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Abstract: Concrete exhibits time-dependent long-term behavior driven by creep and shrinkage. These
rheological effects are difficult to predict due to their stochastic nature and dependence on loading
history. Existing empirical models used to predict rheological effects are fitted to databases composed
largely of laboratory tests of limited time span and that do not capture differential rheological
effects. A numerical model is typically required for application of empirical constitutive models to
real structures. Notwithstanding this, the optimal parameters for the laboratory databases are not
necessarily ideal for a specific structure. Data-driven approaches using structural health monitoring
data have shown promise towards accurate prediction of long-term time-dependent behavior in
concrete structures, but current approaches require different model parameters for each sensor and
do not leverage geometry and loading. In this work, a physics-informed data-driven approach for
long-term prediction of 2D normal strain field in prestressed concrete structures is introduced. The
method employs a simplified analytical model of the structure, a data-driven model for prediction of
the temperature field, and embedding of neural networks into rheological time-functions. In contrast
to previous approaches, the model is trained on multiple sensors at once and enables the estimation
of the strain evolution at any point of interest in the longitudinal section of the structure, capturing
differential rheological effects.

Keywords: predictive modeling; creep and shrinkage; structural health monitoring; long-term
structural behavior; physics-informed machine learning; optical fibers; fiber bragg grating

1. Introduction

Concrete is the most used man-made material, and concrete infrastructures, such
as bridges, buildings, and dams, form the backbone of modern societies [1]. Concrete
infrastructure is expected to be serviceable for several decades, and its life may be extended
for social, economic, or even symbolic reasons.

However, concrete structures present long-term, time-dependent behavior due to creep
and shrinkage. Creep is the delayed strain evolution observed under sustained material
stress. Shrinkage is the change in volume observed in concrete associated with water losses
and capillary forces [1–3]. Accurate prediction of these rheological effects is important
for distinguishing expected structural behavior from long-term damage processes, such
as corrosion [4], differential settlement [5,6], or scouring [7], the latter a leading cause of
collapse of structures in North America [8], as well as for improved assessment of prestress
losses and long-term performance of civil structures [9,10].

Multiple empirical constitutive models for prediction of creep and shrinkage in con-
crete exist in the literature [2,11–14]. However, the majority of these empirical models are
set to minimize the average fitting error to databases of creep and shrinkage laboratory tests,
largely composed of experiments performed on prismatic specimen lasting less than five
years, far below the expected life of most civil structures. Long-term creep and shrinkage
information are even more limited for novel concrete compositions, richer in admixtures
and with lower water-to-cement ratio in which autogenous shrinkage can be significant [2].
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Furthermore, the creep and shrinkage laboratory experiments present limitations.
For example, because specimens are center-loaded and axisymmetric, experiments do
not capture differential creep and shrinkage. However, rheological effects depend on
temperature, humidity, and loading that are not uniform throughout the real structure,
inducing differential creep and shrinkage. Furthermore, in reinforced concrete elements
with nonuniform rebar distribution, a curvature is induced by their restraining effect on
shrinkage [2,15,16]. Thus, prediction of cross-sectional averages is not sufficient to fully
capture the long-term time-dependent behavior of concrete structures.

Current application of empirical constitutive creep and shrinkage models towards
long-term prediction of structural behavior requires a numerical model, commonly a finite
element model (FEM), able to account for the concrete–rebar interaction, and judicious ap-
plication of the creep compliance to appropriate segments of the structure [2,17]. Numerical
modeling is further complicated by the need of specifying appropriate aging and steel re-
laxation models [18–20], which impacts the long-term time-dependent behavior of concrete
structures. Since creep and shrinkage depend on temperature and humidity, to consider
differential effects associated with temperature and humidity gradients requires solving for
the temperature and humidity fields in the structure, which can be difficult if appropriate
boundary and initial conditions are uncertain. State-of-the-art comprehensive numerical
modeling includes thermo-chemical effects that impact creep and shrinkage [21–23], but
such numerical approaches are computationally intensive even for small domains, and still
require the use of empirical compliance, shrinkage, and chemical reaction models. The level
of geometric detail that includes aggregate geometry, used in the state-of-the-art numerical
models is not typically available for real structures. Instead, smoothed strain and stress
fields (e.g., obtained by considering average concrete properties in FEM) are sufficient to
capture broader structural behavior.

Furthermore, because the existing empirical creep and shrinkage models were devel-
oped largely for structural design (e.g., [13]) and not structural health monitoring (SHM),
the compliance and shrinkage models with preset parameters are unlikely to be optimal to
predict the long-term behavior of a specific monitored structure.

