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ABSTRACT

Accuracy and diversity have long been considered to be two con-
flicting goals for recommendations. We point out, however, that
as the diversity is typically measured by certain pre-selected item
attributes, e.g., category as the most popularly employed one, im-
proved diversity can be achieved without sacrificing recommen-
dation accuracy, as long as the diversification respects the user’s
preference about the pre-selected attributes. This calls for a fine-
grained understanding of a user’s preferences over items, where
one needs to recognize the user’s choice is driven by the quality of
the item itself, or the pre-selected attributes of the item.

In this work, we focus on diversity defined on item categories. We
propose a general diversification framework agnostic to the choice
of recommendation algorithm. Our solution disentangles the learnt
user representation in the recommendation module into category-
independent and category-dependent components to differentiate
a user’s preference over items from two orthogonal perspectives.
Experimental results on three benchmark datasets and online A/B
test demonstrate the effectiveness of our solution in improving both
recommendation accuracy and diversity. In-depth analysis suggests
that the improvement is due to our improved modeling of users’
categorical preferences and refined ranking within item categories.
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1 INTRODUCTION

Recommender systems learn users’ interests from historical obser-
vations (e.g., their clicks, bookmarked or purchased items, etc.) so
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as to identify the items that best suit users’ preferences. The success
of recommender system in enhancing user experience and boost-
ing platform utility has been witnessed in a number of scenarios
including e-commerce [17, 42], online news recommendation [33]
and streaming services [9].

Recommendation accuracy, which measures whether a recom-
mendation model can recommend items that users will like, serves
as the dominant target or even the only target in most previous
work [9, 16, 17, 31, 42]. Various complicated models [9, 16, 42]
have been proposed for higher accuracy. While recommendation
accuracy has been shown to be closely related to user satisfaction,
it is never the only rule of thumb. Recent work found the rec-
ommendation diversity, which measures the dissimilarity among
recommended items regarding certain pre-selected item attributes
(e.g., item category) also plays an important role in the overall user
experience [18, 32, 43]. For example, even if a user is a fan of basket-
ball, he/she can still get bored with recommendations only about
basketball videos or news, which increases the risk of user attrition.
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Figure 1: Hlustration of recommendation accu(lc‘)acy and diver-
sity optimization in different recommendation models.
Following previous work [30, 31, 40], we focus on diversity de-
fined on item categories in this paper and aim to address the so-
called accuracy-diversity dilemma [40]. On one hand, recommen-
dation models with accuracy as their primary target often lose
diversity to some extent, due to overly emphasizing items in the
dominant categories in a user’s interaction history [30, 31]. Fig-
ure 1(a) illustrates this issue with an example in movie recommenda-
tion, where 70% of the movies watched by a user are action movies,
which leads 90% of the system’s recommendations to fall in the
action movie category. Worse still, because of the feedback loop [4],
the emphasis on the dominant categories in the system’s recom-
mendations will be further intensified when the user follows the
recommendations, causing further decreased recommendation di-
versity and issues like filter bubbles [25] and echo chambers [14]. On
the other hand, simply diversifying recommendations over all item
categories without considering the user’s categorical preference
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hurts the accuracy of generated recommendations [27, 32, 40, 44].
As shown in Figure 1(b), although the recommendation list is di-
verse by covering all four categories, negative feedback is more
likely on the categories where the user interacted less often or
negative feedback already prevailed, e.g., children’s movies and
documentary movies respectively in this example.

Clearly one should not recklessly increase diversity. For cate-
gories the user is less likely to be interested in, the risk of making a
bad recommendation overweights the benefit of increased diversity.
Thus, this paper focuses on conducting diversification only among
item categories that the user prefers, suggesting the possibility to
improve recommendation diversity without sacrificing recommen-
dation accuracy. Figure 1(c) gives an example recommendation list
following such a strategy, where the recommended items mainly
fall in action and romance movies, the two preferred categories in-
ferred from the user’s interaction history. This strategy requires the
recommendation model to clearly distinguish whether the user’s
positive/negative feedback is due to the item’s category or other
category-independent features of the item (e.g., the item’s own
quality), which was ignored by previous recommendation models.

In this paper, we propose a general and model-agnostic frame-
work to disentangle a user’s category-dependent and category-
independent preferences for an accurate and diversified recommender
system (DCRS). Specifically, DCRS takes a user’s preference over
an item as a product of: (1) the user’s preference over the item’s
category; and (2) the user’s preference over category-independent
features of the item, e.g., the item’s quality. Such disentanglement
suggests a hierarchical decision making process by the user: If a
user has a strong preference over a particular category of items,
he/she may still enjoy items of this category, even though their
qualities are not perfect. However, if the probability that a user
likes a category is low, only items of high quality in this category
could have a chance to be considered. The disentanglement ensures
items of the same quality, but in different categories that a user
prefers similarly, have equal probabilities to be recommended. It
naturally avoids overly recommending items from the dominant
categories in the user’s interaction history. The main challenge
therefore lies in how to disentangle a user’s preference regarding
the aforementioned two orthogonal perspectives, given his/her pref-
erence over the item categories is not observable. This makes naive
solutions like using different supervision signals to separately train
users’ representations [41], or separating items’ feature vectors into
category dependent and independent segments, ineffective.

DCRS is agnostic to the choice of recommendation module,
which is supposed to learn informative representations of users and
items. In particular, DCRS adopts a discriminator to disentangle
the learnt representation into category-independent and category-
dependent segments respectively. The recommendation module and
discriminator are learnt simultaneously to ensure the effectiveness
of disentangled representation learning for accurate and diverse
recommendations. To evaluate the proposed DCRS solution, we
conduct both offline experiments on three benchmark datasets and
online A/B test on Toutiao app, one of the largest news recommen-
dation platforms in China. Experiment results demonstrate that
DCRS can successfully recommend diverse items that users prefer,
and thus improve both recommendation accuracy and diversity.

