

profile a single user still encounters the cold-start problem. More
specifically, due to the heterogeneity of different users’ preferences,
the same policy can hardly be optimal in finding the sequence of
interactions (asking questions or making recommendations) for
all users, especially for those who do not contribute to the policy
training. Consider the example shown in Fig.1, a policy trained
with a population of Chinese food lovers cannot effectively serve
new users who do not have any preferences on Chinese food. Once
the interaction trajectory deviates from those often encountered
during training, the effectiveness of the globally learnt CRS policy
deteriorates, so does the quality of its recommendations.

We attribute this new challenge as cold-start policy learning in
CRS, which is completely non-trivial but unfortunately ignored
in most previous CRS studies. The goal is clear, i.e., adapt a CRS
policy for each new user; but there are at least three main technical
barriers blocking us from the goal. Firstly, how to efficiently adapt
a policy to new users? The tolerance of users about a prolonged
conversation or bad recommendations is limited [9, 10, 15, 28, 35],
since all users wish to get high-quality recommendations with the
least effort (e.g., shorter conversations) [37]. Hence, one cannot
expect a large number of observations for CRS policy learning in
a single user. Secondly, how to effectively explore user preferences
for policy adaptation? As shown in Fig.1, successfully adapting a
CRS policy to a new user depends on the user’s preference, which
however is elicited by the policy itself. This forms a chicken-and-
egg dilemma [31] and adds another layer of consideration when
acquiring user feedback: before identifying what item the user is
looking for, one first needs to figure out what policy best suits for
the inquiry. Thirdly, how to decouple the adaptation of the conver-
sation component and recommendation component in a CRS policy?
The conversation component (i.e., conversational policy) in CRS is
to profile a user by actively eliciting her feedback, while the recom-
mendation component (i.e., item recommender) is to identify the
most relevant recommendations based on the profile. Adaptation
in both components is needed for new users, but the strategy for
adapting them could be different for respective goals.

In this paper, we address the problem of CRS policy learning for
cold-start users via meta reinforcement learning [21, 31, 41], and
name the proposed solution MetaCRS. For the first challenge, we
propose to learn a meta policy for CRS from a population of users
and adapt it to new users with only a few trials of conversational
recommendations. The meta policy can be viewed as a starting
point close to every single user’s personalized policy. It thus builds
the basis for efficient policy adaptation with only a handful of obser-
vations in each new user. Secondly, to acquire the most informative

223

Zhendong Chu, Hongning Wang, Yun Xiao, Bo Long, and Lingfei Wu

feedback for policy adaptation, we design a meta-exploration policy
to identify user preferences via a few exploratory conversations.
Thirdly, in addition to the CRS policy, we also adapt the recom-
mendation module in each user to maximize the recommendation
quality. To support such a decoupled adaptation strategy, we design
a Transformer-based [39] state encoder as the backbone, which
communicates the training signals between the conversation and
recommendation components.

To evaluate the effectiveness of the proposed model, we com-
pared MetaCRS with several state-of-the-art baselines for CRS on
three public datasets. The results strongly demonstrated the advan-
tage of our solution in making satisfactory recommendations to
new users in CRS with a reduced number of conversations. We also
conducted extensive ablation analysis on each proposed component
to inspect its contribution on the improved performance: 1) the
meta-exploration policy elicit informative user feedback for fast
policy adaptation; and 2) the adapted recommendation component
makes better recommendations by cooperating with the adapted
conversation component.

2 RELATED WORKS

Exploration-Exploitation (EE) Trade-off in CRS. CRS take ad-
vantage of conversations with users to elicit their preferences in
real time for improved recommendations. The main research effort
in CRS focuses on addressing the explore-exploit trade-off in collect-
ing user feedback. The first attempt made by Christakopoulou et al.
[8] employed multi-armed bandit models to acquire users’ feedback
on individual items. A follow-up study [47] set an additional bandit
model to select attributes to collect user feedback and employed
a manually crafted function to decide when to ask questions or
make recommendations. Li et al. [30] unified attributes and items
in the same arm space and let a bandit algorithm determine when
to do what. Follow-up works [44, 49] also explored clustered and
knowledge-aware conversational bandits.

Meta learning for recommendation. Meta learning [7, 13] has
been widely used to solve the cold-start problem in recommender
systems. Vartak et al. [38] studied the item cold-start problem (i.e.,
how to recommend new items to users). They proposed two adap-
tation approaches. One learns a linear classifier whose weights
are determined by the items represented to the user before and
adapts the classifiers’ weights for each user. Another one learns
user-specific item representations and adapts the bias terms in
a neural network recommender for the purpose. Lee et al. [25]
separated the representation layer and decision-making layer in a
neural recommendation model, and executed local adaptation on
the decision-making layer for each new user. Zou et al. [52] focused
on interactive item recommendation, where the meta model is opti-
mized by maximizing the cumulative rewards in each user. Kim et al.
[23] deployed meta learning to online update recommender, where
the meta learning rates are adaptively tuned on a per parameter
and instance basis. To the best of our knowledge, we are the first to
propose to tackle with cold-start CRS policy learning using meta
reinforcement learning.

3 PRELIMINARY

In this section, we first formulate the problem of multi-round CRS
as a reinforcement learning problem, and then illustrate the concept

Meta Policy Learning for Cold-Start Conversational Recommendation

of meta reinforcement learning and how we use it to address the
cold-start challenge in CRS.

3.1 Problem Definition

In this work, we study the problem of multi-round conversational
recommendation [26], where CRS can ask questions or make recom-
mendations multiple times before the user accepts the recommenda-
tion or quits the conversation. Similar to traditional recommender
systems, CRS face a set of users U and a set of items V; and we
denote a specific user as u and a specific item as v. Each item v
is associated with a set of pre-defined attributes $,. Attributes
describe basic properties of items, such as movie genres in movie
recommendations and authors in book recommendations.

