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Abstract

Federated learning (FL) has found many important applications in smart-phone-
APP based machine learning applications. Although many algorithms have been
studied for FL, to the best of our knowledge, algorithms for FL. with nonconvex con-
straints have not been studied. This paper studies FL over Riemannian manifolds,
which finds important applications such as federated PCA and federated kPCA.
We propose a Riemannian federated SVRG (RFedSVRG) method to solve federated
optimization over Riemannian manifolds. We analyze its convergence rate under
different scenarios. Numerical experiments are conducted to compare RFedSVRG
with the Riemannian counterparts of FedAvg and FedProx. We observed from the
numerical experiments that the advantages of RFedSVRG are significant.

1 Introduction

Federated learning (FL) has drawn lots of attentions recently due to its wide applications in modern
machine learning. Canonical FL aims at solving the following finite-sum problem [16, 22, 12]:

min f(z) := %Zfl(x), (D
i=1

reRd

where each of the f; (or the data associated with f;) is stored in different client/agent that could have
different physical locations and different hardware. This makes the mutual connection impossible [16].
Therefore, there is a central server that can collect the information from different agents and output a
consensus that minimizes the summation of the loss functions from all the clients. The aim of such a
framework is to utilize the computation resources of different agents while still maintain the data
privacy by not sharing data among all the local agents. Thus the communication is always between
the central server and local servers. This setting is commonly observed in modern smart-phone-APP
based machine learning applications [16]. We emphasize that we always consider the heterogeneous
data scenario where the functions f;’s might be different and have different optimal solutions. This
problem is inherently hard to solve because each local minima will empirically diverge the update
from the global optimum [19, 23].

In this paper, we consider the following FL problem over a Riemannian manifold M:
1 n
i = - i 2
i f0) =5 2 $i@) @

where f; : M — R are smooth but not necessarily (geodesically) convex. It is noted that most FL
algorithms are designed for the unconstrained setting and convex constraint setting [16, 22, 14, 20,
21,7, 24, 23], and FL problems with nonconvex constraints such as (2) have not been considered.
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The main difficulty for solving (2) lies in aggregating points over a nonconvex set, which may lead to
the situation where the averaging point is outside of the constraint set.

One motivating application of (2) is the federated kPCA problem

, 1 & 1
& )= ; fi(X), where fi(X) = 2 tr(X T 4;X), 3)
where St(d,r) = {X € R¥>"|XTX = I,} denotes the Stiefel manifold, and A; is the covariance
matrix of the data stored in the ¢-th local agent. When r = 1, (3) reduces to classical PCA

F@) = -3 fule), where fi(r) = 5o A @
=1

min
llzll2=1
Existing FL algorithms are not applicable to (3) and (4) due to the difficulty on aggregating points on
nonconvex set.

1.1 Main Contributions
We focus on designing efficient federated algorithms for solving (2). Our main contributions are:

1. We propose a Riemannian federated SVRG algorithm (RFedSVRG) for solving (2). We prove
that the convergence rate of our RFedSVRG algorithm is O(1/€?) for obtaining an e-stationary
point. This result matches that of its Euclidean counterparts [23]. To the best of our knowledge,
this is the first algorithm for solving FL problems over Riemannian manifolds with convergence
guarantees.

2. The main novelty of our RFedSVRG algorithm is a consensus step on the tangent space of the
manifold. We compare this new approach with the widely used Karcher mean approach. We show
that our method achieves certain "regularization" property and performs very well in practice.

3. We conduct extensive numerical experiments on our method for solving the PCA (4) and kPCA
(3) problems with both synthetic and real data. The numerical results demonstrate that our
RFedSVRG algorithm significantly outperforms the Riemannian counterparts of two widely used
FL algorithms: FedAvg [22] and FedProx [19].

1.2 Related Work

Federated optimization. The most natural idea for FL is the FedAvg algorithm [22], which averages
local gradient descent updates and yields a good empirical convergence. However in the data
heterogeneous situation, FedAvg suffers from the client-drift effect that each local client will drift
the solution towards the minimum of their own local loss function [14, 20, 21, 7, 24, 23]. Many
ideas were studied to resolve this issue. For example, [19] proposed the FedProx algorithm, which
regularizes each of the local gradient descent update to ensure that the local iterates are not far
from the previous consensus point. The FedSplit [24] was proposed later to further mitigate the
client-drift effect and convergence results were obtained for convex problems. FedNova [29] was
also proposed to improve the performance of FedAvg, however it still suffers from a fundamental
speed-accuracy conflict under objective heterogeneity [23]. Variance reduction techniques were also
incorporated to FL leading to two new algorithms: federated SVRG (FSVRG) [16] and FedLin [23].
These two algorithms require transmitting the full gradient from the central server to each local client
for local gradient updates, therefore require more communication between clients and the central
server. Nevertheless, FedLin achieves the theoretical lower bound for strongly convex objective
functions [23] with an acceptable amount of increase in the communication cost.