491

Xiaoying Zhang, Hongning Wang, and Hang Li

In-depth analysis and case studies suggest strong evidence show-
ing: (1) the disentangled category-independent representation from
DCRS can distinguish the user’s preference within category more
accurately; and (2) DCRS can capture a user’s diverse preferences
in historical interactions more thoroughly. All codes and data can
be found in https://github.com/Xiaoyinggit/DCRS.git.

Overall, our contribution of this work is as follows:

e We demonstrate that accuracy and diversity are not conflicting
goals for recommendation, as long as the diversification respects
the user’s categorical preference.

o To capture a user’s latent preferences on item categories more
accurately, our proposed DCRS disentangles the user’s preference
into category-dependent and category-independent components.

e Experiments on three benchmark datasets and online A/B test
demonstrate the effectiveness of DCRS in improving both rec-
ommendation accuracy and diversity. In-depth analysis further
demonstrates the improvement comes from more accurate mod-
eling of the user’s preference both over and within categories.

2 FRAMEWORK

In this section, we describe how the proposed DCRS solution disen-
tangles a user’s category dependent and independent preferences
to simultaneously improve recommendation accuracy and diversity.
For the ease of illustration, we first briefly describe a general archi-
tecture which covers almost all popularly used recommendation
models. We then depict how to smoothly integrate DCRS into such
a general architecture to diversify its recommendations.

2.1 Preliminary: A General Recommendation
Architecture

In a recommendation task, we are given a user behavior dataset
X that contains interactions between N users and M items. The
interaction between user u and item i is represented as a tuple
(u,i,yu,i) € X. Here y,; € {0, 1} denotes user u’s feedback to item
i, where y,, ; = 1 denotes positive feedback (e,g., a click or a positive
rating), and y,,; = 0 denotes negative feedback. Generally speaking,
a recommendation model will first learn a user-item representation
to capture the user’s preference over the item:
hui = f(u,i,0) € R%, (1)
where 0 denotes a set of trainable parameters in the recommenda-
tion model. Various architectures [16, 17, 31, 42] have been proposed
to implement f(u, i, 0), ranging from the simple matrix factoriza-
tion algorithm [23] that directly takes the element-wise product of
user and item embeddings to form the representation, to complex
architectures such as the bi-interaction layer in NFM [17]. Let py, ;
denote the probability that user u gives positive feedback to item
i. The goal of the recommendation model is to use the learnt user-
item representation to estimate py, ;, either by directly summing up
elements in hy,; as in matrix factorization, or through a learnable
projection layer as follows:
pu,i =P (Yu,i = 1|u, i) =0 (WThu’i) s (2)
where Y, ; is a random variable representing the feedback from
user u on item i; W € R%1 is the learnable weight vector of the
projection layer, and o () is the sigmoid function. The parameters
of the recommendation model are then optimized by minimizing
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the following loss:

L(X,0W)=—

x| X| ®)

Z Lrec(yu,ia[;u,i),
(i, yp,i) €X
where Lr¢c(+, -) represents the chosen loss function. Various loss
functions have been explored in literature, inlcuding cross entropy
loss, Mean Squared Error (MSE) and BPR loss [28]. In this work, we

will use the cross entropy loss by default.

2.2 Disentangle Category Dependent and
Independent Representations

We consider a user’s feedback on an item as a mixture reflecting
his/her preference over the item’s category and category-independent
properties, e.g., the item’s intrinsic quality. As shown in Figure 2,
the first action movie that receives positive feedback can very likely
be caused by the user’s strong preference over the category of ac-
tion movies, while his/her positive feedback on the second romance
movie is more likely to be caused by its high quality that makes up
the low probability that the user likes romance movies. In order to
diversify the recommendations with respect to a user’s preferred
categories, the recommendation model needs to clearly distinguish
the effect of item category and other category-independent proper-
ties on a user’s decision making. To make our method description
general enough to cover situations where an item can associate
with multiple categories, we take item i’s category as the set that
contains all categories that the item relates to, and denote it as
ti. For example, assume there are three categories {c1, ¢, c3} in a
dataset. If item i is related to the first category, then t; = {c1}. And
if item i is associated with the first two categories, then t; = {c1, ¢2}.
We propose to disentangle a user’s preference over an item into
two parts :
o Category-dependent preference: it captures the user’s prefer-
ence over the item’s category;
e Category-independent preference: it depicts how category-
independent features affect the user’s preference about the item.
Such a disentanglement can be explained through a probabilistic
view about the generation of user u’s feedback on item i. Let Yc
denote the binary random variable indicating user u’s feedback on
item i’s category. We have the followmg,

P(Yy,i =1ui) =P(Y,; =1Y, ul = l|u i) (4a)
=P(Yui=1luiY,;= l)P( =1|u, i) (4b)
=P(Yy;=1uiY, ul = l)P( =1lut;) (4¢)

In particular, Eq.(4a) is due to the assumpt1on that user u gives
positive feedback to item i only if user u likes item i’s category,
ie, P(Yy; = 1,YS, = 1|ui) = 1and P(Yy; = l,YEl = 0w, i) = 0.
Eq.(4b) follows the chain rule. And Eq.(4c) is because Ylfl. only
depends on the item’s category, instead of specific items.