For example, it is possible to improve the prediction accuracy of creep and shrinkage
laboratory experiments by updating model parameters with information from short-term
(e.g., few weeks) experiments [2,24], and Bayesian methods have been proposed to incorpo-
rate short-term data towards improved long-term prediction of deflection and creep [17,25].

Data-driven approaches have also been explored towards improved prediction of long-
term time-dependent behavior in concrete. Proposed methods include the use of artificial
neural networks (NNs) for prediction of shrinkage [26], and of thermal and long-term
effects in concrete structures [27], with encouraging results. However, these approaches
are applied to laboratory or synthetic data only. In general, scaling to real world data are
not straightforward, since real data present noise, anomalies (e.g., jumps and drift), and
irregularly missing intervals [28]. These characteristics prevent the application of standard
machine learning approaches that require complete data [29,30].

SHM systems can provide in-situ data from the structure, with potential for improved
long-term prediction accuracy. For example, long gauge fiber optics sensors (FOS) based on
fiber Bragg grating (FBG) can measure temperature and average strain at the sensor location,
along its axis. In contrast to laboratory experiments, in-situ strain measurements capture
a multitude of effects present in the structure, including seasonal temperature variations
and the resulting long-term time-dependent behavior due to creep, shrinkage, concrete–
rebar interaction, aging, and steel relaxation. For example, recently, Ref. [31] applied
convolutional neural networks (CNNs) towards prediction of long-term behavior with
excellent results. Even though physics-informed machine learning show great potential [32],
the current data-driven models present in the literature do not leverage the structure’s
geometry and loading and, in the case of a structure with multiple sensors, require a
different model for each sensor, potentially missing broader structural behavior that emerge
if sensors are considered holistically, such as differential rheological behavior.
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The aim of this work is to estimate the total long-term time-dependent 2D normal
strain field in prestressed concrete beam structures. Our work contributes to the literature
in prediction of long-term time-dependent behavior by introducing a physics-informed
data-driven method that holistically incorporates multiple sensors in the structure and
predicts differential rheological effects over multiple years. Our method employs multiple
in-situ long-gauge discrete point strain and temperature measurements to train a physics-
informed data-driven model and predict strain and temperature measurements at any
other point in the longitudinal section, effectively providing (smooth) estimates of the 2D
normal strain and temperature fields. In virtue of this, with the same model, reasonably
good prediction accuracy is obtained even at unobserved (during training) points. The
physics aspect of the model is introduced via simplified analytical modeling of strain in
the structure, while the data-driven aspect is introduced vian NNs within the model to
predict the temperature field and incorporate spatiotemporal variations of rheological
effects. Hence, our work introduces an original integration between strain analysis and
machine learning towards prediction of long-term structural behavior and, to the best of
the author’s knowledge, is the first work to address long-term strain field prediction. The
method is applied to a pedestrian bridge, the Streicker Bridge.

The paper is organized as follows: In Section 2, the Streicker Bridge and sensor charac-
teristics are introduced; and the development of the simplified model, NN architectures,
and training policy are presented; In Section 3, strain predictions and other outputs of the
model are presented and discussed; in Section 4, the concluding remarks and future work
are given.

2. Materials and Methods

In this section, the structure under study is introduced, the development of the pre-
dictive model from the simplified analytical model to the embedding of NNs is presented,
together with the proposed model training, validation, and testing strategy.

2.1. Streicker Bridge

The Streicker Bridge is a pedestrian bridge located in Princeton, New Jersey. Its main
span consists of a deck-stiffened arch, with varying cross-section, while the approaching
legs are curved continuous girders of constant cross-section, supported by Y-shaped steel
columns. The bridge is instrumented with fiber optics strain and temperature sensors based
on FBG in the main span and the southeast leg [33]. This study focuses on a segment of
the southeast leg, shown in Figure 1 [34], but the overall methodology can be applied to
other segments of the bridge. Typical characteristics of the sensors are given in Table 1.
Sensors are installed at multiple positions across the span, denominated P10SE, P10q11,
P10h11, P10qqq11, and P11, as shown in Figure 1, with their axis parallel to the centroid
line, such that strain measurements correspond to the normal strain component in the
direction of the centroid line (i.e., perpendicular to the cross-section). At each instrumented
position along the span, two sensors are present in the vertical plane containing the vertical
principal axis of the cross-section, one at the upper location (up sensor) and another at the
bottom location (down sensor). For example, the up sensor at position P10SE is referred to
as P10SE-U, while the bottom sensor as P10SE-D. Strain and temperature data collected
over seven years were used for the training, validation, and testing of the proposed model.
For a comprehensive description of the monitoring system, and the bridge, the interested
reader is referred to [33].
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Figure 1. Segment P10-P11 of Streicker Bridge (all distances in meters). Inset shows a picture of the
bridge span of interest with instrumented sections highlighted.

