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Abstract. In the context of principal components analysis (PCA), the
bootstrap is commonly applied to solve a variety of inference prob-
lems, such as constructing confidence intervals for the eigenvalues of
the population covariance matrix Σ. However, when the data are high-
dimensional, there are relatively few theoretical guarantees that quan-
tify the performance of the bootstrap. Our aim in this paper is to
analyze how well the bootstrap can approximate the joint distribution
of the leading eigenvalues of the sample covariance matrix Σ̂, and we
establish non-asymptotic rates of approximation with respect to the
multivariate Kolmogorov metric. Under certain assumptions, we show
that the bootstrap can achieve the dimension-free rate of r(Σ)/

√
n up

to logarithmic factors, where r(Σ) is the effective rank of Σ, and n
is the sample size. From a methodological standpoint, our work also
illustrates that applying a transformation to the eigenvalues of Σ̂ be-
fore bootstrapping is an important consideration in high-dimensional
settings.

MSC 2010 subject classifications: Primary 62G09; 62H25. Secondary
62H25; 62E17.
Key words and phrases: bootstrap, high-dimensional statistics, covari-
ance matrices, principal components analysis.

1. INTRODUCTION

The applications of the bootstrap in principal components analysis (PCA) go back almost as far
as the advent of the bootstrap itself [Diaconis and Efron, 1983], and over the years such applica-
tions have become part of standard practice in multivariate analysis [Davison and Hinkley, 1997,
Jolliffe, 2002, Olive, 2017]. With regard to theory, there is also a well-established set of asymptotic
results showing that the bootstrap generally works in the context of PCA with low-dimensional
data [Beran and Srivastava, 1985, Eaton and Tyler, 1991]. Furthermore, in aberrant situations
where the bootstrap is known to encounter difficulty in low dimensions, such as in the case of tied
population eigenvalues, various remedies have been proposed and analyzed [Beran and Srivastava,
1985, Dümbgen, 1993, Hall et al., 2009].

However, in the context of PCA with high-dimensional data, the relationship between theory
and practice is quite different. On one hand, bootstrap methods are popular among practitioners
for solving inference problems related to high-dimensional PCA [e.g. Wagner, 2015, Fisher et al.,
2016, Webb-Vargas et al., 2017, Terry et al., 2018, Li and Ralph, 2019, Nguyen and Holmes, 2019,
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Stewart et al., 2019]. Yet, on the other hand, the theory for describing these methods is relatively
incomplete.

As a way to develop a more precise understanding of the bootstrap in this context, we focus
on the fundamental problem of approximating the joint distribution of the leading eigenvalues
λ1(Σ̂), . . . , λk(Σ̂) of a sample covariance matrix Σ̂ ∈ R

p×p, where k < p. (Precise defnitions will
be given later.) Because the fluctuations of these eigenvalues are relevant to many inference tasks,
this problem plays a central role in multivariate analysis, and is also of broad interest in other
areas, such as signal processing [Couillet and Debbah, 2011], and finance [Ruppert and Matteson,
2015]. For concreteness, we summarize below some examples of inference tasks involving sample
eigenvalues. In addition, these tasks are illustrated with real-data examples based on stock market
returns in Section S9 of the supplementary material.

• Selecting principal components. A key step that occurs in any implementation of PCA is
to choose the number of principal components, and many established techniques for mak-
ing this choice are informed by the distributions of eigenvalue-based statistics. Examples of
these statistics include eigengaps λj(Σ̂) − λj+1(Σ̂), and the proportions of explained vari-

ance (λ1(Σ̂) + · · ·+ λk(Σ̂))/ tr(Σ̂), as well as the componentwise proportions λj(Σ̂)/ tr(Σ̂) for
j = 1, . . . , k. In addition, other selection rules are based on confidence intervals for the eigen-
values λ1(Σ), . . . , λk(Σ) of the population covariance matrix Σ ∈ R

p×p, and the construction
of such intervals is directly linked to the distribution of the eigenvalues of Σ̂. For a general
overview of selection rules, we refer to Jolliffe [2002].

• Quantifying uncertainty. The eigenvalues of a population covariance matrix arise as un-
known parameters of interest in many situations beyond the selection of principal compo-
nents. For instance, these parameters govern the performance of statistical methods for co-
variance estimation, regression, and classification [Ledoit and Wolf, 2012, Hsu et al., 2014,
Dobriban and Wager, 2018]. Also, these parameters have domain-specific meaning in appli-
cations ranging from portfolio selection to ecology [Fabozzi et al., 2007, Chen et al., 2019].
Consequently, it becomes necessary to quantify the uncertainty associated with the popula-
tion eigenvalues, such as in constructing confidence intervals for them—and again, this leads
to the use of distributional approximation results for the sample eigenvalues.

Although there is an extensive literature on distributional approximations for sample eigenval-
ues, this body of work primarily work focuses on asymptotic results involving analytical formulas.
Roughly speaking, the bulk of the literature can be divided into two parts, dealing either with classi-
cal asymptotics where p is held fixed as n → ∞ [Anderson, 2003], or high-dimensional asymptotics
where p/n converges to a positive constant as p and n diverge simultaneously [Bai and Silverstein,
2010b]. In either case, an essential limitation is that asymptotic results do not usually quantify
how close the limiting distribution is to the finite-sample distribution. In more practical terms, this
means that it is often hard to know if tests statistics and confidence intervals are well calibrated
(i.e. if their actual levels and coverage probabilities are close to the nominal values). A second
limitation is that approximations based on analytical formulas are often tied to specific model
assumptions, which can make it difficult to adapt such formulas outside of a given model.

With regard to the second limitation, bootstrap methods have an advantage insofar as they do
not rely on formulas, and hence can be applied in a more flexible manner. Nevertheless, the ex-
isting work on bootstrap methods for PCA still tends to suffer from the first limitation above,
since the results are generally asymptotic [Beran and Srivastava, 1985, Eaton and Tyler, 1991,
El Karoui and Purdom, 2019]. From this standpoint, a key motivation for our work is to provide
results that explicitly quantify the accuracy of bootstrap approximation in terms of the sample size
n and the effective rank of Σ. (For example, our results can be used to quantify how close the cover-
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age probabilities of bootstrap confidence intervals are to the nominal values.) Another motivation
is based on the fact that, until quite recently, most of the literature on bootstrap methods for PCA
has been limited to low-dimensional settings. Consequently, it is of general interest to establish a
more complete theoretical description of bootstrap methods for high-dimensional PCA—a point
that was highlighted in a recent survey on this topic [Johnstone and Paul, 2018, §X.C].

1.1 Contributions

Let X1, . . . ,Xn ∈ R
p be centered i.i.d. observations with population covariance matrix Σ =

E[X1X
⊤
1 ]. Also, let Σ̂ =

∑n
i=1 XiX

⊤
i /n denote the associated sample covariance matrix, and let

Σ̂⋆ =
∑n

i=1 X
⋆
i (X

⋆
i )

⊤/n be its bootstrap version, formed from random vectors X⋆
1 , . . . ,X

⋆
n that are

sampled with replacement from the observations. In addition, let the eigenvalues of a symmetric
matrix A ∈ R

p×p be denoted as λ1(A) ≥ · · · ≥ λp(A), and let λk(A) = (λ1(A), . . . , λk(A)) for a
fixed integer k < p.

In this notation, our goal is to establish non-asymptotic bounds on the multivariate Kolmogorov
distance

∆n = sup
t∈Rk

∣∣∣∣∣P
(√

n
(
λk(Σ̂)− λk(Σ)

)
� t

)
− P

(√
n
(
λk(Σ̂

⋆)− λk(Σ̂)
)
� t

∣∣∣X
)∣∣∣∣∣,

where the relation v � w between two vectors v,w ∈ R
k means vj ≤ wj for all j = 1, . . . , k, and

P(· |X) refers to probability that is conditional on X1, . . . ,Xn. Under certain conditions, our central
result (Theorem 1) shows that the dimension-free bound

(1) ∆n ≤ Cn r(Σ)√
n

holds with high probability, where Cn > 0 is a polylogarithmic function of n, and the quantity r(Σ)
is the effective rank of Σ, defined by r(Σ) = tr(Σ)/λ1(Σ).

There are several aspects of the bound (1) and the parameter r(Σ) that are worth noting. First,
the effective rank satisfies 1 ≤ r(Σ) ≤ p whenever Σ is nonzero, and can be interpreted as a proxy
for the number of “dominant” principal components of Σ. Hence, even in very high-dimensional
settings where n ≪ p, the bound (1) shows that the bootstrap can perform well if the number of
dominant components is not too large, which is precisely the situation where high-dimensional PCA
is of greatest interest. Meanwhile, even in situations where r(Σ) is moderately large, e.g. r(Σ) →
∞ with r(Σ) = o(

√
n), the bound (1) is still able to quantify the accuracy of the bootstrap.

Indeed, both of these points are borne out by our numerical experiments in Section 3, which
confirm that the performance of the bootstrap is governed more by r(Σ) than p, and that the
bootstrap can still be accurate when r(Σ) is moderately large. More generally, it should also be
mentioned that the theoretical role of effective rank in many other aspects of high-dimensional
PCA has attracted considerable attention in recent years [e.g. Lounici, 2014, Bunea and Xiao, 2015,
Koltchinskii and Lounici, 2017, Jung et al., 2018, Naumov et al., 2019, Koltchinskii et al., 2020].

As an alternative to approximating the distribution of
√
n
(
λk(Σ̂)− λk(Σ)

)
by bootstrapping in

a direct manner, it can be advantageous to use a transformation prior to bootstrapping, which is a
fundamental topic in the bootstrap literature [e.g. DiCiccio, 1984, Tibshirani, 1988, Konishi, 1991,
DiCiccio and Efron, 1996, Davison and Hinkley, 1997, Chernick, 2011]. To be more specific, let h be
a univariate scalar function, referred to as a transformation, and for any symmetric matrix A ∈ R

p×p,
let h(λk(A)) = (h(λ1(A)), . . . , h(λk(A))). Then, the conditional distribution of

√
n(h(λk(Σ̂

⋆)) −
h(λk(Σ̂))) given the observations can be used to approximate the distribution of

√
n(h(λk(Σ̂)) −

h(λk(Σ))). (Additional discussion is provided in Sections 2 and 3.) For instance, a classical choice
of transformation is h(x) = log(x), because it is known to be variance-stabilizing under certain
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conditions when n → ∞ with p held fixed [Beran and Srivastava, 1985]. With this in mind, a
second contribution our analysis is an extended version of the bound (1) that can accommodate
the use of certain transformations (Theorem 2).

From a more methodological standpoint, our numerical experiments also shed new light on the
role of transformations in bootstrap methods for high-dimensional PCA. Although we confirm that
the classical logarithm transformation can be beneficial in low dimensions, we show that it is less
effective when r(Σ) is moderately large. Consequently, we explore some alternative transformations
and provide numerical results demonstrating that there are opportunities to improve upon h(x) =
log(x) in high dimensions. To put such empirical findings into perspective, we are not aware any
prior work investigating how transformations can be used to enhance bootstrap methods in this
context.

1.2 Related work

Quite recently, there has been an acceleration in the pace of research on bootstrap methods
for high-dimensional sample covariance matrices, as evidenced in the papers Han et al. [2018],
Johnstone and Paul [2018], El Karoui and Purdom [2019], Lopes et al. [2019, 2022+], Naumov et al.
[2019]. Among these, the most relevant to our work is El Karoui and Purdom [2019], which exam-
ines both the successes and failures of the bootstrap in doing inference with the leading eigenvalues
of Σ̂. In the negative direction, that paper focuses on a specialized model with λ1(Σ) > 1 and
λ2(Σ) = · · · = λp(Σ) = 1, which corresponds to a very large effective rank r(Σ) ≍ p that makes
dimension reduction via PCA inherently difficult. In the positive direction, that paper deals with
a different situation where Σ is assumed to have a near low-rank structure of the form

(2) Σ =

(
A B
B⊤ C(η)

)
,

where A is of size k× k with k ≍ 1, and the diagonal blocks satisfy λ1(A) ≍ 1, and λ1(C(η)) . n−η

for a fixed parameter η > 1/2. Working under an elliptical model, the paper [El Karoui and Purdom,
2019] shows that the bootstrap consistently approximates the distribution of

√
n
(
λk(Σ̂)− λk(Σ)

)

in an asymptotic framework where p/n . 1. In relation to our work, the most crucial distinction is
that our results quantify the accuracy of the bootstrap with non-asymptotic rates of approximation.
To illustrate the significance of this, note that our bound (1) provides an explicit link between the
size of r(Σ) and the accuracy bootstrap, whereas in an asymptotic setup, the effect of r(Σ) is
hidden—because it “washes out in the limit”. Our numerical experiments will also confirm that
different sizes of r(Σ) can have an appreciable effect on the finite-sample accuracy of the bootstrap.
In this way, our work indicates that the quantity r(Σ)/

√
n serves as a type of conceptual diagnostic

for assessing the reliability of the bootstrap in high-dimensional PCA.
Beyond these points of contrast with El Karoui and Purdom [2019], there are several distinctions

with regard to model assumptions. First, we work in a dimension-free setting where there are no
restrictions on the size of p with respect to n. Second, the model based on (2) implicitly requires
that λj(Σ) . n−η for all j ≥ k + 1, whereas this constraint on Σ is not used here. Third, it is
straightforward to check that in the model based on (2), the condition η > 1/2 implies r(Σ) =
o(
√
n), which means that our bound (1) ensures bootstrap consistency in models that subsume the

one based on (2). (As an example, if p ≍ em(n) for some sequence of integers satisfyingm(n) = o(
√
n)

and if λj(Σ) ≍ j−1, then the bound (1) implies bootstrap consistency, whereas this is not guaranteed
by the previous result even when p ≍ n.)

Other works on bootstrap methods related to high-dimensional sample covariance matrices
have dealt with models or statistics that are qualitatively different from those considered here.
The papers Han et al. [2018], Lopes et al. [2022+] look at bootstrapping the operator norm error
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√
n‖Σ̂−Σ‖op, as well as variants of this statistic, such as supu∈U

√
n|u⊤(Σ̂−Σ)u|/u⊤Σu, where U

is a set of sparse vectors in the unit sphere of Rp. In a different direction, the paper [Lopes et al.,
2019] focuses on “linear spectral statistics” of the form

∑p
j=1 f(λj(Σ̂))/p, where f : [0,∞) → R is

a smooth function. In that paper, it is shown that a type of parametric bootstrap procedure con-
sistently approximates the distributions of such statistics when p/n converges to a positive limit.
Lastly, the paper Naumov et al. [2019] deals with bootstrapping statistics related the eigenvectors
of Σ̂.

Notation. For a random variable X and an integer q ∈ {1, 2}, define the ψq-Orlicz norm as
‖X‖ψq = inf {t > 0 | E[exp(|X|q/tq)] ≤ 2}. The random variable X is said to be sub-exponential if
‖X‖ψ1 is finite, and sub-Gaussian if ‖X‖ψ2 is finite. In addition, for any q ≥ 1, the Lq norm of X is
defined as ‖X‖q = (E[|X|q])1/q. For any vectors u, v ∈ R

p, their inner product is 〈u, v〉 = ∑p
j=1 ujvj.

For any real numbers a and b, the expression a ≪ b is used in an informal sense to mean that b is
much larger than a. Also, we use the notation a∨ b = max{a, b} and a∧ b = min{a, b}. If {an} and
{bn} are two sequences on non-negative numbers, then the relation an . bn means that there is a
positive constant c not depending on n such that an ≤ c bn holds for all large n. When both of the
conditions an . bn and bn . an hold, we write an ≍ bn.

2. MAIN RESULTS

We consider a sequence of models indexed by n, in which all parameters may depend on n
except when stated otherwise. In particular, the dimension p = p(n) is allowed to have arbitrary
dependence on n. Likewise, if a parameter does not depend on n, then it is understood not to
depend on p either. One of the few parameters that will be treated as fixed with respect to n is the
positive integer k < p.

Assumption 1 (Data-generating model).

(a). There is a non-zero positive semidefinite matrix Σ ∈ R
p×p, such that the ith observation is

generated as Xi = Σ1/2Zi for all i = 1, . . . , n, where Z1, . . . , Zn ∈ R
p are i.i.d. random vectors

with E[Z1] = 0, and E[Z1Z
⊤
1 ] = Ip.

(b). The eigenvalues of Σ satisfy min
1≤j≤k

(
λj(Σ)− λj+1(Σ)

)
& λ1(Σ).

(c). Let uj ∈ R
p denote the jth eigenvector of Σ, and let Γ ∈ R

k×k have entries given by Γjj′ =
E[(〈uj , Z1〉2 − 1)(〈uj′ , Z1〉2 − 1)] for all 1 ≤ j, j′ ≤ k. Then, the matrix Γ satisfies λk(Γ) & 1.

In connection with the model described by Assumption 1, our results will make reference to a
moment parameter defined as βq = max1≤j≤p ‖〈uj , Z1〉2‖q for any q ≥ 1.

Remarks. Regarding Assumption 1.(b), it ensures that there is some degree of separation between
the leading eigenvalues of Σ. In less compact notation, the assumption states that there is a fixed
constant c > 0 such that the inequality λj(Σ)− λj+1(Σ) ≥ cλ1(Σ) holds for all j = 1, . . . , k, and all
large n. (There is no restriction on the size of c.) In general, a separation condition on the leading
eigenvalues is unavoidable, because it is known both theoretically and empirically that the bootstrap
can fail to approximate the distribution of

√
n
(
λk(Σ̂)−λk(Σ)

)
if the leading population eigenvalues

are not distinct [Beran and Srivastava, 1987, Hall et al., 2009]. In more technical terms, the source
of this issue can be explained briefly as follows: If Sp×p denotes the space of real symmetric p × p
matrices, and if λj(·) is viewed as a functional from Sp×p to R, then λj(·) becomes non-differentiable
at Σ in the case when λj(Σ) is a repeated eigenvalue (i.e. with multiplicity larger than 1). In turn,
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this lack of smoothness makes it difficult for the bootstrap to approximate the distribution of√
n(λj(Σ̂)− λj(Σ)).
To interpret Assumption 1.(c), the matrix Γ serves a technical role as a surrogate for the corre-

lation matrix of
√
n
(
λk(Σ̂)−λk(Σ)

)
. Hence, the lower bound λk(Γ) & 1 can be viewed as a type of

non-degeneracy condition for the distribution of interest. The proposition below gives examples of
well-established models in which Assumption 1.(c) holds. Namely, parts (i) and (ii) below respec-
tively correspond to Marčenko-Pastur models and elliptical models. The latter case also illustrates
that the entries of the vector Z1 are not required to be independent.

Proposition 1. (i) (Marčenko-Pastur case). Suppose that Assumption 1.(a) holds. In addition,
suppose that the entries of Z1 are independent, and there is a constant κ > 1 not depending on n
such that min1≤j≤p E[Z

4
1j] ≥ κ. Then, Assumption 1.(c) holds.

(ii) (Elliptical case). Let V be a random vector that is uniformly distributed on the unit sphere of
R
p, and let ξ be a non-negative scalar random variable independent of V that satisfies E[ξ2] = p

and E[ξ4] < ∞. Under these conditions, if Z1 has the same distribution as ξV , then Assumption
1.(c) holds.

The proof of Proposition 1 is given in Section S1 of the supplementary material.