The first term in Eq.(4c) depicts how likely user u will give posi-
tive feedback to item i when he/she is interested in item i’s category;
and the second term models how likely user u is interested in item
i’s category. Given that user u likes the category of item i, the prob-
ability in the first term only depends on the category-independent
features of item i, such as item i’s quality, price, etc. Thus, under
the disentangled user-item representations, we can compute the
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Figure 2: Hierarchical decision making process of DCRS
framework. Each feedback is determined by: (1) the user’s
preference over the item’s category; and (2) the user’s prefer-
ence over category-independent features of the item.

first term by the probability P (Yuiic = 1|u, i), which depicts user u’s
preference over item i driven by the category-independent features.
Thus, Eq.(4c) can be rewritten as :

P(Yy; = 1|u,i) = P(Yu{ic =1|u, i)P(YuC:l. =1lu, t;). (5)

Eq.(5) depicts a hierarchical decision making process illustrated in
Figure 2. If user u likes item i’s category with a higher probability
P(Ylfl. = 1|u, t;), he/she may still enjoy item i even though item
i’s quality is not perfect, indicated by a lower P(YJ'c = 1|u, i). For
example, the positive feedback of the first action movie in Figure 2 is
generated under such a scenario. Meanwhile, if there is only a small
probability that user u would be interested in item i’s category (i.e.,
low P(YLfi = 1|u, t;)), item i must be of high quality to get positive
feedback, i.e., high P(Y;:l.c = 1|u, i). The positive feedback on the
second romance movie in Figure 2 is a good example of this case.
Eq.(5) also suggests why disentanglement makes recommenda-
tions diversified within a user’s preferred categories. Assume there
are two categories ¢; and ¢ on which the user has similar pref-
erence. Instead of recommending more items from the dominant
category (either c; or cy), via the disentanglement in Eq.(5), items
of the same quality within c; and ¢, will have an equal chance to
be recommended, thus diversifying the recommendations.
Unfortunately, both terms in Eq.(5) cannot be learnt via direct
supervision signals, since user u’s feedback driven solely by item i’s
category or its category-independent features cannot be observed.
Classical solutions would appeal to Expectation Maximization type
algorithms [10] to estimate the two terms in an iterative manner.
However, given modern recommendation algorithms are usually
realized via complex deep neural networks, posterior inference
becomes cumbersome and also leads to slow convergence. Instead,
DCRS implements Eq.(5) by simultaneously learning two disen-
tangled representations for estimating the two terms separately.
Specifically, DCRS learns two disentangled representations by:

()" ()|

where th[zC € R? aims to capture user u’s preference over category-

independent features to estimate P(Ylj'l.c = 1|u, i), and hgi e R?

= f(u,i,0) € R, (6)
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depicts user u’s preference over item i’s category t;, aiming to
estimate P(Ylfi = 1lu, t;).

Simply splitting item i’s feature vector into two parts, even with
separate networks, cannot ensure complete disentanglement. In-
stead, in addition to requiring the learnt the representations to best
capture the user’s preference, we employ an adversarial discrimina-

hJ‘C and hc to be category-independent

tor that enforces the learnt
and category-dependent respectlvely

Discriminator Module. The discriminator D(-) acts as a category
classifier, which takes one segment of disentangled representation,
such as hc or hul R

item i (ie., t,) However, it is hard for the discriminator to directly

as input, and aims to predict the category of

predict ¢;, since ¢; can take 2K_1 values, where K is the number of
unique categories available in the dataset. For ease of learning, we
represent t; by a vector over K unique categories, denoted as ;.
Again, assume there are three categories {c1, c2, 3}, if 11 = {c1},
then f; = [1,0,0]7. And if t; = {c1,¢}, then #; = [0.5,0.5,0] .
Specifically, when relevance between item i and each associated
category can be measured [26], a more accurate #; can be achieved
by making the j-th element of ; proportional to the relevance
between item i and the j-th category. Otherwise, #; can be simply
assumed to be evenly distributed among related categories, which
is also the default setting in our experiments The discriminator
then takes hc or hLC as input to predict ;. In our experiments,
the dlscnmmator D( ) is implemented via a fully connected layer,
and it should enforce the following:

e Given hc is closely related to item i’s category, the discriminator

should predlct #; accurately based on hC ., i.e., the following loss

u, i’
should be minimized:

min £§ (u i) = Leg (D(hS,) B,
where LcE is the cross entropy loss.

o Given hJ'C is independent from item category, hJ'C should fool
the dlscrlmmator by maximizing the cla531ﬁcat10n loss

max L€ (u,1) = Leg (D(hu’l. ),Z,—) .

We leverage a Gradient Reverse Layer (GRL) [13] to implement
above requirements due to its simplicity. More specifically, we in-
sert a Gradient Reverse Layer between hlc and the discriminator, as

shown in Figure 3. During back propagatlon the gradients for min-

aLD (u,i)
T

flow backward through

imizing the discriminator loss

the discriminator. After the GRL, the gradients will be reversed,

9L (wi)
oh§

parameters of the discriminator for accurately predicting item i’s

i.e., becoming — . Thus, we perform gradient descent on

category, while performing gradient ascent on htlc so that th
cannot predict item i’s category.

Learning category-independent representation. hlc should
be optimized under two objectives: (1) it can accurately estlmate
the first term P(Yd‘ic = 1|u, i) in Eq.(5) by:

P =P (ch = 1lu, i) - a(WlTh;f); @)

and (2) it needs to be independent from item categories. Thus we
minimize the following loss for its learning:

Lree (PE5 yui) = ALH @) ®)
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Figure 3: The architecture of DCRS, which disentangles the
user u’s preference on item i into category-dependent seg-
C . 1C .
ment ki ; and category-independent segment h,; for diverse
and accurate recommendations.

where the two terms optimize two distinct objectives respectively,
and A is a hyper-parameter that controls the strength of category-
independent constraint on hLJ[‘IC .

