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Abstract

Groundwater contamination poses serious threats to public health and environmen-

tal sustainability. In this paper, we explore smart groundwater contamination sens-

ing, which aims to accurately estimate the nitrate concentration in groundwater via a

crowdsensing approach. Existing solutions often require professional groundwater col-

lection and high-quality measurement of groundwater properties, making the data col-

lection process time-consuming and unscalable. In this work, we leverage the approx-

imate nitrate concentration measured by crowd sensors (i.e., participants from well-

dependent communities) to accurately estimate nitrate concentration in groundwater

samples. Three critical challenges exist in developing the crowdsensing-based ground-

water contamination estimation solution: i) the spatial irregularity of the crowdsens-

ing groundwater contamination data, ii) the hidden temporal dependency of ground-
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water contamination in the anthropogenic context, and iii) the uncertainty of crowd-

sensing nitrate measurements from crowd sensors. To address the above challenges,

we develop CrowdWaterSens, an uncertainty-aware graph neural network framework

that explicitly examines the uncertainty and spatial irregularity of the crowdsensing

groundwater contamination data and its relevant anthropogenic context to accurately

estimate groundwater nitrate concentration. We evaluate the CrowdWaterSens frame-

work through two real-world case studies in well-dependent communities in North-

ern Indiana, United States. The evaluation results not only show the effectiveness of

CrowdWaterSens in accurately estimating nitrate concentration, but also demonstrate

the viability of crowdsensing for community-level groundwater quality monitoring.

Keywords: Groundwater Quality, Nitrate Contamination, Crowdsensing, Graph

Neural Network

1. Introduction

Groundwater is one of the critical natural resources on Earth [1]. For example,

more than 115 million people in the United States rely on groundwater as their primary

drinking water source.1 However, groundwater resources are vulnerable to contamina-

tion induced by various human activities, such as excessive application of fertilizer and

pesticide in agricultural operations, failure of private septic systems, and uncontrolled

waste disposal on abandoned dumpsites and hazardous waste sites [1]. Groundwater

contamination poses serious threats to public health and the environment [2]. Among

groundwater contaminants, nitrate (NO−
3 -N) is an important widespread contaminant

that can cause serious health issues [3]. For example, long-term intake of groundwa-

ter with elevated nitrate concentration can cause methemoglobinemia (i.e., blue baby

syndrome) and stomach cancer [3]. In this paper, we developed a smart groundwater

contamination sensing approach that aims to accurately estimate the nitrate concentra-

tion in groundwater via crowdsensing. The estimated nitrate concentration results can

be further reported to federal and local groundwater quality monitoring agencies (e.g.,

1https://www.usgs.gov/media/images/groundwater
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U.S. Environmental Protection Agency, state department of ecology/health) to aid in

improving groundwater quality.

Our work is motivated by the lack of effective government regulations on well-

water quality monitoring in the United States and the lack of consistent testing for

groundwater contamination in well-dependent communities (i.e., households consum-

ing groundwater from private wells) [4]. The quality of groundwater from private wells

is not regulated by federal or state laws (e.g., Federal Safe Drinking Water Act) in the

United States [5] and it is typically homeowner’s responsibility to maintain their pri-

vate well systems and monitoring the groundwater quality. However, due to general

lack of knowledge, residents in well-dependent communities are often unaware of the

health risk posed by groundwater contamination and the importance of groundwater

quality monitoring [4]. Therefore, it is necessary to develop effective groundwater

quality monitoring solutions to accurately estimate the contamination in private well

water while increasing the awareness of groundwater contamination in well-dependent

communities.

Recent efforts have been made towards groundwater contamination estimation [6].

Existing solutions mainly focus on the spatial interpolation of groundwater contami-

nation based on geographic information system (GIS) data [7] and groundwater prop-

erties (e.g., hydrochemical facies [8], geochemical and microbiological features [9])

measured at groundwater sampling sites (e.g., groundwater monitoring stations, des-

ignated private wells). However, such methods often require professional groundwa-

ter collection from well-established sampling sites and high-quality measurements of

groundwater properties, making the data collection process costly, time-consuming,

and unscalable. Therefore, it remains challenging to effectively and efficiently monitor

groundwater contamination at the scales of relevant interest.

In this paper, we develop a crowdsensing-based approach that explores the col-

lective wisdom of crowd sensors (i.e., participants from well-dependent communities)

to accurately estimate groundwater nitrate concentration. Crowdsensing, when imple-

mented correctly, presents an effective data collection paradigm for obtaining mea-

surements from non-technical individuals in an efficient and scalable way [10, 11]. In

particular, our crowdsensing-based contamination estimation approach is in principle
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Figure 1: Crowdsensing Groundwater Nitrate Estimation

infrastructure-free as it does not require any installation or maintenance of physical

water quality monitoring sensors. Moreover, crowdsensing data collection strategies

also actively engage members in well-dependent communities to monitor groundwater

quality and thus become informed about the safety of their drinking water. Figure 1

depicts a schematic representation of our crowdsensing-based groundwater nitrate es-

timation approach. First, we collect the crowdsensing nitrate data (i.e., approximate

nitrate concentration using test strips) from crowd sensors. The collected crowdsens-

ing nitrate data is then leveraged to accurately estimate the nitrate concentration in the

studied communities. However, several challenges exist in developing our solution.

Spatial Irregularity. The first challenge lies with the spatial irregularity of the

crowdsensing groundwater nitrate data. Existing methods for spatial estimation of

groundwater contamination often rely on the groundwater properties (e.g., hydrochem-

ical facies) measured from a set of fixed water sampling stations [8]. In addition, these

fixed sampling stations are pre-identified based on geographic characteristics (e.g., wa-

tershed locations, soil conditions). However, such methods cannot be readily applied to

model the crowdsensing groundwater nitrate data which are irregularly located across
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study areas and dynamically change due to the random nature of crowdsensing partic-

ipants. For example, the crowdsensing data from areas with higher residential density

are denser than crowdsensing data from areas with lower residential density. This poses

a challenge in effectively extracting the spatial relations among the irregular crowd-

sensing groundwater nitrate data.

Hidden Temporal Dependency. The second challenge lies in the hidden temporal

dependency of groundwater contamination on the anthropogenic context (i.e., human

activities and land use that can cause groundwater contamination). The concentration

of groundwater nitrate is often correlated with the temporal dynamics of anthropogenic

activities (e.g., temporal variation of fertilizer application and pet activities), especially

for groundwater obtained from shallow wells in well-dependent communities [4]. For

example, the application of fertilizer is often dependent on individual households (e.g.,

professionally maintained landscape vs. poorly maintained landscape) and the season

of the year (e.g., summer vs. winter). The varying dynamics of fertilizer activities can

affect the nitrate concentration in groundwater [12]. Such variability poses a challenge

to efficiently capture hidden temporal dependencies to accurately estimate groundwater

nitrate concentration.

