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Abstract

Real-time efficient perception is critical for autonomous
navigation and city scale sensing. Orthogonal to archi-
tectural improvements, streaming perception approaches
have exploited adaptive sampling improving real-time de-
tection performance. In this work, we propose a learnable
geometry-guided prior that incorporates rough geometry of
the 3D scene (a ground plane and a plane above) to re-
sample images for efficient object detection. This signifi-
cantly improves small and far-away object detection per-
formance while also being more efficient both in terms of
latency and memory. For autonomous navigation, using the
same detector and scale, our approach improves detection
rate by +4.1 APs or +39% and in real-time performance
by +5.3 sAPs or +63% for small objects over state-of-the-
art (SOTA). For fixed traffic cameras, our approach detects
small objects at image scales other methods cannot. At the
same scale, our approach improves detection of small ob-
jects by 195% (+12.5 APs) over naive-downsampling and
63% (+4.2 APs) over SOTA.

1. Introduction

Visual perception is important for autonomous driving and
decision-making for smarter and sustainable cities. Real-
time efficient perception is critical to accelerate these ad-
vances. For instance, a single traffic camera captures half
a million frames every day or a commuter bus acting as a
city sensor captures one million frames every day to mon-
itor road conditions [10] or to inform public services [22].
There are thousands of traffic cameras [24] and nearly a mil-
lion commuter buses [53] in the United States. It is infeasi-
ble to transmit and process visual data on the cloud, leading
to the rise of edge architectures [43]. However, edge de-
vices are severely resource constrained and real-time infer-
ence requires down-sampling images to fit both latency and
memory constraints severely impacting accuracy.

On the other hand, humans take visual shortcuts [19] to
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Figure 1. Geometric cues (black dashed lines) are implicitly
present in scenes. Our Perspective based prior exploits this ge-
ometry. Our method (a) takes an image and (b) warps them, and
performs detection on warped images. Small objects which are (d)
not detected when naively downsampled but (e) are detected when
enlarged with our geometric prior. Our method (f) uses a geomet-
ric model to construct a saliency prior to focus on relevant areas
and (g) enables sensing on resource-constrained edge devices.

recognize objects efficiently and employ high-level seman-
tics [19,52] rooted in scene geometry to focus on relevant
parts. Consider the scene in Figure 1 (c), humans can rec-
ognize the distant car despite its small appearance (Figure 1
(d)). We are able to contextualize the car in the 3D scene,
namely (1) it’s on the road and (2) is of the right size we’d
expect at that distance. Inspired by these observations, can
we incorporate semantic priors about scene geometry in our
neural networks to improve detection?
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In this work, we develop an approach that enables object de-
tectors to “zoom” into relevant image regions (Figure 1 (d)
and (e)) guided by the geometry of the scene. Our approach
considers that most objects of interests are present within
two planar regions, either on the ground plane or within
another plane above the ground, and their size in the im-
age follow a geometric relationship. Instead of uniformly
downsampling, we sample the image to enlarge far away
regions more and detect those smaller objects.

While methods like quantization [17], pruning [18], dis-
tillation [6] and runtime-optimization [16] improve model
efficiency (and are complementary), approaches exploiting
spatial and temporal sampling are key for enabling effi-
cient real-time perception [21,27]. Neural warping mecha-
nisms [23, 36] have been employed for image classification
and regression, and recently, detection for self-driving [50].
Prior work [50] observes that end-to-end trained saliency
networks fail for object detection. They instead turn to
heuristics such as dataset-wide priors and object locations
from previous frames, which are suboptimal. We show
that formulation of learnable geometric priors is critical for
learning end-to-end trained saliency networks for detection.
We validate our approach in a variety of scenarios to show-
case the generalizability of geometric priors for detection
in self-driving on Argoverse-HD [27] and BDD100K [57]
datasets, and for traffic-cameras on WALT [37] dataset.

e On Argoverse-HD, our learned geometric prior im-
proves performance over naive downsampling by +6.6
AP and +2.7 AP over SOTA using the same detection
architecture. Gains from our approach are achieved
by detecting small far-away objects, improving by 9.6
APs (or 195%) over naive down-sampling and 4.2
APs (or 63%) over SOTA.

e On WALT, our method detects small objects at image
scales where other methods perform poorly. Further,
it significantly improves detection rates by 10.7 APs
over naive down-sampling and 3 APs over SOTA.

e Our approach improves object tracking (+4.8%
MOTA) compared to baseline. It also improves track-
ing quality, showing increase of +7.6% MT % and re-
duction of -6.7% M L%.

e Our approach can be deployed in resource constrained
edge devices like Jetson AG X to detect 42% more rare
instances while being 2.2X faster to enable real-time
sensing from buses.