Learning category-dependent representation. While user u’s
preference on item i’s category is unobservable, P(YLfi = 1u, t;)
can be estimated by fixing the learnt category-independent repre-
sentation hJ'IC and estimating the overall probability that user u
gives positive feedback to item i:

stop_; gradlent(hlc)

Pui=P(Yyi=1ui)=0 (WzT 1C

) W, € dexl

©)

will not be updated

u,i
where stop_gradient (hi‘lc) implies that hJ‘C
by this prediction. In other words, given the learnt user u’s prefer-
ence over category-independent features of item i, only user u’s
preference over item i’s category is optimized to accurately predict
the overall feedback of user u to item i, by minimizing the loss:

Lrec (ﬁu,ia yu,i) + ALS(U, i), (10)

where the second loss forces hgi to predict item i’s category accu-
rately with A representing the s,trength of the constraint.

Overall, combining Eq.(8) and Eq.(10), given a user behavior
dataset X, DCRS learns a disentangled recommendation model as

in Eq.(5) by minimizing the following loss:

1 .
L(X,0,W1,W>) :m Z Lrec (Pu,i, yu,i)
(Wi, yui)eX

+ Lrec (S, i) - ALBC (1) + ALG w1,

Inference. At the inference stage, we leverage py,; in Eq.(9) as
the predicted preference of user u over item i to rank items. We
adopt py,; in Eq.(9) since it considers both the category dependent
and independent preference of the user, while ﬁljlc in Eq.(7) only
captures the user’s preference over category-independent features.

3 OFFLINE EXPERIMENTS

In this section, we conduct experiments on several public offline

datasets to demonstrate the effectiveness of DCRS. We mainly in-

vestigate from two perspectives:

e How does the proposed DCRS perform in terms of recommenda-
tion accuracy and diversity?
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Table 1: Statistics of Three Datasets

Dataset #Users #Items #Interactions #Group
ML-1M 6040 3883 1000209 18
ML-10M 69878 10680 10000047 19
Amazon-Books 22929 33130 1178117 141

o Can the disentangled category-independent representation accu-
rately distinguish a user’s preference within item categories?

A case study is also conducted to illustrate the effectiveness of the

proposed DCRS more explicitly.

3.1 Experimental Settings

Dataset. We use three widely-used datasets under different recom-

mendation scenarios for evaluation.

o ML-1M!: This dataset contains 1 million ratings from 6040 users
on 3883 movies from the online movie recommendation service
MovieLens. It also contains rich user features (e.g., age, gender,
etc.) and movie features (e.g., titles). We encode user and movie
features following previous work [31, 42]. We take y,,; = 1, if
user u gives item i a rating greater than 3, otherwise y,,; = 0.

e ML-10M?: This dataset is also from MovieLens. It contains 10
million ratings from 69878 users on 10680 movies. Similarly,
we take y;,; = 1, if user u gives item i a rating greater than
3, otherwise yy,; = 0.

o Amazon-Books>: This dataset contains reviews and metadata
of books from Amazon. To ensure data quality, we only keep
categories that link to more than 20 books with 141 categories,
and adopt the 20-core settings [31], i.e., discarding users and
books with less than 20 interactions. To make the number of
positive and negative samples balanced, we take y,, ; = 1, if user
u gives item i a rating greater than 4, otherwise y,,; = 0.

The statistics of the three datasets are summarized in Table 1. On
each dataset, we also randomly sampled items that the user did not
interact with as negative instances. We then sorted the user-item
interactions by timestamps, and split them into training, validation,
and testing datasets with the ratio of 80%, 10%, and 10%.
Baselines. The proposed DCRS is a general and model-agnostic
framework to disentangle category dependent and independent rep-
resentations for accurate and diverse recommendations. In this pa-
per, we instantiated it with Neural Factorization Machine (NFM) [17],
one representative recommendation model that has been widely
used. NFM was also taken as the backbone model in several closely
related work for diversified recommendations [15, 31]. We com-
pared DCRS with the following algorithms that have different fo-
cuses on recommendation diversity and accuracy.

o NFM [17]: The state-of-the-art recommendation model serving
as the backbone model of DCRS.

e Unawareness [15]: It also takes NFM as the backbone model
and tries to improve diversity by directly removing categorical
features of items from model input.

o IPS [29]: It is a state-of-the-art technique of improving diversity
by boosting item categories that a user interacted with less often,
while suppressing the dominant categories in the user’s inter-
action history. Specifically, it takes the category distribution in