Decentralized optimization on manifolds. Decentralized distributed optimization on manifold has
also drawn attentions in recent years [8, 25, 3]. Under this setting, each local agent solves a local
problem and then the central server takes the consensus step. The consensus step is usually done by
calculating the Karcher mean on the manifold [27, 25], or calculating the minimizer of the sum of the
square of the Euclidean distances in the embedded submanifold case [8]. Such consensus steps usually
require solving an additional problem inexactly with no exact convergence rate guarantee [27, 9].

It is worth mentioning that the PCA problem under federated learning setting has been considered in
the literature [11]. The proposed method in [11] relies on the SVD of data matrices and a subspace



merging technique, which is very different from our method. The aim of the algorithm in [11] is
to achieve (e, §)-differential privacy. In contrast, we mainly consider the convergence rate of our
method. Therefore our work is totally different from [11].

2 Preliminaries on Riemannian Optimization

In this part, we briefly review the basic tools we use for optimization on Riemannian manifolds [1,
18, 28, 5]. Due to the limit of space, more detailed discussions are given in supplementary material A.
Suppose M is an m-dimensional Riemannian manifold with Riemannian metric g : TM xTM — R.
We first review the notion of the Riemannian gradients.

Definition 1 (Riemannian gradients). For a Riemannian manifold with Riemannian metric g, the

Riemannian gradient for f € C°°(M) is the unique tangent vector grad f(x) € T, M such that
df (&) = g(grad f,§), V¢ € T, M, where df is the differential of function f defined as df (§) := £(f).

For the convergence analysis, we also need the notion of exponential mapping and parallel transport.
We first review the definition of exponential mapping

Definition 2 (Exponential mapping). Given x € M and § € T, M, the exponential mapping Exp,,
is defined as a mapping from T, M to M s.t. Exp,(§) := (1) with v being the geodesic with
~v(0) = z, 4(0) = &. A natural corollary is Exp,,(t€) := ~(t) for t € [0, 1]. Another useful fact is
d(xz,Exp,(£)) = ||&||x since v/ (0) = & which preserves the speed.

Throughout this paper, we always assume that M is complete, so that Exp,, is always defined for
every £ € T, M. For Vz,y € M, the inverse of the exponential mapping Exp, *(y) € T,M is

called the logarithm mapping, and we have d(z,y) = || Exp, ' (y)||.» which will be a useful fact in
the convergence analysis. We now present the definition of parallel transport.

Definition 3 (Parallel transport). Given a Riemannian manifold (M, g) and two points ©,y € M,
the parallel transport Py_,, : Ty M — Ty/\/l2 is a linear operator which keeps the inner product:
V€, ¢ € Tu M, we have (Py—sy&, Py C)y = (& ()

Parallel transport is useful since the Lipschitz condition for the Riemannian gradient requires moving
the gradients in different tangent spaces "parallel” to the same tangent space.

We now present the definition of Lipschitz smoothness and convexity on Riemannian manifolds,
which will be utilized in our convergence analysis.

Definition 4 (L-smoothness on manifolds). f is called Lipschitz smooth on manifold M if there
exists L > 0 such that the following inequality holds for function f:

I grad f(y) — Py—a grad f(z)]| < Ld(z,y). (5)

For complete Riemannian manifold, we have [31]:
_ L
Fy) < f@) + (g0, Bxp, (v)),, + 51 (2,9), Yo,y € M. (6)

The definition of geodesic convexity is given below (see, e.g., [31]).

Definition 5 (Geodesic convex). A function f € Ct(M) is geodesically convex if for all x,y € M,
there exists a geodesic ~ such that v(0) = x, y(1) = y and

fOy(@®) < (L =8)f(x) +tf(y), Vt € [0,1].
Or equivalently,
fy) = f(x) + (grad f(z), Expy " (y))a-

3 The RFedSVRG Algorithm

The most challenging task for FL. on Riemannian manifolds is the consensus step. Suppose the
central server receives 2(*), i € S; C [n] from each of the local clients at round ¢, the question is how

Notice that the existence of parallel transport depends on the curve connecting z and %, which is not a
problem for complete Riemannian manifold because we always take the unique geodesic that connects x and y.
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Figure 1: Comparison of two consensus methods on S

the central server aggregates the points to output a unique consensus. In Euclidean space, the most
straightforward way is to take the average % Dic S, () with k = |S¢|. However, this approach does
not apply to the Riemannian setting due to the loss of linearity: the arithmetic average of points can
be outside of the manifold. A natural choice for the consensus step on the manifold is to take the
Karcher mean of the points [27]:

1 ;
Te41 ¢ argmin - Z a2 (z, 2M), (7
z 1€ES
where x4 is the next iterate point on the central server. This is a natural generalization of the
arithmetic average because d*(z,y) = ||z — y||? in Euclidean space. However, solving (7) can be
time consuming in practice.