2. Related Work

We contextualize our work with respect to prior works mod-
elling geometry and also among works that aim to make ob-
ject detection more accurate and efficient.

Vision Meets Geometry: Geometry has played a crucial
role in multiple vision tasks like detection [8, 20, 48, 55],
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segmentation [28, 46], recognition [14,47] and reconstruc-
tion [25, 35, 44]. Perspective Geometric constraints have
been used to remove distortion [58], improve depth pre-
diction and semantic segmentation [26] and feature match-
ing [51]. However, in most previous works [25, 44, 55] ex-
ploiting these geometric constraints have mainly been con-
centrated around improving 3D understanding. This can
be attributed to a direct correlation between the constraints
and the accuracy of reconstruction. Another advantage is
the availability of large RGB-D and 3D datasets [5, 15, 39]
to learn and exploit 3D constraints. Such constraints have
been under-explored for learning based vision tasks like de-
tection and segmentation. A new line of work interpret-
ing classical geometric constraints and algorithms as neural
layers [7,42] have shown considerable promise in merging
geometry with deep learning.

Learning Based Detection: Object detection has mostly
been addressed as an learning problem. Even classical-
vision based approaches [12,54] extract image features and
learn to classify them into detection scores. With deep
learning, learnable architectures have been proposed fol-
lowing this paradigm [4, 34, 38, 40], occasionally incorpo-
rating classical-vision ideas such as feature pyramids for
improving scale invariance [29]. While learning has shown
large improvements in accuracy over the years they still per-
form poorly while detecting small objects due to lack of ge-
ometric scene understanding. To alleviate this problem, we
guide the input image with geometry constraints, and our
approach complements these architectural improvements.

Efficient Detection with Priors: Employing priors with
learning paradigms achieves improvements with little ad-
ditional human labelling effort. Object detection has tradi-
tionally been tackled as a learning problem and geometric
constraints were sparsely used for such tasks, constraints
like ground plane [20, 48] were used.

Temporality [13, 50, 56] has been exploited for improving
detection efficiently. Some of these methods [13, 50] de-
form the input image using approach that exploit temporal-
ity to obtain saliency. This approach handles cases where
object size decreases with time (object moving away from
the camera in scene), but cannot handle new incoming ob-
jects. None of these methods explicitly utilize geometry to
guide detection, which handles both these cases. Our two-
plane prior deforms the image while taking perspective into
account without biasing towards previous detections.

Another complementary line of works automatically learn
metaparameters (like image scale) [9, 16, 45] from image
features. However, as they do not employ adaptive sampling
accounting for image-specific considerations, performance
improvements are limited. Methods not optimized for on-
line perception like AdaScale [9] for video object detection
do not perform well in real-time situations.



3. Approach

We describe how a geometric model rooted in the interpreta-
tion of a 3D scene can be derived from the image. We then
describe how to employ this rough 3D model to construct
saliency for warping images and improving detection.

3.1. Overview

Object sizes in the image are determined by the 3D geome-
try of the world. Let us devise a geometric inductive prior
considering a camera mounted on a vehicle. Without loss
of generality, assume the vehicle is moving in direction of
the dominant vanishing point.

We are interested in objects that are present in a planar re-
gion (See Figure 2) of width P1P2 corresponding to the
camera view, of length P1P3 defined in the direction of the
vanishing point. This is the planar region on the ground on
which most of the objects of interest are placed (vehicles,
pedestrians, etc) and another planar region Qj...Qa paral-
lel to this ground plane above horizon line, such that all the
objects are within this region (e.g., traffic lights).

From this simple geometry model, we shall incorporate re-
lationships derived from perspective geometry about ob-
jects, i.e., the scale of objects on ground plane is inversely
proportional to their depth w.r.t camera [20].