We formulate the CRS problem by a Markov decision process
(MDP) [11, 20, 27, 46], which can be fully described by a tuple
(S, A, T,R). S denotes the state space, which summarizes the con-
versation between the system and user so far. A denotes the action
space for the system, which includes recommending a particular
item or asking a specific attribute for feedback. 7 : Sx A — S
is the state transition function, and R : S X A — [—Rmax> Rmax]|
is a bounded reward function suggesting a user’s feedback on the
system’s actions. As we focus on meta policy learning for CRS in
this work, how to best define reward is not our objective. We follow
the reward function defined in [11, 26, 27]. In particular, we include
the following rewards: (1) rrec_suc, @ large positive reward when
the recommended item is accepted; (2) ryec fails @ nNegative reward
when the recommended item is rejected; (3) rask suc, a positive
reward when the inquired attribute is confirmed by the user; (4)
Task_fail: @ Negative reward when the inquired attribute is dismissed
by the user; (5) rquit, a large negative reward when the user quits
the conversation without a successful recommendation.

With this formulation, a conversation in CRS can be represented
asd = {(a1,r),...(ar,rr)}, where T is the maximum number of
allowed turns. A conversation (or an episode in the language of
RL, which we will use exchangeablely) will terminate when (1) the
user accepts the recommended item; or (2) the agent runs out of
maximum allowed turns. At each time step ¢, the CRS agent, which
can be fully described by a policy 7 (a;|s;), selects an action a;
based on the current state s;. The training objective of a CRS policy
is to maximize the expected cumulative rewards over the set of
observed episodes D, i.e.,

T
L(m) = —dw%[;m],

where R; = ZtT,:t yT’t’r(at) is the accumulated reward from turn
t to the final turn T, and y € [0, 1] is a discount factor to emphasize
rewards collected in a near term.

3.2 Meta Reinforcement Learning for CRS

Instead of learning a single global policy 7, we propose to learn per-
sonalized policy 7, for each user u (new or existing) to address the
cold-start challenge for CRS. The fundamental reason that almost
all previous works [11, 26, 27] focused on global policy learning
is that they (implicitly) assumed users know all attributes of their
desired items and share the same responses over those attributes;
in other words, user feedback is fully determined by the item. This
assumption is unrealistically strong and naive, since different users

224

WSDM °23, February 27-March 3, 2023, Singapore, Singapore

can describe the same item very differently, because of their dis-
tinct knowledge and preferences. For example, some users choose
a mobile phone for its appearance while others choose it because
of its brand. As a result, a global policy can hardly be optimal for
every single user, especially the new users whose preferences are
not observed during global policy training. In this work, we im-
pose a weaker and more realistic assumption about users’ decision
making by allowing user-specific feedback Rq,, which calls for
personalized policies. Therefore, a personalized policy for user u
should minimize,

E
d~P(Dy)

[i Ru(at)],

t=0

Lu(n) = - (1)
where D, is a collection of conversations from user u and R, (a;) =
ZZ:; yT’t/ ru(ay). To find the best personalized policy 7, (parame-
terized by 6,,) for each new user u, instead of learning from scratch
every time, we choose to learn a meta policy parameterized by 60
and use it as a starting point to look for 8,,. Following the conven-
tion of meta learning, we assume a set of conversations D; (i.e.,
the support set) for policy adaptation , in addition to the set D!
(i.e., the query set) for policy evaluation. Hence, the size of support
set D;, in each user u denotes the conversation budget for us to
find 6, when serving a single user. Given limited tolerance of an
ordinary user to prolonged conversations, a performing solution
should find the optimal 8,, with the size of D; as small as possible.
In the meta-train phase, we conduct local adaptation from the meta
policy on the D;, of the existing users (i.e., training users), and
then evaluate and update the meta policy on training users’ Dy In
the meta-test phase, we test the meta policy on the new users (i.e.,
testing users) by executing local adaptation on their support sets,
and then test the obtained local policy on their query sets.

Exploration stage

Conversational recommendation stage

T Yo

TransGate Policy network

1Signed emb.

Cross gate

hy

5 —;—"Kﬁu(adst)

Attr.
Selection

Peand O O O O

Figure 2: The workflow of MetaCRS training. Each user’s sup-
port set is separated into the exploration stage and conversa-
tional recommendation stage. The last hidden state from the
previous episode is passed to the next episode as its initial
state throughout the course of MetaCRS in each user.

4 METHODOLOGY

In this section, we describe the design of MetaCRS in detail. We first
introduce our two-stage meta policy learning framework designed
for cold-start CRS. Then, we describe the details of the state-based
item recommender, which is separately adapted to maximize the

WSDM °23, February 27-March 3, 2023, Singapore, Singapore

recommendation quality. The Transformer-based state encoder,
which aims to rapidly capture a user’s preference from her both
positive and negative feedback in a conversation, is lastly explained.
Fig.2 shows the overview of MetaCRS.

4.1 Two-stage Meta Policy Learning for CRS

Motivated by the seminal work Model-Agnostic Meta-Learning
(MAML) [13], we propose to first learn a meta CRS policy from a
population of users; and then for each individual user, we adapt
the meta policy to a user-specific policy with only a few trails of
conversational recommendations with the user. We obtain the meta
policy by maximizing the policy adaptation performance in a given
set of training users. Specifically, in each user u, we perform policy
adaptation on her support set D;,, where 0, is initialized with 0
and then updated by optimizing Eq.(1) via gradient descent. The
gradient for Eq.(1) is computed by the REINFORCE [42] algorithm,

T
Vo, Lu(7g,) = ~E|)" Rular) Ve, logmg, (arls)|. @)
t=0

The gradient of the meta policy with respect to 6 (i.e., Vg L, (6y)) is
computed in the same way as Eq.(2), but on the corresponding query
set D, In this way, the meta policy is optimized for generalization,
akin to cross-validation. Note that to exactly compute the gradient
for 0, we need to take a higher-order derivative in Vg £, (0,) with
respect to 6 on the support set as well, since 8y, is a function of 6. In
this work, we followed the the first-order approximation methods
proposed in [13, 32] to simplify the gradient computation.

In meta-learning for supervised learning tasks, e.g., image classi-
fication [13, 32, 40], the support set and query set are predefined
and thus not affected by the learnt models. Therefore, gradient-
based optimization alone is sufficient for meta model learning and
adaptation. But in our problem, what we will observe in D; and
D] are completely determined by the employed policy g, which
however is supposed to be derived from D;, and DY This causes
the so-called chicken-and-egg dilemma [31] for meta policy learning
which we discussed in the introduction, and calls for additional
treatments beyond gradient-based policy optimization.