We propose the following tangent space consensus step:

1 1.
Tpqpq Eprt (k Z Expztl (ZC( ))> , (8)

1€ESy
where we project each of the point mgl) back to the tangent space T, M and then take their average
on the tangent space. The consensus step (8) has several advantages over the Karcher mean method
(7). First, (8) is of closed-form and easy to compute. Second, (8) still coincides with the arithmetic
mean when the manifold reduces to the Euclidean space. Third, the tangent space mean (8) can easily
be extended to the following moving average mean:

Exp,, (i > Exp;! (xu))) ’

i€ES

which corresponds to (1 — 8)x; + % > ies, 2 in the Euclidean space, while the Karcher mean
cannot be easily extended in this scenario. Last, (8) has the following "regularization" property as the
distance between two consensus points can be controlled, and the Karcher mean method (7) does not
have this kind of property.

Lemma 6. For the update defined in (8), it holds that

1 )
d(@iq1, 1) < T ; d(z® | zy).

To further illustrate this "regularization" property of the tangent space mean (8), we consider an
(extreme) example on the unit sphere S? (see Figure 1) . Here we take x; on the north pole and two
point from the local server as z(!) and (), also £) = Exp_ ' (z(¥)) € T, M. Then the tangent
space mean (8) would yield the original point x;, whereas the Karcher mean could yield any point on
the vertical great circle, depending on the starting point in solving the optimization problem (7).

Our RFedSVRG algorithm is presented in Algorithm 1, which is a non-trivial manifold extension of
the FSVRG algorithm [16]. For RFedSVRG, the local gradient update becomes

xﬁl — Expxzi) [777@‘) (grad fi(:ry)) - th%x;i) (grad f;(z;) — grad f(xt)))} , 9
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which matches the existing manifold SVRG work [30]. The introduction of the parallel transport

P () 1s necessary because we need to "transport" all the vectors to the same tangent space to
Ty,

conduct addition and subtraction. The algorithm utilizes the gradient information at the previous
iterate grad f (x4 ), thus avoids the "client-drift" effect and correctly converges to the global stationary
points. This is confirmed by both the theory and the numerical experiments.

Algorithm 1: Riemannian FedSVRG Algorithm (RFedSVRG)

input :n, k, T, {nV}, {r;}
output : Option 1: & = x7; or Option 2: & is uniformly sampled from {1, ..., 21}

fort=0,...,7T —1do
Uniformly sample S; C [n] with |:S;| = k;
for each agent i in S; do
Receive mg‘) = x,; from the central server;
for(=0,...,7, —1do
\ Take the local gradient step (9).
end
Send #(*) (obtained by one of the following options) to the central server
« Option 1: 2 = ¥
» Option 2: () is uniformly sampled from {:chi), vy m&f)},
end
The central server aggregates the points by the tangent space mean (8);
end

4 Convergence analysis

In this section we analyze the convergence behaviour of the RFedSVRG algorithm (Algorithm 1).
Before we proceed to the convergence results, we briefly review the necessary assumptions, which
are standard assumptions for optimization on manifolds [31, 6].

Assumption 1 (Smoothness). Suppose f; is L;-smooth as defined in (4). It implies that f is L-smooth
with L =3 | L;.

Now we give the convergence rate results for Algorithm 1. Specifically, Theorem 7 gives the
convergence rate of Algorithm 1 with 7; = 1, Theorem 8 gives the convergence rate of Algorithm 1
with 7; > 1, and Theorem 9 gives the convergence rate of Algorithm 1 when the objective function is
geodescially convex.