3.2. 3D Plane parameterization from 2D images

We parameterize the planes of our inductive geometric
prior. We represent 2D pixel projections uj...us of 3D
points P1...P4. Assume that the dominant vanishing point
in the image is v = (vy, vy) and let the image size be (w, h).
Consider uy (Figure 2 (b)). We can define a point on the
edge of the image plane,

upL = (0,vy + vxtanbi) (1)

Uz can expressed as a linear combination of v and u,

ur = a1uL+ (1- ai)v (2)

Similarly, for uz, we can define ug in terms of v and 6, and
ay while us and ua are defined like Equation 1 to repre-
sent any arbitrary plane in this viewing direction. However,
for simplicity, for ground plane we fix them as (0, h) and
(w, h) respectively. Consider the planar region Q;...Qa at
height H above the horizon line. We can similarly define
03 and 04 to represent the angles from the horizon in the
opposite direction and define g1 and 2. Again, we set g3 as
(0, 0) and g4 as (w, 0). We now have 4 points to calculate
homographies Hpiane for both planes.

For now, assume v is known. However, we still do not know
the values for 8’s and a, and we shall learn these parameters
end-to-end from task loss. These parameters are learned and
fixed for a given scenario in our learning paradigm. Our re-
parameterization aims to ease learning of these parameters

u Ug

u u,

Figure 2. Geometry Of The Two Plane Perspective Prior: (a)
describes the single view geometry of the proposed two plane
prior. Region on the ground plane defined by P1, ...P4, and rays
emanating from camera C to P; intersect at ui...us on the image
plane. The vanishing point v maps to Pw. This planar region
accounts for small objects on the ground plane. To account for
objects that are tall or do not lie on the ground plane, we consider
another plane Qi..Qa4 above the horizon line. These two planes
encapsulate all the relevant objects in the scene. (b) depicts the
re-parameterization of the two planes in the 2D image. Instead of
representing the planar points ui...us as pixel coordinates, we in-
stead parameterize them in terms of the vanishing point v, 8’s and
a to ease learning.

as we clamp the values of a’s to [0, 1] and 8’s to [- Z 52]. It
should be noted that all the operations are differentiable.

3.3. From Planes to Saliency

We leverage geometry to focus on relevant image re-
gions through saliency guided warping [23, 36], and cre-
ate a saliency map from a parameterized homography us-
ing ui..us defined earlier. Looking at ground plane from
two viewpoints (Figure 3 (a) and (b)), object size decreases
by their distance from the camera [20]. We shall establish
a relationship to counter this effect and “sample” far-away
objects on the ground plane more than nearby objects.

The saliency guided warping proposed by [36] operates
using an inverse transformation TS'1 parameterized by a
saliency map S as follows,

F'(x,y) = Wr (1) = (TS, y) 3)

where the warp Wy implies iterating over output pixel
coordinates, using TS'1 to find corresponding input coor-
dinates (non-integral), and bilinearly interpolating output
color from neighbouring input pixel grid points. For each
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Figure 3. Two-Plane Perspective Prior based Image Resampling: Consider the scene of car, bus and traffic light from (a) camera view and
(b) (simplified) bird’s eye view. (c) Saliency function that captures the inverse relationship between object size (in camera view) and depth
(bird’s eye view is looking at X Z plane from above) can be transferred to the camera view (d), by mapping row z using H (marked by blue
arrows). (e) and (f) shows that ground plane severely distorts nearby tall objects while squishing traffic light. (g) and (h) shows that
additional plane reduces distortion for both tall objects and objects not on ground plane.

input pixel (x, y), pixel coordinates with higher S(x, y) val-
ues (i.e. salient regions) would be sampled more.

We construct a saliency S respecting the geometric prop-
erties that we desire. Let Hplane be the homography be-
tween the camera view (using coordinates uj...us) and a
bird’s eye view of the ground plane assuming plane size to
be the original image size (w, h). In bird’s eye view, we
propose saliency function for a row of pixels z (assuming
bottom-left of this rectangle as (0, 0)) as,

Spev(z) = e'(F 1) (4)

with a learnable parameter v (> 1). v defines the extent of
sampling with respect to depth.

To map this saliency to camera view, we warp Spev Via per-
spective transform Wy and Hpjane (Figure 3 (c)),

Splane = Wp(Hgéne, Sbev) (5)

We have defined saliency Spiane given Hplane in a differ-
entiable manner. Our saliency ensures that objects on the
ground plane separated by depth Z are sampled by the fac-

tor eV in the image.