Table 1. Fiber optic sensor properties.

Property Value

Strain uncertainty 2 μm/m
Temperature uncertainty 0.2 ◦C
Typical gauge length 60 cm
Dynamic range −5000 to +7500 μm/m
Max. sampling frequency 250 Hz

2.2. Total Strain Change Model

At a damage-free position x = [x, y] ∈ Ω ⊂ R
2, where x is the position along the

span, y is the position along the beam depth with respect to the centroid of stiffness, and Ω

represents the longitudinal section between P10 and P11 (see Figure 1); the total normal
strain measured at time t, in days, is

εx,t,t′ ,t′′
tot = εx,t

T + εx,t
e + εx,t,t′ ,t′′

R , (1)

where εx,t
T , εx,t

e , εx,t,t′ ,t′′
R are the thermal, elastic, and rheological strain, respectively, at position

x for times t > t′′ ≥ t′, where t′ is the time of prestressing and t′′ is the time of form and
cover removal. The superscript corresponds to the arguments of the function.

The elastic strain is
εx,t

e = εx,t
e,T + εx,t

e,P + εx
e,W , (2)

where εx,t
e,T is the elastic response to thermal expansion and contraction due to mechanical

constraints in indeterminate structures, εx,t
e,P is the elastic strain due to prestressing, and

εx
e,W is the elastic strain due to self-weight.

The rheological strain can be written as

εx,t,t′ ,t′′
R = εx,t,t′

Cr,P + εx,t,t′′
Cr,W + εx,t,t′′

Sh , (3)

where εx,t,t′
Cr,P, εx,t,t′′

Cr,W are the creep strain due to prestressing and self-weight, respectively, and

εx,t,t′′
Sh is the shrinkage strain. We consider that long-term creep due to thermally generated

stresses can be neglected as thermal stresses average out due to seasonal periodicity of
temperature changes. The prestressing and self-weight creep strains are, respectively,

εx,t,t′
Cr,P = εx,t′

e,P ϕx,t,t′ +
∫ t

t′
ϕx,t,udεx,u

e,P, (4)
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εx,t,t′′
Cr,W = εx,t′′

e,W ϕx,t,t′′ , (5)

where ϕx,t,u is the creep coefficient at position x, time t for loading at time u, and the integral
term in Equation (4) corresponds to creep recovery associated with prestress losses and
aging of concrete.

The shrinkage strain is
εx,t,t′′

Sh = ε̄x
Shψx,t,t′′ , (6)

where ε̄x
Sh is the notional shrinkage strain, and ψx,t,t′′ is the shrinkage coefficient for onset

of drying at time t′′.
Let ξt be a generic strain component. Then, let us define the operator

δξt = ξt − ξt′′ =
∫ t

t′′
dξu, (7)

considering ξt is differentiable.
Introducing Equations (2) and (3) into (1), and applying the operator (7) gives the

change in total strain after form removal,

δεx,t,t′ ,t′′
tot = δεx,t

e,T + δεx,t
e,P + δεx

e,W + δεx,t,t′
Cr,P + δεx,t,t′′

Cr,W + δεx,t,t′′
Sh . (8)

Applying the definitions given in Equations (7), the strain changes associated with
prestressing are

δεx,t
e,P + δεx,t,t′

Cr,P = εx,t′
e,P(ϕt,t′ − ϕx,t′′ ,t′) + ε̄x

Pθ
θx,t,t′′ , (9)

with

ε̄x
Pθ

θx,t,t′′ =
∫ t

t′′
(1 + ϕx,t,u)dεx,u

e,P, (10)

where the notional prestress strain ε̄x
Pθ

and the coefficient θx,t,t′′ represent a tentative ap-
proximation of the evolution of the prestress strain changes plus the creep recovery due to
prestress loss and aging given by the integral on the right-hand side.