Potential bias in the currently learnt policy prevents it from being
effective in acquiring the most informative feedback for meta policy
learning and adaptation. Hence, we propose to separate policy adap-
tation in each user into an exploration stage and a conversational
recommendation stage, and design their corresponding policies. To
avoid ambiguity, we refer to the policy for the exploration stage as
the meta-exploration policy (denoted as 7y,), and the policy for the
conversational recommendation stage as the CRS policy (denoted
as g,). This is similar to the explore-then-commit strategy [14, 24]
in bandit literature. But note that our meta-exploration policy is
not personalized, as its sole goal is to quickly identify what kind of
user the system is interacting with. Hence, we choose to estimate
it from the whole set of training users. In particular, we reserve
the first few episodes in each user’s support set for our exploration
stage, denoted as the exploration set D;. The size of Dy, is a hyper-
parameter to be tuned for different CRS applications. D¢ will only
be used to estimate the meta-exploration policy 7, .

In MetaCRS, the meta-exploration policy 7g,, meta CRS pol-
icy 7 and personalized CRS policies {7g, },cqs are realized by
the same RNN-based policy network architecture [12, 19, 41] with

225

Zhendong Chu, Hongning Wang, Yun Xiao, Bo Long, and Lingfei Wu

Gated Recurrent Units (GRUs) [2, 12] to better encode the con-
versation history, but we estimate different parameters for them
respectively. To avoid ambiguity, we will use the learning of meta-
exploration policy 7y, as an illustrating example; and the same
procedure applies to the learning of other policies.

Specifically, at the t-th turn of an episode, we observe a new
state and encode it using a state encoder. We leave the discussion
about our state encoding in Section 4.3. The encoded state s; is
provided as input to the policy network. The output h; of the GRU
is fed to a fully connected layer followed by a softmax function
to produce the action distribution for g, (at|s;). In each user, by
the end of each episode, the GRU’s last output hidden state At ! is
passed to the user’s next episode as its initial state, such that this
user’s conversation history with the system can be continuously
used to jump start her next conversation. Enabled by this design,
information collected from the exploration stage is passed over
to the conversational recommendation stage to profile who the
user is (denoted as k), and then to the query set (denoted as h;)
to suggest what the user’s preference could be. This sequential
process is depicted in Fig.2.

The policy networks for 7y and {7, },,cq/ are trained via the
meta learning procedure described at the beginning of this sec-
tion, on top of the rewards defined in Section 3.1. But the meta-
exploration policy 7y, is trained with a specially designed reward
function, as its sole purpose is to identify what kind of user the
system is serving. Inspired by [21, 22, 31], we adopt pre-trained
user embeddings {ey };,cqs obtained on users with historical obser-
vations (i.e., training users) to design the exploration reward,

(3)

Note here we use the GRU’s out-

re(sr) =log P(eyl|s:) —log P(ey|st—1),
exp(h] e,

where P(ey|s;) = ﬁ};(hge,ﬂ‘
put hidden state h; to predict the user embedding, just as how we
use it to construct the policies. Specifically, we obtain {ey},ecqs
from a Factorization Machine model [26] trained on observed user-
item interactions in training users. More details about this user
embedding learning can be found in Section 5.1. The insight behind
our exploration reward design is that we promote the actions that
help us identify a specific user during the exploration stage. Follow-
ing the suggestion from [21, 22, 31], we also add a cross entropy
loss on the meta-exploration policy network’s latent state h; to
regularize the estimation of 0,

T T
Le(ng,) = =E[) Re(s) + Y logPleulhn)|. @
t=0 t=0
where Re(s;) is the accumulated discounted reward based on Eq.(3)
from turn t. The gradient of the first term is also computed by the
REINFORCE algorithm.

4.2 State-aware Item Recommender

Previous studies use a pre-trained recommender through the course
of CRS [26, 27, 45], as their focus is mostly on deciding when to
make a recommendation or otherwise what question to ask, i.e., the
conversation component. A pre-trained recommender restricts the
CRS policy to accommodate the recommender’s behavior, which
adds unnecessary complexity for policy adaptation. Such a black

11f the conversation ends before the maximum turn, h7 stands for the latent state at
the successful recommendation.

Meta Policy Learning for Cold-Start Conversational Recommendation

box design slows down personalized policy learning. For example,
a user wants a phone of a specific brand, but the recommender
regards brand as an unimportant attribute. It is difficult for CRS to
recommend successfully even though the policy already elicits her
preferences, which will in turn hurts the policy adaptation since
the episode is failed. Hence, it is crucial to also local adapt the
recommender to learn to make high-quality recommendations in
cooperation with the conversation component.

In MetaCRS, we set a learnable item recommender to rank can-
didate items based on the state embedding from the state encoder,
which will be explained in Section 4.3. The ranking score of an item
v is calculated by,

wi (v) = ey (Wis; +by),

where {W1,b1} are learnable parameters for the recommender,
collectively denoted as 6y; s; is the state embedding obtained from
the state encoder. We perform local adaptation on 0, to obtain
a personalized recommender, by minimizing the following cross-
entropy loss once a successful conversation concludes,

exp(wy (vs))

vy exp(we(v))

T
1 S
Lwﬂ=——ﬂnsﬂ§)%
Ts
=0
where T; is the index of the successful turn and v is the accepted
item. This loss function encourages the adapted recommendation
component to identify the finally accepted item as early as possible
in a conversation. We denote the meta parameters of 6, as 0.

4.3 TransGate State Encoder

Previous solutions [45, 48, 50] have shown the power of negative
feedback in CRS state modeling. It is even more important for cold-
start CRS, especially in the early stage of policy adaptation when
the policy is more likely to collect negative feedback. Ineffective
modeling of negative feedback will slow down policy adaption.
Moreover, positive and negative feedback posits distinct informa-
tion about users’ preference, and thus calls for different treatments.
We employ a Transformer to model such complicated relations in
an ongoing conversation into a state, with a cross gate mechanism
to differentiate the impact from positive and negative feedback. We
name this state encoder as TransGate.