3.4. Two-Plane Perspective Prior

Ground Plane saliency focuses on objects that are geomet-
rically constrained to be on this plane and reasonably mod-
els objects far away on the plane. However, nearby and
tall objects, and small objects far above the ground plane
are not modelled well. In Fig 3 (f), nearby objects above
ground plane (traffic lights), they are highly distorted. Crit-
ically, these same objects when further away are rendered

small in size and appear close to ground (and thus mod-
elled well). Objects we should focus more on are thusthe
former compared to the latter. Thus, another plane is
needed, and direction of the saliency function is reversed to
Shev(z) = e¥(((h=2)/h)=1) t5 account for these objects that
would otherwise be severely distorted.

To represent the Two-Plane Prior, we represented the planar
regions as saliencies. The overall saliency is,

S = Sground plane + }\Stop_plane (6)

where A is a learned parameter.

3.5. Additional Considerations

Warping via a piecewise saliency function imposes addi-
tional considerations. The choice of deformation method is
critical, saliency sampler [36] implicitly avoids drastic
transformations common in other appraoches. For e.g.,
Thin-plate spline performs worse [36], produces extreme
transformations and requires regularization [13].

Fovea [50] observes that restricting the space of allowable
warps such that axis alignment is preserved improves accu-
racy, we adopt the separable formulation of T 1,

CSx(x ) k(x, x)x’
RX,SX(X')k(x,x') (7)

Tx_l(x) =

R . . ,
" Sy(y )k(y,y)y
 Sy(Yk(y, v)

where k is a Gaussian kernel. To convert a saliency map S to
Sx and Sy we marginalize it along the two axes. Thus
entire rows or columns are “stretched” or “compressed”.

T, M y) =

(8)
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Two-plane prior is learnt end to end as a learnable im-
age warp. For object detection, labels need to be warped
too, and [36]’s warp is invertible. Like [50], We employ
the loss L(T ~Y(fo(Wr (1)), L) where (I, L) is the image-
label pair and omit the use of delta encoding for training
RPN [40] (which requires the existence of a closed form
T ), instead adopting GloU loss [41]. This ensures Wr is
learnable, as T ~1 is differentiable.

We did not assume that the vanishing point is within the
field of view of our image, and our approach places no re-
strictions on the vanishing point. Thus far, we explained
our formulation while considering a single dominant van-
ishing point, however, multiple vanishing points can be also
considered. Please see supplementary for more details.

3.6. Obtaining the Vanishing Point

We now describe how we obtain the vanishing point. Many
methods exist with trade-offs in accuracy, latency and mem-
ory which which inform our design to perform warping ef-
ficiently with minimal overheads.

Fixed Cameras: In settings like traffic cameras, the cam-
era is fixed. Thus, the vanishing point is fixed, and we can
cache the corresponding saliency S, as all the parameters,
once learnt, are fixed. We can define the vanishing point for a
camera manually by annotating two parallel lines or any
accurate automated approach. Saliency caching renders our
approach extremely efficient.

Autonomous Navigation: Multiple assumptions simplify
the problem. We assume that there is one dominant vanish-
ing point and a navigating car is often moving in the view-
ing direction. Thus, we assume that this vanishing point
lies inside the image, and directly regress v from image fea-
tures using a modified coordinate regression module akin to
YOLO [33,38]. This approach appears to be memory and
latency efficient. Other approaches, say, using parallel lane
lines [1] or inertial measurements [3] might also be very
efficient. An even simpler assumption is to employ the av-
erage vanishing point, as vanishing points are highly local,
we observe this is a good approximation.

Temporal Redundancies: In videos, we exploit tempo-
ral redundancies, the vanishing point is computed every n,
frames and saliency is cached to amortize latency cost.
General Case: This is the most difficult case, and many
approaches have been explored in literature to find all van-
ishing points. Classical approaches [49] while fast are not
robust, while deep-learned approaches [31,32,59] are accu-
rate yet expensive (either in latency or memory).

3.7. Learning Geometric Prior from Pseudo-Labels

Prior work [50] have shown improvements in performance
on pre-trained models via heuristics, which didn’t require
any training. However, their method still employs domain-
specific labels (say, from Argoverse-HD) to generate the

Figure 4. Commuter Bus Dataset: The captured data has a
unique viewpoint, the average size of objects is small and cap-
tured under a wide variety of lighting conditions. Top-left and
bottom-right images depict the same bus-stop and trashcan at dif-
ferent time of day and season.

prior. Our method can’t be used directly with pre-trained
models as it learns geometrically inspired parameters end-
to-end. However, domain-specific images without labels
can be exploited to learn the parameters.