!https://grouplens.org/datasets/movielens/1m/

Zhttps://grouplens.org/datasets/movielens/10m/
3https://jmcauley.ucsd.edu/data/amazon/
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a user’s historical interactions as propensity scores to reweigh
items of this category during training. Propensity clipping [29]
is also employed to reduce the variance with clipping threshold
searched in {0.001, 0.005, 0.01, 0.05, 0.1}.
MMR [3]: One of the state-of-art post-processing methods for
diversified recommendations. It re-ranks the recommended items
generated by NFM by a greedy strategy to reduce redundancy.
o DPP [5]: An effective post-processing method for diversified
recommendations. It selects a diverse set of items from the rec-
ommended items generated by NFM by balancing the relevance
of items and their similarities.
e PD_GAN [36]: A recent work that leverages the generative ad-
versarial networks (GAN) framework to generate diverse and rel-
evant recommendations. Its discriminator aims to distinguish the
generated diverse set of items by its generator from the ground-
truth sets randomly sampled from the observed data of the user.
DGCN [40]: A recent work that leverages rebalanced neighbor
discovering, category-boosted negative sampling and adversarial
learning on top of Graph Convolutional Networks (GCN) for
diversified recommendations.
DecRS [31]: A recent work for alleviating the bias that previous
recommendation models over-recommend items of the dominant
categories in a user’s interaction history from a causal view. It
aims at improving both recommendation accuracy and diversity.
e DCRS_CI: A variant of DCRS that leverages pAlle in Eq.(7) for
item ranking without considering the user’s preference over cat-
egories. Its comparison with DCRS_CI can reveal the importance
of modeling users’ categorical preference.
Implementation Details. Following previous work [17, 31], we
set the embedding size of user/item features to 64 (ie., d = 64),
and used AdaGrad [11] for optimization. We used grid search to
select the hyperparameters based on the model’s performance on
validation dataset: the learning rate was searched in {0.005, 0.01,
0.05}; the normalization coefficient was searched in {0, 0.1, 0.2}; the
dropout ratio was searched in {0.2, 0.3, ..., 0.5}; A for controlling
strength of category independent and dependent constraints was
searched in {0.01, 0.05, 0.1, 0.5, 1}. For baseline algorithms, when
evaluating on the dataset the algorithms were also evaluated in their
original papers, we adopted the recommended hyperparameters
from the original paper; otherwise we performed a similar grid
search as above with the search range following the original paper.

3.2 Performance on Recommendation Accuracy
& Diversity

We first evaluate all algorithms in terms of recommendation accu-
racy and diversity.

Evaluation Metrics. We evaluate the accuracy of a recommen-
dation model from two perspectives: (1) Whether the model can
rank positively interacted items of a user before those negatively
interacted ones accurately in the testing dataset; (2) Whether the
model can accurately retrieve those positively interacted items in
the testing dataset from the item pool, which includes all items that
the user did not interact with in the training dataset. For MMR and
DPP, because they only re-rank the recommended items generated
by NFM, a specifically created item pool that contains top-200 items
of NFM is used. We adopted AUC [12] and UAUC [42] as metrics to
evaluate the first perspective. Basically, UAUC is a micro-average
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Dataset Method AUC UAUC  Relalmpr | R@10 NDCG@10 CE@10 CC@10 | R@20 NDCG@20 CE@20 CC@20
NFM 0.8461  0.8224 0.00% | 0.0522  0.0572 1.8056  0.4741 | 0.0908  0.0681 1.9764  0.6185
UnAwareness | 0.8414~  0.8134~ -2.79% | 0.0512~  0.0568~ 1.8919%  0.4998" | 0.0880"  0.0669~ 2.0513%  0.6419™
PS 0.8446~  0.8210™ -0.43% | 0.0513~  0.0572 1.7929"  0.47137 | 0.0890~  0.0681 1.9759"  0.6225*
MMR - 0.8194 -0.93% | 0.0501~  0.0545~ 2.1279%  0.5886% | 0.0902~  0.0670~ 2.2224%  0.7244%
ML_1M DPP - 0.6021~ -68.3% | 0.0454~  0.0518~ 2.4119%  0.7315% | 0.0770"  0.0601~ 2.5974%  0.9586%
PD_GAN - - — | 0.0326" 0.0347~ 2.5495%  0.8347% | 0.0503~  0.0386~ 2.66507  0.9393*
DGCN 0.7949~  0.7759~ -14.4% | 0.0365~  0.0402~ 1.9133%  0.5088" | 0.0640~  0.0482~ 2.0748%  0.6466%
DecRS 0.8462%  0.8202~ -0.07% | 0.0537%  0.0588* 1.8560%  0.4876" | 0.0919%  0.0694% 2.03787  0.6365™
DCRS_CI 0.8332~  0.8096~ -3.90% | 0.0530%  0.0581F 1.7606~  0.4468~ | 0.0936%  0.0699% 1.9108~  0.5766~
DCRS 0.8483% 0.8237% 0.40% | 0.0551%  0.0602* 1.8877t  0.4909% | 0.096*  0.0722% 2.0620%  0.6368%
NFM 0.8346  0.8193 0.00% | 0.0474  0.0448 1.9351 05127 | 0.0797  0.0547 2.0877  0.6504
UnAwareness | 0.8274~  0.8078~ -3.60% | 0.0394~  0.0363~ 2.0308%  0.5410% | 0.0659  0.0446~ 2.2036%  0.6891%
IPS 0.8378%  0.8218" 0.78% | 0.0469™  0.0441~ 1.9280~  0.5070” | 0.0783~  0.0538 2.0913%7  0.6491
MMR - 0.8084~ -3.41% | 0.0436~  0.0418~ 2.2941%  0.6629% | 0.0762  0.0521~ 234517 0.7639%
ML_10M DPP - 0.6459~ -54.3% | 0.0390  0.0392 2.5014%  0.7740% | 0.0629"  0.0459~ 2.6248+ 0.9376%
PD_GAN - - —10.0108"  0.0119 231347 0.7164% | 0.0176~  0.0136~ 2.4446%  0.8606%
DGCN 0.8069  0.8081~ -3.51% | 0.0425~  0.0380~ 2.0459%  0.5530% | 0.0740  0.0482~ 2.1925%  0.6934%
DecRS 0.8417*  0.8261% 2.12% | 0.04777  0.0445~ 194017 0.5048~ | 0.0814%  0.0551% 2.1181%  0.6480~
DCRS_CI 0.83577  0.8197% 0.12% | 0.0478%  0.0448 1.9810%  0.52697 [ 0.0813%  0.0554F 2.1322%  0.6635™
DCRS 0.8447%  0.8301" 3.38% | 0.0499" 0.0465* 2.0050%  0.5327% | 0.0838" 0.0572% 2.1655%  0.6733%
NFM 0.6667  0.6289 0.00% | 0.0076  0.0052 1.6722  0.0495 | 0.0118  0.0066 1.9551 0.0740
UnAwareness | 0.6267~  0.5687~ -46.7% | 0.0064~  0.0043~ 1.6660~  0.0524% | 0.0097~  0.0054~ 1.87627  0.0721°
PS 0.6650  0.6269~ -1.55% | 0.0078%  0.0053% 1.5969”  0.04537 | 0.0115~  0.0066 1.9148~  0.0704~
MMR - 0.6096~ -15.0% | 0.0067~  0.0045~ 2.2899%  0.0864% | 0.0109"  0.0060~ 2.5119*  0.1278%
Amazon-Books DPP - 0.5300~ -76.7% | 0.0054~  0.0040~ 2.5184%  0.1005% | 0.0081~  0.0049~ 2.8741+ 0.1645%
PD_GAN - - — 10.0004~  0.0003~ 2.3179%  0.0920% | 0.0016~  0.0007~ 2.7648%  0.1545%
DGCN 0.6747%  0.6404% 8.92% | 0.0071~  0.0044~ 2.0003%  0.0698% | 0.0122%  0.0061~ 2.2842%  0.1074*
DecRS 0.6964%  0.6558" 20.8% | 0.0074~  0.0051~ 1.8207%  0.0601% | 0.0111  0.0063~ 2.0973%  0.0918%
DCRS_CI 0.6893%  0.6546% 19.9% | 0.0057~  0.0036~ 2.0172%  0.0704% | 0.0095~  0.0049~ 2.2799%  0.1068™
DCRS 0.6974%  0.6573" 22.0% | 0.0079* 0.0052 1.8639%  0.0622% | 0.0123*  0.0067* 2.1415%  0.0953%