Theorem 7 (Nonconvex, Algorithm 1 with 7; = 1). Suppose the problem (2) satisfies Assumption 1.
If we run Algorithm 1 with Option 1 in Line 8, n¥ < % and 7; = 1 (i.e. only one step of gradient
update for each agent), then the Option 1 of the output of Algorithm 1 satisfies:

min |l grad f(@,)||* < O (L(fm)T_ ﬂx*”) : (10)

Remark. Our proof of Theorem 7 relies heavily on the choice of 7; = 1 and the consensus step
(8). When 7; > 1, we need to introduce multiple exponential mappings at multiple points for each
iteration, which makes the convergence analysis much more challenging due to the loss of linearity.
Moreover, the aggregation step makes the situation even worse. However, we are able to show
the convergence of Algorithm 1 with 7, > 1 when k£ = 1. Our numerical experiments show the
effectiveness of the RFedSVRG algorithm with both 7; = 1 and 7; > 1.

To prove the convergence of Algorithm 1 with 7; > 1, we also need the following regularization
assumption over the manifold M [30].

Assumption 2 (Regularization over manifold). The manifold is complete and there exists a compact
set D C M (diameter bounded by D) so that all the iterates of Algorithm 1 and the optimal points



are contained in D. The sectional curvature is bounded in [Kmin, Kmax)- Moreover, we denote the
following key geometrical constant that captures the impact of manifold:

|Kmin|D
C = tanh( |nm;n|D>
L if’{min > 0.

) i Kmin < 0
/ (11)

Notice that this assumption holds when the manifold is a sphere or a Stiefel manifold (since they
are compact). Now we are ready to give the convergence rate result of Algorithm 1 with 7; > 1 and
k =1, the proof of which is inspired by [30].

Theorem 8 (Nonconvex, Algorithm 1 with 7; > 1 and k = 1). Suppose the problem (2) satisfies
Assumptions 1 and 2. If we run Algorithm I with Option 2 in Line 8, k = 1, 7, = 7 > 1,
n® =n<O( ch) then the Option 2 of the output of Algorithm 1 satisfies:

E|| grad f(3)]> < O <P(f($0)7; f(a:*)))

)

where p is an absolute constant specified in the proof and the expectation is taken with respect to the
random index i, as well as the randomness introduced by the Option 2.
Finally, we have the convergence result when the objective function of (2) is geodesically convex.

Theorem 9 (Geodesic convex). Suppose the problem (2) satisfies Assumption 1 and 2. Also the
functions f;’s are geodesically convex (see Definition 5) in D (as in Assumpnon 2 ) If we run Al%rorlthm

1 with Option 1 in Line 8, 7; = 1, S; = [n] (full parallel gradient), and 1 = =
then the Opftion 1 of the output of Algorithm 1 satisfies:
N Ld?(zg, z*
far) =17 <0 ((T°)> . (12)

5 Numerical experiments

We now show the performance of RFedSVRG and compare it with two natural ideas for solving (1):
Riemannian FedAvg (RFedAvg) and Riemannian FedProx (RFedProx), which are natural extensions
of FedAvg [22] and FedProx [19] to the Riemannian setting. Algorithms RFedAvg and RFedProx
are descried in Algorithm 2 and Algorithm 3 in the supplementary material. We conducted our
experiments on a desktop with Intel Core 9600K CPU, 32GB RAM and NVIDIA GeForce RTX 2070
GPU. For the codes of operations on Riemannian manifolds we used the ones from the Manopt and
PyManopt packages [4, 26]. Since the logarithm mapping (the inverse of the exponential mapping)
on the Stiefel manifold is not easy to compute [32], we adopted the projection-like retraction [2] and
the inverse of it [13] to approximate the exponential and the logarithm mappings, respectively.

We tested the three algorithms on PCA (4) and kPCA (3) problems. For both problems, we measure
the norm of the global Riemannian gradients. Additionally, we also measure the sum of principal
angles [15] for kPCA. 3

5.1 Comparison of the two consensus methods (7) and (8)

We first compare the two consensus methods (7) and (8). To this end, we randomly generate x; and
k =100 points x( 2 on the unit ball S~ with different dimensions d. We then compare the distances
13 Az, 2D), 30, d? (2441, 2) and d?(z¢, 2441), as well as the CPU time for computing
them. Note that the smaller these distances are, the better. To calculate the Karcher mean, we run
the Riemannian gradient descent method starting at x; until the norm of the Riemannian gradient is
smaller than € = 1076, The results are shown in Table 1. From Table 1 we see that the tangent space
mean (8) is indeed better than Karcher mean (7) in terms of both quality and CPU time.

3For the loss f in (3), note that f(X) = f(XQ) for any orthogonal matrix Q € R™*". As a result, the
optimal solution of f(X') only represents the eigen-space corresponds to the r-largest eigenvalues. Therefore
we need the principal angles to measure the angles between the subspaces.