Crowdsensing Data Uncertainty. The third challenge lies in the uncertainty of the

crowdsensing nitrate data collected from the crowd sensors who are often untrained

citizens from well-dependent communities. Crowdsensing nitrate concentrations mea-

sured by such non-professional crowd sensors can present significant uncertainties

due to the unknown reliability of the participants, arising from the lack of familiar-

ity with the nitrate test kit and incorrect sampling of groundwater. While several

data uncertainty estimation solutions exist (e.g., truth discovery [13, 14], data relia-

bility assessment [15, 16]), such approaches cannot be directly applied to address data

uncertainty issues in our crowdsensing nitrate estimation problem. This is because

these approaches typically assume that multiple observations/measurements of the tar-

get variable (e.g., nitrate concentration) from different sources (e.g., participants) are

available or they require a large number of data samples with annotated reliability (e.g.,

reliability of the participants). However, in our problem, each participant is only asked

to measure the nitrate concentration from his/her own household, and only a limited
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number of ground truth nitrate concentration results are collected to assess the partici-

pants’ reliability due to the high cost of professional nitrate measurements. Therefore,

it remains a challenge to accurately predict groundwater nitrate concentration based on

crowdsensing measurements from participants with unknown reliability.

In this paper, we develop CrowdWaterSens, an uncertainty-aware crowdsensing

framework to accurately and efficiently estimate groundwater nitrate concentration by

exploring the collective accuracy of well-dependent communities. To address the first

challenge, we design a spatio-temporal crowdsensing network to explicitly model the

spatial irregularity of the crowdsensing groundwater nitrate data. To address the sec-

ond challenge, we develop a context-aware information fusion module to effectively

learn the temporal dynamics of crowdsensing contamination and its relevant anthro-

pogenic context to jointly estimate the groundwater nitrate concentration. To address

the third challenge, we design an uncertainty-driven network optimization strategy

that explicitly measures the uncertainty of crowdsensing measurements from individ-

ual crowd sensors to accurately estimate the groundwater nitrate concentration via a

graph-based regression model. To the best of our knowledge, CrowdWaterSens is the

first uncertainty-aware crowdsensing-based groundwater contamination estimation so-

lution for groundwater quality monitoring. We evaluate the proposed CrowdWaterSens

framework by carrying out two case studies of nitrate contamination in well-dependent

communities in Northern Indiana, United States.2 The evaluation results not only show

the effectiveness of CrowdWaterSens in accurately estimating nitrate concentration but

also demonstrate the viability of crowdsensing for community-level groundwater qual-

ity monitoring.

A preliminary version of this work (i.e., SmartWaterSens [17]) has been published

in SmartComp 2022 to study the problem of groundwater monitoring in well-dependent

communities. This paper is a significant extension of our conference paper (i.e., Smart-

WaterSens) in the following aspects. First, we identify a new critical challenge of data

uncertainty in crowdsensing-based groundwater contamination estimation (Section 1).

2The Institutional Review Board (IRB) approval has been granted for all protocols and procedures in
our case study.
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Second, we extend the preliminary solution by explicitly modeling the crowd sensor

reliability in the graph regression framework to address the data uncertainty challenge

in crowdsensing-based groundwater nitrate concentration estimation. Third, in light of

the COVID-19 pandemic, we extend our crowdsensing experiments to a new case study

with a fully at-home crowdsensing data collection strategy that obtains the crowdsens-

ing measurements and ground truths of nitrate concentration, while minimizing phys-

ical contact with our participants (Section 5). Fourth, we add three new baselines of

graph neural network based regression models, GCN, GTN, and SmartWaterSens to

further investigate the effectiveness and efficiency of the proposed CrowdWaterSens

framework. Fifth, we carry out a robustness study to comprehensively evaluate the

effect of training data size on the performance of CrowdWaterSens. Last, we extend

the related work discussion by adding a discussion on the topic of data uncertainty in

crowdsensing and including more recent work in groundwater quality, crowdsensing,

and spatio-temporal inference (Section 2).

2. Related Work

2.1. Groundwater Quality

Groundwater quality has gained much attention in recent years [1]. Many efforts

have been made to investigate groundwater pollution and assess groundwater qual-

ity [6, 18]. For example, Long et al. introduced a spatially interpolated mapping system

to estimate the spatial distribution and health risk of heavy metals in shallow ground-

water [19]. Li et al. designed an entropy-weighted multi-criteria decision analysis ap-

proach to assess the plateau groundwater quality based on hydrochemical facies (e.g.,

concentrations of major ions) [20]. Egbueri et al. proposed a hierarchical cluster anal-

ysis to jointly investigate the pollution index of groundwater (PIG) and ecological risk

index (ERI) for drinking groundwater quality assessment [21]. Knoll et al. developed a

GIS-based machine learning framework that leverages nitrate measurements at ground-

water monitoring sites to predict groundwater nitrate concentration [22]. However,

existing methods often require well-established infrastructures or laboratory analysis

which are time-consuming and expensive. In this paper, we present an infrastructure-

free solution that explores the crowdsensing wisdom from citizen scientists to assess
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the quality of groundwater.

2.2. Crowdsensing in Smart City Applications

Crowdsensing presents a new sensing paradigm, where timely observations of the

physical world are collected from human sensors [23, 24]. With the pervasive network

connections and the prevalence of digital devices, crowdsensing has been increasingly

applied in smart city applications [25, 26, 27]. For example, Liang et al. leveraged

crowdsensing data from public air quality sensors to assess the wildfire smoke impact

of indoor air quality in California [28]. Silva et al. designed a crowd-driven vehicle

pollution monitoring system that couples crowdsensing with an on-board diagnostic

carbon dioxide reader to estimate vehicle emission in smart cities [29]. Zhang et al.

proposed a multi-view learning framework to identify risky traffic locations in smart

transportation systems [30]. Breuer et al. developed HydroCrowd, a crowdsourcing-

based water sampling strategy that only recruited crowd participants to collect surface

water samples for hydrological study [31]. Lee et al. proposed a crowdsensing noise

mapping framework to monitor urban environmental noise in smart cities by utiliz-

ing crowdsourced noise data from calibrated smartphones [32]. To the best of our

knowledge, CrowdWaterSens is the first uncertainty-aware crowdsensing approach to

estimate groundwater contamination by leveraging crowdsensing contamination mea-

surements.

2.3. Spatio-Temporal Inference

Our work is also related to spatio-temporal inference that jointly exploits spatial and

temporal information in a variety of applications [33]. Examples of spatio-temporal

inference applications includes urban traffic monitoring [34], location-based activity

prediction [35], climate and weather forecasting [36]. For example, Luo et al. de-

veloped a deep learning solution to predict urban traffic flows by leveraging spatial

traffic flow information extracted from k-nearest neighbor (KNN) monitoring stations

and the temporal traffic flow variability learned with a long short-term memory net-

work [37]. Liu et al. designed a generative neural network framework for personalized

point-of-interest (POI) recommendation using the temporal location-based social net-

work data [38]. Castro et al. proposed a spatio-temporal convolutional sequence to
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sequence network that models the historical weather records as temporal sequences of

spatial grids for temperature and rainfall prediction [39]. However, existing spatio-

temporal inference solutions often rely on a large amount of historical and spatial

data for accurate estimation. Therefore, these solutions are insufficient to address our

crowdsensing-based groundwater nitrate estimation problem where the historical and

spatial nitrate contamination data are not always available, especially in rural areas.