At turn t, we accumulate four kinds of feedback from a user in
this conversation: (1) P}, attributes confirmed by the user; (2) V',
candidate items satisfying all accepted attributes; (3) P, , attributes
dismissed by the user; (4) V[, items rejected by the user. Collec-
tively, we denote S; = {P}, V), P;,V, }. We first map elements
in S; into vectors e with an embedding layer, where attribute and
item embeddings are pre-trained with training users’ historical
observations. Candidate items and rejected items are aggregated
separately to reduce the sequence length,

Z e, .

veV,

1 1
+ + -
e = Ze,e = —
Vv T

veVy

In the original Transformer [39], elements are encoded with posi-
tion embeddings. In our case, the order among the elements is not
important, but encoding the sign of user feedback (i.e., accepted or
rejected) is critical. Inspired by position embeddings, we propose to
encode user feedback into signed embeddings {e*,e™}. We add e*
to positive elements and e~ to negative elements in S;. We use the

226

WSDM °23, February 27-March 3, 2023, Singapore, Singapore

current candidate items to provide positive context. Then, we feed
the obtained embeddings into L Transformer layers. For simplicity,
we keep the notations of transformed embeddings unchanged. We
then aggregate the positive and negative elements separately to
obtain an embedding for positive feedback and an embedding for

negative feedback,
1
A . -
S)5 = (e Y)
pery ' pe

The positive and negative feedback embeddings may contain
overlapped information, which will confuse policy learning. For
example, an item that already satisfies all confirmed attributes so far
can still be rejected by the user. We propose a cross gate mechanism
to further differentiate the positive and negative information s}’ =
sf ©g7, s;’ =s; ©g", where © denotes the element-wise product

and {g*, g} are defined as
g =c(Was] +b3), g~ = c(W3s +bs),

where o(+) is the sigmoid function and {Wy, W3, by, b3} are learn-
able parameters. We obtain the final state by s; = s}” —s;”. The set
of parameters for the TransGate encoder is denoted as 67, which
is learnt from the conversations with training users. We should
note once learnt this encoder is shared globally by all users without
personalization. The state embedding is then concatenated with
the encoding of {a;—1,r:-1) as the input to the RNN-based policy
network. In particular, the action embedding is directly read off
based on the pre-trained attribute and item embeddings, and we
set a linear layer to encode the reward.

+ +
sy = ——— el +
t 1+|$Dt+|(q’

Algorithm 1: Optimization algorithm of MetaCRS
Input: User population U, learning rates «, , meta
parameters 0, 0c, 0g, 0r;
while not Done do
Sample a batch of users Uy ~ P(U);
for each u € U, do
Collect Df, and h, by executing g, ;
Initialize 6, = 0, 6, = OF;
Collect Dy, and h, by executing g, with he;
Evaluate Vg £, and Vg L, using D;;
Compute adapted parameters with gradient descent:
Oy =0y—aVg, Ly, 0 =0r—aVg L;;
Collect DY by executing 7, With hy;

end

Update 6, 0, 01 using each Z)Z by minimizing Ly, Lr;
Update 0, 07 using each D¢ by minimizing L,;

end

4.4 Optimization Algorithm

Now we are finally equipped to illustrate the complete learning
solution for MetaCRS in Algorithm 1. In the inner for-loop, we
perform policy adaption to obtain the personalized CRS policy
(including item recommender). In the outer while-loop, we update
all meta parameters. To simplify the gradient computation, we
stop the gradients on the inherited initial hidden state ht from the
latest episode in back-propagation. In practice, we update the local

WSDM °23, February 27-March 3, 2023, Singapore, Singapore

parameters once an episode is executed, as we find empirically it
works better than updating once after the whole D;} is finished.
When serving new users in the meta-test phase, we fix {0, 07} and
only execute local adaptation (the inner for-loop part in Algorithm
1) with the corresponding parameters initialized by {6, 6g}.

In each turn, we use all the candidate items V4,4 (i.e., V;") and
attributes .4 to construct the action space, where P4 is the
entire attribute set excluding P} and #; . Deng et al. [11] reported
that a very large action space always slowed down policy learning.
To generate a reasonable action space, we follow the manually
crafted rules from [11] to select K4 attributes from P4 and select
the top-Kj items provided by the state-based item recommender.

5 EXPERIMENTS

To fully demonstrate the effectiveness of MetaCRS in solving the

cold-start CRS problem, we conduct extensive experiments and

study the following four research questions (RQ):

e RQ1: Can MetaCRS achieve better performance than state-of-
the-art CRS solutions when handling new users?

e RQ2: Does our meta reinforcement learning based adaptation
strategy work better than other adaptation strategies?

e RQ3: How quickly can MetaCRS obtain a good personalized
policy for each user?

o RQ4: How does each proposed component contribute to the final
performance of MetaCRS?

Table 1: Summary statistics of datasets.

LastFM BookRec MovieLens

#Users 1,801 1,891 3,000
#Items 7,432 4,343 5,974
#Attributes 33 35 35
#Interactions 72,040 75,640 120,000
Avg. [Pyl 7 8 12
Avg. |Py| 4.07 8.15 5.02
Avg. |Po| 5.44 5.30 4.25

5.1 Datasets

We evaluate MetaCRS on three multi-round conversational recom-

mendation benchmark datasets [11, 26, 27, 48] and summarize their

statistics in Table 1.

o LastFM [3] is for music recommendation. Lei et al. [26] manually
grouped the original attributes into 33 coarse-grained attributes.

e BookRec [17] is for book recommendation. We further processed
it by selecting top 35 attributes according to their TF-IDF scores
across items and filter out items with too few attributes.

e MovieLens [16] is for movie recommendation. We performed
the same pre-processing as on the BookRec dataset.

We randomly split users for training, validation and testing with
the ratio 8:1:1, such that the evaluation set only contains new users.
On each benchmark dataset, we obtained user, item and attribute
embeddings (denoted as eqy, ey, ep) using a variant of Factorization
Machine (FM) proposed in [26] on observed user-item interactions
in the training set. Similar to [11, 26, 27], we developed a user-
simulator to generate conversations based on the observed user-
item interactions in the dataset. We describe the simulator in detail
in Section 5.2.1. However, the number of observed interactions in

227

Zhendong Chu, Hongning Wang, Yun Xiao, Bo Long, and Lingfei Wu

each user is not even, which may cause the learned meta policy
biased toward users with more observed interactions. To better
study the problem of personalized CRS policy learning, as part of
our simulation, we generated 40 user-item interactions for each user
by sampling items proportional to the score e} e, to augment the
interaction data for our evaluation purpose. We should note such
simulation design will not ease the necessity of personalized CRS
policy learning, since e, is never directly disclosed to the policy. We
provide our code and generated data to facilitate follow-up research
and ensure the producibility of our reported results 2.