Let also
δεx,t

T = αΔTx,t, (11)

δεx,t
e,T = −κeΔTx,t, (12)

where α is the coefficient of thermal expansion (CTE), and κe is a constant related to the
degree of mechanical constraint. That is, the thermal strain and elastic response to thermal
strain depend on

ΔTx,t = Tx,t − Tx,t′′ , (13)

the local change in temperature. Then, let

δεx,t
TD = ηΔTx,t, (14)

be the change in the temperature-dependent strain component, with

η = α − κe, (15)

the apparent CTE.
Then, using Equations (5), (6), (9), and (14), the change in total strain is

δεx,t,t′ ,t′′
tot = ηΔTx,t + εx,t′

e,P(ϕx,t,t′ − ϕx,t′′ ,t′)

+ εx,t′′
e,W ϕx,t,t′′ + εx

Pθ
θx,t,t′′ + ε̄x

Shψx,t,t′′ .
(16)
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Consider that the time-dependent coefficients can be approximated by scaling of the
creep coefficient that is

θx,t,t′′ = ρθ ϕx,t,t′′ , (17)

ψx,t,t′′ = ρψ ϕx,t,t′′ , (18)

where ρθ and ρψ are positive scaling coefficients. Using Equations (17) and (18) in
Equation (16),

δεx,t,t′ ,t′′
tot = ηΔTx,t + εx,t′

e,P(ϕx,t,t′ − ϕx,t′′ ,t′)

+ (εx,t′′
e,W + ρθεx

Pθ
+ ρψε̄x

Sh)ϕx,t,t′′ .
(19)

Equation (19) could be further simplified if the time of form removal t′′ was approx-
imately equal to the prestressing time t′. However, for Streicker Bridge, the difference
is significant, circa 10 days. Still, we can impose the condition t′ = t′′, and reinterpret
the creep coefficient ϕx,t,t′ as a notional rheological coefficient that yields an equivalent
long-term strain evolution. Notice that aging is also implicitly accounted for by the notional
rheological coefficient. Since under this consideration we set t′ = t′′ (i.e., take the form
removal date as the reference), and since t′′ is fixed, the day of prestressing t′ and of form
removal t′′ are omitted as function arguments henceforth. Then, Equation (19) becomes

δεx,t
tot = ηΔTx,t + ε̄x ϕx,t, (20)

with
ε̄x = εx

e,P + εx
e,W + ρθεx

Pθ
+ ρψε̄x

Sh, (21)

the apparent static strain.
The prestressing force and its subsequent drop affect both the shortening and bending

of the beam, while self-weight causes bending of the beam. The shrinkage strain is typically
considered as an average term that evolves uniformly over the cross-section [11]. However,
in the presence of asymmetrically distributed rebars or non-uniform temperature and
humidity distribution over the cross-section depth, a curvature is induced by differential
shrinkage. Here, the shrinkage-induced curvature is modeled as being the result of an
apparent bending moment, and the longitudinal shortening due to shrinkage as the result
of an apparent normal force. Hence, the apparent static strain is modeled as

ε̄x =
N̄

EA
+

M̄xy
EI

, (22)

where N̄, M̄x are, respectively, the apparent normal force and apparent bending moment.
Furthermore, consider that the bending moment M̄x is caused by a constant distributed
load across the span. Then, the static strain is of the form

ε̄x[wε] = [x2y, xy, y, 1] · wε (23)

with wε parameters to be learned from the data.
Let the rheological strain coefficient be parameterized by wR, that is,

ϕx,t = ϕx,t[wR]. (24)

Substituting Equations (23) and (24) into Equation (20),

δεx,t
tot[wε,R] = ηΔTx,t + ε̄x[wε] · ϕx,t[wR], (25)

where wε,R = [wε, wR].
In principle, Equation (25) can be evaluated at any point x ∈ Ω, thus providing the

normal strain field in Ω. However, the change in temperature ΔTx,t is measured only at a
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finite set of points P = {xi}Nm
i=1, which prevents the evaluation of Equation (25) everywhere

in Ω. To address this limitation, the change in temperature is modeled as

ΔTx,t = ΔTx,ΔΦt

NN [wΔT ], (26)

where ΔTx,ΔΦt

NN is an NN with parameters wΔT that take as input the position x and change
in local environment conditions

ΔΦt = [ΔT t−2:t
air,max, ΔT t−2:t

air,min, ΔQt], (27)

with ΔQt the change in solar radiation, and

ΔT t−2:t
air,max = [ΔTt

air,max, ΔTt−1
air,max, ΔTt−2

air,max], (28)

ΔT t−2:t
air,min = [ΔTt

air,min, ΔTt−1
air,min, ΔTt−2

air,min], (29)

the 3-day history of the local maximum and minimum change in air temperature, respec-
tively. The NN architecture used is shown in Figure 2. It takes as input the position x ∈ R

2

in the cross-section, and the change in local environment conditions ΔΦt ∈ R
7, followed

by a fully connected (FC) layer with the hyperbolic tangent as activation function that
outputs a vector in R

3, followed by another FC layer that outputs the change in temperature
prediction ΔTx,t. The architecture is kept simple due to the limited amount of training data,
since there is one data point per day and only one year of data are used to train the model,
and is inspired by previous work by the authors [35].

Figure 2. Architecture of ΔTx,ΔΦt

NN .