By contrast, CrowdWaterSens designs a graph-based context-aware spatial-temporal

inference model that is dedicated to estimating groundwater nitrate concentration with

sparse crowdsensing data.

2.4. Data Uncertainty in Crowdsensing

Data uncertainty is a fundamental problem in the data analysis of crowdsensing sys-

tems, where the data are collected from the observation or measurements of ordinary

human sensors who are not as reliable as the professionally trained experts [40, 41]. A

number of solutions have been proposed to address the data uncertainty issue in crowd-

sensing systems [42, 43, 16, 14]. For example, Lan et al. designed a machine learning

based crowdsourcing quality prediction framework that leverages an advanced ensem-

ble machine learning classification algorithm to detect cheating workers on crowd-

sourcing tasks [16]. Probert et al. developed a linguistic model to estimate the un-

certainty of crowdsourced data of alien species of birds [44]. Such solutions often

require a non-trivial amount of ground truth labels of the crowdsensing measurements

to supervise the training of the data uncertainty estimation model. However, they can-

not be applied to our groundwater monitoring problem, where only a relatively small

number of ground truth nitrate measurements are available due to the expensive cost

of professional measurements of nitrate concentration in groundwater samples. In ad-

dition, several unsupervised crowdsensing data uncertainty estimation solutions also

exist. Wang et al. developed a maximum likelihood estimation algorithm approach

to estimate crowd sensor reliability in crowdsensing applications [45]. Zhang et al.

proposed a quality-aware disaster damage assessment framework that integrates esti-

mation theory with deep learning to obtain an accurate assessment of disaster damage

severity using crowdsourcing inputs for effective disaster response in natural disaster
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events [13]. Such frameworks often assume the existence of multiple observations of

the same measured variable (e.g., nitrate concentration) from different sources (e.g.,

crowd sensors). However, they are insufficient to address data uncertainty in our prob-

lem, where each crowd sensor is solely responsible for measuring the groundwater

concentration in his/her own household. To address the crowdsensing data uncertainty

challenge, we design an uncertainty-driven network optimization strategy to explicitly

model the uncertainty of crowdsensing measurements from individual crowd sensors

to optimize the estimation performance of groundwater nitrate concentration.

3. Problem Definition

In this paper, we focus on the problem of estimating groundwater nitrate concentra-

tion using crowdsensing nitrate measurements from community participants. We first

define a few key concepts that will be used in our problem definition.

Definition 1. Participant (p): We define a participant as a person who lives in a well-

dependent community and is engaged to report crowdsensing measurements of nitrate

(see Definition 5 below). In particular, we define a set of K participants denoted by

P = {p1, p2, · · · , pK}. We assign each participant a unique anonymized identifier and

strictly follow data security precautions to protect participants’ privacy.

Definition 2. Participating Community (u): We define a participating community

u as the well-dependent community where the households rely on groundwater from

private wells as their primary water resource. We define a set of J participating com-

munities as U = {u1, u2, · · · , uJ}. All the participants in our study are recruited from

U .

Definition 3. Location (l): The location lk = (φk, λk) refers to the geographic co-

ordinates at the household of participant pk, where φk and λk are the latitude and

longitude coordinates, respectively. The collected geolocation information is used for

research purpose only and will not be disclosed to unauthorized individuals and third

parties.
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Definition 4. Sensing Cycle (t): The sensing cycle is the collection period (e.g., daily,

weekly) during which the crowdsensing measurements are measured by the partici-

pants. In particular, we define T as the total number of sensing cycles in our study and

t is the tth sensing cycle.

Definition 5. Crowdsensing Measurement (c): We define the crowdsensing mea-

surement as the test strip reading of the nitrate concentration from a tap water sam-

ple (measured in mg/L) using the nitrate test kit. More details about the nitrate test

kit will be discussed in Section 5. For each participant pk ∈ P , we define a set of

T crowdsensing measurements reported by pk as Ck = [ck,1, ck,2, · · · , ck,T ], where

ck,t ∈ Ck represents the crowdsensing measurement measured at location lk and sens-

ing cycle t. The set of crowdsensing measurements from K participants is denoted as

C = {C1, C2, · · · , CK}.

Definition 6. Anthropogenic Context (h): We define the anthropogenic context of

a participant’s household as a set of human-induced features that are often related to

groundwater nitrate concentration [4]. In particular, we focus on the following anthro-

pogenic features.

• Community Type (hc): Community type hc ∈ {“urban”, “suburban”, “rural”}

represents the type of community which the participant’s household belongs to.

• Farm Proximity (hf ): Farm proximity hf ∈ {“Yes”, “No”, “Unsure”} indicates

whether there is a farm nearby the participant’s household.

• Fertilizer Application (he): Fertilizer application he ∈ {“Yes”, “No”, “Unsure”}

describes whether fertilizer is applied within one week before the crowdsensing

measurement is reported.

• Pet Activity (ha): Pet activity ha ∈ {“Yes”, “No”} represents whether any out-

side pet activity is allowed at the participant’s household.

Formally, we define the anthropogenic context of T crowdsensing measurements (i.e.,

Ck) reported by participant pk as Hk = [hk,1, hk,2, · · · , hk,T ], where hk,t = [hc
k,t, h

f
k,t,
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he
k,t, h

a
k,t] is the anthropogenic context of ck,t ∈ Ck. The set of anthropogenic context

at the households of K participants is denoted as H = {H1, H2, · · · , HK}.

Definition 7. Ground-truth Concentration (y): We define the ground-truth concen-

tration as the nitrate concentration of a tap water sample measured in the laboratory.

For each crowdsensing measurement ck,t ∈ Ck reported by participant pk, we denote

yk,t as the corresponding ground-truth concentration.

Definition 8. Estimated Concentration (ŷ): We define the estimated concentration

of nitrate in groundwater to be the output nitrate concentration predicted by a nitrate

estimation model. For each crowdsensing measurement ck,t ∈ Ck and anthropogenic

context lk,t reported by participant pk, we denote ŷk,t as the estimated concentration.

With the above definitions, the goal of our crowdsensing-based nitrate concentra-

tion estimation problem is to accurately estimate the nitrate concentration in the partic-

ipating communities by exploring the underlying spatio-temporal correlations between

the crowdsensing measurements and the relevant anthropogenic context. Formally,

given a set of N crowdsensing measurements C and their relevant anthropogenic con-

texts H , our problem is formulated as:

argmin
ŷi

(F(ŷi, yi) | C,H) ∀ 1 ≤ i ≤ N (1)

where F is the error measurement function (e.g., Mean Squared Error (MSE), Mean

Absolute Error (MAE)) that measures the difference between the estimated and ground-

truth concentrations.