Table 1: Comparison of the two consensus methods (7) and (8). Here h(z) := 1+ >, d*(z), z),

CPU time is in seconds and the experiments are repeated and averaged over 10 times.

. Karcher mean (7) Tangent space mean (8)
Dim d h(xt) dz (mt+1,mt) h($t+1) Time d1($t+1,xt) h(ZL‘t+1) Time
100 2.478 2.469 2.813 0.706 0.025 2427 0.004
200 2472 2.484 2.804 0.641 0.025 2422 0.004
500 2.469 2.469 2.795 0.725 0.024 2421 0.005

Norm of gradfix,)
Norm of gradfix,)

102~ Reedavg
RFedprox
—— RFedSVRG

0 100 200 300 400 500 600 [ 100 200 300 400 500 600 0 100 200 300 400 500 600
Round of communicat tion Round of communicat tion Round of communicat tion

(a) n =500 (b) n = 1000 (c) n = 2500

Figure 2: Results for PCA (4). The y-axis denotes || grad f(x;)||. For each figure, the experiments
are repeated and averaged over 10 times.

5.2 Experiments for PCA and kPCA on synthetic data

In this section, we report the results of the three algorithms for solving PCA (4) and kPCA (3)
on synthetic data. We first generate the data X; € R?*P whose entries are drawn from standard
normal distribution. We then set 4; := X; X,". Notice that under this experiment setting the data in
different agents are homogeneous in distribution, which provides a mild environment for comparing
the behavior of the proposed algorithms. We test highly heterogeneous real data later.

Experiments on PCA. We first test the three algorithms on the standard PCA problem (4). We test
our codes with different numbers of agents n and set k = n/10 as the number of clients we pick
up for each round. We terminate the algorithms if the number of rounds of communication exceeds
600. We sample 10000 data points in R'%° and partition them into n agents, each of which contains
equal number of data. We test RFedSVRG with one iteration for each local agents, i.e. 7; = 1 and test
RFedAvg and RFedProx with 7; = 5 iterations in (28). We use the constant stepsizes for all three
algorithms, and take . = n/10 for each choice of n. The results are presented in Figure 2, from
which we see that only RFedSVRG can efficiently decrease || grad f(x)|| to an acceptable level.

Experiments on KPCA. We now test the three algorithms on the kKPCA problem (3). In the first
experiment we sample 10000 data points in R2°C and partition them into n agents, each of which
contains equal number of data. We test our codes with different number of agents n, and again set
k = n/10. Here we take (d,r) = (200, 5). The results are given in Figure 3, where we see that
RFedSVRG can efficiently decrease || grad f(z;)|| and the principal angle in all tested cases.

In the second experiment we test the effect of the number of inner loops 7;. We generate 10000
standard Gaussian vectors. We set (d,r) = (200,5), k = 10 and » = 100 so that p = 100. We
choose 7 = [1, 10, 50, 100] for the inner steps for all three algorithms. The results are presented in
Figure 4. From this figure we again observe the great performance of RFedSVRG.

5.3 Experiments for kKPCA on real data

We now show the numerical results of the three algorithms on real data. We focus on the kPCA
problem (3) here. We test the three algorithms on three real data sets: the Iris dataset [10], the wine
dataset [10] and the MNIST hand-written dataset [17]. For all three datasets, we calculate the first r
principal directions and the true optimal loss value directly. We can thus compute the principal angles



Figure 3: Results for KPCA. The y-axis of the figures in the first row denotes || grad f(x)||, and
the y-axis of the figures in the second row denotes the principal angle between x; and z*. The
experiments are repeated and averaged over 10 times.

(a7=1 (b) 7 =10 (c) 7=50 (d) 7 =100

Figure 4: Results for kPCA (3) with different number of inner loops 7 = [1, 10, 50, 100]. The y-axis
of the figures in the first row denotes || grad f(z)||, and the one in the second row denotes the
principal angle between x; and x*. The experiments are repeated and averaged over 10 times.

between the iterate and the ground truth. The experiments are repeated and averaged for 10 random
initializations.

For the first two datasets, we randomly partition the datasets into 10 agents and at each iteration we
take k = 5 agents. The Figures 5 and 6 show that RFedSVRG is able to effectively decrease the norm
of Riemannian gradient and the principal angles while the other two are not as efficient.

For the MNIST hand-written dataset, the (training) dataset contains 60000 hand-written images of
size 28 x 28, i.e. d = 784. This is a relatively large dataset and we test the proposed algorithms with
different number of clients. The results are shown in Figure 7 where the efficiency of RFedSVRG is
demonstrated again. The comparison of the two rows of Figure 7 concludes that RFedSVRG shows
better efficiency even with a larger number of clients n.