The notional rheological strain evolution function was initially taken as

ϕx,t[wR] = wR,1 log(1 + Δt2) +
wR,2

1 +
(

wR,3
t

)wR,4

− wR,1 log(1 + (Δt′′)2)− wR,2

1 +
(

wR,3
t′′

)wR,4

, (30)

where wR,i is the i-th component of wR, and Δt = t− t′′. Notice that it is independent of the
position x. The model above is obtained by modifying and removing some components of
the B4 compliance model [14] and considering a change with respect to time t′′. However,
introducing a dependency on the position x increased prediction accuracy. This is achieved
by substituting the constant wR,1 by an NN wx

NN [wϕ], with weights and biases wϕ that
take as input the position x. The architecture of the NN is shown in Figure 3. The NN takes
as input the position x ∈ R

2 in the cross-section, followed by an FC layer with a sigmoid
activation function that outputs a vector in R

2. However, the coefficient should be allowed
to take any positive value, so the following FC layers use an exponential activation function
to enforce positive values. The output corresponds to a real positive value. Similarly to the
NN used for temperature prediction, the architecture is kept small due to a limited amount
of data.
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Thus, the notional rheological strain evolution function is

ϕx,t
NN [wR] = wx

NN [wϕ] log
(

1 + Δt2

1 + (Δt′′)2

)

+
wR,2

1 +
(

wR,3
t

)wR,4
− wR,2

1 +
(

wR,3
t′′

)wR,4

, (31)

with wR = [wϕ, wR,2, wR,3, wR,4], and the subscript on the left-hand side is added to
emphasize that an NN is embedded in the coefficient.

Figure 3. Architecture of wx
NN .

Substituting Equation (26) and (31) into Equation (25),

δεx,t,ΔΦt

tot [wε,R, wΔT ] = ηΔTx,ΔΦt

NN [wΔT ]

+ ε̄x[wε] · ϕx,t
NN [wR].

(32)

Equation (32) provides a decomposition of the total strain change in the temperature-
dependent component and the rheological, time-dependent component,

δεx,t
R [wε,R] = ε̄x[wε] · ϕx,t

NN [wR]. (33)

Furthermore, ε̄x and ϕx,t
NN can also be retrieved separately. However, each is only

known up to a scaling factor, since neither the true scaling of the rheological coefficient
nor that of the apparent static strain are known. For example, the same rheological strain
δεx,t

R [wε,R] would be found by doubling the rheological coefficient ϕx,t
NN and halving the

apparent static strain ε̄x. Nonetheless, these functions can still reveal where the apparent
static strain is higher or smaller with respect to the average, and the relative spatiotemporal
variation of the notional rheological coefficient. Therefore, let

ξ̃x =
ε̄x

maxx |ε̄x| , (34)

ϕ̃x,t
NN =

ϕx,t
NN

maxx,t |ϕx,t
NN |

, (35)

be the normalized apparent static strain and the normalized rheological coefficient, respectively.
Substituting Equation (33) into Equation (32),

δεx,t,ΔΦt

tot [wε,R, wΔT ] = ηΔTx,ΔΦt

NN [wΔT ] + δεx,t
R [wε,R]. (36)

Equation (36) is the model of the change in total strain after form removal, with
parameters wε,R, wΔT learned from measured data that can be evaluated everywhere in Ω,
hence yielding the evolution of the normal strain field.
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2.3. Model Training

The goal is to obtain a model capable of predicting the strain field at any point in
Ω. However, real structures are typically instrumented at a finite number of positions
N. Thus, data from only Nobs < N observed positions are considered to train the model,
and the remaining instrumented positions are considered to test the model. Notice that
validation data (i.e., data used to prevent overfitting to the training data) must come from
the observed positions only, in accordance with the real life target scenario in which no
data are available from other positions in the structure.

Let
Dtrain = {(δε

xi ,tj
m , ΔT

xi ,tj
m , ΔΦtj)}Nobs ,Mtrain

i=1,j=1 , (37)

Dval = {(δε
xi ,tj
m , ΔT

xi ,tj
m , ΔΦtj)}Nobs ,Mval

i=1,j=Mtrain+1, (38)

be the set of training and validation data, respectively, and

Dobs
test = {(δε

xi ,tj
m , ΔT

xi ,tj
m , ΔΦtj)}Nobs ,M

i=1,j=Mval+1, (39)