Table 2: Experimental results regarding to recommendation accuracy and diversity. Improved (or dropped) performance over
the base NFM model under the same setting is marked as + (or —).

H ‘ { ML-1M { ML-10M { Amazon-Books ‘
Category Method AUC UAUC R@20 NDGG@20 AUC UAUC R@20 NDGG@20 AUC UAUC R@20 NDGG@20
NFM 0.8547 0.8180 0.3034 0.1678 | 0.8498 0.8229 0.2814 0.1453 | 0.6474 0.5976  0.0679 0.0343
18t ranked cat DecRS 0.8563  0.8135  0.3079 0.1718 | 0.8545 0.8273  0.3031 0.1572 | 0.6724 0.6113  0.0698 0.0331
DCRS_CI | 0.8606 0.8241 0.3230 0.1783 | 0.8608 0.8340 0.3210 0.1659 | 0.6730 0.6178 0.0730 0.0345
NFM 0.8403  0.8009  0.3820 0.1962 | 0.8372 0.8078 0.3434 0.1655 | 0.6637  0.5489  0.0536 0.0302
20d ranked cat DecRS 0.8407 0.8014 0.3817 0.1982 | 0.8407 0.8088  0.3558 0.1718 | 0.6978 0.5661 0.0576 0.0310
DCRS_CI | 0.8449 0.8056 0.3960 0.2078 | 0.8485 0.8170 0.3861 0.1875 | 0.7413 0.5709 0.0595 0.0312
NFM 0.8344 0.8046  0.6665 0.3350 | 0.8172 0.7926 0.4156 0.1969 | 0.6931 0.5910 0.0554 0.0241
3 yanked cat DecRS 0.8381 0.8062 0.6743 0.3423 | 0.8231 0.7968  0.4458 0.2137 | 0.7044 0.5920 0.0548 0.0233
DCRS_CI | 0.8419 0.8055 0.6873 0.3463 | 0.8264 0.8014 0.4794 0.2291 | 0.7176 0.6162 0.0591 0.0245

Table 3: Recommendation accuracy of disentangled category-independent representation on category-specifc testing data.

version of AUC, measuring the goodness of intra-user recommen-
dation by averaging AUC over users. Besides, we followed previous
work [39, 42] to use the Relalmpr metric to measure the relative
improvement over the base NFM model on UAUC. For a random
guesser, the value of AUC is 0.5, and thus Relalmpr is defined as:
UAUC(mesured model) — 0.5
UAUC(base NFM model) — 0.5
To evaluate the second perspective of recommendation accuracy,
we adopted Recall@K and NDCG@K for the purpose. Regarding
recommendation diversity, we used two widely-adopted metrics: (1)
Category coverage (CC@K), which is the ratio between number of
categories covered by top-K recommendations and the total number
of categories in dataset; (2) Category entropy (CE@K), which is the
entropy of category distribution in top-K recommendations. Higher
CC@K and CE@K suggest more diverse top-K recommendations.
Table 2 shows the experiment results of all algorithms. We cannot
report AUC, UAUC and Relalmpr for PD_GAN, since it directly

— 1] X 100%.

Relalmpr =
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recommends a set of items. For MMR and DPP, we can only report
UAUC and Relalmpr since it is hard to find an appropriate way to
merge the re-ranked list of different users to calculate AUC. Based
on the results, we can observe that:

Although Unawareness, MMR, DPP, PD_GAN and DGCN pro-
moted more diverse recommendations with higher CE@K and
CC@XK, their recommendation accuracy dropped a lot, indicating
their failure to handle accuracy-diversity dilemma.