6 Conclusions

In this paper, we studied the federated optimization over Riemannian manifolds. We proposed a
Riemannian federated SVRG algorithm and analyzed its convergence rate to an e-stationary point.
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(a) Gradient norm

Principal angle between x; and x"

--- RFedavg
RFedprox
—— RFedSVRG

0 50 100 150 200 250 300
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(b) Principal angle

Figure 5: Results for kPCA (3) on Iris dataset. The data is in R* (d = 4) and we take r = 2. The
first figure is the norm of Riemannian gradient || grad f(x;)|| and the second is the principal angle

between x; and the true solution z*.

100] T --- RFedavg
- RFedprox
s —— RFedSVRG

U g bt s

Norm of gradfix;)
s

0 250 500 750 1000 1250 1500 1750 2000

Round of communication

(a) Gradient norm

le between x; and x"

--- RFedavg
. RFedprox
SIaa- —— RFedSVRG

0 250 500 750 1000 1250 1500 1750 2000

Round of communication

(b) Principal angle

Figure 6: Results for kPCA (3) with wine dataset. The data is in R'® (d = 13) and we take r = 5.
The first figure is the norm of Riemannian gradient || grad f(z;)|| and the second is the principal

angle between x; and the true solution z*.

To the best of our knowledge, this is the first federated algorithm over Riemannian manifolds
with convergence guarantees. Numerical experiments on federated PCA and federated kPCA were
conducted to demonstrate the efficiency of the proposed method. Developing algorithms with lower
communication cost, better scalability and sparse solutions are some important topics for future

research.
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Figure 7: Results for kPCA (3) with MNIST dataset. The data is in R™®* (d = 784) and we take r = 5.
The first column is the norm of Riemannian gradient grad f(x;) and the second is the principal angle
between x; and the true solution z*. The two rows corresponds to n = 100 and n = 200. We take
k =n/10 and 7 = 5 for all algorithms.
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A Detailed Preliminary Results of Optimization on Riemannian Manifolds

Suppose M is an m-dimensional differentiable manifold. The tangent space T, M atx € M is a
linear subspace that consists of the derivatives of all differentiable curves on M passing through
x: TyM = {4/(0) : v(0) = z,v([—6,d]) C M for some § > 0, is differentiable}. Notice that
for every vector 7/(0) € T, M, it can be defined in a coordinate-free sense via the operation over

smooth functions: Vf € C*>(M), ' (0)(f) == dfzivt(t) |t=0. The Riemannian manifold is a smooth
manifold that is equipped with an inner product (called Riemannian metric) on the tangent space,

g(+,) = (-, Vg : TyM x Ty M — R, that varies smoothly on M.
We first review the notion of the differential between manifolds and the Riemannian gradients here.

Definition 10 (Differential and Riemannian gradients). Let F' : M — N be a C™ map between two
differential manifolds. At each point x € M, the differential of F is a mapping: F, : TyM — T, N
such that V¢ € TyM, Fi(€) € ToN is given by (Fu(§))(f) :=&(fo F) ER, f € Ci’,fzz)(/\/l).

IfN =R, ie. f € C®(M), the differential f, is also denoted as df. For a Riemannian manifold
with Riemannian metric g, the Riemannian gradient for f € C*° (M) is the unique tangent vector
grad f(z) € T, M such that df (§) = g(grad f,£), V& € T, M.

For the convergence analysis, we also need the notion of exponential mapping and parallel transport.
To this end, we need to first recall the definition of a geodesic.

Definition 11 (Geodesic and exponential mapping). Given x € M and € € T, M, the geodesic is
the curve y : I — M, 0 € I C R is an open set, so that ¥(0) = z, ¥(0) = £ and V4% = 0 where
V T Mx T, M — T, Mis the Levi-Civita connection defined by metric g. In local coordinates,
v is the unique solution of the following second-order differential equations:

d2’7k k .d’yi dij _
dt? I odt dt
under Einstein summation convention, where Fﬁ ; are Christoffel symbols defined by metric tensor
g. The exponential mapping Exp,, is defined as a mapping from T, M to M s.t. Exp, (&) := v(1)

with -y being the geodesic with (0) = x, 4(0) = &. A natural corollary is Exp, (t§) := ~(t) for
t € [0, 1]. Another useful fact is d(x, Exp,(£)) = ||€|| since 7' (0) = & which preserves the speed.