4. Solution

In this section, we present the CrowdWaterSens framework to address the crowdsensing-

based nitrate concentration estimation problem. CrowdWaterSens is a context-aware

graph neural network framework that carefully captures the underlying correlations

between groundwater nitrate concentration and anthropogenic context variables to in-

fer the hidden spatial and temporal dynamics of groundwater nitrate concentration for

desirable estimation performance. An overview of the CrowdWaterSens framework
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is shown in Figure 2. CrowdWaterSens contains three main modules: i) the Spatio-

temporal Crowdsensing Network (SCN) module that constructs a graph-based crowd-

sensing contamination network to explicitly extract the spatial and temporal relations

of the crowdsensing measurements, ii) the Context-aware Information Fusion (CIF)

module that designs a principled context-aware information propagation mechanism

to jointly fuse the spatial and temporal relation of crowdsensing nitrate concentration

and the anthropogenic context in the crowdsensing contamination network, and iii) the

Uncertainty-driven Network Optimization (UNO) module that develops an uncertainty-

driven graph regression model that examines the data uncertainty of the crowdsensing

measurements to accurately estimate the nitrate concentration in participating commu-

nities.

Figure 2: Overview of the CrowdWaterSens Framework

4.1. Spatio-temporal Crowdsensing Network (SCN)

The spatio-temporal crowdsensing network module is designed to construct a graph-

based crowdsensing contamination network (CCN) to explicitly model the spatial and

temporal relations of the crowdsensing nitrate concentration at different time and lo-

cations. Existing nitrate concentration estimation methods mainly rely on geographic

grid-based matrices to encode the spatio-temporal information of nitrate concentration.

However, such grid-based methods are insufficient to fully capture the spatio-temporal

features of crowdsensing data in our problem due to the spatial irregularity of the crowd

13



participants. To address this limitation, we design a graph-based crowdsensing contam-

ination network (Figure 3) to jointly characterize the spatial and temporal relations of

spatial irregular crowdsensing nitrate concentration. Formally, we define the crowd-

sensing contamination network as below.

Definition 9. Crowdsensing Contamination Network (CCN): An undirected graph

G = (V, E), where V is a set of crowdsensing nodes, E is a set of edges between

crowdsensing nodes. In particular, each crowdsensing node vk,t ∈ V represents the

crowdsensing measurement obtained at location lk and sensing cycle t. We consider

two types of edges in E , including the spatial edge Es ∈ E that represents the spatial

distance between two crowdsensing nodes, and temporal edge Em ∈ E that represents

the temporal relation between two crowdsensing nodes at the same location.

Figure 3: Example of Crowdsensing Contamination Network

We further define the weight of each spatial edge Es in CCN to be the physical

distance between the locations of two crowdsensing nodes. The assumption is that

groundwater samples at nearby locations often have similar nitrate concentrations due

to spatial correlation in groundwater settings [12]. In addition, we define the weight of

each temporal edge Em in CCN as the binary value to indicate the temporal dependency

of two crowdsensing nodes (i.e., whether the nitrate concentrations in two crowdsens-

ing nodes are measured in consecutive sensing cycles). The temporal dependency of

two crowdsensing nodes that are not measured in consecutive sensing cycles can be

captured through the shortest path that includes multiple temporal edges between two

nodes. The idea is that groundwater nitrate concentration also changes over time in re-

sponse to weather events, such as rainfall and drought [46]. To characterize the spatial
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and temporal relations between crowdsensing nodes, we define the adjacency matrices

to formally represent the spatial and temporal edges and their weights in CCN as below.

Definition 10. Adjacency Matrices (A): A = {S,M} denotes the spatial and tem-

poral adjacent matrices S ∈ RN×N and M ∈ RN×N that correspond to the weights

of spatial and temporal edges, respectively. The weight of each spatial edge in S mea-

sures the reversed spatial proximity between the locations of two crowdsensing nodes

as 1− δ(l1, l2), where δ(·) is the normalized Haversine distance [47] between location

l1 and l2. Each value in M is a binary value that indicates whether the nitrate concen-

trations in two crowdsensing nodes are measured in consecutive sensing cycles (i.e., 1)

or not (i.e., 0).

Given the above CCN design, our next step is to learn the temporal dynamics of

anthropogenic context of participating communities at different sensing cycles, which

is discussed in the next subsection.

4.2. Context-aware Information Fusion (CIF)

The context-aware information fusion module aims to effectively learn the repre-

sentation of each crowdsensing node in CCN to jointly fuse the spatial and temporal re-

lations of the crowdsensing measurements and anthropogenic contexts (e.g., abnormal

rainfall during severe weather and seasonal application of lawn fertilizer) for accurate

nitrate concentration estimation. To that end, we collect observations of anthropogenic

activities from the crowdsensing participants to explore the spatial and temporal dy-

namics of the anthropogenic context. In particular, we design a dual-relational graph

convolutional network (DR-GCN) to encode the crowdsensing anthropogenic context

into CCN to improve the nitrate contamination estimation performance.

DR-GCN is designed to effectively fuse the information of crowdsensing measure-

ments and their anthropogenic context from spatially or temporally related crowdsens-

ing nodes in CCN. Specifically, we first define the encoded vector representation of

each crowdsensing node vi ∈ V as:

ṽi = [c̃i, h̃i] ∈ Rd, ∀ vi ∈ V (2)
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where c̃i is the normalized crowdsensing measurement (Definition 5) at vi and h̃i is

the one-hot encoding of the anthropogenic context (Definition 6) of vi. We denote

Ṽ ∈ RN×d as the representation matrix of all crowdsensing nodes in V .

Finally, we define the dual-relational aggregation strategy in DR-GCN as:

w̃i = σ

(
1

rs
S̃ṼΘs +

1

rm
M̃ṼΘm

)
i

(3)

where w̃i is the latent representation of vi from DR-GCN. σ(·) is the non-linear ReLU

activation function. S̃ and M̃ are the normalized first-order approximation [48] of

spatial and temporal adjacent matrices, respectively. rs and rm are the normalization

constants. Θs and Θm are learnable parameters.

4.3. Uncertainty-driven Network Optimization (UNO)

Given the context-aware representation of each crowdsensing node learned by DR-

GCN, our next goal is to explicitly examine the data uncertainty of the crowdsensing

measurements of each crowdsensing node in CCN and accurately estimate the corre-

sponding groundwater nitrate concentration. A key challenge of crowdsensing-based

groundwater nitrate estimation is the data uncertainty of crowdsensing nitrate mea-

surements which are measured by ordinary community participants who may not be as

reliable as the professionally trained experts due to the lack of sufficient knowledge or

experience. For example, a participant may misunderstand the nitrate testing instruc-

tion and not wait a sufficient amount of time to read the nitrate concentration results

from the test strip, where the test pad color is not stabilized and may lead to an inaccu-

rate nitrate measurement of the groundwater sample. To address such a challenge, we

explicitly model the uncertainty of the crowdsensing nitrate measurements contributed

by individual crowd sensors. In particular, for each crowd node vi in CCN, we define

the crowdsensing uncertainty εi as the variance or the average error of crowdsensing

measurements in vi contributed by the same crowd sensor pk during the same sens-

ing cycle t. The computing method of crowdsensing uncertainty (i.e., variance or the

average error) depends on the design of the crowdsensing experiments which will be

discussed in detail in Sections 5 and 6.
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While DR-GCN in the CIF module can aggregate the crowdsensing measurements

from spatially or temporally correlated crowdsensing nodes in CCN, it ignores the

uncertainty of the crowdsensing measurements and considers all crowdsensing mea-

surements as equally important. Such an approach may degrade the nitrate estimation

performance when nitrate information from inaccurate crowdsensing measurements is

fused in CCN. Therefore, we further learn the uncertainty-aware vector representation

of each crowdsensing node in CCN to jointly model the crowdsensing measurement

uncertainty and the crowdsensing vector representation learned from the CIF module.