Bootstrap approximation. The following theorem is the central result of the paper, and quanti-
fies the accuracy of the bootstrap when it is used to approximate the distribution of

√
n(λk(Σ̂)−

λk(Σ)).

Theorem 1. Suppose that Assumption 1 holds and let q = 5 log(kn). Then, there is a constant
c > 0 not depending on n such that the event

(3) sup
t∈Rk

∣∣∣∣∣P
(√

n
(
λk(Σ̂)− λk(Σ)

)
� t

)
− P

(√
n
(
λk(Σ̂

⋆)− λk(Σ̂)
)
� t

∣∣∣X
)∣∣∣∣∣ ≤

c log(n)β3
3q r(Σ)

√
n

holds with probability at least 1− c/n.

Remarks. The proof of Theorem 1 is given in Section S4 of the supplemenatary material. It is
possible to provide a more concrete understanding of the bound (3) by looking at how the factors
r(Σ) and β3q behave in some well-known situations. For instance, consider the class of matrices Σ
whose eigenvalues have a polynomial decay profile of the form λj(Σ) ≍ j−γ , for some fixed constant
γ > 0. This class offers a convenient point of reference, because it interpolates between models that
have low-dimensional structure and those that do not. Specifically, the effective rank can be related
to γ as

r(Σ) ≍





1 if γ > 1

log(p) if γ = 1

p1−γ if γ < 1.

With regard to the parameter β3q, its dependence on q is simple to describe in some commonly
considered cases. If the entries of Z1 are i.i.d. and sub-Gaussian, then β3q grows at most linearly in q,
with β3q . q‖Z11‖2ψ2

. Alternatively, if the entries of Z1 are i.i.d. and sub-exponential, then β3q grows

at most quadratically in q, with β3q . q2‖Z11‖2ψ1
. (See Chapter 2 of Vershynin [2018] for further

details.) Hence, a direct consequence of Theorem 1 in such cases is that bootstrap consistency holds
when γ > 1/2, p ≍ n and ‖Z11‖ψ1 . 1. Likewise, when γ > 1, the bound in Theorem 1 nearly
achieves the parametric rate n−1/2 and is not influenced by the size of p at all. This conclusion also
conforms with the numerical results that we present in Section 3.
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From a more practical standpoint, it is possible to gauge the size of r(Σ) in an empirical way, by
either estimating r(Σ) directly, or estimating upper bounds on it. Some examples of upper bounds
on r(Σ) for which straightforward estimation methods are known to be effective in high dimensions
include tr(Σ)/max1≤j≤pΣjj and tr(Σ)2/‖Σ‖2F . (Although guarantees can be established for direct
estimates of r(Σ) in high-dimensions, such results can involve a more complex set of considerations
than the upper bounds just mentioned.)

Transformations. To briefly review the idea of transformations, they are often used to solve
inference problems involving a parameter θ and an estimator θ̂ for which the distribution of (θ̂−θ) is
difficult to approximate. In certain situations, this difficulty can be alleviated if there is a monotone
function h for which the distribution of (h(θ̂)−h(θ)) is easier to approximate. In turn, this allows for
more accurate inference on the “transformed parameter” h(θ), and then the results can be inverted
to do inference on θ. In light of this, our next result shows that the rates of bootstrap approximation
established in Theorem 1 remain essentially unchanged when using the class of fractional power
transformations from [0,∞) to [0,∞). This class will be denoted by H, so that if h ∈ H, then
h(x) = xa for some a ∈ (0, 1].

Beyond the class of transformations just mentioned, the bootstrap can be combined with another
type of transformation known as partial standardization [Lopes et al., 2020a]. Letting h ∈ H be a
given function, and letting ς2j = var

(
h(λj(Σ̂))

)
for each j = 1, . . . , p, this technique is well suited

to bootstrapping “max statistics” of the form

(4) M = max
1≤j≤k

h(λj(Σ̂))− h(λj(Σ))

ςτj
,

where τ ∈ [0, 1] is a parameter that can be viewed as a degree of standardization. The ability
to approximate the distribution of M is relevant to the construction of simultaneous confidence
intervals for λ1(Σ), . . . , λk(Σ). It also turns out that the choice of τ encodes a trade-off between
the coverage accuracy and the width of such intervals, and that choosing an intermediate value
τ ∈ (0, 1) can offer benefits in relation to τ = 0 and τ = 1. This will be discussed in greater detail
later in Section 3.

In order to state our extension of Theorem 1 in a way that handles both partial standardization
and transformations h ∈ H in a unified way, we need to introduce a bit more notation. First, when
considering the bootstrap counterpart of a partially standardized statistic such as (4), the vector
ςτk = (ςτ1 , . . . , ς

τ
k ) can be replaced with the estimate ς̂τk = (ς̂τ1 , . . . , ς̂

τ
k ), whose entries are defined

by ς̂2j = var
(
h(λj(Σ̂

⋆))
∣∣X

)
for all j = 1, . . . , p. Second, the expression v/u involving vectors v and

u denotes the vector obtained by entrywise division, (v/u)j = vj/uj . (To handle the possibility
zero denominators, events of the form {V/ς̂τk � t} are understood as {V � t⊙ ς̂τk}, where V ∈ R

k

is random, t ∈ R
k is fixed, and ⊙ is entrywise multiplication. Lemma S5.5 in the supplementary

material also shows that such cases occur with negligible probability.) Lastly, recall that we write
h(v) = (h(v1), . . . , h(vk)) for a k-dimensional vector v and transformation h.

Theorem 2. Suppose that Assumption 1 holds. Fix a transformation h ∈ H and a constant
τ ∈ [0, 1] with respect to n, and let q = 5 log(kn). Then, there is a constant c > 0 not depending on
n, such that the event

sup
t∈Rk

∣∣∣∣P

(
h(λk(Σ̂))− h(λk(Σ))

ςτk

� t

)
− P

(
h(λk(Σ̂

⋆)) − h(λk(Σ̂))

ς̂τk

� t

∣∣∣∣X
)∣∣∣∣∣ ≤

c log(n)β5
3q r(Σ)

√
n

holds with probability at least 1− c/n.
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Remarks. The proof of Theorem 2 is given in Section S5 of the supplementary material. To
comment on the technical relationship between Theorems 1 and 2, it is important to call atten-
tion to the differences between asymptotic and non-asymptotic analysis. When using asymptotics,
the process of showing that bootstrap consistency for

√
n
(
λk(Σ̂) − λk(Σ)

)
implies the same for

(h(λk(Σ̂)) − h(λk(Σ)))/ς
τ
k can typically be handled with a brief argument, based on the delta

method and the consistency of the estimate ς̂τk . However, when taking a non-asymptotic approach,
this process is much more involved. For instance, it is necessary to establish fine-grained error
bounds for ς̂2k , such as in showing that the uniform relative error ‖(ς̂2k − ς2k)/ς

2
k‖∞ is likely to be at

most of order n−1/2β3
2qλ1(Σ)

2
r(Σ) up to logarithmic factors.

3. NUMERICAL EXPERIMENTS

In this section, we focus on the application of constructing simultaneous confidence intervals for
λ1(Σ), . . . , λk(Σ). This will be done in a variety of settings, corresponding to different values of n
and p, as well as different values of effective rank, and different choices of transformations. In a
nutshell, there are two overarching conclusions to take away from the experiments: (1) In situa-
tions where n ≪ p and r(Σ) ≍ 1, the bootstrap generally produces intervals with accurate coverage,
which provides a confirmation of our theoretical results. (2) The classical log transformation mostly
works well in low dimensions, but it can lead to coverage that is substantially below the nominal
level when r(Σ) is moderately large. Nevertheless, we show that it is possible to find transforma-
tions that offer more reliable coverage in this challenging case. More generally, this indicates that
alternative transformations are worth exploring in high-dimensional settings.

3.1 Simulation settings

The eigenvalues of the population covariance matrix Σ were chosen to have two different decay
profiles:

(a) A polynomial decay profile λj(Σ) = j−γ for all j = 1, . . . , p, with γ ∈ {0.7, 1.0, 1.3}.

(b) An exponential decay profile λj(Σ) = δj for all j = 1, . . . , p, with δ ∈ {0.7, 0.8, 0.9}.
As a clarification, it is important to note that the effective rank of Σ increases for larger values of
δ, but decreases for larger values of γ. For the purposes of simulations, the choices (a) and (b) have
the valuable property that the eigenvalues are parameterized in the same way for every choice of p,
which facilitates the comparison of results across different dimensions. The matrix of eigenvectors
for Σ was drawn uniformly from the set of p × p orthogonal matrices. The dimension p was taken
from {10, 50, 100, 200}, and the sample size n ranged from 50 to 500. For each triple (n, p, γ) or
(n, p, δ), the data X1, . . . ,Xn were generated in an i.i.d. manner with the following choices for the
distribution of X1:

(i) The vector X1 = Σ1/2ξV was generated with V being uniformly distributed on the unit sphere
of Rp, and ξ2 being an exponential random variable independent of V with E[ξ2] = p.

(ii) The vector X1 was generated from the Gaussian distribution N(0,Σ).

For each parameter setting, we generated 1000 realizations of the dataset X1, . . . ,Xn, and for each
such realization, we generated B := 1000 sets of bootstrap samples of size n. When constructing
simultaneous confidence intervals for λ1(Σ), . . . , λk(Σ), the value of k was set to 5.
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3.2 Bootstrap confidence intervals

For any α ∈ (0, 1), we aim to construct approximate versions of ideal random intervals I1, . . . ,Ik
that satisfy

(5) P

(
k⋂

j=1

{
λj(Σ) ∈ Ij

}
)

≥ 1− α.

To this end, consider the following max and min statistics, based on any choice of partial standard-
ization parameter τ ∈ [0, 1] and transformation h,

M = max
1≤j≤k

h(λj(Σ̂))− h(λj(Σ))

ςτj

L = min
1≤j≤k

h(λj(Σ̂))− h(λj(Σ))

ςτj
.

Letting qM (α) and qL(α) denote the respective α-quantiles of M and L for any α ∈ (0, 1), it follows
that the desired condition (5) holds if each interval Ij is defined as

(6) Ij = h−1

([
h(λj(Σ̂))− ςτj qM (1− α

2 ) , h(λj(Σ̂))− ςτj qL(
α
2 )

])
,

with h−1([a, b]) being understood as the preimage of [a, b] under h.
To construct bootstrap intervals Î1, . . . , Îk based on (6), it is only necessary to replace qM(1− α

2 ),
qL(

α
2 ), and ς1, . . . , ςk with estimates. In detail, each ςj is first estimated using the sample variance

of B bootstrap replicates of the form h(λj(Σ̂
⋆)). Next, the empirical 1− α

2 quantile of B bootstrap

replicates of the formM⋆ = max1≤j≤k[h(λj(Σ̂
⋆))−h(λj(Σ̂))]/ς̂

τ
j is taken as an estimate of qM (1− α

2 ),
and similarly for qL(

α
2 ).

Regarding the use of transformations, the following three options were included in the experi-
ments:

• log transformation: h(x) = log(x) with τ = 0.

• standardization: h(x) = x with τ = 1.

• square-root transformation: h(x) = x1/2 with τ ∈ [0, 1] chosen data-adaptively.

In the case of the log transformation, the choice of τ = 0 corresponds to the way that this trans-
formation has been used in the classical literature [Beran and Srivastava, 1985], while in the case
of standardization, the choice of τ = 1 is definitional. For the square-root transformation, the use
of a data-adaptive selection rule for τ ∈ [0, 1] is more nuanced, and can be informally explained in
terms of the following ideas developed previously in [Lopes et al., 2020a, Lin et al., 2021].

In essence, this choice can be understood in terms of a trade-off between two competing effects
that occur in the extreme cases of τ = 1 and τ = 0. When using τ = 1, the random variables
[λj(Σ̂)

1/2 − λj(Σ)
1/2]/ςj with ς2j = var(λj(Σ̂)

1/2) and j = 1, . . . , k are on approximately “equal
footing”, which makes the behavior of the statistic M sensitive to their joint distribution (and
likewise for L). By contrast, when τ = 0 is used, the variables [λj(Σ̂)

1/2 − λj(Σ)
1/2] will tend

to be on different scales, and the variable on the largest scale, say j′, will be the maximizer for
M relatively often. In this situation, the statistic M is governed more strongly by the marginal
distribution of [λj′(Σ̂)

1/2 − λj′(Σ)
1/2]. So, from this heuristic point of view, the choice of τ = 0 can
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simplify the behavior of M relative to the case of τ = 1, making the distribution of M easier to
approximate. However, the choice of τ = 0 also has the drawback that it can lead to simultaneous
confidence intervals that are excessively wide, because the widths are no longer adapted to the
different values ς1, . . . , ςk (since ς01 = · · · = ς0k = 1).

To strike a balance between these competing effects, we used the following simple rule to select
τ in the case of the square-root transformation. For a candidate value of τ , let Î1(τ), . . . , Îk(τ)
denote the associated bootstrap intervals defined beneath equation (6) (so that the dependence on
τ is explicit), and let |Î1(τ)|, . . . , |Îk(τ)| denote their widths. Also define µ̂(τ) =

∑k
j=1 |Îj(τ)|/k

and σ̂(τ)2 =
∑k

i=1(|Îj(τ)| − µ̂(τ))2/k. In this notation, we selected the value of τ that minimized
µ̂(τ)+ σ̂(τ) over the set of candidates {0.0, 0.1, . . . , 0.9, 1.0}. Different variants of this type of crite-
rion minimization rule have also been observed to be effective in other contexts [Lopes et al., 2020a,
Lin et al., 2021].
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Figure 1: (Simultaneous coverage probability versus n in simulation model (i) with a polynomial
decay profile). In each panel, the y-axis measures P(∩5

j=1{λj(Σ) ∈ Îj}) based on a nominal value
of 95%, and the x-axis measures n. The colored curves correspond to the different values of p,
indicated in the legend.

3.3 Discussion of coverage

Figure 1 contains nine panels displaying the results for the simultaneous coverage probability
P(∩5

j=1{λj(Σ) ∈ Îj}), based on a nominal value of 95% (i.e. α = 0.05) in the case of the simulation



11

model (i) with a polynomial decay profile for the population eigenvalues. The figure summarizes a
large amount of information, because it shows how the coverage depends on n, p, the eigenvalue
decay parameter γ, and the three transformations described above. For each panel, the x-axis
measures n, and the y-axis measures P(∩5

j=1{λj(Σ) ∈ Îj}). Results corresponding to the dimensions
p = 10, 50, 100, 200 are plotted with colored curves that are labeled in the legend. The three rows
of panels from top to bottom correspond to the log transformation, ordinary standardization, and
the square-root transformation. The three columns of panels from left to right correspond to the
eigenvalue decay parameters γ = 0.7, 1.0, 1.3. In addition, Figure 2 displays analogous results for
exponentially decaying population eigenvalues in model (i). Lastly, results for model (ii), as well
as for a nominal value of 90% (instead of 95%), are provided in Section S8 of the supplementary
material.
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Figure 2: (Simultaneous coverage probability versus n in simulation model (i) with an exponential
decay profile). The plotting scheme is the same as described in the caption of Figure 1, except that
the three columns correspond to values of the eigenvalue decay parameter δ.

There are several notable patterns in Figures 1 to discuss. The first is that faster rates of decay
tend to lead to better coverage accuracy—as anticipated by our theoretical results. In particular,
when the eigenvalue decay parameter is set to γ = 1.3, the coverage is rather accurate even when
n ≪ p. Furthermore, the accuracy is essentially unaffected by the dimension p in this situation,
as indicated by the overlap of the four colored curves. On the other hand, as the decay parameter
becomes smaller, the three transformations perform in different ways. For instance, when γ = 0.7,
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p = 200, and n < 200, the log transformation yields coverage that clearly falls short of the nominal
level. By contrast, the standardization and square-root transformations tend to err more safely in
the conservative direction when γ = 0.7. To give some indication of the difficulty of γ = 0.7, it should
be noted that if γ were decreased slightly to 0.5 with p & n, this would imply r(Σ)/

√
n ≍

√
p/n & 1,

in which case bootstrap consistency would not be guaranteed. When considering all three cases
γ = 0.7, 0.8, 0.9 collectively, the square-root transformation seems to yield the best overall coverage
results if conservative errors are viewed as preferable to anti-conservative ones.

Turning to the coverage results for exponential spectrum decay, the log and square-root transfor-
mations continue to follow the pattern that faster decay improves coverage accuracy. Also, the log
transformation maintains its tendency to err in the anti-conservative direction, while the square-
root transformation maintains its tendency to err in the conservative direction. Meanwhile, ordinary
standardization yields larger errors in the anti-conservative direction than it did in the previous
context.
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Figure 3: (Average width versus n in simulation model (i) with a polynomial decay profile). In
each of the nine panels, the y-axis measures the average width E[|Î1|+ · · ·+ |Î5|]/5, and the x-axis
measures n. The colored curves correspond to the different values of p = 10, 50, 100, 200, indicated
in the legend. The three rows and three columns correspond to labeled choices of transformations
and values of the eigenvalue decay parameter γ.

3.4 Discussion of width

Beyond coverage probability, interval width is another important factor to consider when ap-
praising confidence intervals. In Figures 3-8, the average width E[|Î1| + · · · + |Îk|]/k is plotted on
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the y-axis as a function of the sample size n on the x-axis, with the underlying parameter settings
being organized in the same manner as in Figures 1-6. (Corresponding results for settings based on
model (ii) and a nominal value of 90% are presented in Section S8 of the supplementary material.)
With regard to the three transformations, they produce intervals that have roughly similar widths
across most parameter settings. However, at a more fine-grained level, the results in the case of
polynomial spectrum decay show that the log transformation tends to yield slightly shorter widths
than the square-root transformation, which in turn, tends to yield slightly shorter widths than ordi-
nary standardization. In the case of exponential spectrum decay with δ = 0.9, the same pattern is
also apparent, while for smaller values of δ, there is not much difference among the transformations.

Aside from the transformations, there are two other general trends to notice. Within each of
the 18 panels of Figures 3-8, there is a monotone relationship between width and the dimension p,
with the width generally increasing as the dimension increases. Similarly, the width generally also
increases as the effective rank r(Σ) increases.
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Figure 4: (Average width versus n in simulation model (i) with an exponential decay profile). The
plotting scheme is the same as described in the caption of Figure 3, except that the three columns
correspond to values of the eigenvalue decay parameter δ.
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SUPPLEMENTARY MATERIAL

Organization. In Appendices S4 and S5, we prove Theorems 1 and 2 respectively. The building
blocks for these results are Theorems 3 and 4, which are presented in Appendices S2 and S3
respectively. Technical lemmas are given in Appendix S6. Proposition 1 from the main text is
proved in Appendix S1. Background results are stated in Appendix S7. Appendix S8 provides
additional plots of simulation results. Appendix S9 presents real-data examples based on stock
market returns. Appendix S10 describes the computational cost of implementing the bootstrap.
Lastly, Appendix S11 provides sensitivity analysis with regard to Assumption 1(b).
Conventions. Throughout the proofs of Theorems 1 and 2, we may assume without loss of general-
ity that n ≥ 3, and that for any constant ǫ ∈ (0, 1) fixed with respect to n, the following inequality
holds

(7)
log(n)β3

3q r(Σ)

n1/2
≤ ǫ,

where q = 5 log(kn). (If n < 3 or if (7) does not hold, then the constant c in the statements of
Theorems 1 and 2 may be taken as c = 3 ∨ 1

ǫ , which makes the results trivially true.) In addition,
we will frequently re-use the symbol c to denote a constant that does not depend on n, and we will
allow its value to vary with each appearance.
Notation. The spectral decomposition for Σ will be written as

(8) Σ = UΛU⊤,

where Λ = diag(λ1(Σ), . . . , λp(Σ)) ∈ R
p×p, and the jth column of U ∈ R

p×p is the jth eigen-
vector of Σ. For a vector v ∈ R

p, the ℓ∞ and ℓ2-norms are denoted as ‖v‖∞ = max1≤j≤p |vj |
and ‖v‖2 = (

∑p
j=1 v

2
j )

1/2. For a p1 × p2 matrix M , the following three norms will be used:
‖M‖op = sup‖v‖2=1 ‖Mx‖2, ‖M‖1 = max1≤j≤p2

∑p1
i=1 |Mij |, and ‖M‖∞ = max1≤i≤p1

∑p2
j=1 |Mij |.