We propose a simple alternative to learn the proposed
prior using pre-trained model without requiring additional
domain-specific labels. We generate pseudo-labels from
our pre-trained model inferred at 1x scale. We fine-tune
and learn our warp function (to 0.5x scale) end-to-end us-
ing these “free” labels. Our geometric prior shows improve-
ments without access to ground truth labels.

4. Dataset And Evaluation Details
4.1. Datasets

Argoverse-HD [27]: We employ Argoverse-HD dataset for
evaluation in the autonomous navigation scenario. This
dataset consists of 30fps video sequences from a car col-
lected at 1920 x 1200 resolution, and dense box annota-
tions are provided for common objects of interest such as
vehicles, pedestrians, signboards and traffic lights.

WALT [37]: We employ images from 8 4K cameras that
overlook public urban settings to analyze the flow of traf-
fic vehicles. The data is captured for 3-second bursts ev-
ery few minutes and only images with notable changes are
stored. We annotated a set of 4738 images with vehicles
collected over the time period of a year covering a vari-
ety of day/night/dawn settings, seasonal changes and cam-
era viewpoints. We show our results on two splits (ap-
proximately 80% training and 20% testing). The first, All-
Viewpoints, images from all the cameras are equally repre-
sented in the train and test sets. Alternatively, we split by
camera, Split-by-Camera, images from 6 cameras are part
of the training set and 2 cameras are held out for testing.
Commuter Bus Dataset: We curated this dataset from a
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Method Scale AP APs APy AP Latency (ms)
Warping petector Lo | Unwarp | gt Faster R-CNN 05x 242 49 290 509 784+ 1.8
Layer T Fovea (Sp) [50] 0.5x 267 82 297 541 83t 2.5
Fovea (Sy) [50] 0.5x 28.0 104 31.0 545 85+ 2.7
v — v Fovea (L:S;) [50] 0.5x 281 103 309 541 85.4% 2.7
arping Layer
Two-Plane Pr. (Pseudo.) 0.5x 27.1 9.8 289 502 104.5+ 8.5
Saliency Two-Plane Prior 0.5x 30.8 145 316 529 105+ 8.5
Guided
Warping Baseline at higher scales
Layer Faster R-CNN 0.75x 29.2 11.6 32.1 533 142+ 2.5
Two Plane Prior Layer Faster R-CNN 1.0x 333 16.8 348 536 220% 1.7

Figure 5. Two-Plane Prior as a Neural Layer: We implemented
our approach as a global prior that is learned end-to-end from la-
belled data. Our prior is dependent on a vanishing point estimate to
specify the viewing direction of the camera.

commuter bus running on an urban route. The 720p camera
of interest has a unique viewpoint and scene geometry (See
Figure 4). Annotated categories are trashcans and garbage
bags (to help inform public services) and people with spe-
cial needs (using wheelchairs or strollers), which are a rare
occurrence. The dataset size is small with only 750 anno-
tated images (split into 70% training and 30% testing). This
is an extremely challenging dataset due to it’s unique view-
point, small object size, rare categories, along with varia-
tions in lighting and seasons.

4.2. Evaluation Details

We perform apples-to-apples comparisons on the same de-
tector trained using the datasets with identical training
schedule and hardware.

Data: We compare to methods that were trained on fixed
training data. In contrast, sAP leaderboards [27] don’t re-
strict data and evaluate on different hardware. We compare
with [16,27] from leaderboard, which follow the same pro-
tocols. Other methods on the leaderboard use additional
training data to train off-the-self detectors. Our detectors
would see similar improvements with additional data.
Real-Time Evaluation: We evaluate using Streaming AP
(sAP) metric proposed by [27], which integrates latency and
accuracy into a single metric. Instead of considering models
via accuracy-latency tradeoffs [21], real-time performance
can be evaluated by applying real-time constraints on the
predictions [27]. Frames of the video are observed every
33 milliseconds (30 fps) and predictions for every frame
must be emitted before the frame is observed (forecasting is
necessary). For a fair comparison, sAP requires evaluation
on the same hardware. Streaming results are not directly
comparable with other work [27, 50, 56] as they use other
hardware (say, V100 or 2080Ti), thus we run the evaluation
on our hardware (Titan X).

Additional details are in the Supplementary.