5.2 Experiment Settings

5.2.1 User simulator. CRS needs to be trained and evaluated via
interactions with users. Previous simulator designs are item-centric
[11, 26, 27], enforcing all users to respond in the same way to all
attributes of target item v (i.e., confirming every entry in #;). This
setting is unrealistically restrictive and eliminates the necessity
of personalized policies. To demonstrate the utility of personal-
ized CRS policy learning, we design a user-centric simulator that
supports user-specific feedback in each conversation.

In detail, we used the pre-trained user and attribute embeddings
to generate each user’s preferred attribute set {Py}, </, by select-
ing the top-ranked attributes for each user based on the score ¢;] ep.
During the course of CRS, the simulated user will only confirm
the overlapped attributes in Py, = P, N Py, and dismiss all others.
On the BookRec dataset, because the original entries in P is too
generic to be informative, i.e., too many attributes appear in almost
all items, we decided to also increase P, on this dataset by adding
top-ranked attributes for each item based on the score e] e,. We
report the mean value of |Py|, |Py| and |P,| resulted from our
simulation on each dataset in Table 1.

5.2.2 Baselines. To fully evaluate the effectiveness of MetaCRS, we
compared it with a set of representative baselines. We categorized
the baselines into three groups for different comparison purposes.
In the first group, we compared MetaCRS with a rich set of state-
of-the-art CRS methods to answer RQ1:

e Max Entropy (MaxE) is a rule-based method suggested in [26].
In each turn, the attribute with maximum entropy is to be asked
or top-ranked items are to be recommended based on the rule.

e EAR [26] is a three-stage solution consisting estimation, action
and reflection steps. It updates the conversation and recommen-
dation components using reinforcement learning.

e SCPR [27] reformulates the CRS problem as an interactive path
reasoning problem on the user-item-attribute graph. Candidate
attributes and items are selected according to their relations with
collected user feedback on the graph.

e UNICORN (UNI) [11] integrates the conversation and recom-
mendation components into a unified RL agent. Two heuristics
for pre-selecting attributes and items in each turn are proposed
to simplify its RL training.

Baselines in this group rely on pre-trained user embeddings to
make recommendations or compute states, which are not available
in new users. To apply them to new users, we used the average
embedding of all training users as the embedding for new users. This
group of baselines are learnt on training users and then evaluated
on the testing users.

Zhttps://github.com/zdchu/MetaCRS.git

https://github.com/zdchu/MetaCRS.git

Meta Policy Learning for Cold-Start Conversational Recommendation

WSDM °23, February 27-March 3, 2023, Singapore, Singapore

Table 2: Comparison of CRS performance among models on three datasets. * stands for the best performance in each group.

| MaxE EAR SCPR UNI | ConUCB ConTS FPAN UR | F-FT FIA URFT UR-A | MetaCRS
LastEM SR@10 | 0.137 0.428 0.432 0.441% 0.237 0.270 0.508 0.641* | 0.533 0.529 0.613 0.678" 0.713
AT 9.71 8.62 8.70 8.52* 8.69 8.93 8.08 7.02* 8.01 8.13 7.19 6.85* 6.18
BookRec SR@10 | 0.206 0.320 0.329 0.358" 0.181 0.243 0.397* 0.384 | 0.405 0.411 0.417 0.420" 0.487
AT 9.64 9.01 9.11 9.00* 9.52 9.17 8.31% 8.55 836" 8.52 8.54 8.41 8.06
MovieLens SR@10 | 0.262 0.552 0.545 0.596" 0.272 0.434 0.589 0.681* | 0.603 0.612 0.677 0.704* 0.745
AT 9.46 7.98 7.89* 8.01 8.36 8.08 7.81 7.00* 7.78 7.69 7.14 6.88" 6.27

In the second group, we compared MetaCRS with solutions 5.2.4 Implementation details. We performed the training of meta

which handle new users by updating user embeddings dynami-

cally within a conversation, such that they can provide adaptive

recommendations. We consider the following algorithms:

e ConUCB [47] introduces the concept of super arms (i.e., at-

tributes) to traditional bandit algorithms. Items and attributes

with the highest upper confidence bound are selected. The at-
tributes are asked in a fixed frequency by a hand-crafted function.

ConTsS [30] overcomes ConUCB’s limitation by replacing the

hand-crafted function with a Thompson sampling procedure.

The user embeddings of cold-start users are updated with users’

feedback on the asked attributes and items.

FPAN [45] extends the EAR model by utilizing a user-item-

attribute graph to enhance offline representation learning. User

embeddings are revised dynamically based on users’ feedback
on items and attributes in the conversation.

Our TransGate and state-based item recommender can also dynam-

ically capture user preferences, and provide adaptive recommenda-

tions within a conversation. To further study their value in learning
personalized CRS policies, we integrated them with UNICORN, and
denoted this variant as UR, which is also included in the second
group. All baselines in this group used the same pre-trained em-
beddings as MetaCRS. To improve the practical performance of

ConUCB and ConTS, we adopted the heuristics in [11] to pre-select

arms according to the similarity with accepted attributes.

To answer RQ2, we equip FPAN and UR with the ability to adapt
policies on new users via the following two widely used strategies,
which forms the third group of baselines:

e Fine-tuning (FT): We first pre-train a global policy on all train-
ing users. During testing, we fine-tune the policy on the whole
support set of all new users.

e Independent adaptation (IA): We first pre-train a global policy
on all training users. For each new user, we perform continual
training on her support set to obtain a personalized policy.

We denoted the resulted variants as F-FT, F-IA and UR-FT, UR-
IA respectively. As we found policy gradient was more effective
and efficient than UNICORN'’s original Q-learning based algorithm
in our experiments, we applied policy gradient for model update in
all UNICORN-based baselines.

5.2.3 Evaluation metrics. We followed the widely-used metrics
in previous works [11, 26, 27] to evaluate the CRS solutions. We
evaluated the average ratio of successful episodes within T turns by
success rate (SR@T). We also evaluated average turns in episodes
(AT). A better policy is expected to recommend successfully with
less turns. The length of failed conversations is counted as T.