If A is a symmetric p× p matrix and j ∈ {1, . . . , p}, then Λj(A) denotes the j × j diagonal matrix
formed by the largest j eigenvalues of A,

Λj(A) = diag
(
λ1(A), . . . , λj(A)

)
.

Also, for each j = 1, . . . , p, let dj(A) = Ajj be the jth diagonal element of A, and let dj(A) be the
vector of the first j diagonal entries

dj(A) = (d1(A), . . . , dj(A)).

If B is another symmetric p × p matrix, then the relation B < A means that B − A is positive
semidefinite. The symbol 1j denotes the j-dimensional all-ones vector. For a univariate scalar func-
tion h with first derivative h′, define h′(v) = (h′(v1), . . . , h′(vp)). Lastly, for two vectors u and v,
the symbol u⊙ v denotes the vector obtained from entrywise multiplication, (u⊙ v)j = ujvj .

S1. PROOF OF PROPOSITION 1

Proof of Proposition 1(i). For each l = 1, . . . , p, let κl = E[Z4
1l]. Also recall that in part (i)

of the proposition, the entries of Z1 are assumed to be independent. For any pair of indices
(j, j′) satisfying 1 ≤ j, j′ ≤ k, it follows from the equation (9.8.6) in Bai and Silverstein
[2010a] that the corresponding entry of Γ ∈ R

k×k is

Γjj′ = E
[(
Z⊤

1 (uju
⊤
j )Z1 − tr(uju

⊤
j )
)(
Z⊤

1 (uj′u
⊤
j′)Z1 − tr(uj′u

⊤
j′)
)]

= 2 · 1{j = j′}+
p∑

l=1

(κl − 3)u2
jlu

2
j′l.
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If we let H denote the p × k matrix whose jth column is equal to (u2
j1, . . . , u

2
jp), then the

previous entrywise expression for Γ can be written in matrix form as

Γ = 2Ik +H⊤(D − 3Ip)H,

where D = diag(κ1, . . . , κp). Now recall the assumption that there is a constant κ > 1 not
depending on n such that min1≤l≤p κl ≥ κ. If we consider the case when κ ≥ 3, then it is
clear that D − 3Ip < 0, which implies Γ < 2Ik, and hence λk(Γ) ≥ 2.

On the other hand, in the case when κ < 3, we have

Γ < 2Ik − (3− κ)H⊤H

<
(
2− (3− κ)‖H‖2op

)
Ik.

(S1.1)

With regard to the quantity ‖H‖2op, observe that

‖H‖2op ≤ ‖H‖1‖H‖∞

= max
1≤j≤k

‖uj‖22 · max
1≤i≤p

k∑

j=1

u2
ji

≤ 1.

Combining this with (S1.1) gives Γ < (2 − (3 − κ))Ik, and hence λk(Γ) ≥ κ − 1, which
completes the proof.

Proof of Proposition 1(ii). For 1 ≤ j, j′ ≤ k, it follows from Lemma A.1 in Hu et al.
[2019] that

Γjj′ = cov
(
Z⊤

1 (uju
⊤
j )Z1 , Z

⊤
1 (uj′u

⊤
j′)Z1

)

=
E[ξ4]

p(p+ 2)

(
1 + 2 tr(uju

⊤
j uj′u

⊤
j′)
)
− 1

= 2 · 1{j = j′} · E[ξ4]

p(p+ 2)
+

E[ξ4]

p(p+ 2)
− 1.

When written in matrix form, this is equivalent to

Γ = a Ik + b 1k1
⊤
k

where a = 2 E[ξ4]
p(p+2)

and b = E[ξ4]
p(p+2)

− 1. Consequently, one eigenvalue of Γ is equal to a + kb,

and the rest are equal to a. Furthermore, due to the basic inequality E[ξ4] ≥ (E[ξ2])2 = p2,
and the fact that p ≥ 2, we have the lower bounds

a ≥ 2
1+2/p

≥ 1
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and

a + kb ≥ 2
1+2/p

+ k
(

1
1+2/p

− 1
)

= 2(1−k/p)
1+2/p

≥ 1− k
p

& 1,

which completes the proof.

S2. GAUSSIAN APPROXIMATION

Theorem 3 (Gaussian approximation). Suppose that the conditions of Theorem 1 hold
and let ζ ∼ N(0,ΛkΓΛk). Then,

sup
t∈Rk

∣∣∣P
(√

n
(
λk(Σ̂)− λk(Σ)

)
� t

)
− P

(
ζ � t

)∣∣∣ .
log(n) β3

2q r(Σ)

n1/2
.(S2.2)

Proof. For each i = 1, . . . , n, let X̃i = Λ1/2U⊤Zi, and let the associated sample covariance
matrix be denoted as

Σ̃ =
1

n

n∑

i=1

X̃iX̃
⊤
i .

This implies Σ̃ = U⊤Σ̂U , and so the eigenvalues of Σ̂ may be equivalently written as

λj(Σ̂) = λj(Σ̃) for every j = 1, . . . , p. For future reference, it will also be helpful to note that

E[Σ̃] = Λ.

To partition Σ̃ into suitable blocks, we will write

Σ̃ =

(
Σ̃[1, 1] Σ̃[1, 2]

Σ̃[1, 2]⊤ Σ̃[2, 2]

)
,(S2.3)

where the matrix Σ̃[1, 1] is of size k × k, and the matrix Σ̃[2, 2] is of size (p− k)× (p− k).

Based on the notation above, the desired result can be broken down as follows:

sup
t∈Rk

∣∣∣P
(√

n
(
λk(Σ̂)− λk(Σ)

)
� t

)
− P

(
ζ � t

)∣∣∣ ≤ I + II

where the two terms on the right are defined as

I = sup
t∈Rk

∣∣∣P
(√

n
(
λk(Σ̃)− λk(Σ)

)
� t

)
− P

(√
n
(
dk(Σ̃[1, 1])− λk(Σ)

)
� t

)∣∣∣,(S2.4)

II = sup
t∈Rk

∣∣∣P
(√

n
(
dk(Σ̃[1, 1])− λk(Σ)

)
� t

)
− P

(
ζ � t

)∣∣∣.(S2.5)
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For each of these terms, Lemmas S2.4, and S2.3 respectively give the following bounds

I .
log(n) β3

2q r(Σ)

n1/2

II .
β3
4

n1/2
,

completing the proof.

S2.1 Lemmas for Gaussian approximation

Lemma S2.1. Suppose that the conditions of Theorem 3 hold. Then, there is a constant
c > 0 not depending on n such that the event

∥∥∥
√
n
(
λk(Σ̃)− λk(Σ̃[1, 1])

)∥∥∥
∞

≤ c log(n) β2q λ1(Σ) r(Σ)

n1/2

holds with probability at least 1− c
n4 .

Proof. Recall the partition (S2.3) of the matrix Σ̃ in the proof of Theorem 3. By Wielandt’s
inequality (Lemma S7.2), the following inequality holds when the event {λk(Σ̃[1, 1]) >
λ1(Σ̃[2, 2])} occurs,

(S2.6) max
1≤j≤k

∣∣λj(Σ̃)− λj(Σ̃[1, 1])
∣∣ ≤

‖Σ̃[1, 2]‖2op
λk(Σ̃[1, 1])− λ1(Σ̃[2, 2])

.

We will derive a high-probability upper bound for the right side of (S2.6) by separately han-
dling the numerator and denominator.

To control the numerator in the bound (S2.6), we may apply Lemma S6.1 to conclude
that ∥∥‖Σ̃[1, 2]‖2op

∥∥
q
.

q β2q λ1(Σ) tr(Σ)

n1−3/(2q)
.

Then, for any t > 0, Chebyshev’s inequality yields the tail bound

P
(
‖Σ̃[1, 2]‖2op ≥ e t

)
≤

e−q
∥∥‖Σ̃[1, 2]‖2op

∥∥q

q

tq
.

Recalling the choice q = 5 log(kn) and taking t = c
n
log(n)β2qλ1(Σ) tr(Σ) for a sufficiently

large constant c, it follows that the event

(S2.7) ‖Σ̃[1, 2]‖2op ≤ c log(n) β2q λ1(Σ)
2
r(Σ)

n

holds with probability at least 1− 1
n4 .

To handle the denominator in the bound (S2.6), let Π ∈ R
k×p denote the matrix whose

ith row is the ith standard basis vector in R
p. Then, Weyl’s inequality implies

max
1≤j≤k

|λj(Σ̃[1, 1])− λj(Σ)| ≤
∥∥Π(Σ̃− Λ)Π⊤∥∥

op

≤ ‖Σ̃− Λ‖op.
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Similarly, we have
max

k+1≤j≤p
|λj−k(Σ̃[2, 2])− λj(Σ)| ≤ ‖Σ̃− Λ‖op.

Combining the last two steps yields the following bound for some positive constant c1 not
depending on n,

λk(Σ̃[1, 1])− λ1(Σ̃[2, 2]) =
(
λk(Σ̃[1, 1])− λk(Σ)

)
+
(
λk(Σ)− λk+1(Σ)

)
−

(
λ1(Σ̃[2, 2])− λk+1(Σ)

)

≥ c1λ1(Σ)− 2‖Σ̃− Λ‖op,(S2.8)

where Assumption 1.(b) has been used in the last line.

To complete the proof, it suffices to show that ‖Σ̃ − Λ‖op ≤ c1
4
λ1(Σ) holds with high

probability. This may be accomplished using Lemma S7.3, which gives the following bound,

(S2.9)
(
E‖Σ̃− Λ‖qop

)1/q
.

(√
q
(
E‖X̃1‖2q2

) 1
2q
∥∥E[X̃1X̃

⊤
1 ]
∥∥1/2

op

n1/2−3/(2q)

)
∨ (

q
(
E‖X̃1‖2q2

)1/q

n1−3/q

)
.

This bound can be simplified by noting that E[X̃1X̃
⊤
1 ] = Λ and

(
E‖X̃1‖2q2

)1/q
=

∥∥‖X̃1‖22
∥∥
q

=

∥∥∥∥
p∑

j=1

λj〈uj, Z1〉2
∥∥∥∥
q

≤ tr(Σ) βq.

(S2.10)

Therefore, the bound (S2.9) reduces to

(
E‖Σ̃− Λ‖qop

)1/q
.

√
q βq λ1(Σ)2 r(Σ)

n1−3/q

∨ q βq λ1(Σ) r(Σ)

n1−3/q

.

√
q βq λ1(Σ)2 r(Σ)

n1−3/q
,(S2.11)

where the second line has used the condition (7).

To apply the previous bound, Chebyshev’s inequality implies that for any t > 0,

P
(
‖Σ̃− Λ‖op ≥ e t

)
≤

e−q
E‖Σ̃− Λ‖qop

tq
.

Recalling the choice q = 5 log(kn) and taking t = cλ1(Σ)√
n

√
log(n)βqr(Σ) for a sufficiently large

constant c not depending on n, we conclude that the event

(S2.12) ‖Σ̃− Λ‖op ≤ cλ1(Σ)

√
log(n) βq r(Σ)

n
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holds with probability at least 1− 1
n4 . Furthermore, if we apply this bound to (S2.8) and use

the condition (7), then the bound

λk(Σ̃[1, 1])− λ1(Σ̃[2, 2]) ≥ c1
2
λ1(Σ)(S2.13)

holds with probability at least 1− 1
n4 .

The stated result is obtained by combining the bounds (S2.6), (S2.7), and (S2.13).

The next result shows that the random vector
√
n
(
λk(Σ̃[1, 1])−λk(Σ)

)
is well approximated

by
√
n
(
dk(Σ̃[1, 1])− λk(Σ)

)
in an entrywise sense.

Lemma S2.2. Suppose that the conditions of Theorem 3 hold. Then, there is a constant
c > 0 not depending on n such that the event

∥∥∥
√
n
(
λk(Σ̃[1, 1])− dk(Σ̃[1, 1])

)∥∥∥
∞

≤ c log(n) β2q λ1(Σ) r(Σ)

n1/2

holds with probability at least 1− c
n4 .

Proof. We will use an iterative argument. As an initial step, first partition the matrix Σ̃[1, 1]
as

Σ̃[1, 1] =

(
d1(Σ̃[1, 1]) V1

V ⊤
1 D1

)
,

where d1(Σ̃[1, 1]) is a scalar, and D1 is a (k − 1) × (k − 1) matrix. To lighten the nota-
tional burden of subscripts when handling matrices of different sizes, we will write λ(A) =
(λ1(A), . . . , λr(A)), as well as d(A) = (A11, . . . , Arr) for any symmetric matrix A ∈ R

r×r and
integer r ≥ 1. By the triangle inequality, we have

∥∥∥λ(Σ̃[1, 1])− d(Σ̃[1, 1])
∥∥∥
∞

≤
∥∥∥∥λ(Σ̃[1, 1])−

[
d1(Σ̃[1, 1])
λ(D1)

] ∥∥∥∥
∞

+

∥∥∥∥
[
d1(Σ̃[1, 1])
λ(D1)

]
− d(Σ̃[1, 1])

∥∥∥∥
∞

,

= T+T′

(S2.14)

where we have defined the random variables T and T′ through the last line. Later on, we
will show that the event

(S2.15) T ≤ c log(n) β2q tr(Σ)

n

holds with probability at least 1− 2
kn4 .

Next, to handle T′, we partition the matrix D1 as

D1 =

(
d1(D1) V2

V ⊤
2 D2

)
,
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where d1(D1) = d2(Σ̃[1, 1]) is a scalar, and D2 is a (k − 2) × (k − 2) matrix. Proceeding
in a similar manner to (S2.14), and noting that d1(Σ̃[1, 1]) is the same as the first entry of
d(Σ̃[1, 1]), we have

T′ ≤
∥∥∥∥λ(D1)−

[
d1(D1)
λ(D2)

] ∥∥∥∥
∞

+

∥∥∥∥
[
d1(D1)
λ(D2)

]
− d(D1)

∥∥∥∥
∞

,

= T′′ + T′′′,

(S2.16)

where the random variables T′′ and T′′′ have been defined through the last line. The argument
that will be used to prove (S2.15) can also be used to show that the event

T′′ ≤ c log(n) β2q tr(Σ)

n

holds with probability at least 1 − c
kn4 . Likewise, we can combine k − 1 iterations of this

process by summing the bounds on T, T′′,T′′′′, . . . appearing at each iteration.

To complete the proof, it remains to validate the claim (S2.15). Let D0 = Σ̃[1, 1], and
observe that

(S2.17) T = |λ1(D0)− d1(D0)| ∨ max
2≤j≤k

|λj(D0)− λj−1(D1)|.

Wielandt’s inequality (Lemma S7.2) gives the following bounds when the event {d1(D0) >
λ1(D1)} occurs,

|λ1(D0)− d1(D0)| ≤
‖V1‖2op

d1(D0)− λ1(D1)

and

|λj(D0)− λj−1(D1)| ≤
‖V1‖2op

d1(D0)− λ1(D1)
,

for all j = 2, . . . , k. So, in light of the formula for T given in (S2.17), we conclude that the
bound

(S2.18) T ≤
‖V1‖2op

d1(D0)− λ1(D1)
.

holds whenever the event {d1(D0) > λ1(D1)} holds. By using the argument at (S2.13) from
the proof of Lemma S2.1, it can be shown that the denominator in the previous bound
satisfies

d1(D0)− λ1(D1) ≥ cλ1(Σ)

with probability at least 1− 1
kn4 for some constant c > 0 not depending on n. Next, in order

to derive an upper bound on ‖V1‖op, note that for any value of k, the matrix V ⊤
1 is contained

in the submatrix of Σ̃ indexed by {2, . . . , p} × {1}. Hence, ‖V1‖op is upper bounded by the

operator norm of that submatrix, which is the same as Σ̃[1, 2]⊤ in the particular case when
k = 1. Due to this observation, it follows from Lemma S6.1 that there is a constant c > 0
not depending on n, such that for any choice of k, the bound

(S2.19) ‖V1‖2op ≤ c q β2q λ1(Σ) tr(Σ)

n
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holds with probability at least 1 − 1
kn4 , where we continue to use q = 5 log(kn). Thus, com-

bining the last few steps establishes the claim (S2.15).

To comment on how this argument can be applied iteratively to T′′ and its successors, the
previous reasoning involving Weilandt’s inequality shows that the bound

T′′ ≤
‖V2‖2op

d1(D1)− λ1(D2)

holds whenever the event {d1(D1) > λ1(D2)} holds. In turn, a lower bound on the denomi-
nator d1(D1)− λ1(D2) that is proportional to λ1(Σ) can be established in the same manner
as for d1(D0) − λ1(D1). Meanwhile, the numerator can be handled by noting that for any
value of k, the matrix V ⊤

2 is contained in the submatrix of Σ̃ indexed by {3, . . . , p} × {1, 2}.
The latter matrix is the same as Σ̃[1, 2]⊤ in the particular case of k = 2, and consequently,
Lemma S6.1 can be used to establish a bound on ‖V2‖2op that is of the same form as (S2.19).
This completes the proof.

The next lemma provides a Gaussian approximation result for
√
n
(
dk(Σ̃[1, 1])− λk(Σ)

)
.

Lemma S2.3. Suppose that the conditions of Theorem 3 hold, and let II be as defined
in (S2.5). Then,

II .
β3
4

n1/2
.

Proof. For each i = 1, . . . , n, let the random vector Wi ∈ R
k have its jth entry defined

as Wij = 〈uj, Zi〉2 − 1, where uj is the jth eigenvector of Σ. Letting Yi = ΛkWi, we have√
n
(
dk(Σ̃[1, 1])−λk(Σ)

)
= 1√

n

∑n
i=1 Yi. Also, note that the covariance matrix of Yi is given

by E[YiY
⊤
i ] = ΛkΓΛk, with Γ as defined in Assumption 1.(c).

Applying Bentkus’ multivariate Berry-Esseen theorem (Lemma S7.5) yields

(S2.20) sup
t∈Rk

∣∣∣∣P
(

1√
n

∑n
i=1 Yi � t

)
− P

(
ζ � t

)∣∣∣∣ .
E
∥∥(ΛkΓΛk)

−1/2Y1

∥∥3

2

n1/2
.