In particular, we first update the encoded vector representations ṽi (Equation 2) of each

node vi ∈ V to obtain the uncertainty-aware vector representation as:

ṽ∗i =
1

εi + ε0
ṽi (4)

where ε0 is a normalization factor to avoid the division-by-zero issue. We also de-

note the uncertainty-aware representation matrix of all crowdsensing nodes in V as

Ṽ ∗ ∈ RN×d. The goal of learning the uncertainty-aware vector representation of each

crowdsensing node is to control the crowdsensing measurement error in estimating the

nitrate concentration by reducing the effect of crowdsensing measurements from un-

reliable crowdsensing participants (i.e., the crowdsensing nodes with high crowdsens-

ing uncertainty ϵi). Intuitively, the uncertainty-aware vector representation ṽ∗i from a

crowdsensing node vi with a high uncertainty ϵi is expected to contribute less in esti-

mating the nitrate concentration through the context-aware information fusion and vice

versa.

With the uncertainty-aware vector representation, our next objective is to learn the

uncertainty-aware latent representations of all crowdsensing nodes in V with the dual-

relational aggregation strategy as presented in Equation 5. In particular, let Ṽ ∗ =

[ṽ∗1 , ṽ
∗
2 , · · · , ṽ∗N ] be the matrix of the uncertainty-aware vector representation for all

crowdsensing nodes in V . The uncertainty-aware latent representation wi of node vi ∈

V is defined as below.

w̃∗
i = σ

(
1

zs
S̃Ṽ ∗Φs +

1

zm
M̃Ṽ ∗Φm

)
i

(5)

where σ(·) is the non-linear ReLU activation function. S̃ and M̃ are the normal-
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ized first-order approximation [48] of spatial and temporal adjacent matrices, respec-

tively. zs and zm are the normalization constants. Φs and Φm are learnable parame-

ters. Then, the learned uncertainty-aware latent representations are input into a stacked

feed-forward neural network (i.e., multi-layer perceptron) to estimate the correspond-

ing nitrate contamination. Formally, the output of the CrowdWaterSens framework is

computed as:

ŷi = MLP(w̃i) (6)

where w̃i is the latent representation of the crowdsensing node vi ∈ V , and ŷi is the es-

timated concentration. Let yi be the ground-truth concentration, our learning objective

is to minimize the mean squared error loss as:

L =
1

N

N∑
i=1

(ŷi − yi)
2 (7)

We adopt the Adaptive Moment Estimation optimizer to learn the accurate value of

nitrate concentration in CrowdWaterSens.

5. Crowdsensing Data

In this section, we introduce two case studies we have conducted to collect the

crowdsensing groundwater contamination data for the evaluation of CrowdWaterSens.

We select Northern Indiana in the United States as the primary area of study with a

focus of nitrate contamination. Nitrate (NO−
3 -N) is a critical water contaminant that can

lead to increased risk of certain cancers, birth defects, and thyroid problems resulting

from prolonged exposure [3]. Notably, Northern Indiana is a high-risk area of nitrate

contamination due to the high application rate of nitrogen fertilizer in agricultural and

residential land use [49]. More importantly, a large number of households in Northern

Indiana are well-dependent and at high risk of elevated nitrate concentration in their

drinking water [49]. While nitrate is the primary groundwater contaminant investigated

in this study, the presented crowdsensing data collection approach can be easily adapted

to collect crowdsensing groundwater contamination data for other water contaminants

(e.g., atrazine, phosphorus) with proper contaminant test kits and generalized to other

geographic areas with high-risk of groundwater contamination.
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Image (a) is the test tube used for test strip dipping and tap water sample collection. Image (b)
is the test strip that is used for testing the nitrate concentration in the water sample of interest.
Image (c) is the colorimetric chart for the participants to determine the nitrate concentration
results on the dipped test strips. Please note that the unit of the nitrate concentration measured
by the colorimetric chart is parts per million (ppm) which is equivalent to mg/L (i.e., 1 ppm = 1
mg/L) for measuring contaminant in water.

Figure 4: Example of Test Kit for Nitrate Concentration

5.1. Participant Recruitment and Nitrate Test Kit

The crowdsensing participants were recruited from well-dependent residential com-

munities in St. Joseph County, Northern Indiana, through the outreach program at the

University of Notre Dame. We strictly followed the corresponding IRB protocol for

participant recruitment and data collection in this study. Proper participant consents

were obtained prior to the experiments. In our experiments, we distribute the nitrate

test kits to the participants for measuring the crowdsensing nitrate concentration. We

show an example of the nitrate test kit used in our study in Figure 4. In particular, dur-

ing the participant recruitment process, the participants are instructed on how to use the

test kit to: 1) collect tap water samples in a water tube (Figure 4 (a)), and 2) measure

the crowdsensing nitrate concentration of water samples using the test strip (Figure 4

(b)) and colorimetric chart (Figure 4 (c)).
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5.2. Crowdsensing Data Collection

In our experiments, we perform two case studies to collect the crowdsensing ni-

trate contamination data under different experimental settings. In particular, the first

case study (Case Study I) is designed to collect crowdsensing nitrate concentration

measurements with the groundwater samples to be used for validating the ground-truth

nitrate concentration. However, during the global COVID-19 pandemic, it is impracti-

cal to collect groundwater samples from the participants due to various societal restric-

tions (e.g., stay-at-home orders, quarantines) and the participants’ health concerns. In

light of such a challenge, we further design a second case study (Case Study II) to

collect the crowdsensing nitrate concentration data in a fully at-home setting without

requiring the participants to bring in the groundwater samples for ground-truth nitrate

concentration validation. We elaborate on the two case studies in detail below.

5.2.1. Case Study I (Before COVID-19 Pandemic)

The first case study was conducted in the Fall of 2019 for a data collection period

of four weeks. An overview of the data collection pipeline is shown in Figure 5. In

particular, we asked the participants to measure the nitrate concentration of the tap wa-

ter in their households 3 times a week (i.e., on Monday, Wednesday, and Friday). The

crowdsensing nitrate concentration was measured by dipping the test strip with the tap

water from the participant’s household and comparing the dipped test strip with the col-

orimetric chart to obtain the approximate measurement of nitrate concentration (Figure

4). The measured nitrate concentrations were recorded via online and/or paper form

depending on each participant’s accessibility to the Internet. The participants were

also asked to report the anthropogenic context (Definition 6) along with their mea-

surements. Finally, the participants returned the collected tap water samples, which

were collected and transported to the university laboratory for the professional nitrate

concentration measurement. In our study, we used the cadmium reduction method on

a Lachat QuikChem™Autoanalyzer to measure the ground-truthed nitrate concentra-

tion [50]. To ensure the integrity and quality of the ground-truth data, we excluded

invalid water samples that were not properly stored in the sample tube or have sample

tube labels that could not be matched with the crowdsensing nitrate measurements for
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ground truth validation.