228

policy on training users, and local adaptation on validation and
testing users. We selected the best model according to its vali-
dation performance. The query sets of testing users are used to
obtain the final performance for comparison. We set the rewards
as: rec_suc = 1, Frec_fail = —0.1, Fask suc = 0.1, Trec_fail = —0.1,
rquit = —0.3. The action embedding size and the hidden size are set
to be 64 and 100, while reward embedding size is set to 10. We set 1
Transformer layer in the TransGate encoder. In MetaCRS, we took
5 episodes in the exploration stage and 10 episodes in the conversa-
tional recommendation stage by default. We set K, K4 and Ky to
10. We performed standard gradient decent in local adaptation with
a learning rate of 0.01, and updated the meta parameters using the
Adam optimizer with a learning rate of 0.005 and Ly regularization
coefficient le-6. The discount factor y is set to 0.999. To make a
fair comparison, we run 15 episodes in new user for adaptation
in the second group of baselines. The size of query set is fixed to
10. The maximum turn T in each episode is set to 10. We sample 5
users in each epoch when training MetaCRS. For all baselines, we
used implementations provided by the papers and modified them
as described before to support cold-start evaluation.

5.3 Overall Performance

We report the comparison results across all methods in Table 2. We
can clearly observe that MetaCRS outperformed all baselines with
large margins. First of all, the results of the first group of baselines
confirmed a single global policy cannot handle new users. By learn-
ing personalized policies, MetaCRS showed advantages in the final
recommendation performance. In the second group of baselines,
bandit-based algorithms select actions according to simple linear
models, which are not capable to capture complicated relations be-
tween the algorithms’ actions and user feedback, especially when
positive rewards are discrete and sparse. Hence, such solutions per-
formed much worse than other deep learning based methods. Both
FPAN and UR can provide adaptive recommendations like MetaCRS,
and thus they outperformed all baselines in the first group. Inter-
estingly, we observe that FPAN outperformed EAR considerably.
Different from EAR, FPAN updates user embeddings dynamically
with users’ positive and negative feedback on attributes and items
by two gate modules, which enable dynamic item recommendation
as in MetaCRS. This improved performance proves the necessity of
adaptive recommendation during the course of CRS. UR showed
general improvement against UNICORN and FPAN, both of which
rely on a fixed FM model to recommend items (UNICORN also uses
the FM model to pre-select items as actions) when performing pol-
icy training. Our state-based item recommender is able to provide

WSDM °23, February 27-March 3, 2023, Singapore, Singapore

improved recommendations at each time step by utilizing training
signal from accepted items, which brings concrete benefits.

In the third group, with the adaptation on new users, FT and IA
led to general improvement, which indicates the necessity of policy
adaptation in new users. Specifically, IA outperformed FT in most
cases, which again proves that personalized polices are beneficial.
Even though FPAN is able to dynamically capture users’ preference
with its gating modules, such knowledge did not generalize well
on new users, which limited the improvement in F-FT and F-IA.
By adapting both conversation and recommendation components
in CRS, MetaCRS and UR-IA showed improvements against other
baselines, which validates the necessity of our decoupled adaptation
strategy. But as UR is not trained for generalization, it is hard
to find optimal personalized policies for new users starting from
such a global policy in UR-FT and UR-IA, while the meta model
in MetaCRS is trained for generalization. In addition, the meta-
exploration policy provides useful information for fast adaptation.
Thus MetaCRS is able to perform better even with fewer adaptation
episodes (first 5 episodes are used to explore user preferences).

5.4 Ablation Study

5.4.1 Impact of support set size. Since policy adaptation is per-
formed on the support set, it is important to study how many
episodes are needed to obtain a good personalized policy (RQ3). In
this experiment, we gradually increased the size of support sets with
a step size 5. We kept the size of exploration episodes unchanged
since 5 episodes are empirically sufficient for pinning down the
target user’s preference. Due to space limit, we only reported the
results on the LastFM and BookRec dataset in Figure 3, and similar
results were also observed on the MovieLens dataset. With a larger
support set, the success rate increases considerably and the number
of average turn also reduces. This is expected since more observa-
tions can be collected to better adapt the meta policy for each user.
And this result also demonstrates the promise of personalized CRS
policy learning: the quality of recommendation increases rapidly
as the users get engaged with the system, which leads to a win-win
situation for both users and system.

LastFM BookRec
078 0.60 8.20
SR@10 7.0 SR@10
076 AT 058 AT 815
6.8

056 8.10

S 0.74 6.6 - 2 0.54 8.05
-
g 64< n@:) 052 800 g

& 072 » 7.95

6.2
7.90

6.0 7.85

7.80

5+10 5+15 5+20 5+25

Size of support set

5+10 5+15 5+20

Size of support set

5+25

Figure 3: Performance comparisons w.r.t. size of support set.

5.4.2 Impact of different MetaCRS components. In this section,
we study the contribution of different components in MetaCRS to
answer RQ4. Firstly, we evaluated the model’s performance without
local adaptation, which essentially evaluated the learnt meta policy.
Secondly, we removed the meta-exploration policy and directly
executed policy adaptation. This setting shows how a dedicated
exploration strategy affects policy adaptation. Finally, we replace
the TransGate module with a linear layer similar to [50] to study
how state representation learning affects the CRS performance. In

229

Zhendong Chu, Hongning Wang, Yun Xiao, Bo Long, and Lingfei Wu

particular, the positive and negative embeddings are obtained by
taking the average of all positive and negative feedback separately.

Table 3: Ablation analysis in MetaCRS.

LastFM BookRec MoiveLens
SR@10 AT | SR@10 AT | SR@10 AT
—adaptation 0.632 6.68 0.378 8.56 0.630 7.31
ﬁexploration 0.677 6.64 0.411 8.37 0.738 6.65
—TransGate 0.678 6.41 0.428 8.51 0.724 6.95
MetaCRS 0.713 6.18 | 0.487 8.06 | 0.745 6.27

We present the results in Table 3. Firstly, we can observe the per-
formance before adaptation is not bad, or even better than most of
our baselines in Table 2, which suggests the meta policy in MetaCRS
already captured some important patterns for interacting with users.
We can further compare the learnt meta policy with UR in Table 2,
which shares the same state encoder and item recommender, but
was trained globally. UR is slightly better than the meta policy in
MetaCRS. The reason is UR is trained to maximize performance
on training users and generalized by the i.i.d. assumption. But the
meta policy is trained to maximize the adapted policies’ perfor-
mance, not its own performance on new users. Hence, when testing
users share reasonable similarity with training users, UR can be
effective in serving the testing users. But we can observe a large
performance gain after adaptation, which proves the meta policy
successfully serves as a good starting point for fast adaptation.
Next, it is clear that without the exploration stage the performance
degenerates. It confirms recognizing who the system is serving is
critical for a successful adaptation. We finally evaluate the effective-
ness of TransGate, without which the performance degenerates on
all three datasets. This demonstrates the necessity of fine-grained
modeling of user feedback, especially the negative feedback, for
understanding users’ preferences.