B Proofs

In this section we provide the proofs of lemmas and theorems mentioned in the main paper. We first
finish the proof of Lemma 6:

Proof. [Proof of Lemma 6] By Cauchy-Schwarz inequality we have
d(@er1, ) = || Expy, (24|

1 _ i 1 — i 1 [
— H% 3" Exp; @) < : 3 I Expy (@) = : 3 dwe,a).

1€St 1€St €St

Now we turn to the proof of Theorem 7. We would utilize the following lemma:

Lemma 12. Under the same settings as Theorem 7, we have

. (%) 2L
Floen) — S <~ rad fa0)? + T grad pla) 2

Proof. [Proof of Lemma 12] From the update we know that
‘”21 — EXpmgw {—nt(i) (grad fi (xy)) — th%my) (grad f;(z;) — grad f(mt)))}
ie.

=T,

Exp ) (@)  —n” (grad fi(ef?) = P, 0 (grad fi(w:) — grad f(z1)))
£
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Whenr; =1, xéi) = x; thus
Exp, (@) « —nf” (grad filwe) = P, _, oo (grad filw,) — grad f(a2))) =~ grad f(a:)
Using Lipschitz smooth of f; again and the tangent space mean (8), we have
S(@eg1) = fla) §<EXP;1($t+1),grad fla) + £d2($t+1,xt)

(3 B ) rad £) + ol S B (o)

zGSt 1€St

, (y2)
= — 0l gmad £ )| + T grad pan) 2.

where we used the tangent space mean (8) for the first equality. O

Now we are ready to present the proof of Theorem 7.

Proof. [Proof of Theorem 7] By taking 7(*) § , from Lemma 12 we have

f(xes1) — flze) < —ﬁH grad f(z,)]%.

Summing this inequality over ¢ = 0,1, ...,T, we obtain

o= S llgrad f) I < flwo) — f(rren) < flo) — F(a°),
t=0

which yields (10) immediately. O

Before we present the proof of Theorem 8, we need the following lemma, which is adopted from [30].

Lemma 13 (Lemma 2 in [30]). Consider Algorithm 1 with Option 2. Suppose we run randomly
chosen local agent i at the t-th outer iteration. If we run the local agent 1 for T; local gradient steps
(9) with initial point x4, then it holds:

Ry — Ryt

=0,.,7—1 1
5e 7€ 07 77—7, bl (3)

E| grad f(z)|” <
where the expectation is taken with respect to the randomly selected index i, Ry := E[f (xy)) +

cel| Bxpy (@)%, e0 = o1 (1+ B+ 2CL202) + Lo and 6 = 1 — QE”’ L = 2ce41Gn.
Here (3 is a free constant to be determined and we take c;, = 0 in the recursive definition.

Now we turn to the proof of Theorem 8:

Proof. [Proof of Theorem 8] Since k£ = 1, without loss of generality, we denote ¢ as the agent that
we choose at the ¢-th iteration. Moreover, we denote 17 = 77(*) because there is only one agent.

From (13), we note that if we set < m(l — Cfﬁ“ ), then we have §(") := ming—g._ ., 0p > 0.

In this case, summing (13) over ¢ = 0,1, ..., 7; — 1 yields

(2)
1 ()\ 12 Ry — R‘Fi f(xt) — f(xTz )
- > Efgrad f(a”)]? < o <El T 5m ) (14)
ZZO,...,Tifl
since Ry = f(z;) and Ry, = E[f(2\)) + ¢ Expyl(@)]?] > E[f(2)]. Now we take § =

L¢Y2/nt/3 and n = 1/(10Ln?/3¢1/2)*. From the recurrence ¢y = co11(1+ Bn +2¢L*n?) + L3n?
and c,, = 0 we have

L (1+6)7 -
100n4/3¢ 0 ’

Co =

*1t is straightforward to verify that i < m 1- ng

L) with this choice of n for £ = 0, ..., 7;
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where

1 1 13
0 =B + 202 L% = — e ——
np +2en Ton * 50nt/8 © (1on’ IOn)

is a parameter. If we take 7; = [10n/3] such that (1+ 6)™ < (1 + 12-)™ < e, then

L
cp < W(e —-1),

and 6() is bounded by

5@ Z< _ con 2L_2CO<772)

"B
> 1 e—1 1 e—1
=\t 10032~ 1002/3¢172 ~ 50n(1/2
Sn_ L
— 2 20Ln?%/3¢1/2°

where the last inequality is by ¢, n > 1. Note that this lower bound of §(*) is independent from the
choice of local agent .