Figure 5: Crowdsensing Data Collection Pipeline - Case Study I

We totally received 161 weekly crowdsensing data samples with ground-truth ni-

trate concentration, where each weekly crowdsensing data sample contained 3 crowd-

sensing measurements. The size of the crowdsensing dataset matches the scale of the

datasets studied in state-of-the-art groundwater contamination estimation literature that

is shown to be sufficient to evaluate groundwater nitrate concentration estimation mod-

els for a regular watershed [51]. A summary of the collected crowdsensing and ground-

truth data is presented in Table 1. We observe that the average crowdsensing nitrate

concentration is lower than the average ground-truth nitrate concentration. A possible

reason is that the crowd participants may underestimate the test strip readings when the

color of the dipped test strips falls between two color blocks. The crowdsensing mea-

surement error (i.e., the difference between the crowdsensing and ground-truth nitrate

concentration) is particularly significant when the ground-truth nitrate concentration is

high due to the low colorimetric precision of the test strips for high nitrate concentra-

tion (e.g., above 2 mg/L).

5.2.2. Case Study II (During COVID-19 Pandemic)

The second case study was conducted in the Fall of 2020 and the Spring of 2021

with an adapted data collection procedure to accommodate the restrictions during the
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Data Trace Crowdsensing Ground Truth

Mean 0.78 1.10

Minimum 0.00 0.00

Maximum 8.00 9.33

Standard Deviation 1.21 1.75

Table 1: Summary Statistics of Crowdsensing Nitrate Data (mg/L) - Case Study I

COVID-19 pandemic. We showed an overview of the crowdsensing data collection

pipeline in Figure 6. The goal of the adaptation was to eliminate the requirement in the

original experimental design (i.e., Case Study I) that asked the participants to collect

and bring in the groundwater samples, which was often infeasible given various societal

restrictions during the COVID-19 pandemic. In particular, we modified the nitrate test

kit in Case Study I (Section 5.2.1) by including three pairs of test strip and nitrate

water solution sample (Figure 6) at pre-identified ground-truth nitrate concentrations

that belong to the following three levels: low (0-1 mg/L), medium (1-10 mg/L) and

high (10-20 mg/L). We distributed the test kits to our participants without disclosing

the ground-truth nitrate concentration of the nitrate solutions in the test kits. For each

pair of the test strip and nitrate water sample, we asked the participants to measure

the nitrate concentration using the test strip (Figure 4(b)) and compare the dipped test

strip with the colorimetric (Figure 4(c)). The participants were asked to record their

crowdsensing measurements and submit them through an online submission system.

Such a process is repeated for all three nitrate water samples in the test kits.

We totally received 177 crowdsensing data samples where each data sample con-

tains the crowdsensing measurements of three NO−
3 -N solutions at different pre-identified

ground-truth nitrate concentration levels. A summary of the collected crowdsensing

and ground-truth data is presented in Table 2. We observe similar patterns as in Case

Study I where the crowdsensing measurement errors are higher for measuring the ni-

trate solution with high nitrate concentration resulting from the low colorimetric preci-

sion of the test strips at high nitrate concentration levels.
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Figure 6: Crowdsensing Data Collection Pipeline - Case Study II

Data Trace Nitrate Concentration Level
Low (0-1 mg/L) Medium (1-10 mg/L) High (10-20 mg/L)

Mean 1.02 5.51 16.55

Minimum 0.00 1.00 0.00

Maximum 5.00 35.00 50.00

Standard Deviation 0.93 4.48 13.70

Table 2: Summary Statistics of Crowdsensing Nitrate Data (mg/L) - Case Study II

6. Evaluation

In this section, we evaluate the nitrate concentration estimation performance of

the proposed CrowdWaterSens framework using the crowdsensing datasets collected

from the two case studies as described in Section 5. Evaluation results demonstrate

that CrowdWaterSens achieves substantial performance gains compared to the Smart-

WaterSens we developed in our conference paper and the state-of-the-art groundwater

contamination estimation solutions in accurately estimating nitrate concentration in

both case studies.

6.1. Baseline Methods

We compare CrowdWaterSens with a set of state-of-the-art methods for groundwa-

ter nitrate concentration estimation.
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• SmartWaterSens: A context-aware graph neural network framework that is

developed in our conference paper [17]. SmartWaterSens explores the anthro-

pogenic context of crowdsensing nitrate data to estimate the nitrate concentration

in crowdsensing groundwater samples.

• NCE: A naive crowd estimation baseline method that directly uses the averaged

crowdsensing measurements of nitrate concentration as the estimated nitrate con-

centration.

• ELR: It is an ensemble learning based regression method that utilizes spatial

hydrogeological features to predict nitrate concentration in groundwater [22].

We adapted ELR to estimate nitrate concentration using the crowdsensing nitrate

concentration and location context information.

• NCRA: A nitrate contamination risk assessment solution that leverages the sam-

pled nitrate concentration (i.e., nitrate measurement from sampled wells) to es-

timate the groundwater nitrate pollution in nearby locations [52]. We replace

the sampled nitrate concentration with the crowdsensing nitrate concentration

obtained from the crowd participants.

• GWR: A geographically weighted regression scheme that learns the weighted

regression coefficients based on the distance between the sampling site locations

and the target location at which the nitrate concentration is estimated [7]. In

particular, we use the pairwise Haversine distance between the crowd locations

in the training and testing sets as the distance weights in GWR.

• AVI: A deep learning water contamination estimation approach that builds a mul-

tilayer perceptron neural network to estimate the concentration of groundwater

nitrate [53]. In particular, we use the crowdsensing measurements and the an-

thropogenic context features as the input to AVI and predict the estimated nitrate

concentration.

• BNN: A Bayesian neural network framework that utilizes Bayesian optimiza-

tion to estimate prediction uncertainty and improve the nitrate estimation perfor-

mance [51]. Specifically, BNN takes the crowdsensing measurements and the
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anthropogenic context information as input features to estimate nitrate concen-

tration.

• GCN: A principled spatio-temporal graph convolutional neural network solu-

tion that jointly aggregates the spatial and temporal relations of graph nodes for

traffic flow prediction [54]. We adapted GCN with the crowdsensing contamina-

tion network (CCN) constructed in our CrowdWaterSens to estimate the nitrate

concentration of each node in CCN.

• GTN: A generalized graph transformer network that fuses propositional node

features in graph neural networks for regression tasks [55]. We train GTN using

the crowdsensing nitrate data to predict the concentration of groundwater nitrate

in our study.