Table 1. Evaluation on Argoverse-HD: Two-Plane Prior outper-
forms both SOTA’s dataset-wide and temporal priors in overall ac-
curacy. Our method improves small object detection by +4.1APs
or 39% over SOTA.

5. Results and Discussions

Accuracy-Latency Comparisons: On Argoverse-HD, we
compare with Faster R-CNN with naive downsampling
(Baseline) and Faster R-CNN paired with adaptive sam-
pling from Fovea [50] which proposed two priors, a dataset-
wide prior (Sp) and frame-specific temporal priors (S| &L
: Sy ; from previous frame detections).

Two-Plane Prior improves (Table 1) upon baseline at the
same scale by +6.6 AP and over SOTA by +2.7 AP . For
small objects, the improvements are even more dramatic,
our method improves accuracy by +9.6 APs or 195% over
baseline and +4.2 APs or 45% over SOTA respectively.
Surprisingly, our method at 0.5x scale improves upon Faster
R-CNN at 0.75x scale by +1.6 AP having latency improve-
ment of 35%. Our Two-Plane prior trained via pseudo-
labels comes very close to SOTA which employ ground
truth labels, the gap is only -1 AP and improves upon Faster
R-CNN model trained on ground truth by +2.9 AP inferred
at the same scale.

WALT dataset [37] comprises images (only images with no-
table changes are saved) and not videos, we compare with
Fovea [50] paired with the dataset-wide prior. We observe
similar trends on both splits (Table 3 and Fig 6) and note
large improvements over baseline and a consistent improve-
ment over Fovea [50], specially for small objects.
Real-time/Streaming Comparisons: We use Argoverse-
HD dataset, and compare using the SAP metric (Described
in Section 4.2). Algorithms may choose any scale and
frames as long as real-time latency constraint is satisfied.
All compared methods use Faster R-CNN, and we adopt
their reported scales (and other parameters). Streamer [27]
converts any single frame detector for streaming by
scheduling which frames to process and interpolating pre-
dictions between processed frames. AdaScale [9] regresses
optimal scale from image features to minimize single-frame
latency while Adaptive Streamer [16] learns scale choice in



ID Method Scale(s) sAP sAPs sAPy SsAP_
1 Streamer [27] 0.5x 183 3.1 15.0 40.9
2 1+ Adascale [9] 0.2x-0.6x 13.4 0.2 8.6 37.4
3 Adaptive Streamer [16] 0.2x-0.6x 21.3 4.2 18.8 47.0
4 1+FOVEA (Sy) [50] 0.5x 241 8.4 24.7 48.7
5 1+ Ours (Avg VP) 0.5x 299 137 313 52.2
6 1+ Ours 0.5x 30.0 13.7 31.5 52.2
7 1+ Ours (VP Oracle) 0.5x 30.7 145 316 529

Table 2. Streaming Evaluation on Argoverse-HD: Ours denotes
Two-Plane Prior. Every frame’s prediction (streamed at 30FPS)
must be emitted before frame is observed [27] (via forecast-
ing). All methods evaluated on Titan X GPU. Underlying detector
(Faster R-CNN) is constant across approaches, improvements are
solely from spatial sampling mechanisms. Notice improved detec-
tion of small objects by +5.3sAPs or 63% over SOTA.
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Figure 6. WALT All-Viewpoints Split: Our approach (Two-Plane
Prior) shows improved overall performance over naive downsam-
pling and state-of-the-art adaptive sampling technique, specially
for small objects at all scales (starting from 0.5x). Horizontal line
(orange) indicates performance at maximum possible scale (0.6x)
the base detector was trained at (memory constraints).

the streaming setting. Both these methods employ naive-
downsampling. State-of-the-art, Fovea [50] employs the
temporal prior (S;). From Table 2, Two-Plane prior outper-
forms the above approaches by +16.5 sAP, +8.6 sSAP and
+5.9 sAP respectively. Comparison with [9, 16, 27] shows
the limitations of naive downsampling, even when “opti-
mal” scale is chosen. Our geometric prior greatly improves
small object detection performance by 63% or +5.3 sAPs
over SOTA. To consider dependence on accurate Vanishing
Point detection (and its overheads), we use NeurVPS [59] as
oracle (we simulate accurate prediction with zero delay) to
obtain an upper bound, we observe even average vanishing
point location’s performance is within 0.8 SAP .