The proof is complete once we derive a bound on E
∥∥(ΛkΓΛk)

−1/2Y1

∥∥3

2
. Due to Assumption

1.(c), we have ∥∥(ΛkΓΛk)
−1/2Y1

∥∥2

2
= W⊤

1 Γ−1W1 ≤ c‖W1‖22 ,

almost surely for some constant c > 0 not depending on n. In turn, Lyapunov’s inequality
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implies

E
∥∥(ΛkΓΛk)

−1/2Y1

∥∥3

2
. E

[
(W⊤

1 W1)
2
]3/4

=

∥∥∥∥
k∑

j=1

(
〈uj, Z1〉2 − 1

)2
∥∥∥∥
3/2

2

≤
( k∑

j=1

∥∥〈uj, Z1〉2 − 1
)2∥∥

2

)3/2

. β3
4 .

Substituting this bound into (S2.20) completes the proof.

Lemma S2.4. Suppose that the conditions of Theorem 3 hold, and let I be as defined
in (S2.4). Then,

(S2.21) I .
log(n) β3

2q r(Σ)

n1/2
.

Proof. For any ǫ > 0 and t ∈ R
k, define the two events

A(t) =
{√

n
(
dk(Σ̃[1, 1])− λk(Σ)

)
� t

}
,

B(ǫ) =
{√

n
∥∥λk(Σ̃)− dk(Σ̃[1, 1])‖∞ ≥ ǫ

}
.

It follows from Lemma S7.6 that

I ≤ P
(
B(ǫ)

)
+ sup

t∈Rk

∣∣∣P
(
A(t+ ǫ 1k)

)
− P

(
A(t− ǫ 1k)

)∣∣∣.(S2.22)

The first term P(B(ǫ)) can be handled by Lemmas S2.1 and S2.2, which show that there is
a constant c > 0 not depending on n such that if ǫ = c√

n
log(n) β2q λ1(Σ) r(Σ), then

P(B(ǫ)) . 1
n
.

Next, the anti-concentration term in (S2.22) can be bounded through an approximation
involving the Gaussian vector ζ ∼ N(0,ΛkΓΛk),

sup
t∈Rk

∣∣∣∣P
(
A(t+ ǫ1k)

)
− P

(
A(t− ǫ1k)

)∣∣∣∣ ≤ 2 II + sup
t∈Rk

∣∣∣∣P
(
ζ � t + ǫ1k

)
− P

(
ζ � t− ǫ1k

)∣∣∣∣

= 2 II + J(ǫ),

where the quantity J(ǫ) is defined by the last line, and II . β3
4/n

1/2 holds by Lemma S2.3.
To handle J(ǫ), we need the following lower bound

min
1≤j≤k

var(ζj) = min
1≤j≤k

λj(Σ)
2 Γjj & λk(Σ)

2,
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where we have used Assumption 1.(c). Based on this lower bound, Nazarov’s inequality
(Lemma S7.4) yields

J(ǫ) .
ǫ

λk(Σ)

.
log(n) β2q r(Σ) λ1(Σ)/λk(Σ)

n1/2
.

(S2.23)

Combining the previous bounds and noting that Assumption 1.(b) implies λ1(Σ)/λk(Σ) . 1,
we obtain the stated result.

S3. BOOTSTRAP APPROXIMATION

To introduce some notation, first note that the bootstrapped vectors X⋆
i can be represented

theoretically as X⋆
i = Σ1/2Z⋆

i for each i = 1, . . . , n, where Z⋆
1 , . . . , Z

⋆
n are sampled with

replacement from Z1, . . . , Zn. Also, let Σ̂⋆ = 1
n

∑n
i=1X

⋆
i (X

⋆
i )

⊤, and let the diagonal matrix
of the largest k sample eigenvalues be denoted as

Λ̂k = diag
(
λ1(Σ̂), . . . , λk(Σ̂)

)
.

For each i = 1, . . . , n, recall the vector Wi ∈ R
k whose ith entry is defined as Wij =

〈uj, Zi〉2 − 1, where uj is the jth eigenvector of Σ. Also let W̄ = 1
n

∑n
i=1Wi. In light of the

fact that Γ = E[W1W
⊤
1 ] with E[W1] = 0, the empirical counterpart of Γ is defined as

(S3.24) Γ̂ =
1

n

n∑

i=1

(Wi − W̄ )(Wi − W̄ )⊤.

Lastly, recall that P(·|X) and E[·|X ] refer to probability and expectation that are conditional
on X1, . . . , Xn.

Theorem 4 (Bootstrap approximation). Suppose that Assumption 1 holds, and let q = 5 log(kn).

Also, let ξ ∈ R
k be a random vector that is conditionally distributed as N

(
0,ΛkΓ̂Λk

)
, given

the observations X1, . . . , Xn. Then, there is a constant c > 0 not depending on n such that
the event

sup
t∈Rk

∣∣∣P
(√

n
(
λk(Σ̂

⋆)− λk(Σ̂)
)
� t

∣∣∣X
)
− P

(
ξ � t

∣∣∣X
)∣∣∣ ≤

c log(n) β3
3q r(Σ)

n1/2
(S3.25)

holds with probability at least 1− c
n
.

Proof. For each i = 1, . . . , n, define

X̃⋆
i = Λ1/2U⊤Z⋆

i ,

as well as the matrix

Σ̃⋆ =
1

n

n∑

i=1

(Λ1/2U⊤Z⋆
i )(Λ

1/2U⊤Z⋆
i )

⊤.
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Based on this definition, we have Σ̃⋆ = U⊤Σ̂⋆U , and hence

λj(Σ̃
⋆) = λj(Σ̂

⋆)

for all j = 1, . . . , p. By analogy with the proof of Theorem 3, we partition Σ̃⋆ as

Σ̃⋆ =

(
Σ̃⋆[1, 1] Σ̃⋆[1, 2]

Σ̃⋆[1, 2]⊤ Σ̃⋆[2, 2]

)
,(S3.26)

where the matrix Σ̃⋆[1, 1] is of size k× k, and the matrix Σ̃⋆[2, 2] is of size (p− k)× (p− k).

To proceed, consider the bound

sup
t∈Rk

∣∣∣P
(√

n
(
λk(Σ̂

⋆)− λk(Σ̂)
)
� t

∣∣∣X
)
− P

(
ξ � t

∣∣X
)∣∣∣ ≤ Î + ÎI

where the terms on the right are defined as

Î = sup
t∈Rk

∣∣∣P
(√

n
(
λk(Σ̃

⋆)− λk(Σ̂)
)
� t

∣∣∣X
)
− P

(√
n
(
dk(Σ̃

⋆[1, 1])− dk(Σ̃[1, 1])
)
� t

∣∣∣X
)∣∣∣,

(S3.27)

ÎI = sup
t∈Rk

∣∣∣P
(√

n
(
dk(Σ̃

⋆[1, 1])− dk(Σ̃[1, 1])
)
� t

∣∣∣X
)
− P

(
ξ � t

∣∣∣X
)∣∣∣.

(S3.28)

Lemmas S3.4 and S3.3 ensure that there is a constant c > 0 not depending on n such that
the following events

Î ≤
c log(n) β3

3q r(Σ)

n1/2
(S3.29)

ÎI ≤
c β3

3q

n1/2
.(S3.30)

each hold with probability 1− c
n
. Combining these bounds gives the stated result.

S3.1 Lemmas for bootstrap approximation

Lemma S3.1. Suppose that the conditions of Theorem 4 hold. Then, there is a constant
c > 0 not depending on n such that the event

(S3.31) P

(∥∥∥
√
n
(
λk(Σ̃

⋆)− λk(Σ̃
⋆[1, 1])

)∥∥∥
∞

≥ c log(n)β2q λ1(Σ) r(Σ)

n1/2

∣∣∣∣X
)

≤ c

n4

holds with probability at least 1− c
n
.

Proof. Let π(X) denote the conditional probability on the left side of (S3.31). By Markov’s
inequality, we have

P(π(X) ≥ 1
n4 ) ≤ n4

E[π(X)],
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and so it is sufficient to show that there is a constant c > 0 not depending on n such that
E[π(X)] ≤ c/n5. In other words, it is enough to show that the event

∥∥∥
√
n
(
λk(Σ̃

⋆)− λk(Σ̃
⋆[1, 1])

)∥∥∥
∞

≤ c log(n)β2q λ1(Σ) r(Σ)

n1/2

holds with probability at least 1− c/n5.

Whenever the event
{
λk(Σ̃

⋆[1, 1]) > λ1(Σ̃
⋆[2, 2])

}
holds, Wielandt’s inequality (Lemma

S7.2) implies

(S3.32) max
1≤j≤k

|λj(Σ̃
⋆)− λj(Σ̃

⋆[1, 1])
∣∣ ≤

‖Σ̃⋆[1, 2]‖2op
λk(Σ̃⋆[1, 1])− λ1(Σ̃⋆[2, 2])

.

The denominator in (S3.32) can be controlled by analogy with the proof of Lemma S2.1: It
follows from Weyl’s inequality and Assumption 1.(b) that

λk(Σ̃
⋆[1, 1])− λ1(Σ̃

⋆[2, 2]) ≥
(
λk(Σ)− λk+1(Σ)

)
− 2‖Σ̃⋆ − Λ‖op

≥ c1λ1(Σ)− 2‖Σ̃⋆ − Λ‖op,
(S3.33)

for some constant c1 > 0 not depending on n. So, controlling the denominator in (S3.32)
amounts to showing that the random variable ‖Σ̃⋆ −Λ‖op is small with high probability. We

will proceed by upper bounding ‖Σ̃⋆ − Σ̃‖op + ‖Σ̃ − Λ‖op with high probability. Applying
Lemma S6.3 with the choice q = 5 log(kn), it follows from a simple marginalization argument
that the event

(S3.34) ‖Σ̃⋆ − Σ̃‖op ≤ cλ1(Σ)

√
log(n) βq r(Σ)

n

holds with probability at least 1 − c
n5 . Next, recalling the bound (S2.12) in Lemma S2.1,

there is a constant c > 0 not depending on n, such that the event

(S3.35) ‖Σ̃− Λ‖op ≤ cλ1(Σ)

√
log(n) βq r(Σ)

n

holds with probability at least 1 − c
n5 . Combining the last two bounds with (S3.33) and

the condition (7) implies that the event {λk(Σ̃
⋆[1, 1]) − λ1(Σ̃

∗[2, 2]) > c1
2
λ1(Σ)} holds with

probability at least 1− c/n5, where q = 5 log(kn).
Lastly, to address the numerator in (S3.32), it follows from Lemma S6.2 and a simple

marginalization argument that the event

(S3.36) ‖Σ̃⋆[1, 2]‖2op ≤ c log(n) β2q λ1(Σ) tr(Σ)

n

holds with probability at least 1− c
n5 . This completes the proof.
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Lemma S3.2. Suppose that the conditions of Theorem 4 hold. Then, there is a constant
c > 0 not depending on n such that the event

(S3.37) P

(∥∥∥
√
n
(
λk(Σ̃

⋆[1, 1])− dk(Σ̃
⋆[1, 1])

)∥∥∥
∞

≥ c log(n) β2q λ1(Σ) r(Σ)

n1/2

∣∣∣∣X
)

≤ c

n4

holds with probability at least 1− c
n
.

Proof. As in the proof of Lemma S2.2, we will lighten the use of subscripts by writing
λ(A) = (λ1(A), . . . , λr(A)) and d(A) = (A11, . . . , Arr) for any symmetric matrix A ∈ R

r×r

and integer r ≥ 1. By the same reasoning used at the beginning of the proof of Lemma S3.1,
it is sufficient to show that the event

∥∥∥
√
n
(
λ(Σ̃⋆[1, 1])− d(Σ̃⋆[1, 1])

)∥∥∥
∞

≤ c log(n) β2q λ1(Σ) r(Σ)

n1/2

holds with probability at least 1− c
n5 . Overall, the current proof is similar to that of Lemma

S2.2. Let D⋆
0 = Σ̃⋆[1, 1], and for each r = 1, . . . , k−1, partition the matrix Σ̃⋆[1, 1] recursively

as

D⋆
r−1 =

(
d1(D

⋆
r−1) V ⋆

r

(V ⋆
r )

⊤ D⋆
r

)
,

where d1(D
⋆
r−1) is a scalar, and D⋆

r is of size (k − r) × (k − r). Based on the proof of
Lemma S2.2, it suffices to show that there is a constant c > 0 not depending on n, such that
for any r = 1, . . . , k, the event

∥∥∥∥λ(D
⋆
r−1)−

[
d1(D

⋆
r−1)

λ(D⋆
r)

] ∥∥∥∥
∞

≤ c log(n) β2q λ1(Σ) r(Σ)

n

holds with probability at least 1− c
kn5 .

Using the reasoning that led to (S2.18) in the proof of Lemma S2.2, Wielandt’s inequality
(Lemma S7.2) implies that if the event {d1(D⋆

r−1) > λ1(D
⋆
r)} holds, then the following event

also holds

(S3.38)

∥∥∥∥λ(D
⋆
r−1)−

[
d1(D

⋆
r−1)

λ(D⋆
r)

] ∥∥∥∥
∞

≤
‖V ⋆

r ‖2op
d1(D⋆

r−1)− λ1(D⋆
r)
.

The numerator in this bound (S3.38) can be controlled with Lemma S6.2 and a simple
marginalization argument, which imply that under the choice q = 5 log(kn), there is a
constant c > 0 not depending on n such that the event

‖V ⋆
r ‖2op ≤ c log(n) β2q λ1(Σ) tr(Σ)

n

holds with probability at least 1− 1
kn5 .

To control the denominator in the bound (S3.38), Weyl’s inequality and the reasoning in
the proof of Lemma S2.2 based on Assumption 1.(b) imply

d1(D
⋆
r−1)− λ1(D

⋆
r) ≥ c2λ1(Σ)− 2‖Σ̃⋆ − Λ‖op,
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for some constant c2 > 0 not depending on n. Next, by combining the bound (S2.12) and
Lemma S6.3, it follows that the event

‖Σ̃⋆ − Λ‖op ≤ cλ1(Σ)

√
log(n) βq r(Σ)

n
(S3.39)

holds with probability at least 1− c
kn5 . Therefore, condition (7) implies that the lower bound

d1(D
⋆
r−1)− λ1(D

⋆
r) ≥ c2

2
λ1(Σ)

holds with probability at least 1− 1
kn5 . This completes the proof.

Lemma S3.3. Suppose that the conditions of Theorem 4 hold, and let ÎI be as defined
in (S3.28). Then, there is a constant c > 0 not depending on n such that the event

ÎI ≤
c β3

3q

n1/2

holds with probability at least 1− c
n
.

Proof. Let W1, . . . ,Wn and W̄ be as defined at the beginning of Appedix S3. Also, define
the vector W ⋆

i ∈ R
k with jth entry W ⋆

ij = 〈uj, Z
⋆
i 〉2−1, and define Y ⋆

i = Λk(W
⋆
i −W̄ ). These

definitions give the relation

√
n
(
dk(Σ̃

⋆[1, 1])− dk(Σ̃[1, 1])
)

=
1√
n

n∑

i=1

Y ⋆
i .

Also note that E[Y ⋆
i |X ] = 0, and

E
[
Y ⋆
i (Y

⋆
i )

⊤∣∣X
]

= ΛkΓ̂Λk.

Due to Bentkus’ multivariate Berry-Esseen theorem (Lemma S7.5), we have

sup
t∈Rk

∣∣∣∣P
(

1√
n

n∑

i=1

Y ⋆
i � t

∣∣∣∣ X
)
− P

(
ξ � t

∣∣ X
)∣∣∣∣ ≤

c E
[
‖(ΛkΓ̂Λk)

−1/2Y ⋆
1 ‖32

∣∣X
]

n1/2
.(S3.40)

Applying Lemma S6.5 with q = 5 log(kn) and using Chebyshev’s inequality, there is a con-
stant c > 0 not depending on n such that the event

E
[
‖(ΛkΓ̂Λk)

−1/2Y ⋆
1 ‖32

∣∣X
]

≤ c β3
3q

holds with probability at least 1− c
n
.

Lemma S3.4. Suppose that the conditions of Theorem 4 hold, and let Î be as defined
in (S3.27). Then, there is a constant c > 0 not depending on n such that the event

Î ≤
c log(n) β3

3q r(Σ)

n1/2
(S3.41)

holds with probability at least 1− c
n .
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Proof. In a similar manner to the proof of Lemma S2.4, the left side of (S3.41) can be

bounded by the sum 2ÎI + Ĝ1(ǫ) + 2Ĝ2(ǫ) + 2Ĝ3, with the last three terms defined for any
ǫ > 0 according to

Ĝ1(ǫ) = P

(∥∥∥
√
n
(
λk(Σ̃

⋆)− λk(Σ̂)
)

−
√
n
(
dk(Σ̃

⋆[1, 1])− dk(Σ̃[1, 1])
)∥∥∥

∞
≥ ǫ

∣∣∣∣X
)
,

G2(ǫ) = sup
t∈Rk

∣∣∣P
(
ζ � t+ ǫ1k

)
− P

(
ζ � t− ǫ1k

)∣∣∣,

Ĝ3 = sup
t∈Rk

∣∣∣P
(
ζ � t

)
− P

(
ξ � t

∣∣X
)∣∣∣.

First, recall from Lemma S3.3 that there is a constant c > 0 not depending on n such that
ÎI ≤ cβ3

3q/n
1/2 holds with probability at least 1− c/n.

Next, when handling the terms Ĝ1(ǫ), G2(ǫ), and Ĝ3 below, we will take ǫ to be of the
form ǫ = c√

n
log(n)β2qλ1(Σ)r(Σ). Using the choice q = 5 log(kn), Lemmas S2.1, S2.2, S3.1

and S3.2 imply that there is a constant c > 0 not depending on n such that the event

Ĝ1(ǫ) ≤ c

n

holds with probability at least 1− c
n
. With regard to G2(ǫ), observe that it is deterministic

and equal to J(ǫ) in the proof of Lemma S2.4. Therefore, the bound (S2.23) gives

G2(ǫ) .
log(n) β2q r(Σ)

n1/2
.

Lastly, the bound (S4.42) (to be established in Appendix S4) implies that the event

Ĝ3 ≤
c log(n) β2

2q

n1/2

holds with probability at least 1 − c
n
. Combining the last several bounds yields the stated

result.

S4. PROOF OF THEOREM 1

By comparing the bounds (S2.2) and (S3.25) in Theorems 3 and 4, it is enough to show
that there is a constant c > 0 not depending on n such that the event

(S4.42) sup
t∈Rk

∣∣∣P
(
ξ � t

∣∣X
)
− P

(
ζ � t

)∣∣∣ ≤
c log(n) β2

2q

n1/2

holds with probability at least 1− c
n
. To this end, define the three matrices

Ck = ΛkΓΛk,

Ĉk = ΛkΓ̂Λk,

B̂k = C
−1/2
k ĈkC

−1/2
k − Ik.
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By Lemma S7.7, there is a constant c > 0 not depending on n such that the bound

sup
t∈Rk

∣∣∣P
(
ξ � t

∣∣X
)
− P

(
ζ � t

)∣∣∣ ≤ c ‖B̂k‖op

holds almost surely. Furthermore, due to Assumptions 1.(b) and 1.(c), the following bounds
also hold almost surely,

‖B̂k‖op ≤
∥∥C−1/2

k

∥∥2

op
‖Ĉk − Ck‖op

≤ c
( λ1(Σ)
λk(Σ)

)2∥∥Γ̂− Γ
∥∥
op

≤ c
∥∥Γ̂− Γ

∥∥
op
.