6.2. Experiment Settings

To ensure a fair comparison, we use the same input features to train CrowdWa-

terSens and all compared baselines, except the NCE baseline, which only uses the

crowdsensing measurements as the estimated nitrate concentration. In our experiments,

we use 80% of the dataset as a training-validation set and the remaining 20% as a test

set. We perform 5-fold cross-validation on the training-validation set to tune hyperpa-

rameters of all compared methods and evaluate the estimation performance based on

the test set. In addition, for the experiments in Case Study I, we use the mean crowd-

sensing measurements in each week as the input crowdsensing measurements (i.e., ci

in Equation 2) collected from the participants to estimate the true nitrate concentration

in the groundwater samples, and use the variance of the crowdsensing measurements in

each week as the crowd sensor uncertainty in the UNO module. For the experiments in

Case Study II, we focus on the medium-level nitrate solution in our study and use the

normalized estimation error on the low-level and high-level nitrate solutions to compute

the crowd sensor uncertainty in the UNO module. This is because nitrate concentra-

tion in the medium level (i.e., 1-10 mg/L) is the most concerned range of groundwa-

ter nitrate concentration in well-dependent communities where nitrate concentrations
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greater than 3 mg/L generally indicate contamination in groundwater.3 In addition, we

observe that nitrate concentration in the high level (i.e., 10-20 mg/L) rarely happens in

our studied well-dependent communities according to the nitrate concentration mea-

sured in the groundwater samples collected in Case Study I (Table 1). Therefore, we

adopt the crowdsensing measurements on the medium level as our evaluation dataset

to study the performance of CrowdWaterSens on groundwater nitrate concentration in

well-dependent communities.

We implement our CrowdWaterSens model using PyTorch 1.104 and run our ex-

periments on Ubuntu 20.04 with four NVIDIA A40. We set the total number of epochs

as 50 and train CrowdWaterSens at an initial learning rate of 0.001 with a decay of

0.95 in each epoch. We adopt a set of evaluation metrics that are commonly used for

evaluating regression models. In particular, let ŷi and yi be the estimated and ground-

truth nitrate concentration of the ith sample in a test set of N samples, we consider the

following evaluation metrics:

• Mean Absolute Error (MAE): MAE = 1
N

∑N
i=1 |ŷi − yi|

• Mean Squared Error (MSE): MSE = 1
N

∑N
i=1(ŷi − yi)

2

• Root Mean Squared Error (RMSE): RMSE =
√

1
N

∑N
i=1(ŷi − yi)2

• Coefficient of Determination (R2):

R2 = 1− [
∑N

i=1(yi − ŷi)
2]/[

∑N
i=1(yi − ȳ)2] where ȳ = 1

N

∑N
i=1 yi

Intuitively, a lower value of MAE, MSE, and RMSE, and a higher value of R2 represent

a more accurate nitrate concentration estimation.

6.3. Nitrate Concentration Estimation Performance

In the first set of experiments, we evaluate the performance of nitrate concentration

estimation using the crowdsensing nitrate datasets collected from the two case stud-

ies. We report the evaluation results on Case Study I and Case Study II in Table 3

3https://www.epa.gov/nutrient-policy-data/estimated-nitrate-
concentrations-groundwater-used-drinking

4https://pytorch.org/

26



and Table 4, respectively. We observe that our CrowdWaterSens achieves substantial

performance improvements compared to all baseline methods in terms of all evalu-

ation metrics on both case studies. In particular, CrowdWaterSens outperforms the

best-performing baseline (i.e., SmartWaterSens) by 7.1%, 4.3%, 4.1%, and 10.2%, in

terms of MAE, MSE, RMSE, and R2 in Case Study I, respectively. We observe similar

performance gains in Case Study II as well. However, we also observe that the ni-

trate estimation errors of all methods in Case Study II are higher than the ones in Case

Study I. This is mainly due to the difference of the nitrate concentration in the water

samples between the two case studies, where the ground-truth nitrate concentrations

in Case Study I are in general much lower than the ground-truth nitrate concentrations

in Case Study II (Table 1 and 2). Such a difference also amplifies the crowdsens-

ing nitrate measurement errors given the fact that crowdsensing measurements are less

accurate on nitrate concentration above 2 mg/L due to the limited colorimetric pre-

cision of the test strips. Such significant performance improvements demonstrate the

effectiveness of CrowdWaterSens in accurately estimating the groundwater nitrate con-

tamination through the novel spatio-temporal crowdsensing contamination network. In

addition, we also attribute the performance gains of CrowdWaterSens to the principled

uncertainty network optimization strategy that explicitly examines the uncertainty of

crowdsensing nitrate measurements from unreliable crowd sensors to optimize the ni-

trate estimation performance in crowdsensing-based groundwater monitoring systems.

6.4. Ablation Study

In the second set of experiments, we conduct an ablation study to investigate the

contribution and effectiveness of major components in the CrowdWaterSens frame-

work. In particular, we consider the following model variants of CrowdWaterSens.

• CrowdWaterSens\S: The variant of CrowdWaterSens that ignores the spatial

distance between each pair of the crowdsensing nodes in CCN and assigns the

same weight to the spatial edges.

• CrowdWaterSens\T: The variant of CrowdWaterSens that excludes the tem-

poral relations between the crowdsensing nodes in different sensing cycles by
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Method MAE MSE RMSE R2

CrowdWaterSens 0.4639 0.4817 0.6829 0.3618

SmartWaterSens 0.4993 0.5032 0.7125 0.3247

NCE 1.0327 2.9376 1.7783 -0.2543

ELR 0.7794 1.6832 1.2784 -0.1407

NCRA 0.5376 0.6597 0.8133 0.2970

GWR 0.7926 1.1247 1.1359 0.0823

AVI 0.7326 0.7548 0.8837 -0.1032

BNN 0.7821 0.8733 0.9417 -0.2015

GCN 0.6849 0.8446 0.8973 0.0372

GTN 0.8734 0.9728 1.1873 -0.1769

Table 3: Nitrate Concentration Estimation Performance - Case Study I

Method MAE MSE RMSE R2

CrowdWaterSens 0.8932 2.9836 1.7729 0.3374

SmartWaterSens 0.9628 3.1726 1.8932 0.3089

NCE 1.9722 11.0278 3.3208 -0.0459

ELR 1.2376 6.7738 2.3849 0.1839

NCRA 1.0287 4.0215 2.1634 0.2337

GWR 1.3486 7.3849 2.5381 0.1329

AVI 1.4295 7.9447 2.8328 0.0916

BNN 1.4872 8.2476 3.0182 -0.1837

GCN 1.2293 6.2145 2.2935 0.1748

GTN 1.1834 5.6724 2.2403 0.1183

Table 4: Nitrate Concentration Estimation Performance - Case Study II

removing the temporal edges in CCN.

• CrowdWaterSens\C: The variant of CrowdWaterSens that excludes the anthro-

pogenic context of the crowdsensing nodes and only uses the crowdsensing mea-

surements as the node feature in DR-GCN.
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• CrowdWaterSens\U: The variant of CrowdWaterSens that removes the uncer-

tainty attention layer in DR-GCN and considers each node as equally important

in CCN.

We summarize the evaluation results of the ablation study on the datasets collected

from Case Study I and II in Table 5 and Table 6, respectively. Please note that our

Case Study II is designed to collect the crowdsensing data in a single round (i.e., the

participants were asked to only measure the nitrate concentration once on multiple ni-

trate solutions) and does not capture the temporal dynamics. Therefore, the results of

CrowdWaterSens\T are the same as CrowdWaterSens on the dataset from Case Study

II and thus are omitted in Table 6. We observe that CrowdWaterSens achieves the

best performance when it integrates all components in the framework. The evaluation

results demonstrate the effectiveness and necessity of the key components in Crowd-

WaterSens.