Now summing (14) over t = 0, ..., T — 1 with 6 > 7 we get

71 71 ONIP 2A
E d < 1
Tt—O,,Z: P Z | grad f(z,”)||* < pual (15)

,T*l 0=0,..., Tifl
where A = f(xg) — f*.
Now using the Option 2 of the output of Algorithm 1, we get
Ap
E| grad f(#)|]* < —=
| grad S @))° < 2.

1
where p = 5 = g mmere N

Before we present the proof of Theorem 9, we need the following lemma [31].

Lemma 14 (Corollary 8 in [31]). Suppose the sectional curvature of M is lower bounded by ki
and we update x4y 1 < Exp, (—1:9:). Suppose also that the update sequence {x;} C D where D is
a compact set with diameter D, then for any x € M it holds:

1
@%wau»égyﬂ%m—fmwh»+9%hw (16)

where ( is given in (11).

We now present the proof of Theorem 9.

Proof. [Proof of Theorem 9] From Lemma 14 we get

Z Exth z) Exth (z)) < =(d*(z¢, x) — d*(z441, @) Z Exp Hz, 17
ZESt lESt

|~

which is equivalent to (since we assume S; = [n] and (! = n):

> erad filw), Exp, ) (2)) < 5(d (20, @) ~d* (@041, @) *||* > Expy (@),

i=1,...,n i=1,...,n

N —

(18)

Now use the geodesic convexity of f; and (18), we have (denote A, := f(z;) — f(z*) and Al :=
filwe) — fila) |
Af < —(grad fi(z;), Expy,' (z)).
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Summing this inequality over ¢ = 1, ..., n, we get

A<= Y grad fi(w), By (a°))

i=1,...,n
1 * 1
<o (@) = &(@e,a) +—||f Z Exp, ! («)[|? (19)

.....

1 . . ¢n
S%(dQ(xuw ) = d*(z41,77)) + %H gradf(a?t)ll2-

Again from Lemma 12 we get
@, )L 2
Aot =A< (o D grad g P 20)
Now multiply (20) by ¢ and add it to (19) we get

CA1— (1A <(¢ ( -n + 2 ) l gfadf(fft)||2+i(d2($mx*)—d2($t+1a$*))~ (21

2n

Now take < 2L’ we know that % -n+ "QTL < 0, thus
1
t+1 — & — t> 5 T, T ) — Tt+1,T ))-
¢A (=DA < 277(612( ") — d*( ") (22)
Summing this up over ¢t from O to 7' — 1 we get
d2 , *
CAr+ Y A < (C— 1AL+ % (23)
t=0
Also by (20) we know A, < Ay, thus
(D?
A 24
"= +T—-2) @4
O

C RFedAvg and RFedProx algorithms

FedAvg [22] and FedProx [19] are two widely used algorithms for FL problems in Euclidean space.
At each iteration, FedAvg minimizes the local loss f; for fixed steps using gradient descents:

e ) @OV, (25)
while FedProx solves a local proximal point subproblem:

W « argmin f;(z) + g”:v — 2|2 (26)

For RFedAvg, which is the Riemannian counterpart of FedAvg, (25) is replaced by
&)1 — Exp_ @ (—n(i) grad fi(xgl))) )
For RFedProx, which is the Riemannian counterpart of FedProx, (26) is replaced by

xgﬂl <+ argmin f;(x) + HdQ(x,xt), 27)
reM 2

where d(z,y) is the geodesic distance between x and y. In the implementation of RFedProx, (27) is
solved by Riemannian gradient descent:

z(, < Exp, o (= 0 grad hy(ay”)), €= 0,7 — 1. 28)

RFedAvg and RFedProx are described in Algorithms 2 and 3, respectively.
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Algorithm 2: Riemannian FedAvg algorithm

input :n, k, T, {n@}, {r:}
output :x
1 fort=0,..,7 —1do

2 | Uniformly sample S; C [n] with |S;| = k;

3 for each agent i in S; do

4 Receive x; from the central server;

5 for(=0,..,7;, —1do

6 xﬁl — Esz,ff) (717(1') grad fi(xé’))>;

7 end

8 Send the obtained x(ﬁ) to the central server;

9 end
10 The central server aggregates the points by the tangent space mean (8);
11 end

Algorithm 3: Riemannian FedProx Algorithm

input :n,k, T, pu,y
output :xr
1 fort=0,..,7 —1do
2 | Uniformly sample S; C [n] with |S;| = k;
3 for each agent i in S; do
4 Receive x; from the central server;
5 Obtain (V) «— argmin, ¢ v, f;(x) + 4d?(x, z;) upto a v approximate solution;
6 Send the obtained z(9) to the central server;
7 end
8 The central server aggregates the points by the tangent space mean (8);
9

end
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