Accuracy-Scale Tradeoffs: We experiment with WALT
All-Viewpoints split to observe accuracy-scale trade-offs.
The native resolution (4K) of the dataset is extremely large
and the gradients don’t fit within 12 GB memory of our
Titan X GPU, thus we cropped the skies and other static
regions to reduce input scale (1x) to 1500 x 2000. Still,
the highest scale we were able to train our baseline Faster
R-CNN model is 0.6x. So, we use aggressive downsam-

Method Scale AP APs APm AP

Faster R-CNN 0.25x 167 0 7.2 42.3
FOVEA (Sp) [50] 0.25x 23.2 0 13.9 54.1

Two-Plane Prior 0.25x 25.2 1.0 18.2 54.5

Faster R-CNN 0.5x 29.2 49 24.7 55.5
FOVEA (Sp) [50] 0.5x 34.4 8.7 30.5 59.4

Two-Plane Prior 0.5x 364 116 323 59.0

Baseline at higher scales

Faster R-CNN 0.6x
Faster R-CNN* 1.0x

33.2 93 28.6 56.7
343 126 307 54.3

Table 3. WALT Camera-Split: The viewpoints on the test set
were not seen, and Two-Plane Prior shows better performance over
both naive downsampling and state-of-the-art adaptive sampling as
it generalizes better to unseen scenes and viewpoints. *Not trained
at that scale due to memory constraints on Titan X.

pling scales {0.5,0.4375,0.375,0.3125, 0.25,0.125}. The
results are presented in Figure 6. We observe a large and
consistent improvement over baseline and Fovea [50], spe-
cially for small objects. For instance, considering perfor-
mance at 0.375x scale, our approach is better than baseline
by +13.1 AP and Fovea by +1.4 AP for all objects.

For small objects, we observe dramatic improvement, at
scales smaller than 0.375x, other approaches are unable to
detect any small objects while our approach does so un-
til 0.125x scale, showing that our approach degrades more
gracefully. At 0.375x scale, our approach improves upon
Faster R-CNN by +10.7 APs and Fovea by +3.0 APs.
Generalization to new viewpoints: We use WALT
Camera-Split, the test scenes and viewpoint are unseen in
training. E.g., the vanishing point of one of the held-out
cameras is beyond the image’s field of view. We operate on
the same scale factors in the earlier experiments, and results
are presented in Table 3. We note lower overall performance
levels due to scene/viewpoint novelty in the test sets. Our
approach generalizes better due to the explicit modelling of
the viewpoint via the vanishing point (See Section 3.2). We
note trends similar to previous experiment, we demonstrate
improvements of +8.5 AP over naive-downsampling and
+2.0 AP over Fovea [50] at 0.25x scale.

Tracking Improvements: We follow tracking-by-detection
and pair IOUTracker [2] with detectors on Argoverse-HD
dataset. MOTA and MOTP evaluate overall tracking perfor-
mance. From Table 4, Our method improves over baseline
by +4.8% and +0.7%. We also focus on tracking quality
metrics, Mostly Tracked % (MT%) evaluates the percent-
age of objects tracked for atleast 80% of their lifespan while
Mostly Lost % (ML%) evaluates percentage of objects for
less than 20% of their lifespan. In both these cases, our ap-
proach improves upon the baseline by +7.6% and -6.7%
respectively. To autonomous navigation, we define two rel-
evant metrics, namely, average lifespan extension (ALE)
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Method MOTA ™ MOTP ™ MT% ™ ML% |, MOS | ALE% T Method Scale AP APs APm AP,
Faster RCNN 39.8 82.3 30.7 35.6 37.1 59.3 % Ground Plane Prior 0.5x 29.1 155 275 48.3
Fovea (Sp) [50] 43.9 81.9 34.1 31.9 348 +54 % Two-Plane Prior (Psuedo.) 0.5x 27.1 9.8 28.9 502
Fovea (S1) [50] 44.3 81.8 36.7 28.4 338 +8.4% Two-Plane Prior (Avg VP) 0.5x 29.6 12.7 30.7 52.7
Two-Plane Prior 44.6 83.0 38.3 28.9 316 +99% Two-Plane Prior 0.5x 30.8 145 316 52.9

Table 4. Tracking Improvements: We setup a tracking by de-
tection pipeline and replace the underlying detection method and
observe improvements if any. All the detectors employ the Faster
R-CNN architecture and are executed at 0.5x scale. We observe
improvements in tracking metrics due to Two-Plane Prior.

and minimum object size tracked (MOS), whose motiva-
tion and definitions can be viewed in supplementary. We
observe that our improvements are better than both Fovea
(Sp) and (Si). As we observe, our method improves track-
ing lifespan and also helps track smaller objects.