Next, Lemma S6.4 implies that the event

‖Γ̂− Γ‖op ≤
c q β2

2q

n1/2

holds with probability at least 1− e−q, and in light of the stated choice of q = 5 log(kn), the
proof is complete.

S5. PROOF OF THEOREM 2

A simple rescaling argument can be used to show that the left side of the bound in
Theorem 2 is the same as

sup
t∈Rk

∣∣∣∣P
(
h(λk(Σ̂)/λ1(Σ))− h(λk(Σ)/λ1(Σ)) � t

)
− P

(
h(λk(Σ̂

⋆)/λ1(Σ))− h(λk(Σ̂)/λ1(Σ))

(ς̂k/ςk)τ
� t

∣∣∣∣X
)∣∣∣∣,(S5.43)

where we note that the quantity (ς̂k/ςk)
τ is invariant to rescaling of the observations. Hence,

without loss of generality, we may assume that λ1(Σ) = 1 in the remainder of this appendix.
Consequently, Assumption 1.(b) implies there is a positive constant c◦ not depending on n
such that λj(Σ) ∈ [c◦, 1] holds for all j = 1, . . . , k. (These points will sometimes be used
without being explicitly mentioned in this appendix.) The proof is completed by combining
Lemmas S5.1 and S5.2 given below.

S5.1 Lemmas for bootstrap with transformations

Lemma S5.1. Suppose that the conditions of Theorem 2 hold.

(i) Let ζ ∈ R
k be a random vector that is distributed as N(0,ΛkΓΛk). Then,

sup
t∈Rk

∣∣∣P
(√

n
(
h(λk(Σ̂))− h(λk(Σ))

) � t
)
− P

(
h

′(λk(Σ))⊙ ζ � t
)∣∣∣ .

log(n) β3
2q r(Σ)

n1/2
.

(ii) Let ξ ∈ R
k be a random vector that is conditionally distributed as N

(
0,ΛkΓ̂Λk

)
given

the observations X1, . . . , Xn. Then, there is a constant c > 0 not depending on n such
that the event

sup
t∈Rk

∣∣∣∣P
(√

n
(
h(λk(Σ̂

⋆))− h(λk(Σ̂))
)

(ς̂k/ςk)τ
� t

∣∣∣X
)
− P

(
h′(λk(Σ̂)) ⊙ ξ

(ς̂k/ςk)τ
� t

∣∣∣∣X
)∣∣∣∣ ≤

c log(n)β3
3q r(Σ)

n1/2

holds with probability at least 1− c
n .
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Proof. Part (i). Applying a Taylor expansion for each j = 1, . . . , k, we obtain

√
n
(
h
(
λj(Σ̂)

)
− h

(
λj(Σ)

))
=

√
nh′(λj(Σ)

) (
λj(Σ̂)− λj(Σ)

)

+
√
n
(
λj(Σ̂)− λj(Σ)

)2
∫ 1

0

(1− t) h′′(λj(Σ) + t(λj(Σ̂)− λj(Σ))
)
dt.

Let S, T , V , and R be random vectors in R
k whose entries are defined by

Sj =
√
n
(
h
(
λj(Σ̂)

)
− h

(
λj(Σ)

))
,

Tj = h′(λj(Σ)
)
ζj,

Vj =
√
nh′(λj(Σ)

) (
λj(Σ̂)− λj(Σ)

)
,

Rj =
√
n
(
λj(Σ̂)− λj(Σ)

)2
∫ 1

0

(1− t) h′′(λj(Σ) + t(λj(Σ̂)− λj(Σ))
)
dt.

Lemma S7.8 implies that for any r > 0,

sup
t∈Rk

∣∣∣P
(
S � t

)− P
(
T � t

)∣∣∣ . sup
t∈Rk

∣∣∣P
(
V � t

)− P
(
T � t

)∣∣∣ +
r

min1≤j≤k

√
var(Tj)

+ P(‖R‖∞ ≥ r).

(S5.44)

Theorem 3 gives a bound on the first term,

sup
t∈Rk

∣∣∣P
(
V � t

)
− P

(
T � t

)∣∣∣ .
log(n) β3

2q r(Σ)

n1/2
.(S5.45)

Next, recall from the discussion at the beginning of this appendix that we may assume there
is a constant c◦ > 0 not depending on n such that λj(Σ) ∈ [c◦, 1] holds for all j = 1, . . . , k.
In turn, combining this with Assumption 1.(c) implies

var(Tj) = λj(Σ)
2 · Γjj · h′(λj(Σ)

)2

& 1.(S5.46)

It remains to find a bound for the last term in (S5.44) and to choose a suitable value for
r. For each j = 1, . . . , k, define the event

Aj =
{∣∣λj(Σ̂)− λj(Σ)

∣∣ ≤ c◦
2

}
.

Then,

P
(
|Rj| ≥ r

)
≤ P

(
{|Rj| ≥ r} ∩ Aj

)
+ P

(
Ac

j

)
.

Using the choice q = 5 log(kn) and Weyl’s inequality, the bound (S2.11) implies that

max
1≤j≤k

∥∥λj(Σ̂)− λj(Σ)
∥∥
q
≤

∥∥‖Σ̃− Λ‖op
∥∥
q

.
λ1(Σ)

√
log(n)βqr(Σ)

n1/2

≤ c◦
2e

,(S5.47)
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where the condition (7) has been used in the last step, and the rationale for the constant c◦
2e

will be seen in the next step. By Chebyshev’s inequality, we have

(S5.48) max
1≤j≤k

P(Ac
j) ≤ max

1≤j≤k

∥∥λj(Σ̂)− λj(Σ)
∥∥q

q

(c◦/2)q
≤ (c◦/(2e))

q

(c◦/2)q
= e−q ≤ 1

kn
.

In order to handle P
(
{|Rj| ≥ r} ∩ Aj

)
, first let C denote the following supremum

(S5.49) C = sup
{
|h′′(x)|

∣∣∣ c◦/2 ≤ x ≤ 1 + c◦/2
}
,

which is finite and does not depend on n. Taking r = c√
n
λ1(Σ)

2 log(kn)βqr(Σ) for a suffi-

ciently large constant c, we have

P
(
{|Rj | ≥ r} ∩ Aj

)
≤ P

(√
n
(
λj(Σ̂)− λj(Σ)

)2 · C
2
≥ r

)

≤ P

(∣∣λj(Σ̂)− λj(Σ)
∣∣ ≥ λ1(Σ)

n1/2

√
(2c/C) log(kn)βqr(Σ)

)

≤ 1
kn
,(S5.50)

where the previous step uses (S5.47). Combining the last several steps shows that P(|Rj | ≥
r) ≤ 2

kn
holds for all j = 1, . . . , k and so a union bound gives

P(‖R‖∞ ≥ r) . 1
n
.(S5.51)

Substituting the bounds (S5.45), (S5.46), and (S5.51) into (S5.44) proves the statement (i).

Part (ii). First note that by rescaling, it is enough to show that the event

sup
t∈Rk

∣∣∣∣P
(√

n
(
h(λk(Σ̂

⋆))−h(λk(Σ̂))
) � t

∣∣∣X
)
−P

(
h

′(λk(Σ̂))⊙ ξ � t
∣∣∣∣X

)∣∣∣∣ ≤
c log(n) β3

3q r(Σ)

n1/2

holds with probability at least 1 − c/n. Similar to (S5.44), the left side can be decomposed
as

sup
t∈Rk

∣∣∣P
(
S⋆ � t |X

)
− P

(
T ⋆ � t |X

)∣∣∣

. sup
t∈Rk

∣∣∣P
(
V ⋆ � t |X

)
− P

(
T ⋆ � t |X

)∣∣∣+ r

min1≤j≤k

√
var(T ⋆

j |X)
+ P(‖R⋆‖∞ ≥ r |X),(S5.52)

where S⋆, T ⋆, R⋆, V ⋆ are vectors in R
k defined as

S⋆
j =

√
n
(
h
(
λj(Σ̂

⋆)
)
− h

(
λj(Σ̂)

))
,

T ⋆
j = h′(λj(Σ̂)

)
ξj,

V ⋆
j =

√
nh′(λj(Σ̂)

) (
λj(Σ̂

⋆)− λj(Σ̂)
)
,

R⋆
j =

√
n
(
λj(Σ̂

⋆)− λj(Σ̂)
)2

∫ 1

0

(1− t) h′′(λj(Σ̂) + t(λj(Σ̂
⋆)− λj(Σ̂))

)
dt.
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The first term of the bound (S5.52) is handled by Theorem 4. For the middle term, first note

that var(T ⋆
j |X) = λj(Σ)

2 · Γ̂jj · h′(λj(Σ̂))
2. Using the condition (7), it follows from (S2.12)

and Lemma S6.4 that for each j = 1, . . . , k, the events

λj(Σ̂) ≥ c λj(Σ),

Γ̂jj ≥ cΓjj,

h′(λj(Σ̂)) ≥ c h′(λj(Σ))

each hold with probability at least 1− c
kn
. Hence, Assumptions 1.(b) and (c) imply that the

event
min
1≤j≤k

var(T ⋆
j |X) ≥ c

holds with probability at least 1− c
n
. Next, define the event

A⋆
j =

{∣∣λj(Σ̂
⋆)− λj(Σ̂)

∣∣ ≤ c◦
2

}

with the constant c◦ having the same definition as in Part (i). For the last term on the right
side of (S5.52), we claim that the event

P(‖R⋆‖∞ ≥ r |X) ≤ c

n

holds with probability at least 1− c
n
when r is appropriately chosen. This can be established

with a union bound

(S5.53) P(‖R⋆‖∞ ≥ r |X) ≤
k∑

j=1

P
({

|R⋆
j | ≥ r

}
∩ A⋆

j

∣∣X
)
+ P

(
(A⋆

j)
c |X

)
.

Analogously to (S5.48), we can apply Lemma S6.3 with q = 5 log(kn) and the condition (7)
to conclude that for each j = 1, . . . , k the event

max
1≤j≤k

P
(
(A⋆

j)
c |X

)
≤ c

kn

holds with probability at least 1− c
kn
. For the first term on the right side of (S5.53), we may

use an argument similar to the one leading up to (S5.50) with r = c√
n
λ1(Σ)

2 log(kn)βqr(Σ)

to show that for each j = 1, . . . , k the event

P
(
{|R⋆

j | ≥ r} ∩ A⋆
j

∣∣X
)

≤ c

kn

holds with probability at least 1− c
kn
. Combining the last few bounds completes the proof.

Lemma S5.2. Suppose the conditions of Theorem 2 hold. Then, there is a constant c > 0
not depending on n such that the event

(S5.54) sup
t∈Rk

∣∣∣∣P
(
h

′(λk(Σ))⊙ ζ � t
)
− P

(
h′(λk(Σ̂))⊙ ξ

(ς̂k/ςk)τ
� t

∣∣∣∣X
)∣∣∣∣ ≤

c log(n) β5
2q r(Σ)

n1/2

holds with probability at least 1− c
n
.
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Proof. Define the matrices

Ck = diag
(
h

′(λk(Σ))
)(

ΛkΓΛk

)
diag

(
h

′(λk(Σ))
)

Ĉk = diag

(
h′(λk(Σ̂))

(ς̂k/ςk)τ

)(
ΛkΓ̂Λk

)
diag

(
h′(λk(Σ̂))

(ς̂k/ςk)τ

)

B̂k = C
−1/2
k ĈkC

−1/2
k − Ik.

By Lemma S7.7, the following bound holds almost surely

sup
t∈Rk

∣∣∣∣P
(

h′(λk(Σ̂))⊙ ξ

(ς̂k/ςk)τ
� t

∣∣∣∣X
)
− P

(
h

′(λk(Σ))⊙ ζ � t
)∣∣∣∣ ≤ c ‖B̂k‖op(S5.55)

for some constant c > 0 not depending on n. Using several applications of the triangle
inequality, the following bound holds almost surely,

‖B̂k‖op ≤
∥∥C−1/2

k

∥∥2

op
‖Ck − Ĉk‖op

≤
∥∥C−1/2

k

∥∥2

op
·
∥∥∥h′(λk(Σ))

∥∥∥
∞

·
∥∥∥ΛkΓΛk

∥∥∥
op

·
∥∥∥h′(λk(Σ))−

h
′(λk(Σ̂))

(ς̂k/ςk)τ

∥∥∥
∞

(S5.56)

+
∥∥C−1/2

k

∥∥2

op
·
∥∥∥h′(λk(Σ))

∥∥∥
∞

·
∥∥∥Λk(Γ− Γ̂)Λk

∥∥∥
op

·
∥∥∥
h

′(λk(Σ̂))

(ς̂k/ςk)τ

∥∥∥
∞

+
∥∥C−1/2

k

∥∥2

op
·
∥∥∥h′(λk(Σ))−

h
′(λk(Σ̂))

(ς̂k/ςk)τ

∥∥∥
∞

·
∥∥∥ΛkΓ̂Λk

∥∥∥
op

·
∥∥∥
h

′(λk(Σ̂))

(ς̂k/ςk)τ

∥∥∥
∞

.

The leading factor satisfies ∥∥C−1/2
k

∥∥2

op
. 1

because we may assume that there is a constant c◦ > 0 not depending on n such that
λj(Σ) ∈ [c◦, 1] holds for all j = 1, . . . , k (as discussed at the beginning of this appendix),

and also because λk(Γ) & 1 by Assumption 1.(c). Also, the quantity ‖Γ̂−Γ‖op is handled by
Lemma S6.4, which shows there is a constant c > 0 not depending on n such that the event

(S5.57) ‖Γ̂− Γ‖op ≤
c log(n) β2

2q

n1/2

holds with probability at least 1− c
n
. Combining this with the condition (7) and the bound

‖Γ‖op . β2
2 , it follows that

‖ΛkΓ̂Λk‖op ≤ ‖ΛkΓΛk‖op + ‖Λk(Γ̂− Γ)Λk‖op ≤ c β2
2

holds with probability at least 1− c
n
. To handle the remaining quantities in the bound (S5.56),

note that the triangle inequality yields
(S5.58)∥∥∥∥

h
′(λk(Σ̂))

(ς̂k/ςk)τ
− h

′(λk(Σ))

∥∥∥∥
∞

≤
∥∥(ς̂k/ςk)−τ

∥∥
∞

∥∥h′(λk(Σ̂))− h
′(λk(Σ))

∥∥
∞

+
∥∥h′(λk(Σ))

∥∥
∞

∥∥(ς̂k/ςk)−τ − 1k
∥∥
∞
.

Using Lemmas S5.3, S5.4, and S5.5, as well as some elementary inequalities, the following
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bounds hold with probability at least 1− c/n for any τ ∈ [0, 1],
∥∥(ς̂k/ςk)−τ − 1k

∥∥
∞ ≤

∥∥∥1k − ςk/ς̂k

∥∥∥
∞

≤
∥∥∥ ς̂2k−ς2k

ς̂kςk

∥∥∥
∞

(S5.59)

≤
c log(n) β3

2q r(Σ)

n1/2
.

Furthermore, using the condition (7), this implies that the event

(S5.60)
∥∥(ς̂k/ςk)−τ

∥∥
∞ ≤ c

also holds with probability at least 1− c/n. Next, we derive upper bounds for ‖h′(λj(Σ̂))
∥∥
∞

and ‖h′(λj(Σ̂))−h′(λj(Σ))
∥∥
∞. Using (S2.12) in the proof of Lemma S2.1, it follows that the

bounds
∥∥h′(λk(Σ̂))− h

′(λk(Σ))
∥∥
∞ ≤ c ‖Σ̂− Σ‖op

≤ cλ1(Σ)

√
log(n) βq r(Σ)

n
(S5.61)

hold with probability at least 1− c
n
. Substituting bounds (S5.59), (S5.60), and (S5.61), into

(S5.58), it follows that the event

(S5.62)

∥∥∥∥
h′(λk(Σ̂))

(ς̂k/ςk)τ
− h

′(λk(Σ))

∥∥∥∥
∞

≤
c log(n) β3

2q r(Σ)

n1/2

holds with probability at least 1− c
n
. Lastly, observe that similar reasoning implies that the

event
∥∥h′(λk(Σ̂))

∥∥
∞ ≤

∥∥h′(λk(Σ))
∥∥
∞ +

∥∥h′(λk(Σ̂))− h
′(λk(Σ))

∥∥
∞ ≤ c(S5.63)

holds with probability at least 1− c
n
. By combining the last several bounds with (S5.56), the

proof is complete.

Lemma S5.3. Suppose that the conditions of Theorem 2 hold. Then,

(i) max
1≤j≤k

∣∣E[λj(Σ̂)]− λj(Σ)
∣∣ .

log(n) β2q tr(Σ)

n

and

(ii) max
1≤j≤k

∣∣ var
(
λj(Σ̂)

)
− λj(Σ)

2 Γjj/n
∣∣ .

log(n) β2
2q λ1(Σ) tr(Σ)

n3/2
.

Also, there is a constant c > 0 not depending on n such that the events

(iii) max
1≤j≤k

∣∣E[λj(Σ̂
⋆)|X ]− λj(Σ̂)

∣∣ ≤ c log(n) β2q tr(Σ)

n

and

(iv) max
1≤j≤k

∣∣ var
(
λj(Σ̂

⋆)
∣∣X

)
− λj(Σ)

2 Γ̂jj/n
∣∣ ≤

c log(n) β2
2q λ1(Σ) tr(Σ)

n3/2

each hold with probability at least 1− c
n
.
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Proof. Part (i): Recalling the choice q = 5 log(kn) from the statement of Theorem 2, it
follows from Lemmas S2.1 and S2.2 that there is a constant c not depending on n such that
the event

(S5.64) max
1≤j≤k

∣∣λj(Σ̂)− dj(Σ̃[1, 1])
∣∣ ≤ c log(n) β2q tr(Σ)

n

holds with probability at least 1 − c
n4 . To simplify presentation, let δ be a number of the

form δ = c
n
log(n)β2q tr(Σ) and define the event

Ej =
{
|λj(Σ̂)− dj(Σ̃[1, 1])| ≤ δ

}

for each j = 1, . . . , k. Also, as a temporary short hand, let Uj and Vj denote the random
variables

Uj = λj(Σ̂)− λj(Σ) and Vj = dj(Σ̃[1, 1])− λj(Σ).

Noting that E[dj(Σ̃[1, 1])] = λj(Σ), we have
∣∣E[λj(Σ̂)]− λj(Σ)

∣∣ = |E[Uj ]− E[Vj]|

≤ ‖Uj − Vj‖2
≤

∥∥|Uj − Vj| · 1{Ej}
∥∥
2
+
∥∥|Uj − Vj| · 1{E c

j}
∥∥
2

. δ + ‖λ1(Σ̃)‖4
(
P(E c

j )
)1/4

,

(S5.65)

where the fact dj(Σ̃[1, 1]) = dj(Σ̃) ≤ λ1(Σ̃) = λ1(Σ̂) has been used in the last step. Due
to (S5.64), we have P(E c

j ) ≤ c/n4, and so it is adequate to derive a simple upper bound on

‖λ1(Σ̃)‖4 using (S2.11) and condition (7) as follows

‖λ1(Σ̃)‖4 ≤ λ1(Σ) +
∥∥‖Σ̃− Λ‖op

∥∥
q
,

≤ c λ1(Σ).(S5.66)

Hence, using the last bound in (S5.65) completes the proof of Part (i).