Dunobs
test = {(δε

xi ,tj
m , ΔT

xi ,tj
m , ΔΦtj)}N,M

i=Nobs+1,j=1, (40)

be the set of test data at observed and unobserved positions, respectively, and

Dtest = Dobs
test ∪Dunobs

test , (41)

be the set of all test data, with δε
xi ,tj
m , ΔT

xi ,tj
m , ΔΦtj the measured change in total strain, tem-

perature, and local environmental conditions, respectively, at position xi at time tj, Mtrain,
and Mval , the indices corresponding to the end of training and validation, respectively, and
M the total number of points in time, with Mtrain < Mval < M. The datasets defined in
Equations (37)–(40) are illustrated in Figure 4. The training data are used to determine
the model parameters, according to the optimization problems to be defined below, while
the validation data are used to prevent overfitting via early stopping [36]. Notice that the
test data do not inform the model in any capacity, meaning that the model is not trained
or validated using data from unobserved positions. Therefore, predictions at unobserved
positions correspond to full reconstruction of the expected change in strain.

Figure 4. Diagram showing the training, validation, and test datasets.

The parameters wΔT of the temperature change model given by Equation (26) can
be learned prior to the remaining parameters wε,R of the total strain change model, since
temperature data from the structure are available as a target for the temperature change
model. Then, the optimal weights w∗

ΔT are

w∗
ΔT = argmin

wΔT

Nobs

∑
i=1

Mtrain

∑
j=1

(
ΔT

xi ,tj
m − ΔTxi ,ΔΦ

tj

NN [wΔT ]

)2
. (42)
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Notice that the summations cover the data available in Dtrain. The minimization
problem in Equation (42) is solved using the backpropagation algorithm with stochastic
gradient descent (SGD) [37]. Furthermore, to prevent overfitting, the minimization is
carried until the validation loss

Lval
ΔT =

Nobs

∑
i=1

Mval

∑
j=Mtrain+1

(
ΔT

xi ,tj
m − ΔTxi ,ΔΦ

tj

NN [w∗
ΔT ]

)2
, (43)

covering the data available in Dval , is at a minimum.
The optimal weights w∗

ε,R are

w∗
ε,R = argmin

wε,R

Nobs

∑
i=1

Mtrain

∑
j=1

(δε
xi ,tj
m − δε

xi ,tj
tot [wε,R, w∗

ΔT ])
2. (44)

Similarly to the previous case, the minimization is performed using backpropagation
with SGD until the validation loss

Lval
εtot =

Nobs

∑
i=1

Mval

∑
j=Mtrain+1

(
δε

xi ,tj
m − δε

xi ,tj
tot [w

∗
ε,R, w∗

ΔT ]
)2

, (45)

is at a minimum.
Then, the predicted change in total strain at any desired position xp ∈ Ω and time

tp > t′′ is δε
xp ,tp
tot [w∗

ε,R, w∗
ΔT ].

3. Results

Acquired temperature and strain data covers a period of seven years. Both the tem-
perature and strain models are trained on data covering the first year after construction,
validated on data from the subsequent semester, and tested on the remaining 5.5 years.
These datasets present several irregularly missing intervals, sometimes with months worth
of data missing. It may be possible to train and validate such models using data collected
over a shorter period of time if less data are missing. Test data at observed positions span
several years after the train and validation data, while test data at unobserved positions
include the entire time span. We show that good accuracy can be achieved at multiple
positions, and that the predictions of the temperature and strain model enable the detection
of anomalies in the data at some positions in the bridge.

The temperature model is trained for 5000 epochs with a learning rate of 0.001, using
the Adam optimizer [37]. The training and validation losses of the temperature model are
shown in Figure 5. The temperature model validation errors are around 2.5 ◦C, which is
less than 15% of the typical temperature amplitude observed at Streicker Bridge. The strain
model validation errors are around 50 μE, about 10% of the strain magnitude typically
observed at Streicker Bridge, which was sufficient for long-term anomaly detection. Part
of the strain prediction errors are due to temperature prediction errors. Considering a
CTE of 10 μE/◦C, typical for concrete, suggests that around 50% of the strain root mean
squared error (RMSE) may be due to temperature prediction errors. Future work improving
temperature prediction could benefit the proposed model.

The strain model is trained for 500 epochs with a learning rate of 0.001, using the Adam
optimizer. The training and validation losses of the strain model are shown in Figure 6.
The validation loss curve is unusual in that it presents a temporary loss of generalization
between 400 and 450 epochs. The long-term strain associated with creep and shrinkage
and seasonal thermal strain vary at similar rates during the first six months of the structure.
Because only one year of data are used for training, the model has limited information
to distinguish between these two strain components, so there is an interplay between the
improvement of these two components as the training process progresses. The accelerated
training loss observed between 400 and 420 epochs corresponds largely to adjustments to
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the long-term strain component to better fit the training data, but that temporarily reduces
the generalization to the validation data. However, because the training data can be still be
better fit by fine adjustment of the thermal and strain components, generalization starts to
be recovered, as observed by the decrease in validation loss after 450 epochs.