6 CONCLUSION

In this work, we present a meta reinforcement learning based so-
lution to handle the problem of CRS policy learning in cold-start
users. We learn a meta policy for generalization and fast adapt
it on new users. We developed three components to ensure the
efficiency and effectiveness of policy adaptation. First, a dedicated
meta-exploration policy is adopted to identify the most informative
user feedback for policy adaptation. Second, an adaptive state-aware
recommendation component is built to quickly improve recommen-
dation quality for new users. Third, a Transformer-based state
encoder implicitly models positive and negative feedback collected
in a conversation to precisely profile user preference.

Currently our policy adaptation is performed independently
across users; to further reduce its sample complexity, collaborative
policy adaptation among users can be introduced to leverage ob-
servations among both new and existing users. As previous works
reported improved CRS performance using a knowledge graph (KG),
it is also interesting to study how personalized policy learning can
benefit from KGs, e.g., adapts the entity relations in each user or
design the meta-exploration strategy based on the KG.

7 ACKNOWLEDGEMENT

We thank the anonymous reviewers for their insightful comments.
This work was supported by NSF IIS-2007492 and NSF IIS-1838615.

Meta Policy Learning for Cold-Start Conversational Recommendation

REFERENCES

(1]

[4

=

(5

=

[12]

(13

[14

[15]

[16

[17

(18]

[19]

[20

[21]

[22

[23

[24]

[25]

[26

Peter Auer. 2002. Using confidence bounds for exploitation-exploration trade-offs.
Journal of Machine Learning Research 3, Nov (2002), 397-422.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere.
2011. The Million Song Dataset. In Proceedings of the 12th International Conference
on Music Information Retrieval (ISMIR 2011).

Rengin Cai, Xueying Bai, Zhenrui Wang, Yuling Shi, Parikshit Sondhi, and Hongn-
ing Wang. 2018. Modeling sequential online interactive behaviors with temporal
point process. In Proceedings of the 27th ACM International Conference on Infor-
mation and Knowledge Management. 873-882.

Rengin Cai, Qinglei Wang, Chong Wang, and Xiaobing Liu. 2020. Learning to
structure long-term dependence for sequential recommendation. arXiv preprint
arXiv:2001.11369 (2020).

Rengqin Cai, Jibang Wu, Aidan San, Chong Wang, and Hongning Wang. 2021.
Category-aware collaborative sequential recommendation. In Proceedings of the
44th International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval. 388-397.

Dong Chen, Lingfei Wu, Siliang Tang, Xiao Yun, Bo Long, and Yueting Zhuang.
2022. Robust Meta-learning with Sampling Noise and Label Noise via Eigen-
Reptile. Proceedings of the 39th International Conference on Machine Learning
(2022).

Konstantina Christakopoulou, Filip Radlinski, and Katja Hofmann. 2016. Towards
conversational recommender systems. In Proceedings of the 22nd ACM SIGKDD.
815-824.

Zhendong Chu, Jing Ma, and Hongning Wang. 2021. Learning from Crowds by
Modeling Common Confusions.. In AAAIL 5832-5840.

Zhendong Chu and Hongning Wang. 2021. Improve learning from crowds via
generative augmentation. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining. 167-175.

Yang Deng, Yaliang Li, Fei Sun, Bolin Ding, and Wai Lam. 2021. Unified Con-
versational Recommendation Policy Learning via Graph-based Reinforcement
Learning. arXiv preprint arXiv:2105.09710 (2021).

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter
Abbeel. 2016. R12: Fast reinforcement learning via slow reinforcement learning.
arXiv preprint arXiv:1611.02779 (2016).

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In ICML. PMLR, 1126-1135.
Aurélien Garivier, Tor Lattimore, and Emilie Kaufmann. 2016. On explore-then-
commit strategies. Advances in Neural Information Processing Systems 29 (2016).
Alexandre Gilotte, Clément Calauzenes, Thomas Nedelec, Alexandre Abraham,
and Simon Dollé. 2018. Offline a/b testing for recommender systems. In Proceed-
ings of the 11st ACM WSDM. 198-206.

F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm TIIS 5, 4 (2015), 1-19.

Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In proceedings
of the 25th international conference on world wide web. 507-517.

Xiangnan He, Lizi Liao, Hanwang Zhang, Ligiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173-182.

John J Hopfield. 1982. Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the national academy of sciences
79, 8 (1982), 2554-2558.

Mengdi Huai, Jianhui Sun, Renqin Cai, Liuyi Yao, and Aidong Zhang. 2020. Mali-
cious attacks against deep reinforcement learning interpretations. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 472-482.

Jan Humplik, Alexandre Galashov, Leonard Hasenclever, Pedro A Ortega,
Yee Whye Teh, and Nicolas Heess. 2019. Meta reinforcement learning as task
inference. arXiv preprint arXiv:1905.06424 (2019).

Pierre-Alexandre Kamienny, Matteo Pirotta, Alessandro Lazaric, Thibault Lavril,
Nicolas Usunier, and Ludovic Denoyer. 2020. Learning adaptive exploration
strategies in dynamic environments through informed policy regularization.
arXiv preprint arXiv:2005.02934 (2020).

Minseok Kim, Hwanjun Song, Yooju Shin, Dongmin Park, Kijung Shin, and
Jae-Gil Lee. 2022. Meta-Learning for Online Update of Recommender Systems.
(2022).

Tor Lattimore and Csaba Szepesvari. 2020. Bandit algorithms. Cambridge Univer-
sity Press.

Hoyeop Lee, Jinbae Im, Seongwon Jang, Hyunsouk Cho, and Sehee Chung. 2019.
Melu: Meta-learned user preference estimator for cold-start recommendation. In
Proceedings of the 25th ACM SIGKDD. 1073-1082.

Wengiang Lei, Xiangnan He, Yisong Miao, Qingyun Wu, Richang Hong, Min-
Yen Kan, and Tat-Seng Chua. 2020. Estimation-action-reflection: Towards deep
interaction between conversational and recommender systems. In Proceedings of
the 13th WSDM Conference. 304-312.