Part (ii): First note that
∣∣ var

(
λj(Σ̂)

)
− λj(Σ)

2 Γjj/n
∣∣ = | var(Uj)− var(Vj)|

≤ 2 (‖Uj‖2 + ‖Vj‖2) ‖Uj − Vj‖2.
(S5.67)

Also note that the intermediate steps in Part (i) give

‖Uj − Vj‖2 .
log(n) β2q tr(Σ)

n
.

From the proof of Lemma S2.3, we have the identity

Vj = dj(Σ̃[1, 1])− λj(Σ) =
1

n

n∑

i=1

(ΛkWi)j,
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which leads to

‖Vj‖22 =
∥∥∥ 1
n

n∑

i=1

(ΛkWi)j

∥∥∥
2

2
.

β2
2 λ1(Σ)

2

n
.

Also, we can bound ‖Uj‖22 as follows

‖Uj‖22 ≤ 2‖Vj‖22 + 2‖Uj − Vj‖22

.
β2
2 λ1(Σ)

2

n
+

(
log(n)β2q tr(Σ)√

n

)2
1

n

.
β2
2 λ1(Σ)

2

n
,(S5.68)

where the third step uses the condition (7). Combining the last several bounds completes
the proof of Part (ii).

Part (iii): The proof is similar to that of Part (i). Lemmas S3.1 and S3.2 imply that the
event

(S5.69) P

(∥∥∥
√
n
(
λk(Σ̃

⋆)− dk(Σ̃
⋆[1, 1])

)∥∥∥
∞

≥ c log(n)β2q tr(Σ)

n1/2

∣∣∣∣X
)

≤ c

n4

holds with probability at least 1− c
n
. Letting δ have the same form as in Part (i), define the

event
E⋆
j =

{
|λj(Σ̂

⋆)− dj(Σ̃
⋆[1, 1])| ≤ δ

}

for each j = 1, . . . , k. Also, define

U⋆
j = λj(Σ̂

⋆)− dj(Σ̃[1, 1]) and V ⋆
j = dj(Σ̃

⋆[1, 1])− dj(Σ̃[1, 1])

as the bootstrap counterparts of Uj and Vj. To proceed, note that E[dj(Σ̃
⋆[1, 1])|X ] =

dj(Σ̃[1, 1]), and so
∣∣E[λj(Σ̂

⋆)|X ]− λj(Σ̂)
∣∣ ≤ |E[U⋆

j |X ]− E[V ⋆
j |X ]|+ |dj(Σ̃[1, 1])− λj(Σ̂)|.(S5.70)

The first term on the right side can be handled similarly to (S5.65),

|E[U⋆
j |X ]− E[V ⋆

j |X ]| ≤ E
[
(U⋆

j − V ⋆
j )

21{E⋆
j }
∣∣X

]1/2
+ E

[
(U⋆

j − V ⋆
j )

21{(E⋆
j )

c}
∣∣X

]1/2

≤ c
(
δ +

(
E
[
λ4
1(Σ̃

⋆)
∣∣X

])1/4 (
P(∪k

j=1(E⋆
j )

c|X)
)1/4 )

,

where the fact dj(Σ̃
⋆[1, 1]) = dj(Σ̃

⋆) ≤ λ1(Σ̃
⋆) has been used in the last step. Due to (S5.69),

we have P(∪k
j=1(E⋆

j )
c|X) ≤ c/n4 with probability at least 1 − c/n. Furthermore, it follows

from Lemma S6.3 and (S2.12) that the event
(
E
[
λ1(Σ̃

⋆)4
∣∣X

])1/4 ≤ λ1(Σ) + ‖Σ̃− Σ‖op +
(
E
[
‖Σ̃⋆ − Σ̃‖qop

∣∣X
])1/q

≤ λ1(Σ) + c λ1(Σ)

√
log(n)βqr(Σ)

n

≤ c λ1(Σ)

(S5.71)
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holds with probability at least 1 − c
n
, where the last line has used condition (7). Thus, the

event

max
1≤j≤k

|E[U⋆
j |X ]− E[V ⋆

j |X ]| ≤ c log(n) β2q tr(Σ)

n

holds with probability at least 1− c/n. For the second term on the right side of (S5.70), note
that (S5.64) implies that the event

max
1≤j≤k

|dj(Σ̃[1, 1])− λj(Σ̂)| ≤ c log(n) β2q tr(Σ)

n

holds with probability at least 1−c/n. Applying the last several steps into (S5.70) completes
the proof of Part (iii).

Part (iv): The proof is essentially analogous to that of Part (ii), and so the details are
omitted.

Lemma S5.4. Suppose that the conditions of Theorem 2 hold. Then,

(i) max
1≤j≤k

∣∣ var
(
h(λj(Σ̂))

)
− h′(λj(Σ))

2 var
(
λj(Σ̂)

)∣∣ .
log(n) β2

2q λ1(Σ) tr(Σ)

n3/2
.

In addition, there is a constant c > 0 not depending on n such that the events

(ii) max
1≤j≤k

∣∣ var
(
h(λj(Σ̂

⋆))
∣∣X

)
− h′(λj(Σ̂))

2 var
(
λj(Σ̂

⋆)
∣∣X

)∣∣ ≤
c log(n) β2

2q λ1(Σ) tr(Σ)

n3/2

and

(iii) max
1≤j≤k

∣∣ var
(
h(λj(Σ̂

⋆))
∣∣X

)
− var

(
h(λj(Σ̂))

)∣∣ ≤
c log(n) β3

2q λ1(Σ) tr(Σ)

n3/2

each hold with probability at least 1− c
n
.

Proof. Part (i): For each j = 1, . . . , k define the random variables

(S5.72) Sj = h(λj(Σ̂))− h(λj(Σ)) and Tj = h′(λj(Σ))
(
λj(Σ̂)− λj(Σ)

)
.

In this notation, we have

max
1≤j≤k

∣∣ var
(
h(λj(Σ̂))

)
− h′(λj(Σ))

2 var
(
λj(Σ̂)

)∣∣ = max
1≤j≤k

∣∣ var(Sj)− var(Tj)
∣∣

≤ max
1≤j≤k

2(‖Sj‖2 + ‖Tj‖2)‖Sj − Tj‖2.(S5.73)

As a way of handling ‖Sj − Tj‖2, first note that the argument used to establish (S5.51) can
also be used to show that the event

max
1≤j≤k

|Sj − Tj | ≤ c log(n) β2q tr(Σ)

n
(S5.74)

holds with probability at least 1− c
n4 . Using the bound (S5.74) and an argument analogous

to the one leading up to (S5.65), we obtain

(S5.75) ‖Sj − Tj‖2 .
log(n)β2q tr(Σ)

n
+

‖Sj‖4 + ‖Tj‖4
n

.
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With regard to ‖Tj‖4 we use (S5.66) to obtain the following conservative but adequate bound,

‖Tj‖4 . ‖λj(Σ̂)− λj(Σ)‖4

≤ ‖λj(Σ̂)‖4 + λj(Σ)

. λ1(Σ).(S5.76)

To handle ‖Sj‖4, first note that the concavity of h implies that Sj ≤ Tj almost surely, and
so

0 ≤ h(λj(Σ̂)) ≤ Tj + h(λj(Σ)).

In turn, this yields

‖Sj‖4 = ‖h(λj(Σ̂))− h(λj(Σ))‖4

≤ ‖h(λj(Σ̂))‖4 + h(λj(Σ))

≤ ‖Tj‖4 + 2h(λj(Σ))

. λ1(Σ).(S5.77)

So, substituting (S5.76) and (S5.77) into (S5.75) gives

(S5.78) ‖Sj − Tj‖2 .
log(n) β2q tr(Σ)

n
.

Now we turn to bounding ‖Tj‖2 and ‖Sj‖2 in (S5.73). Using Lemma S5.3 and the condi-
tion (7) we have

‖Tj‖2 .

√
var

(
λj(Σ̂)

)
+
∣∣E[λj(Σ̂)]− λj(Σ)

∣∣

.
λj(Σ) β2√

n
+
( log(n) β2q r(Σ)√

n

)λ1(Σ)√
n

.
λ1(Σ) β2√

n

Likewise, we may bound ‖Sj‖2 as

‖Sj‖2 ≤ ‖Tj‖2 + ‖Sj − Tj‖2

.
λ1(Σ) β2√

n
+
( log(n) β2q r(Σ)√

n

)λ1(Σ)√
n

.
λ1(Σ) β2√

n
,

which completes the proof of Part (i).

Part (ii): Define random vectors S⋆, T ⋆ ∈ R
k with entries given by

S⋆
j = h(λj(Σ̂

⋆))− h(λj(Σ̂)) and T ⋆
j = h′(λj(Σ̂))

(
λj(Σ̂

⋆)− λj(Σ̂)
)
.
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As an initial step, it can be shown that there is a constant c > 0 not depending on n such
that the event

(S5.79) P

(
‖S⋆ − T ⋆‖∞ ≥ c log(n)β2q tr(Σ)

n

∣∣∣∣X
)

≤ c

n4

holds with probability at least 1 − c
n
. Verifying this is similar to the proof of Lemma S3.1,

and can be handled by showing that

‖S⋆ − T ⋆‖∞ ≤ c log(n) β2q tr(Σ)

n

holds with probability at least 1− c
n5 . In turn, this can be shown using the condition (7) and

the entrywise Taylor expansion

S⋆
j − T ⋆

j =
(
λj(Σ̂

⋆)− λj(Σ̂)
)2

∫ 1

0

(1− t) h′′(λj(Σ̂) + t(λj(Σ̂
⋆)− λj(Σ̂))

)
dt.

along with (S3.34) and (S3.35).

To proceed with the rest of the proof, we can bound the left side of (ii) in a manner that
is similar to (S5.73),
(S5.80)

max
1≤j≤k

∣∣ var(S⋆
j |X)− var(T ⋆

j |X)
∣∣ ≤ max

1≤j≤k
2
(
(E[(S⋆

j )
2|X ])1/2 + (E[(T ⋆

j )
2|X ])1/2

)(
E
[
(S⋆

j − T ⋆
j )

2
∣∣X

])1/2
.

It follows from an argument analogous to (S5.65) and an application of (S5.79) that the
event

max
1≤j≤k

(
E
[
(S⋆

j−T ⋆
j )

2 ∣∣X
])1/2 ≤ c

n

(
log(n) β2q tr(Σ)+max

1≤j≤k

(
(E[(S⋆

j )
4|X ])1/4+(E[(T ⋆

j )
4|X ])1/4

))

holds with probability at least 1 − c/n. Bounds on the conditional fourth moments can
also be derived similarly to the way that the bounds (S5.76) and (S5.77) were. Namely, by
using (S2.12) and (S5.71), it can be shown that the events

max
1≤j≤k

(E[(T ⋆
j )

4|X ])1/4 ≤ c λ1(Σ)

and
max
1≤j≤k

(E[(S⋆
j )

4|X ])1/4 ≤ c λ1(Σ)

each hold with probability at least 1− c
n
. Hence, the event

max
1≤j≤k

(
E
[
(S⋆

j − T ⋆
j )

2
∣∣X

])1/2 ≤ c log(n) β2q tr(Σ)

n

holds with probability at least 1− c
n
.

To address the conditional L2 norms of T ⋆
j and S⋆

j in (S5.80), first note that

(E[(T ⋆
j )

2|X ])1/2 ≤ h′(λj(Σ))
(
var(λj(Σ̂

⋆)|X)1/2 +
∣∣E[λj(Σ̂

⋆)|X ]− λj(Σ̂)
∣∣),
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In turn, Lemmas S5.3 and S6.4 as well as the condition (7) imply that the event

max
1≤j≤k

(E[(T ⋆
j )

2|X ])1/2 ≤ c λj(Σ) β2√
n

+
( log(n)β2qr(Σ)√

n

)c λ1(Σ)√
n

≤ c λ1(Σ) β2√
n

holds with probability at least 1− c
n
. Furthermore, this implies that the event

max
1≤j≤k

(E[(S⋆
j )

2|X ])1/2 ≤ (E[(T ⋆
j )

2|X ])1/2 +
(
E
[
(S⋆

j − T ⋆
j )

2
∣∣X

])1/2

≤ c λ1(Σ) β2√
n

+
( log(n)β2qr(Σ)√

n

)c λ1(Σ)√
n

≤ c λ1(Σ) β2√
n

holds with probability at least 1 − c
n
. The proof is completed by combining the last several

steps with (S5.80).

Part (iii): Using several applications of the triangle inequality, we have
∣∣ var

(
h(λj(Σ̂

⋆))
∣∣X

)
− var

(
h(λj(Σ̂)

)∣∣ ≤
∣∣ var

(
h(λj(Σ̂

⋆))
∣∣X

)
− h′(λj(Σ̂))

2 var
(
λj(Σ̂

⋆)
∣∣X

)∣∣

+
∣∣ var

(
h(λj(Σ̂)

)
− h′(λj(Σ))

2 var
(
λj(Σ̂)

)∣∣

+
∣∣h′(λj(Σ̂))

2 var
(
λj(Σ̂

⋆)|X
)
− h′(λj(Σ))

2 var
(
λj(Σ̂)

)∣∣

The first and second terms on the right side have been handled by Parts (ii) and (i) respec-
tively. To handle the third term, we may use the triangle inequality to obtain

∣∣h′(λj(Σ̂))
2 var

(
λj(Σ̂

⋆)
∣∣X

)
− h′(λj(Σ))

2 var
(
λj(Σ̂)

)∣∣ ≤ Mj +M′
j ,

where the two terms on the right are defined as

Mj = h′(λj(Σ̂))
2 ·

∣∣ var
(
λj(Σ̂

⋆)
∣∣X

)
− var

(
λj(Σ̂)

)∣∣

M′
j = var

(
λj(Σ̂)

)
·
∣∣h′(λj(Σ̂))

2 − h′(λj(Σ))
2
∣∣

Using (S2.12) and the mean value theorem, it can be shown that the event

max
1≤j≤k

∣∣h′(λj(Σ̂))
2 − h′(λj(Σ))

2
∣∣ ≤ c

√
log(n) βq r(Σ)

n

holds with probability at least 1− c
n
. Also, using Lemma S5.3 and the condition (7), it follows

that

max
1≤j≤k

var
(
λj(Σ̂)

)
.

λ1(Σ)
2 β2

2

n
.

Hence, the event

(S5.81) max
1≤j≤k

M′
j ≤

c λ1(Σ)
2 log(n) β

5/2
2q r(Σ)

n3/2
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holds with probability at least 1− c
n
.

Regarding the quantity Mj, observe that the bound
∣∣ var(λj(Σ̂

⋆)|X)− var(λj(Σ̂))
∣∣ ≤

∣∣ var(λj(Σ̂
⋆)|X)− λj(Σ)

2Γ̂jj/n
∣∣

+
∣∣ var(λj(Σ̂))− λj(Σ)

2Γjj/n
∣∣

+
λj(Σ)

2 ‖Γ̂− Γ‖op
n

holds almost surely. Consequently, it follows from Lemmas S5.3 and S6.4, that the event

(S5.82) max
1≤j≤k

Mj ≤
c log(n) β2

2q λ1(Σ) tr(Σ)

n3/2

holds with probability at least 1− c
n
. Combining (S5.81) and (S5.82) completes the proof of

Part (iii).

Lemma S5.5. Suppose that the conditions of Theorem 2 hold. Then,

min
1≤j≤k

var
(
h(λj(Σ̂))

)
& λ1(Σ)2

n
,

and there is a constant c ≥ 1 not depending on n such that the event

min
1≤j≤k

var
(
h(λj(Σ̂

⋆))
∣∣X

)
≥ λ1(Σ)2

cn

holds with probability at least 1− c
n
.

Proof. For any j = 1, . . . , k, and any t > 0, Chebyshev’s inequality and the triangle inequal-
ity give

var
(
h(λj(Σ̂))

)
≥ t2 P

(∣∣h(λj(Σ̂))− E
[
h(λj(Σ̂))

]∣∣ ≥ t
)

≥ t2 P
(√

n
∣∣h(λj(Σ̂))− h(λj(Σ))

∣∣ ≥
√
n
(
t+

∣∣E
[
h(λj(Σ̂))

]
− h(λj(Σ))

∣∣)
)
.(S5.83)

Next, let Sj and Tj be as defined in (S5.72). Applying Part (i) of Lemma S5.3 along with
(S5.78) shows that the bounds

∣∣E
[
h(λj(Σ̂))

]
− h(λj(Σ))

∣∣ ≤ |E[Tj ]|+ |E[Sj]− E[Tj ]|

. |h′(λj(Σ))|
∣∣E
[
λj(Σ̂)− λj(Σ)

]∣∣+ ‖Sj − Tj‖2

.
log(n) β2q tr(Σ)

n
,

hold for every j = 1, . . . , k. Hence, by taking t = λ1(Σ)/
√
n in (S5.83), and using Lemma S5.1
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with the condition (7), there is a constant c > 0 not depending on n such that

var
(
h(λj(Σ̂))

)
≥ t2 P

(√
n
∣∣h(λj(Σ̂))− h(λj(Σ))

∣∣ ≥ c
)

&
λ1(Σ)

2

n

{
P

(
h′(λj(Σ)) ζj ≥ c

)
−

log(n) β3
2qr(Σ)

n1/2

}

&
λ1(Σ)

2

n
,

for every j = 1, . . . , k. Lastly, the proof for the corresponding lower bound on var(h(λj(Σ̂
⋆))|X)

is analogous and so the details are omitted.

S6. PROOF OF TECHNICAL LEMMAS

Lemma S6.1. Suppose that Assumption 1 holds and let q ≥ 5 log(kn). Then,

∥∥‖Σ̃[1, 2]‖2op
∥∥
q

.
q β2q λ1(Σ) tr(Σ)

n1−3/(2q)
.

Proof. We will need two auxiliary matrices to extract Σ̃[1, 2] from Σ̃. Define matrices Π1 ∈
R

k×p and Π2 ∈ R
p×(p−k) according to

Π1 =
[
Ik 0

]
and Π2 =

[
0

Ip−k

]
,

which allow us to write Σ̃[1, 2] = Π1Σ̃Π2. Next, let B
k and B

p−k denote the unit ℓ2-balls in
R

k and R
p−k, and let T = B

k × B
p−k. With this notation in hand, it follows that

‖Σ̃[1, 2]‖op = sup
(u,v)∈T

u⊤Π1Σ̃Π2v

= sup
(u,v)∈T

(UΛ1/2Π⊤
1 u)

⊤
(
1

n

n∑

i=1

ZiZ
⊤
i

)
(UΛ1/2Π2v).(S6.84)

Observe that the vectors UΛ1/2Π⊤
1 u and UΛ1/2Π2v both lie in the ellipsoid E := UΛ1/2(Bp),

and are orthogonal. Therefore,

(S6.85) ‖Σ̃[1, 2]‖op ≤ sup
(u,v)∈E×E
〈u,v〉=0

1

n

n∑

i=1

〈u, Zi〉〈v, Zi〉.