Figure 5. Training and validation losses for the temperature model.

Figure 6. Training and validation losses for the total strain model.

The predicted evolution of the temperature field ΔTx,t over multiple years is shown
in Figure 7, where the expected seasonal and daily variations are observed over time.
The temperature predictions at observed and unobserved instrumented positions in the
structure are shown in Figure 8. Good agreement is obtained at multiple positions in
the structure, including those at unobserved positions (Figure 8d,g,h). However, a data
anomaly is present at position P10q11-U (see Figure 8c), as unrealistic low temperatures are
recorded, indicating a faulty temperature sensor. In such case, the methodology presented
here can be used to substitute the data from the faulty sensor. Furthermore, although not
shown in Figure 8, temperatures can be predicted for any day of interest such that the
temperature model can be used for temperature data imputation. The apparent CTE is
η = 8.8 μE/◦C, within typical values for concrete, and multiplying the temperature field
ΔTx,t by η gives the temperature-dependent strain (not shown here since it is only a scaled
version of the temperature field).

The predicted evolution of the normal rheological strain field δεx,t
R is shown in Figure 9.

Notice that there is an asymmetry in the evolution of the rheological strain that shows as
a larger (in absolute terms) evolution closer to the upper region of position P10SE. The
prediction reveals differential rheological effects both across the beam depth and over the
span, which would not be captured by average cross-section models.
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Figure 7. Predicted temperature field.

Adding the predicted rheological strain field and temperature-dependent strain field
gives the predicted total strain field shown in Figure 10. The total strain predictions at
observed and unobserved instrumented positions in the structure are shown in Figure 11.
Good agreement is obtained at multiple positions in the structure (e.g., Figure 11f,i,j),
including those at unobserved positions (e.g., Figure 11d,g,h). These results show that
physics-informed data-driven prediction of differential creep and shrinkage effects mixed
with aging and steel relaxation is feasible for prestressed concrete bridges, even at positions
unobserved during training and validation. Because the strain measurement is compen-
sated using the temperature measurement, anomalies in the temperature measurement are
propagated into the strain data, as in the case of position P10q11-U (see Figure 11c), where
large variations in strain are recorded due to the faulty temperature sensor. Using the
predictions from the temperature model, it is in principle possible to correct the data from
this strain sensor, although this is not performed here as it is out of the scope of this work.

Significant deviations from the predicted total strain are seen at P10SE-U (Figure 11a)
and P10h11-U (Figure 11e), where relaxation is observed in the measured total strain.
Because creep and shrinkage cause strain to become more negative over time, relaxation
(i.e., trend towards positive strain) without significant load change is unexpected [2]. These
findings are in agreement with long-term anomalies found in a previous work addressing
the strain at the centroid of the same structure [35], where we show that prestress losses, a
plausible source of long-term load change [10], are not sufficient to explain the relaxation
observed, and that other mechanisms must be involved. In addition, in the context of all
sensors, relaxation is observed only at P10SE-U (Figure 11a) and P10h11-U (Figure 11e), and
possibly at P10q11-U (Figure 11c), which are all located on the top and left-half segment
of the bridge. In a previous work, Ref. [33] shows that the connection to the main span at
P10 exhibits lower stiffness than expected, and that the effects of this lower stiffness are
markedly noticeable on the left-half segment of the bridge, which could explain why these
anomalies are not manifest to the right of the midspan. Furthermore, a combination of
negative bending with pulling could explain why these anomalies are seen at the top, but
not at the bottom, as the stress distribution of these combined loads would be higher at
the top and small at the bottom. For these reasons, the observed deviations correspond to
either long-term degradation process or malfunction of strain sensors. Full diagnosis of the
anomalies is currently under investigation but may include factors such as: Redistribution
of prestress forces; Settlement of foundations, causing bending and pulling; Long-term
impact of early age thermal cracking; and Concrete age mismatch at the P10 connection,
since the main span was constructed prior to the southeast leg.
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Figure 9. Predicted normal rheological strain field.

Figure 10. Predicted normal total strain field.

The RMSEs for training, validation, and test data are summarized in Table 2 for both
the temperature and strain models. With the exception of the faulty temperature sensor,
RMSEs in the test temperature data are typically under 3 ◦C, which is under 10% of the
seasonal temperature variations. Except at positions exhibiting anomalous behavior, the
RMSEs in the test strain data are typically under 60 μm/m, which is also under 10% of the
magnitude of the rheological strain measured at multiple positions in the structure, and
below the limits of concrete yield and ultimate compressive strains.
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Table 2. Root mean squared prediction errors. Exclamation indicates positions with data anomaly.
Asterisk indicates positions not observed during training or validation.