Efficient City-Scale Sensing: We detect objects on Com-
muter Bus equipped with a Jetson AGX. ldentifying (Re-
call) relevant frames is key on the edge. Recall of
Faster R-CNN with at 1x scale is 43.3AR (16.9ARs) (La-
tency: 350ms; infeasible for real-time execution) but drops
to 31.7AR (0.5ARs) at 0.5x scale when naively down-
sampled (Latency: 154ms). Whereas our approach at 0.5x
scale improves recall by 42% over full resolution execution
to 61.7 AR (16.4 ARs) with latency of 158 ms (+4 ms).

In supplementary, we perform additional comparisons, pro-
vide details on handling multiple vanishing points, more
tracking results and edge sensing results. We also present
some qualitative results and comparisons.

5.1. Ablation Studies

We discuss some of the considerations of our approach
through experiments on the Argoverse-HD dataset.

Ground Plane vs Two-Plane Prior: We discussed the ra-
tionale of employing multiple planes in Fig 3, and our re-
sults are consistent. From Table 5, Two-Plane Prior outper-
forms Ground Plane prior considerably (+1.8 AP ). Ground
Plane Prior outperforms Two-Plane Prior on small objects
by +1 APs butis heavily penalized on medium (-4.1 APy )
and large objects (-4.6 AP). This is attributed to heavy
distortion of tall and nearby objects, and objects that are not
on the plane (Figure 3). Lastly, this prior was difficult to
learn, the parameter space severely distorted the images (we
tuned initialization and learning rate). Thus we did not con-
sider this prior further. The second plane acts as a counter-
balance and that warping space is learnable.

Vanishing Point Estimate Dependence: From Table 5,
dominant vanishing point in autonomous navigation is
highly local in nature, and estimating VP improves the re-
sult by +1.2 AP. Estimating the vanishing point is a design
choice, it’s important for safety critical applications like au-
tonomous navigation (performance while navigating turns)
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Table 5. Ablation Study on Argoverse-HD to justify our de-
sign choice of using two planes, dependence on accurate vanishing
point detection and choice of pseudo labels vs ground truth.

however might be omitted for sensing applications.

Using Pseudo Labels vs Ground Truth: Table 5 shows
there is still considerable gap (-3.7 AP ) between the Two-
Plane Prior trained from pseudo labels and ground truth.
We observe that the model under-performs on stopsign,
bike and truck classes, which are under-represented in the
COCO dataset [30] compared to person and car classes.
Performance of the pre-trained model on these classes is
low even at 1x scale. Hence, we believe that the perfor-
mance difference is an artifact of this domain gap.

6. Conclusions

In this work, we proposed a learned two-plane perspec-
tive prior which incorporates rough geometric constraints
from 3D scene interpretations of 2D images to improve ob-
ject detection. We demonstrated that (a) Geometrically de-
fined spatial sampling prior significantly improves detec-
tion performance over multiple axes (accuracy, latency and
memory) in terms of both single-frame accuracy and ac-
curacy with real-time constraints over other methods. (b)
Not only is our approach is more accurate when adap-
tively down-sampling at all scales, it degrades much more
gracefully for small objects, resulting in latency and mem-
ory savings. (c) As our prior is learned end-to-end, we
can improve a detector’s performance at lower scales for
“free”. (d) Our approach generalizes better to new camera
viewpoints and enables efficient city-scale sensing applica-
tions. Vanishing point estimation is the bottleneck of our
approach [11, 31, 32, 59] for general scenes, and increas-
ing efficiency of its computation we will see substantial
improvements. Investigating geometric constraints to im-
prove other aspects of real-time perception systems as fu-
ture work, like object tracking and trajectory understanding
and forecasting, is promising.

Societal Impact Our approach has strong implications for
autonomous-driving and city-scale sensing for smart city
applications, wherein efficient data processing would lead
to more data-driven decision-making and public policies.
However, privacy is a concern, and we shall release the
datasets after anonymizing people and license plates.
Acknowledgements: This work was supported in part by
an NSF CPS Grant CNS-2038612, a DOT RITA Mobility-
21 Grant 69A3551747111 and by General Motors Israel.
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