It will be convenient to write the summands in terms of the matrix Q(u, v) := 1
2
(uv⊤ + vu

⊤),
namely

〈u, Zi〉〈v, Zi〉 = Z⊤
i Q(u, v)Zi.

Under this definition, it can be checked that if u and v are any pair of orthogonal vectors,
then E[Z⊤

i Q(u, v)Zi] = 0. Hence, if we subtract E[Z⊤
i Q(u, v)Zi] from the ith term in (S6.85)

for each i = 1, . . . , n, and subsequently drop the constraint 〈u, v〉 = 0 from the supremum,
then we obtain the bound

‖Σ̃[1, 2]‖op ≤ sup
(u,v)∈E×E

(
1

n

n∑

i=1

Z⊤
i Q(u, v)Zi − E[Z⊤

i Q(u, v)Zi]

)
.(S6.86)
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Next, for a given pair of vectors u, v ∈ E , define two associated vectors

w = u/2 + v/2,

w̃ = u/2− v/2,

which satisfy the algebraic relation

Q(u, v) = ww
⊤ − w̃w̃

⊤.

To proceed, define the matrix A ∈ R
p×2p as the column concatenation A =

(
UΛ1/2, UΛ1/2

)
,

and note that both w and w̃ lie in the ellipsoid E ′ := A(B2p). As a result, if we write ξi = A⊤Zi,
then we have

‖Σ̃[1, 2]‖op ≤ sup
(w,w̃)∈E ′×E ′

(∣∣∣∣
1

n

n∑

i=1

〈Zi,w〉2 − E[〈Zi,w〉2]
∣∣∣∣+

∣∣∣∣
1

n

n∑

i=1

〈Zi, w̃〉2 − E[〈Zi, w̃〉2]
∣∣∣∣
)

≤ sup
w∈B2p

∣∣∣∣
2

n

n∑

i=1

〈A⊤Zi, w〉2 − E[〈A⊤Zi, w〉2]
∣∣∣∣

=

∥∥∥∥
2

n

n∑

i=1

ξiξ
⊤
i − E[ξ1ξ

⊤
1 ]

∥∥∥∥
op

.(S6.87)

Next, Lemma S7.3 implies that

(S6.88)

∥∥∥∥
∥∥∥
1

n

n∑

i=1

ξiξ
⊤
i − E[ξiξ

⊤
i ]

∥∥∥
op

∥∥∥∥
q

≤ c

(√
q

n1−3/q

∥∥E[ξ1ξ⊤1 ]
∥∥1/2

op

(
E‖ξ1‖2q2

) 1

2q

)∨(
q

n1−3/q

(
E‖ξ1‖2q2

)1/q
)
.

We can further compute
∥∥E[ξ1ξ⊤1 ]

∥∥
op

=
∥∥A⊤

E[Z1Z
⊤
1 ]A

∥∥
op

= ‖A‖2op
. λ1(Σ),(S6.89)

and
(
E‖ξ1‖2q2

)1/q
= 2

∥∥Z⊤
1 UΛU⊤Z1

∥∥
q

= 2

∥∥∥∥
p∑

j=1

λj(Σ)〈uj, Z1〉2
∥∥∥∥
q

. tr(Σ)βq.(S6.90)

To finish, we use the relation
∥∥‖Σ̃12‖2op

∥∥
q
=

∥∥‖Σ̃12‖op
∥∥2

2q
. Specifically, the previous two bounds

can be substituted into (S6.87) and (S6.88) while replacing q with 2q and using the condi-
tion (7).

Lemma S6.2. Suppose that Assumption 1 holds and let q ≥ 5 log(kn). Then, there is a
constant c > 0 not depending on n such that the event

(
E
[
‖Σ̃⋆[1, 2]‖2qop

∣∣X
])1/q

≤ c q β2q λ1(Σ) tr(Σ)

n1−3/(2q)
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holds with probability at least 1− ce−q.

Proof. We will follow the same notation that was used in the proof of Lemma S6.1. Repeating
the argument from that proof up to (S6.86) and using 2q in place of q we have

(
E
[
‖Σ̃⋆[1, 2]‖2qop

∣∣X
]) 1

2q ≤
(
E

[(
sup

(u,v)∈E×E

1

n

n∑

i=1

(Z⋆
i )

⊤Q(u, v)Z⋆
i − E[Z⊤

i Q(u, v)Zi]

)2q∣∣∣∣X
]) 1

2q

Next, observe that

E
[
(Z⋆

1)
⊤Q(u, v)Z⋆

1

∣∣X
]

=
1

n

n∑

i=1

Z⊤
i Q(u, v)Zi

and so the triangle inequality for the conditional L2q norm gives

(
E
[
‖Σ̃⋆[1, 2]‖2qop

∣∣X
]) 1

2q ≤
(
E

[(
sup

(u,v)∈E×E

1

n

n∑

i=1

(Z⋆
i )

⊤Q(u, v)Z⋆
i − E

[
(Z⋆

i )
⊤Q(u, v)Z⋆

i

∣∣X
])2q∣∣∣∣X

]) 1

2q

(S6.91)

+ sup
(u,v)∈E×E

(
1

n

n∑

i=1

Z⊤
i Q(u, v)Zi − E[Z⊤

i Q(u, v)Zi]

)
.

With regard to the second term in the last bound, the proof of Lemma S6.1 shows (via
Chebyshev’s inequality and condition (7)) that the event

(S6.92) sup
(u,v)∈E×E

(
1

n

n∑

i=1

Z⊤
i Q(u, v)Zi − E[Z⊤

1 Q(u, v)Z1]

)
≤ c

√
qβqλ1(Σ) tr(Σ)

n1−3/q
.

holds with probability at least 1− ce−q, for some constant c > 0 not depending on n. There-
fore, the proof of the current lemma is complete once we derive a similar bound for the first
term on the right side of (S6.91).

Let ξ⋆i = A⊤Z⋆
i , with A as defined in the proof of Lemma S6.1. Then, by following the

argument leading up to (S6.87) and applying Lemma S7.3, there is a constant c > 0 not
depending on n such that

(
E

[(
sup

(u,v)∈E×E

1

n

n∑

i=1

(Z⋆
i )

⊤Q(u, v)Z⋆
i − E

[
(Z⋆

1 )
⊤Q(u, v)Z⋆

1

∣∣X
])2q ∣∣∣∣X

]) 1

2q

≤ c

(
E

[∥∥∥∥
1

n

n∑

i=1

ξ⋆i (ξ
⋆
i )

⊤ − E
[
ξ⋆1(ξ

⋆
1)

⊤
∣∣X

]∥∥∥∥
2q

op

∣∣∣∣X
]) 1

2q

≤ c

(√
2q

n
1− 3

2q

·
(∥∥E[ξ⋆1(ξ⋆1)⊤ |X]

∥∥
op

)1/2 ·
(
E
[
‖ξ⋆1‖4q2

∣∣X
]) 1

4q

)∨(
q

n
1− 3

2q

·
(
E
[
‖ξ⋆1‖4q2

∣∣X
]) 1

2q

)
.(S6.93)

Next, the triangle inequality implies

∥∥E
[
ξ⋆1(ξ

⋆
1)

⊤ ∣∣X
]∥∥

op
=

∥∥∥∥
1

n

n∑

i=1

(A⊤Zi)(A
⊤Zi)

⊤
∥∥∥∥
op

≤
∥∥∥∥
1

n

n∑

i=1

(A⊤Zi)(A
⊤Zi)

⊤ − A⊤A

∥∥∥∥
op

+ 4λ1(Σ),
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where we have used ‖A⊤A‖op ≤ 4λ1(Σ) and E[(A⊤Z1)(A
⊤Z1)

⊤] = A⊤A. By applying Lemma
S7.3 to the first term (along with the condition (7) and Chebyshev’s inequality), it follows
that the event

(S6.94)
∥∥E

[
ξ⋆1(ξ

⋆
1)

⊤ ∣∣X
]∥∥

op
≤ cλ1(Σ)

holds with probability at least 1− e−q, for some constant c > 0 not depending on n.

It remains to develop an upper bound for
(
E
[
‖ξ⋆1‖4q2

∣∣X
]) 1

2q . According to the definition
of ξ⋆i , we have

‖ξ⋆1‖22 = (Z⋆
1)

⊤AA⊤Z⋆
1

= 2(Z⋆
1)

⊤ΣZ⋆
1 ,

and so

(
E
[
‖ξ⋆1‖4q2

∣∣X
]) 1

2q = 2

(
1

n

n∑

i=1

(Z⊤
i ΣZi)

2q

) 1
2q

= 2S,

where the non-negative random variable S is defined by the last line. For any t > 0, Cheby-
shev’s inequality implies

P(S ≥ e t) ≤ e−2q
E[S2q]

t2q

=
e−2q ‖Z⊤

1 ΣZ1‖2q2q
t2q

= e−2q

(
1

t

∥∥∥∥
p∑

j=1

λj(Σ)〈uj, Z1〉2
∥∥∥∥
2q

)2q

≤ e−2q
(β2q tr(Σ)

t

)2q

.

(S6.95)

Combining the last few steps and using the choice t = β2q tr(Σ), it follows that there is a
constant c > 0 not depending on n such that the event

(S6.96)
(
E
[
‖ξ⋆1‖4q2

∣∣X
]) 1

2q ≤ c β2q tr(Σ)

holds with probability at least 1− e−2q. Hence, we may substitute (S6.94) and (S6.96) into
(S6.93), and use the condition (7) to conclude that the event
(S6.97)

(
E

[(
sup

(u,v)∈E×E

1

n

n∑

i=1

(Z⋆
i )

⊤Q(u, v)Z⋆
i − E

[
(Z⋆

1 )
⊤Q(u, v)Z⋆

1

∣∣X
])2q ∣∣∣∣X

]) 1

2q

≤ c

√
2q β2q λ1(Σ) tr(Σ)

n1− 3

2q

holds with probability at least 1− ce−q. Finally, the proof is completed by combining (S6.97)
and (S6.92) with (S6.91).
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Lemma S6.3. Suppose that Assumption 1 holds and let q ≥ 5 log(kn). Then, there is a
constant c > 0 not depending on n, such that the event

(
E
[
‖Σ̃⋆ − Σ̃‖qop

∣∣X
])1/q ≤ c

√
q βq λ1(Σ) tr(Σ)

n1−3/q

holds with probability at least 1− ce−q.

Proof. Letting ξ⋆1 = Λ1/2U⊤Z⋆
1 and using Lemma S7.3, we have

(S6.98)
(
E
[
‖Σ̃⋆ − Σ̃‖qop

∣∣X
])1/q ≤ c ·

(√
q

n1−3/q
‖Σ̃‖1/2op

(
E
[
‖ξ⋆1‖2q2

∣∣X
]) 1

2q

)∨(
q

n1−3/q

(
E
[
‖ξ⋆1‖2q2

∣∣X
]) 1

q

)
.

Using (S2.11) in the proof of Lemma S2.1, as well as the condition (7), it follows that the
bound

‖Σ̃‖op ≤ ‖Σ̃− Λ‖op + ‖Λ‖op

≤ c λ1(Σ)

√
q βq r(Σ)

n1−3/q
+ λ1(Σ)

≤ c λ1(Σ)(S6.99)

holds with probability at least 1− e−q. Also, recall that the argument leading up to (S6.96)
implies that the event

(S6.100)
(
E
[
‖ξ⋆1‖2q2

∣∣X
]) 1

2q ≤ c
√

βq tr(Σ)

holds with probability at least 1 − e−q, for some constant c > 0 not depending on n. Com-
bining (S6.99) and (S6.100) with (S6.98) and the condition (7) completes the proof.

Lemma S6.4. Suppose that Assumption 1 holds and let q ≥ 5 log(kn). Then, there is a
constant c > 0 not depending on n such that the bound

(S6.101) ‖Γ̂− Γ‖op ≤
c q β2

2q

n1/2

holds with probability at least 1− e−q.

Proof. Let W1, . . . ,Wn and W̄ be as defined at the beginning of Appendix S3. Note that

Γ = E[W1W
⊤
1 ], and that the definition of Γ̂ in (S3.24) gives

Γ̂ =
1

n

n∑

i=1

WiW
⊤
i − W̄ W̄⊤.

We may apply Lemma S7.3 to obtain

(
E

∥∥Γ̂− Γ
∥∥q

op

)1/q

≤
(
E

∥∥∥∥
1

n

n∑

i=1

WiW
⊤
i − E[W1W

⊤
1 ]

∥∥∥∥
q

op

)1/q

+
(
E‖W̄W̄⊤‖qop

)1/q

.

(√
q

n1−3/q

(
‖E[W1W

⊤
1 ]‖op

)1/2 (
E‖W1‖2q2

)1/(2q)
)∨(

q

n1−3/q

(
E‖W1‖2q2

)1/q
)

+
(
E‖W̄‖2q2

)1/q

.(S6.102)
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It is straightforward to verify that

‖E[W1W
⊤
1 ]‖op ≤ tr(Γ) . β2

2 .

Also, we have

(
E‖W1‖2q2

)1/q
=

∥∥∥∥
k∑

j=1

(
〈uj, Z1〉2 − 1

)2
∥∥∥∥
q

≤
k∑

j=1

∥∥〈uj, Z1〉2 − 1
∥∥2

2q

. β2
2q.

To handle the term involving W̄ , observe that the previous bound and Lemma S7.1 lead
to

(
E‖W̄‖2q2

) 1
2q

. q

(
(
E‖W̄‖22

)1/2
+
(∑n

i=1 E‖ 1
n
Wi‖2q2

) 1
2q

)

. q

((
E‖W1‖22

)1/2

n1/2 +

(
E‖W1‖2q2

) 1
2q

n
1− 1

2q

)

. q

(
β2

n1/2 +
β2q

n
1− 1

2q

)

.
q β2q

n1/2

(S6.103)

Using condition (7), we may substitute the last few bounds into (S6.102) to obtain

(S6.104)
(
E
∥∥Γ̂− Γ

∥∥q

op

)1/q

.
q β2

2q

n1/2

Combining this result with Chebyshev’s inequality completes the proof.

For the next lemma, let Y ⋆
1 be as defined at the beginning of the proof of Lemma S3.3.

Lemma S6.5. Suppose that Assumption 1 holds and let q ≥ 5 log(kn). Then, there is a
constant c > 0 not depending on n, such that the event

E

[∥∥(ΛkΓ̂Λk)
−1/2Y ⋆

1

∥∥3

2

∣∣∣X
]

≤ c β3
3q.

holds with probability at least 1− ce−q.
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Proof. Note that
∥∥(ΛkΓ̂Λk)

−1/2Y ⋆
1

∥∥2

2
= (W ⋆

1 − W̄ )⊤Γ̂−1(W ⋆
1 − W̄ )

≤ (W ⋆
1 − W̄ )⊤(W ⋆

1 − W̄ )

λk(Γ̂)

≤ 2

λk(Γ̂)

( k∑

j=1

(
〈uj, Z

⋆
1〉2 − 1

)2
+ W̄⊤W̄

)
.

This implies

E

[∥∥(ΛkΓ̂Λk)
−1/2Y ⋆

1

∥∥3

2

∣∣∣X
]

≤ c

λk(Γ̂)3/2

(
1

n

n∑

i=1

( k∑

j=1

(
〈uj, Zi〉2 − 1

)2)3/2

+ (W̄⊤W̄ )3/2
)

=
c
(
T + (W̄⊤W̄ )3/2

)

λk(Γ̂)3/2
,

(S6.105)

where the first line has used the convexity of the function x 7→ x3/2, and the non-negative
random variable T is defined in the second line. By the triangle inequality for the Lq norm,
we have

‖T‖q ≤
(∥∥∥∥

k∑

j=1

(
〈uj, Z1〉2 − 1

)2
∥∥∥∥
3q/2

3q/2

)1/q

. max
1≤j≤k

∥∥∥〈uj, Z1〉2 − 1
∥∥∥
3

3q

. β3
3q.

(S6.106)

So, by Chebyshev’s inequality, there is a constant c > 0 not depending on n such that the
event

T ≤ c β3
3q

holds with probability at least 1− e−q. The bound (S6.103) in the proof of Lemma S6.4 and
the condition (7) also imply that there is a constant c > 0 not depending on n such that the
bound

(W̄⊤W̄ )3/2 ≤
(c q β2q

n1/2

)3/2

≤ c

holds with probability at least 1− e−q.

Now we turn to showing that λk

(
Γ̂
)
is greater than a positive constant with high proba-

bility. Due to Weyl’s inequality we have λk(Γ̂) ≥ λk(Γ) − ‖Γ̂ − Γ‖op. Using Lemma S6.4,
Assumption 1.(c), and the condition (7), it follows that there is a constant c > 0 not depend-
ing on n such that the bound

(S6.107) λk(Γ̂) ≥ c,

holds with probability at least 1−e−q. Combining the bounds (S6.106) and (S6.107) with (S6.105)
completes the proof.
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S7. BACKGROUND RESULTS

Lemma S7.1 (Theorem 1 in Talagrand [1989]). Let X1, . . . , Xn be independent centered
random elements of a Banach space with norm ‖ · ‖. Then, there is an absolute constant
c > 0 such that the following inequality holds for any q ≥ 1,

(
E

∥∥∥
n∑

i=1

Xi

∥∥∥
q
)1/q

≤ cq

1 + log(q)

(
E

∥∥∥
n∑

i=1

Xi

∥∥∥+
(
E max

1≤i≤n
‖Xi‖q

)1/q
)
.

Lemma S7.2 (Weilandt’s inequality Eaton and Tyler [1991], Wielandt and Meyer [1967]).
Consider a real symmetric p× p matrix

A =

(
B C
C⊤ D

)
,

where B is k × k and D is (p− k)× (p− k). If λk(B) > λ1(D), then

0 ≤ λj(A)− λj(B) ≤ λ1(CC⊤)

λj(B)− λ1(D)
, j = 1, . . . , k

and

0 ≤ λp−k−i(D)− λp−i(A) ≤
λ1(CC⊤)

λk(B)− λp−k−i(D)
, i = 0, . . . , p− k − 1.

Lemma S7.3 (Proposition 1 in Lopes et al. [2022+]). Let ξ, . . . , ξn ∈ R
p be i.i.d. random

vectors, let q ≥ 3, and define the quantity

r(q) = q ·
(
E‖ξ1‖2q2

)1/q
∥∥E[ξ1ξ⊤1 ]

∥∥
op

.

Then, there is an absolute constant c > 0 such that
(
E

∥∥∥∥
1

n

n∑

i=1

ξiξ
⊤
i − E[ξ1ξ

⊤
1 ]

∥∥∥∥
q

op

)1/q

≤ c ·
∥∥E[ξ1ξ⊤1 ]

∥∥
op

·
(√

r(q)

n1−3/q

∨ r(q)

n1−3/q

)

The following anti-concentration lemma originates from Nazarov [2003], and was further
elucidated in [Chernozhukov et al., 2017, Theorem 1].

Lemma S7.4 (Nazarov’s inequality). Let Y = (Y1, . . . , Yp) be a centered Gaussian random
vector in R

p and suppose that the parameter σ2 = min1≤j≤pE[Y
2
j ] is positive. Then for every

y ∈ R
p and δ > 0,

P(Y � y + δ1k)− P(Y � y) ≤ δ

σ

(√
2 log(p) + 2

)
.