ΔT [◦C] δεtot [μm/m]

Position Train Val. Test Train Val. Test

P10SE-U ! 1.5 1.2 2.6 23.0 49.5 124.2
P10SE-D 1.1 1.3 2.7 33.0 38.9 51.4
P10q11-U !* 2.5 2.1 13.8 27.2 48.3 174.9
P10q11D * 1.0 1.3 2.1 20.0 26.3 27.8
P10h11-U ! 1.3 2.1 2.7 34.9 22.1 174.5
P10h11D 0.9 1.0 2.2 23.0 27.6 27.1
P10qqq11-U * 1.5 2.1 2.5 37.0 18.7 36.9
P10qqq11D * 1.0 1.2 2.4 14.3 47.4 36.6
P11-U 1.0 1.5 2.5 29.2 67.8 49.0
P11D 1.0 1.1 2.3 21.7 59.5 41.6

The evolution of the normalized rheological coefficient (see Equation (35)) is shown in
Figure 12. It suggests that rheological effects closer to P10SE develop relatively more.

Figure 12. Evolution of the normalized rheological coefficient.

An interesting result appears looking at the apparent static strain (see Equation (34)).
At a given position along the span, let εt

u, εt
d denote the measured strain at time t in

the up and down sensors, respectively. Then, the curvature at the given position can be
calculated as

κt =
εt

d − εt
u

hud
, (46)

where hud is the distance between the up and down sensors. Figure 13 shows the evolution
of the curvature from setting to until a few hours after form removal. As expected, a
positive curvature is observed close to the midspan, and negative curvatures are observed
at the supports. Furthermore, because the segment is prestressed, this indicates that, at the
supports, the concrete is under less compression at the upper region of the cross-section
right after form removal. Due to creep, one might expect the curvature to become more
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accentuated over time, as regions under more compression are expected to experience
larger compressive creep strains. That is, the expectation is that the change in curvature

δκt = κt − κt′′ =
δεt

d − δεt
u

hud
, (47)

would show, over time, negative values at the supports. However, the normalized apparent
static strain, shown in Figure 14, reveals that close to P10SE (x/L = 0) compression is
higher at the upper region contrary to the expectation. The apparent static strain suggests
that, over the first year (the period of the data used to fit the model), a positive change
in curvature is observed at P10SE. Over the long-term, this is indeed the case at position
P10SE. Notice that the total strain at P10SE-U is below the total strain at P10SE-D. We
emphasize that average cross-section models, or predictions performed at the centroid
only, would not reveal this. This unexpected long-term trend may be detected by careful
analysis of the sensor data; for example, a previous work detected loss of stiffness close to
P10SE [33]. However, the apparent static strain can be useful in revealing in a concise way
unexpected trends present in the data of multiple sensors, highlighting the importance of
models incorporating data from all sensors at once for training.

Figure 13. Curvature over time (lighter tones correspond to earlier times). Arrow highlights curvature
after prestressing and form removal.

Figure 14. Normalized apparent static strain.

4. Conclusions

In this work, a physics-informed data-driven model for prediction of long-term normal
strain field taking into account all instrumented positions at once in a concrete structure was
presented. To the best of the author’s knowledge, this is the first work addressing prediction
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of strain fields over multiple years. In contrast to most of the literature, this new model
inherently reveals differential rheological behavior across both the span and the beam depth.
The method employs a simplified analytical model of the structure, together with a data-
driven model to predict the temperature field in the structure, and incorporates position
dependency on coefficients governing the evolution of the time-dependent behavior of the
structure by the embedding of NNs.

Although the model is trained on the total strain data, after training, a decomposition
of the total strain in a temperature-dependent component and a rheological component
is obtained. Furthermore, the apparent static strain and rheological coefficients forming
the rheological strain component can be further decoupled, revealing long-term trends,
sometimes unexpected, as in the case of the curvature at P10SE as previously discussed,
and this is in alignment with findings of previous studies on the same structure. Diagnosis
of long-term anomalies identified will be the subject of future work.

It is shown that good prediction accuracy of both temperature and total strain can be
obtained, enabling anomaly detection, as discussed in the Results section. The physics-
based assumptions guiding the development of the model enabled the accurate prediction
of the total strain even at unobserved positions. A future extension of the method is to
integrate the notion of equivalent static strain and notional rheological coefficient with FEM
of monitored structures to bypass the need of numerical time iteration in the prediction of
long-term behavior of concrete structures.
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