230

[27

[28

[29

'S
=

@
&,

@
&

®
i

[36

[37

[38

[39

[40]

[41

[42

[43]

=
&

[47

(48

[49

o
=

o
&,

WSDM °23, February 27-March 3, 2023, Singapore, Singapore

Wengiang Lei, Gangyi Zhang, Xiangnan He, Yisong Miao, Xiang Wang, Liang
Chen, and Tat-Seng Chua. 2020. Interactive path reasoning on graph for conver-
sational recommendation. In Proceedings of the 26th ACM SIGKDD. 2073-2083.
Lihong Li, Jin Young Kim, and Imed Zitouni. 2015. Toward predicting the outcome
of an A/B experiment for search relevance. In Proceedings of the Eighth ACM
WSDM Conference. 37-46.

Raymond Li, Samira Kahou, Hannes Schulz, Vincent Michalski, Laurent Char-
lin, and Chris Pal. 2018. Towards deep conversational recommendations. In
Proceedings of the 32nd NeurIPS Conference. 9748—9758.

Shijun Li, Wenqiang Lei, Qingyun Wu, Xiangnan He, Peng Jiang, and Tat-Seng
Chua. 2021. Seamlessly unifying attributes and items: Conversational recommen-
dation for cold-start users. ACM TOIS 39, 4 (2021), 1-29.

Evan Z Liu, Aditi Raghunathan, Percy Liang, and Chelsea Finn. 2021. Decoupling
exploration and exploitation for meta-reinforcement learning without sacrifices.
In ICML. PMLR, 6925-6935.

Alex Nichol, Joshua Achiam, and John Schulman. 2018. On first-order meta-
learning algorithms. arXiv preprint arXiv:1803.02999 (2018).

Steffen Rendle. 2010. Factorization machines. In 2010 IEEE International conference
on data mining. IEEE, 995-1000.

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the 10th
international conference on World Wide Web. 285-295.

Tobias Schnabel, Paul N Bennett, Susan T Dumais, and Thorsten Joachims. 2018.
Short-term satisfaction and long-term coverage: Understanding how users toler-
ate algorithmic exploration. In Proceedings of the 11st ACM WSDM. 513-521.
Yueming Sun and Yi Zhang. 2018. Conversational recommender system. In The
41st ACM SIGIR. 235-244.

Franck Tétard and Mikael Collan. 2009. Lazy user theory: A dynamic model to un-
derstand user selection of products and services. In 2009 42nd Hawaii International
Conference on System Sciences. IEEE, 1-9.

Manasi Vartak, Arvind Thiagarajan, Conrado Miranda, Jeshua Bratman, and Hugo
Larochelle. 2017. A meta-learning perspective on cold-start recommendations
for items. (2017).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998-6008.
Risto Vuorio, Shao-Hua Sun, Hexiang Hu, and Joseph] Lim. 2019. Multi-
modal model-agnostic meta-learning via task-aware modulation. arXiv preprint
arXiv:1910.13616 (2019).

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo,
Remi Munos, Charles Blundell, Dharshan Kumaran, and Matt Botvinick. 2016.
Learning to reinforcement learn. arXiv preprint arXiv:1611.05763 (2016).
Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 3 (1992), 229-256.
Jibang Wu, Renqin Cai, and Hongning Wang. 2020. Déja vu: A contextualized
temporal attention mechanism for sequential recommendation. In Proceedings of
The Web Conference 2020. 2199-2209.

Junda Wu, Canzhe Zhao, Tong Yu, Jingyang Li, and Shuai Li. 2021. Clustering
of Conversational Bandits for User Preference Learning and Elicitation. In Pro-
ceedings of the 30th ACM International Conference on Information & Knowledge
Management. 2129-2139.

Kerui Xu, Jingxuan Yang, Jun Xu, Sheng Gao, Jun Guo, and Ji-Rong Wen. 2021.
Adapting User Preference to Online Feedback in Multi-round Conversational
Recommendation. In Proceedings of the 14th ACM WSDM. 364-372.

Fan Yao, Renqin Cai, and Hongning Wang. 2021. Reversible action design
for combinatorial optimization with reinforcement learning. arXiv preprint
arXiv:2102.07210 (2021).

Xiaoying Zhang, Hong Xie, Hang Li, and John CS Lui. 2020. Conversational con-
textual bandit: Algorithm and application. In Proceedings of The Web Conference
2020. 662-672.

Yiming Zhang, Lingfei Wu, Qi Shen, Yitong Pang, Zhihua Wei, Fangli Xu, Bo
Long, and Jian Pei. 2021. Multi-Choice Questions based Multi-Interest Policy
Learning for Conversational Recommendation. arXiv preprint arXiv:2112.11775
(2021).

Canzhe Zhao, Tong Yu, Zhihui Xie, and Shuai Li. 2022. Knowledge-aware Con-
versational Preference Elicitation with Bandit Feedback. In Proceedings of the
ACM Web Conference 2022. 483-492.

Xiangyu Zhao, Liang Zhang, Zhuoye Ding, Long Xia, Jiliang Tang, and Dawei Yin.
2018. Recommendations with negative feedback via pairwise deep reinforcement
learning. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 1040-1048.

Kun Zhou, Yuanhang Zhou, Wayne Xin Zhao, Xiaoke Wang, and Ji-Rong Wen.
2020. Towards Topic-Guided Conversational Recommender System. In Proceed-
ings of the 28th International Conference on Computational Linguistics. 4128-4139.
Lixin Zou, Long Xia, Yulong Gu, Xiangyu Zhao, Weidong Liu, Jimmy Xiangji
Huang, and Dawei Yin. 2020. Neural interactive collaborative filtering. In Pro-
ceedings of the 43rd ACM SIGIR. 749-758.

	Abstract
	1 Introduction
	2 Related works
	3 Preliminary
	3.1 Problem Definition
	3.2 Meta Reinforcement Learning for CRS

	4 Methodology
	4.1 Two-stage Meta Policy Learning for CRS
	4.2 State-aware Item Recommender
	4.3 TransGate State Encoder
	4.4 Optimization Algorithm

	5 Experiments
	5.1 Datasets
	5.2 Experiment Settings
	5.3 Overall Performance
	5.4 Ablation Study

	6 Conclusion
	7 Acknowledgement
	References