IPS did not consistently outperform the base NFM model in rec-
ommendation diversity or accuracy, due to the inaccurate esti-
mation and high variance of propensity scores.

At most time, especially on ML_1M and ML_10M100K dataset,
DecRS improved both recommendation accuracy and diversity,
since it could avoid many less-relevant or low-quality items from
the dominant categories being recommended. However, its im-
provement was not larger than our proposed DCRS.
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o Our proposed DCRS effectively improved both recommendation
accuracy and diversity on all three datasets compared to the base
NFM model. One can observe on all datasets, DCRS achieved
the highest recommendation accuracy in all metrics, and gener-
ated more diverse recommendations than the base NFM model
with higher CC@K and CE@K. This implies that DCRS tends to
generate diverse recommendations the users will prefer, rather
than solely pursuing diversity regardless of recommendation
accuracy. Moreover, compared to DCRS, the recommendation
accuracy of DCRS_CI dropped on all three datasets, confirming
the importance of modeling users’ categorical preference.

3.3 Predicting Users’ In-Category Preferences

We dive deeper to investigate why DCRS can make accurate and
diversified recommendations. Based on our design, the disentan-
glement shields the users’ preference on item categories from their
preference on items within the category when learning the user-
item representations. As a result, the user-item representations
learnt by DCRS should better predict a user’s interest within item
category, compared to those did not consider this aspect. Thus we
inspect whether the disentangled category-independent represen-
tation (i.e., {hjlc}) can distinguish less relevant (or low-quality)
items from relevant (or high-quality) items more accurately within
a given category of items.

We split the testing dataset according to item categories, and
evaluated all algorithms on each category-specific testing dataset
separately. On all three of our evaluation datasets, an item may
relate to multiple categories. For example, the movie “Toy Story
(1995)” in ML-1M dataset is related to three categories: “Animation”,
“Children’s”, and “Comedy”. Here, we split the testing dataset accord-
ing to each unique combination of related categories. Then given
one unique combination of categories, we traversed the testing
dataset and only kept user-item interactions where the interacted
item is associated with the same category combination. To ensure
the reliability of the evaluation results, on each dataset, we only
evaluated the algorithms on the top-3 most popular categories.

In this experimental setting, we only need to evaluate DCRS_CI,
as all items are from the same category. Table 3 demonstrates the
experiment results. Due to space limit, we only report results on
AUC, UAUC, Recall@20 and NDCG@20, and omit baselines that
perform worse than the base NFM model. From Table 3, we can
observe that both DecRS and DCRS_CI performed better than the
base NFM model, as aligned with the results in Section 3.2. More-
over, DCRS_CI achieved the best performance most time, implying
that disentangled representations contribute to more accurate pref-
erence modeling within categories.

3.4 Case Study

We also use a case study to qualitatively illustrate the behavior of the
proposed DCRS model. Figure 4 shows the distribution of categories
in the interacted items in training and testing data of a user from
ML-1M dataset, as well as the top-10 recommended items generated
by NFM, DecRS and DCRS. One can observe from Figure 4 that: the
top-10 recommendations of NFM and DecRS model mainly fell in
the “Thriller” category, which is the most popular in the training
data of this user. Our proposed DCRS could capture the user’s
preference over categories more thoroughly. As shown in Figure 4,
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Figure 4: Categorical distributions of training data, testing
data and top-10 recommended items of a sampled user.

the recommended items from DCRS did not simply concentrate
to the dominant category “Thriller” as in other recommendation
algorithms, but they successfully covered six out of ten categories
that have a non-zero support in the user’s testing data. Moreover,
DCRS could also identify the user’s preference on categories that
the user seldom interacted with before, for example, the category
of “Documentary”. This explains its improved recommendation
diversity without losing recommendation accuracy.

4 ONLINE DEPLOYMENT AND A/B TEST

To further verify the effectiveness of DCRS, we deploy it on the
recommendation channel of Toutiao app, one of the largest news
recommendation platforms in China, for online A/B test.

More specifically, we implemented DCRS based on the main
candidate generator of Toutiao. Here, the main candidate generator
is one of many candidate generators that produce recommendation
candidates, which are later scored and ranked by a separate rank-
ing model before presenting to users [6]. But the recommendation
candidates produced by the main candidate generator account for
the largest proportion of the recommendations shown to users.
We then replaced the main candidate generator by DCRS in the
experimental group, and used the prior main candidate generator
in the control group. We adopted two key metrics: (1) Click Through
Rate (CTR); (2) StayTime, to measure users’ satisfaction with the re-
sulting recommendations. To accurately evaluate recommendation
diversity, we only targeted items with more than 1000 impressions,
because for those that appear less frequently could be introduced by
some special strategies rather than the compared methods. We then
calculated four metrics: (1) E_CN: number of distinct categories
of targeted items shown to a user; (2) E_CE: entropy of category
distribution of targeted items shown to a user ; (3) R_CN: number
of distinct categories of targeted items read by a user ; (4) R_CE:
entropy of category distribution of targeted items read by a user.
The A/B test was conducted for seventeen consecutive days and the
average performance of the above metrics is reported. We report
experimental results in Table 4. All reported results are significant
with p-value < 0.05. We can observe that DCRS achieved higher
C1TR and StayTime, indicating improved users’ satisfaction. More-
over, while the improvements in E_CN and E_CE were not that
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ACTR  AStayTime
+0.973% +0.062%

AE CN AE CE
+0.197% +0.111%

AR CN AR CE
+2.372% +2.276%

DCRS

Table 4: Results of online A/B test on Toutiao app.

large, DCRS gained huge improvements in R_CN and R_CE, imply-
ing DCRS is able to generate diverse recommendations the user will
prefer.