The following lemma is Bentkus’ multivariate Berry-Esseen theorem.
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Lemma S7.5 (Theorem 1.1 in [Bentkus, 2003]). Let V1, . . . , Vn be i.i.d. random vectors
R

d, with zero mean and identity covariance matrix. Furthermore, let ζ be a standard Gaussian
vector in R

d, and let A denote the collection of all Borel convex subsets of Rd. Then, there
is an absolute constant c > 0 such that

sup
A∈A

∣∣∣P
( 1√

n

n∑

i=1

Vi ∈ A
)
− P(ζ ∈ A)

∣∣∣ ≤ c · d1/4 · E[‖V1‖32]
n1/2

.

For the statement of Lemma S7.6 below, we need to introduce a bit of notation. For any
r > 0 and set A ⊂ R

p, define the outer r-neighborhood as Ar =
{
x ∈ R

p | d(x,A) ≤ r},
where d(x,A) = inf{‖x− y‖ | y ∈ A}, and ‖ · ‖ is any norm on R

p. The corresponding inner
r-neighborhood may be defined as A−r =

{
x ∈ A |B(x, r) ⊂ A}, where B(x, r) = {y ∈

R
p|‖x− y‖ ≤ r}.

Lemma S7.6 (Lemma 7.3 in [Lopes, 2020]). Let ‖·‖ be any norm on R
p, and let ζ, ξ ∈ R

p

be any two random vectors. Then, the following inequality holds for any Borel set A ⊂ R
p,

and any r > 0,

|P(ζ ∈ A)− P(ξ ∈ A)| ≤ P
(
ξ ∈ (Ar \ A−r)

)
+ P

(
‖ζ − ξ‖ ≥ r

)
.

The following lemma is a consequence of Pinsker’s inequality and the proof of Lemma A.7
in the paper Spokoiny and Zhilova [2015].

Lemma S7.7 (Spokoiny and Zhilova [2015]). Let ζ and ζ̃ be centered Gaussian vectors
in R

k with respective covariance matrices C and C̃. Also, suppose that C is invertible, and
let B = C−1/2C̃C−1/2 − Ik. Then, there is an absolute constant c > 0 such that

sup
t∈Rk

∣∣∣P(ζ � t)− P(ζ̃ � t)
∣∣∣ ≤ c

√
k‖B‖op.

The last background lemma follows from the proof of [Lopes et al., 2020b, Lemma D.3],
Lemma S7.6, and Nazarov’s inequality (Lemma S7.4).

Lemma S7.8. Let U , V , and R be random vectors in R
k that satisfy U = V + R. Also,

let W = (W1, . . . ,Wk) be a centered Gaussian random vector in R
k and suppose that the

parameter σ2 = min1≤j≤k E[W
2
j ] is positive. Then there is an absolute constant c > 0, such

that the following bound holds for any r > 0,

sup
t∈Rk

∣∣P(U � t)−P(W � t)
∣∣ ≤ 3 · sup

t∈Rk

∣∣P(V � t)−P(W � t)
∣∣+ cr

√
log(k)

σ
+P(‖R‖∞ ≥ r).
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S8. ADDITIONAL NUMERICAL RESULTS

Nominal value of 95% in model (ii). The following four figures are presented in the same
manner as in the main text for a 95% nominal value, except that they are based on simulation
model (ii).
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Figure 5: (Simultaneous coverage probability versus n in simulation model (ii) with a polynomial
decay profile). The plotting scheme is the same as described in the caption of Figure 1 in the main
text.
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Figure 6: (Simultaneous coverage probability versus n in simulation model (ii) with an exponential
decay profile). The plotting scheme is the same as described in the caption of Figure 2 in the main
text.
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Figure 7: (Average width versus n in simulation model (ii) with a polynomial decay profile). The
plotting scheme is the same as described in the caption of Figure 3 in the main text.
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Figure 8: (Average width versus n in simulation model (ii) with an exponential decay profile). The
plotting scheme is the same as described in the caption of Figure 4 in the main text.
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Nominal value of 90% in models (i) and (ii). The following eight figures are presented in the
same manner as in the main text, except that they use a nominal value of 90%, and are
based on both models (i) and (ii).
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Figure 9: (Simultaneous coverage probability versus n in simulation model (i) with a polynomial
decay profile). In each panel, the y-axis measures P(∩5

j=1{λj(Σ) ∈ Îj}) based on a nominal value of
90%, and the x-axis measures n. The colored curves correspond to the different values of p, indicated
in the legend. The three rows and three columns correspond to labeled choices of transformations
and values of the eigenvalue decay parameter γ.
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Figure 10: (Simultaneous coverage probability versus n in simulation model (ii) with a polynomial
decay profile). The plotting scheme is the same as described in the caption of Figure 9 above.
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Figure 11: (Simultaneous coverage probability versus n in simulation model (i) with an exponential
decay profile). The plotting scheme is the same as described in the caption of Figure 9 above, except
that the three columns correspond to values of the eigenvalue decay parameter δ.
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Figure 12: (Simultaneous coverage probability versus n in simulation model (ii) with an exponential
decay profile). The plotting scheme is the same as described in the caption of Figure 9 above.
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Figure 13: (Average width versus n in simulation model (i) with a polynomial decay profile). In
each of the nine panels, the y-axis measures the average width E[|Î1|+ · · ·+ |Î5|]/5, and the x-axis
measures n. The colored curves correspond to the different values of p = 10, 50, 100, 200, indicated
in the legend. The three rows and three columns correspond to labeled choices of transformations
and values of the eigenvalue decay parameter γ.
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Figure 14: (Average width versus n in simulation model (ii) with a polynomial decay profile). The
plotting scheme is the same as described in the caption of Figure 13 above.
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Figure 15: (Average width versus n in simulation model (i) with an exponential decay profile). The
plotting scheme is the same as described in the caption of Figure 13 above, except that the three
columns correspond to values of the eigenvalue decay parameter δ.
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Figure 16: (Average width versus n in simulation model (ii) with an exponential decay profile). The
plotting scheme is the same as described in the caption of Figure 15 above.
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S9. ILLUSTRATION WITH STOCK MARKET DATA

Within the context of finance, PCA is often applied to stock market return data for the
purposes of risk analysis and portfolio selection [Fabozzi et al., 2007, Ruppert and Matteson,
2015]. Here, we look at several high-dimensional datasets of stock market returns to illustrate
how the bootstrap can be applied to do inference on parameters of interest in PCA.

Starting from one dataset of S&P 500 returns during the period February 2013 to December
2017 [Nugent, 2017], we isolated four distinct datasets in the following way. First, we ranked
the 500 stocks based on their average monthly trading volume over the stated time period.
Second, we selected four subsets of the 500 stocks, corresponding to the top 50, 150, 200, and
300 members of the ranked list. Third, for each stock, we extracted its biweekly log returns
over the time period, resulting in 118 log return values per stock. (The use of log returns
rather than ordinary returns is a standard practice in finance [Ruppert and Matteson, 2015].)
Altogether, this produced four data matrices of size n × p with the same number of rows
n = 118, but differing numbers of columns p = 50, 150, 200, 300. In addition to being high-
dimensional, these datasets also conform with our interest in settings that are well suited to

PCA, since the empirical effective rank satisfies r(Σ̂) ≤ 4 for every dataset.

S9.1 Inference on population eigenvalues

When PCA is used to analyze stock market returns, the leading eigenvectors and eigenval-
ues of the population covariance matrix Σ have special interpretations. Namely, the eigen-
vector corresponding to λ1(Σ) is often viewed as representing an overall “market portfolio”,
while subsequent eigenvectors represent “principal portfolios”, which produce returns that
are uncorrelated with the overall market return [Laloux et al., 2000]. Also, the eigenvalues
can be interpreted as the variances (or volatilities) of the returns associated with the princi-
pal portfolios. For this reason, the population eigenvalues are important for risk assessment,
and so it is of interest to quantify the uncertainty in these unknown parameters.

For each of the four datasets described above, we applied the bootstrap method with
square-root transformation from Section 3.2 to construct simultaneous confidence intervals
for the leading ten eigenvalues λ1(Σ), . . . , λ10(Σ). The bootstrap intervals are plotted in
Figure 17, based on a simultaneous coverage probability of 95%, with a black dot representing

the sample eigenvalue λj(Σ̂) in the jth interval for j = 1, . . . 10. Upon close inspection, it

can be seen that λj(Σ̂) tends to sit slightly above the midpoint of the jth interval. This
is encouraging, because it means that the bootstrap intervals are able to counteract the
well-known phenomenon that the leading sample eigenvalues tend to be biased upwards
in high-dimensional settings [Yao et al., 2015, Ch.11]. In addition, as a way to gain extra
empirical support for the bootstrap intervals, we carried out the following exercise with
estimates of λ1(Σ), . . . , λ10(Σ) computed via the method of QuEST [Ledoit and Wolf, 2015],
which is designed for use in high-dimensional settings, and has been adopted frequently in
the literature. Specifically, we verified that the QuEST estimate of λj(Σ) was contained in
the jth bootstrap interval for every j = 1, . . . , 10 and p = 50, 150, 200, 300. Hence, this makes
it more plausible that the bootstrap intervals also contain the population eigenvalues.

To comment further on the numerical results in Figure 17, first note that in every panel,
the interval for λ1(Σ) is well separated from the intervals for λ2(Σ), . . . , λ10(Σ), while there
is substantial overlap among the latter intervals. This type of situation occurs frequently
when PCA is applied to stock market return data, and this is generally interpreted to mean
that the overall behavior of the market has a much more dominant effect on returns than
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other types of economic factors [Laloux et al., 2000, Ruppert and Matteson, 2015]. A second
observation is that the bootstrap intervals can provide some additional insight into the
relationship between λ2(Σ) and λ3(Σ). On one hand, a user who only looks at the sample

eigenvalues λ2(Σ̂) and λ3(Σ̂) might be tempted to conclude that there is a clear difference
between the population eigenvalues λ2(Σ) and λ3(Σ). On the other hand, a user who looks
at the overlap of the second and third intervals would have more information to see that the
difference between λ2(Σ) and λ3(Σ) might actually be negligible. Lastly, one more aspect of
Figure 17 to mention is that the relative positions of the ten intervals stay approximately the
same for each of the four dimensions p = 50, 150, 200, 300. Given that the empirical effective

rank satisfies r(Σ̂) ≤ 4 ≪ p for every dataset, this makes sense from the standpoint of our
theoretical results, which indicate that the bootstrap should be relatively insensitive to the
ambient dimension compared to the effective rank.
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Figure 17: (Simultaneous confidence intervals for λ1(Σ), . . . , λ10(Σ).) In each panel, the y-axis cor-
responds to the magnitude of eigenvalues, and the x-axis corresponds to the index j = 1, . . . , 10.
The intervals are based on a simultaneous coverage probability of 95%, and the black dots represent
the sample eigenvalues λj(Σ̂) for each j.

S9.2 Inference on proportions of explained variance

The proportions of explained variance, denoted πj(Σ) =
∑j

i=1 λi(Σ)/ tr(Σ) for j = 1, . . . , p,
often play a decisive role in applications of PCA, since they form of the basis of stan-
dard decision rules for selecting an appropriate number of components. To complement
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our previous example dealing with the population eigenvalues λ1(Σ), . . . , λ10(Σ), this sub-
section looks instead at inference with simultaneous confidence intervals for the parameters
π1(Σ), . . . , π10(Σ). As before, the bootstrap method with square-root transformation from
Section 3.2 was used to construct the intervals based on a simultaneous coverage probability
of 95%. The results are given in Figure 18, with black dots showing the locations of the

empirical proportions πj(Σ̂) within the jth interval.
Due to the fact that the proportions π1(Σ), . . . , πp(Σ) are unknown, one of the most widely

used rules for selecting the number of components is to choose the smallest number k for
which πk(Σ̂) exceeds a given threshold. Although this rule may be appropriate when dealing
with low-dimensional data, it is known in the literature that this rule can be unreliable in
high-dimensional settings, because it tends to select too few components [Ledoit and Wolf,
2015]. One way of avoiding this pitfall is to consider the following simple modification, based

on simultaneous bootstrap confidence intervals for the proportions: If l̂j denotes the lower
endpoint of the jth interval, then the bootstrap-based rule selects the smallest number k

for which l̂k exceeds the threshold. Consequently, if the intervals perform properly with
a simultaneous coverage probability of 95%, then the bootstrap-based rule will select a
sufficient number of components with at least 95% probability.
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Figure 18: (Simultaneous confidence intervals for the proportions of explained variance
π1(Σ), . . . , π10(Σ).) In each panel, the y-axis corresponds to the magnitude of proportions, and
the x-axis corresponds to the index j = 1, . . . , 10. The intervals are based on a simultaneous cov-
erage probability of 95%, and the black dots represent the empirical proportions πj(Σ̂) for each
j.
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To illustrate the difference between the two rules, a red line corresponding to a particu-
lar threshold of 0.4 has been drawn in each panel of Figure 18. (The value of 0.4 has no
special importance, and is used only for ease of presentation.) In each of the four cases
p = 50, 150, 200, 300, the original rule selects the respective values k = 2, 3, 3, 4. By contrast,
the bootstrap-based rule selects the respective values k = 4, 6, 7, 8, and hence, it clearly coun-
teracts the problem of selecting too few components. Moreover, from a financial standpoint,
it makes sense that extra components are needed as p increases, because as a wider variety of
stocks are included in the data, there is greater opportunity for the returns to be influenced
by economic factors that are not captured by the previously leading components.

S10. COMPUTATIONAL COST

The cost to compute a single bootstrap sample of λk(Σ̂
⋆) − λk(Σ̂) can be broken into

two steps. The first step is to sample n points with replacement from the original set of n
observations, which has a cost of O(n log(n)). The second step consists of computing the

largest k eigenvalues of Σ̂⋆. This can be done by computing the largest k singular values
of the n × p matrix of resampled observations, which has a cost of O(npk) [Halko et al.,

2011]. (Note that the largest k eigenvalues of Σ̂ only need to be computed once, before any

resampling is done.) So, the cost to compute B bootstrap samples of λk(Σ̂
⋆) − λk(Σ̂) on

a single processor is O(B(n log(n) + npk)). However, it is common to compute bootstrap
samples in a parallel manner, across say m processors, and in this case the cost per processor
becomes O(B

m
(n log(n) + npk). In order to simplify this expression, it is natural to consider

a scenario where B/m = O(1) and log(n) = O(p), which leads to a cost per processor that
is O(npk).

S10.1 Empirical computational cost

Table 1 displays the time, in seconds, to compute a single bootstrap sample of λk(Σ̂
⋆) −

λk(Σ̂) for different choices of n and p. Each entry reflects an average over 1000 trials with
data generated under simulation model (i). The computations were done on a single Intel
Xeon E5-2699v3 processor. Notably, even when (n, p) = (500, 200), the computing time for
each bootstrap sample is on the order of just 10−3 seconds. Hence, it is possible to generate
hundreds bootstrap samples within about 1 second.

p

n 10 50 100 200

10 1.9e-04 4.2e-04 8.7e-04 2.6e-03
50 2.0e-04 4.4e-04 9.0e-04 2.8e-03
100 2.1e-04 4.6e-04 9.6e-04 2.9e-03
200 2.2e-04 5.1e-04 1.1e-03 3.0e-03
500 2.4e-04 6.5e-04 1.5e-03 4.0e-03

Table 1

(Average time, in seconds, to compute one bootstrap sample from simulated data.) The rows correspond to the values
of n = 10, 50, 100, 200, 500, and the columns correspond to the values of p = 10, 50, 100, 200.

Table 2 displays analogous computing times for λk(Σ̂
⋆)−λk(Σ̂), in seconds, based on the

stock market data. Here, the computations were done on a single 3.5 GHz Dual-Core Intel
Core i7 processor. The results show that there is little difference in computing time compared
to the setting of synthetic data in Table 1.
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p

n 50 150 200 300

118 3.8e-04 1.4e-03 2.0e-03 4.0e-03

Table 2

(Average time, in seconds, to compute one bootstrap sample from the stock market data.) The single row corresponds
to the value of n = 118, and the columns correspond to the values of p = 50, 150, 200, 300.

S11. ADDITIONAL DISCUSSION ON ASSUMPTION 1(B)

Recall that Assumption 1(b) requires the condition min1≤j≤k(λj(Σ) − λj+1(Σ)) & λ1(Σ),
which ensures that there are gaps between the leading eigenvalues λ1(Σ), . . . , λk+1(Σ). To
inspect whether or not this type of condition holds in practice, the paper [Hall et al., 2009]
proposes a diagnostic method that constructs a preliminary set of conservative simultaneous
confidence intervals for λ1(Σ), . . . , λk+1(Σ). In exchange for their conservatism, these intervals
have the property that they are not sensitive to the existence of gaps. (See also [Lopes et al.,
2022+] for theoretical analysis related to this technique.) If none of the intervals overlap,
then the user may conclude that the eigenvalues are adequately separated. However, if some
of the intervals do overlap, then the paper [Hall et al., 2009] recommends that an adjusted

form of bootstrapping be used to approximate the distribution of the statistic λk(Σ̂)−λk(Σ).

S11.1 Sensitivity analysis

To study the sensitivity of the bootstrap to Assumption 1(b), we now discuss some nu-
merical experiments with varying gaps between the leading population eigenvalues. The first
three eigenvalues were specified as (λ1(Σ), λ2(Σ), λ3(Σ)) = (1 + g, 1, 1− g) for a gap param-
eter g ∈ {0, 0.1, 0.2}, and the remaining eigenvalues were chosen to follow the polynomial
decay profile λj(Σ) = j−1 for j ≥ 4. Next, we applied the bootstrap (as in Section 3) to
construct simultaneous confidence intervals for (λ1(Σ), . . . , λ5(Σ)) based on a nominal level
of 95%. Figure 19 contains a grid of plots in which the columns correspond to increasing
values of the gap parameter g, and the rows correspond to the three transformation rules
considered in Section 3. These plots are based on data generated from simulation model (i),
and an analogous set of plots based on simulation model (ii) are given in Figure 20.

As expected, Figures 19 and 20 show that the coverage accuracy of the bootstrap confi-
dence intervals improves as the gap parameter increases. In the case when g = 0, the coverage
accuracy is poor for all three transformation rules, even at large sample sizes. Next, when
g = 0.1, the coverage is mostly accurate for sample sizes n ≥ 400, but at smaller sample
sizes the coverage generally falls below the desired level. Lastly, when g = 0.2, the coverage
becomes more accurate when n < 400, especially when the square-root transformation is
used.
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Figure 19: (Simultaneous coverage probability versus n in simulation model (i) with the decay
profile: (λ1)(Σ), λ2(Σ), λ3(Σ)) = (1 + g, 1, 1 − g) and λj(Σ) = j−1 for j ≥ 4). In each panel, the

y-axis measures P(∩5
j=1{λj(Σ) ∈ Îj}) based on a nominal level of 95%, and the x-axis measures n.

The colored curves correspond to the different values of p, indicated in the legend.
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Figure 20: (Simultaneous coverage probability versus n in simulation model (ii) with the decay
profile: (λ1)(Σ), λ2(Σ), λ3(Σ)) = (1 + g, 1, 1 − g) and λj(Σ) = j−1 for j ≥ 4). The plotting scheme
is the same as described in the caption of Figure 19.
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