5 RELATE WORK

DCRS is closely related to two lines of existing work: (1) addressing
accuracy-diversity dilemma in recommendations; and (2) disentan-
gled user representation learning for general user modeling.
Addressing accuracy-diversity dilemma in recommendations.
Besides recommendation accuracy, more and more research sug-
gests other factors of recommendation quality also contribute to
the overall user satisfaction about the system. Of these factors, rec-
ommendation diversity has been shown as a critically important
one [1, 32], which however also leads to the so-called accuracy-
diversity dilemma [31, 40]: higher accuracy often means losing
diversity to some extent and vice verse. One main reason is that
previous solutions with accuracy as the primary goal tend to focus
on items in the dominant categories in users’ interaction history.
In order to guarantee user satisfaction, three different types of solu-
tions are proposed, namely post-processing, learning to rank, and
diversified recommendation models.

For the first, and most popular, type of solutions, a re-ranking or
post-processing module is appended to a chosen recommendation
model. The post-processing module takes recommended items as
input and re-orders them to balance recommendation accuracy and
diversity. Various post-processing algorithms [2, 5, 19, 27, 44] are
proposed. For example, Ziegler et. al. [44] first applied the Maximal
Marginal Relevance (MMR) algorithm, which was used for topic
diversification in search engines, to minimize redundancy among
recommended items. Determinantal Point Process (DPP) has been
shown as the most effective one [5] of all post-processing algo-
rithms, which scores an entire list of items rather than every item
individually for better modeling of item correlations. However, all
these post-processing algorithms are separately constructed from
the recommendation models, though their learning highly depends
on the performance of the recommendation model. When the rec-
ommendation model fails to provide a diverse item list to start with,
or gives pretty-low scores to diverse items, the effectiveness of the
aforementioned post-processing algorithms will largely deterio-
rate. Moreover, as shown in our experiment results in Section 3,
the aforementioned post-processing algorithms usually seriously
sacrifice recommendation accuracy.

Learning To Rank type solutions [8, 21, 34] aim to directly rec-
ommend a list of items to users, rather than selecting items one by
one according to their prediction scores. However, this line of work
often suffers from high time complexity, which limits its application
in real world recommendation scenarios.

Recently, several solutions are proposed to directly improve the
diversity of recommendation models. Zheng et. al [40] proposed a
diversified recommendation model based on Graph Convolutional
Networks (GCN), with improving recommendation diversity as its
only target. Wu et. al [36] leveraged the GAN framework for diverse
recommendations, where a generator tries to recommend diverse

497

Xiaoying Zhang, Hongning Wang, and Hang Li

sets of items, and a discriminator aims to distinguish the generated
recommendations from a set of items randomly sampled from the
observed data of the target user. The most related work to ours is
[31], where the authors studied the problem of lack of diversity in
recommendations from a casual perspective, and proposed DecRS
to alleviate the problem. Experiments demonstrate the advantage
of our proposed DCRS over these solutions in improving recom-
mendation accuracy and diversity. A recent work [20] also tried to
diversify recommendations in relevant recommendation scenario,
where the diversification is conducted regarding multiple item as-
pects such that relevance and diversity are adaptively balanced
among different item aspects. However, when only one item aspect
is considered, e.g., the item category in this paper, their algorithm
degenerates to the MMR algorithm.

Disentangled user representations. Learning disentangled user
representations has drawn increasing attention in recent years. A
family of solutions are based on Variational Auto-Encoder (VAE)
to force each dimension of learnt representations to focus on dif-
ferent latent factors [22, 24, 38]. However, such a disentanglement
is implicit and therefore one cannot associate the disentangled
representation with the specific attributes of interest. Zheng et.
al [41] proposed DICE to learn representations where user interest
and conformity are structurally disentangled via direct supervision
from cause-specific data. However, in our problem, we cannot ac-
cess users’ preferences over item categories explicitly, thus are not
able to get any direct supervision about it. Chen et. al. [7] proposed
to disentangle item representations to address popularity bias, by
requiring the two disentangled item representations to be orthogo-
nal. In our solution, we disentangle a user’s preference over an item
into category dependent and independent segments. Both segments
relate to the user and thus they do not need to be orthogonal to
each other.

6 CONCLUSION

In this paper, we propose a new principle that the diversification of
recommendations should be performed within a user’s preferred
categories, such that improved recommendation diversity can be
achieved without sacrificing recommendation accuracy. We realize
this principle via a general framework, named DCRS, to disentan-
gle a user’s category dependent and independent preference in
the learnt representations. We evaluate DCRS through both offline
experiments on three widely-used benchmark datasets for recom-
mendation and online A/B test on Toutiao, one of the largest news
recommendation platforms in China. We demonstrate DCRS can
provide more accurate and diversified recommendations. Via in-
depth analysis and case studies, we find that the benefit of DCRS
is introduced by: (1) it can capture a user’s diverse preference in
historical interactions more thoroughly; and (2) it can rank items
in the same category more accurately.

In this work, we took a static view of users’ preferences over
items and item categories. But numerous studies have demonstrated
that users’ preferences evolve over time [35, 37]. It is interesting to
study the problem of recommendation diversification in an interac-
tive manner over time. Moreover, currently we only recommend
one item a time to a user. It is interesting to study how to gener-
ate a list of diverse recommendations, where diversity should be
optimized within and across recommendation lists.
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