Method MAE MSE RMSE R2

CrowdWaterSens 0.4639 0.4817 0.6829 0.3618

CrowdWaterSens\S 0.5327 0.5287 0.7748 0.1938

CrowdWaterSens\T 0.5106 0.5172 0.7183 0.2174

CrowdWaterSens\C 0.4985 0.5013 0.7031 0.2635

CrowdWaterSens\U 0.5182 0.5216 0.7227 0.2218

Table 5: Ablation Study - Case Study I

Method MAE MSE RMSE R2

CrowdWaterSens 0.8932 2.9836 1.7729 0.3374

CrowdWaterSens\S 0.9026 3.1195 1.8278 0.3185

CrowdWaterSens\C 0.8983 3.0837 1.8026 0.3027

CrowdWaterSens\U 1.1277 6.0739 2.2334 0.1039

Table 6: Ablation Study - Case Study II
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6.5. Effect of Training Data Size

In the third set of experiments, we further investigate the effect of training data

size on the performance of nitrate concentration estimation in CrowdWaterSens. In

particular, we vary the size of training data from 40% to 100% of the entire training

data and report the nitrate concentration estimation performance on the testing set in

Figure 7 and Figure 8 for Case Study I and II, respectively. We observe that the nitrate

estimation performance consistently increases as we increase the amount of training

data, indicating that additional training data will have great potential to enhance the

model performance. Such observation also encourages our future work to further ex-

tend the number of crowdsensing communities and recruit additional crowdsourcing

participants in our study.

(a) Estimation Performance (MAE) (b) Estimation Performance (MSE)

(c) Estimation Performance (RMSE) (d) Estimation Performance (R2)

Figure 7: Estimation Performance vs. Training Data Size (Case Study I)

7. Discussion

In this study, we focus on the crowdsensing-based groundwater contamination es-

timation problem for groundwater quality monitoring in well-dependent communities

in the United States. We note that generalizability is an important aspect and therefore
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(a) Estimation Performance (MAE) (b) Estimation Performance (MSE)

(c) Estimation Performance (RMSE) (d) Estimation Performance (R2)

Figure 8: Estimation Performance vs. Training Data Size (Case Study II)

we highlight a few criteria for applying the CrowdWaterSens framework to monitor

groundwater quality in different scenarios (e.g., different geographical areas, ground-

water contaminants). First, CrowdWaterSens is designed to estimate groundwater con-

tamination in suburban and rural communities which do not have central water supply

systems and rely on groundwater from private wells as the primary drinking water

resource. There are a number of countries with well-dependent communities, includ-

ing the United States [56], Canada [57], Brazil [58], and Italy [59], to name a few.

Second, the CrowdWaterSens may be applied in the areas with groundwater contam-

inants that can be monitored by affordable test strips (e.g., lead [60], chlorine [61]).

Third, a reasonable number of participants need to be recruited, trained, and engaged

for the crowdsensing experiments to ensure the estimation accuracy of the contami-

nant concentration. In the case studies, we collaborated with local school systems to

demonstrate the feasibility of recruiting participants for crowdsensing-based ground-

water monitoring. We believe such a strategy can be generalized to recruit crowd-

sensing participants in common well-dependent communities to deploy the CrowdWa-

terSens framework. In all, if the above criteria are satisfied, we envision the Crowd-
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WaterSens framework has great potential to be generalized to a broader range of geo-

graphical regions (e.g., countries beyond the U.S.) to monitor groundwater quality in

well-dependent communities.

We also acknowledge that there may exist certain scenarios that do not meet the

above criteria. For example, an area may rely on the central water supply as the primary

water resource. Then, it may be unnecessary to apply the CrowdWaterSens framework

to monitor the groundwater quality because central water supply systems are routinely

monitored in the water supplying utilities. Alternatively, our CrowdWaterSens frame-

work could complement existing water quality management systems by monitoring

and estimating the water contamination occurring in water distribution systems (e.g.,

lead contamination caused by pipe corrosion [62]) at the household end. Therefore,

we believe there are many opportunities for CrowdWaterSens to be applied beyond the

aforementioned criteria and will continue to explore the potential opportunities in our

future work.

Moreover, we note that the crowdsensing participants have played an essential role

in the CrowdWaterSens framework. In this work, we recruited and trained our crowd-

sensing participants through the local high school systems to collect the crowdsensing

data for the experiments. While such a strategy is applicable to common residential

communities with municipal government, it may limit the participant population to a

determined group of high school students who have similar backgrounds (e.g., age,

education). Such a group of participants may have limited knowledge about the an-

thropogenic context of their households (e.g., farm proximity, fertilizer application),

leading to inaccurate crowdsensing data. To overcome such a limitation, we plan to fur-

ther explore the role of participants in CrowdWaterSens by expanding our participant

population to community residents beyond high school students. A possible solution

is to leverage the local homeowner associations or direct mail services to reach out to

a larger group of residents in the community of interest. In the meanwhile, we also

plan to design an anonymized survey to obtain the participant background informa-

tion associated with the crowdsensing measurements, which can be further leveraged

to enhance the estimation accuracy of CrowdWaterSens.
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8. Conclusion

This paper presents CrowdWaterSens, a crowdsensing-based scheme to address the

groundwater nitrate concentration estimation problem in well-dependent communities.

CrowdWaterSens designs a spatio-temporal crowdsensing contamination network to

explicitly model the underlying correlation between crowdsensing nitrate measure-

ments and the anthropogenic context of the studied areas to accurately estimate the

groundwater nitrate concentration. We carry out two real-world case studies using

crowdsensing nitrate measurements collected from Northern Indiana, United States,

to evaluate the CrowdWaterSens framework. Evaluation results show that CrowdWa-

terSens significantly outperforms state-of-the-art contamination estimation solutions in

accurately estimating nitrate concentration in groundwater.

Acknowledgement

We thank the crowd participants in well-dependent communities for their partici-

pation. This research is supported in part by the National Science Foundation under

Grant No. CHE-2105032, IIS-2008228, CNS-1845639, CNS-1831669. The views and

conclusions contained in this document are those of the authors and should not be in-

terpreted as representing the official policies, either expressed or implied, of the U.S.

Government. The U.S. Government is authorized to reproduce and distribute reprints

for Government purposes notwithstanding any copyright notation here on.

References

[1] P. Li, D. Karunanidhi, T. Subramani, K. Srinivasamoorthy, Sources and conse-

quences of groundwater contamination, Archives of environmental contamination

and toxicology 80 (1) (2021) 1–10.

[2] F. Kon, K. Braghetto, E. Z. Santana, R. Speicys, J. G. Guerra, Toward smart and

sustainable cities, Communications of the ACM 63 (11) (2020) 51–52.

[3] A. Rahman, N. Mondal, K. Tiwari, Anthropogenic nitrate in groundwater and

its health risks in the view of background concentration in a semi arid area of

rajasthan, india, Scientific reports 11 (1) (2021) 1–13.

33



[4] S. L. Speir, L. Shang, D. Bolster, J. L. Tank, C. J. Stoffel, D. M. Wood, B. W. Pe-

ters, N. Wei, D. Wang, Solutions to current challenges in widespread monitoring

of groundwater quality via crowdsensing, Groundwater 60 (1) (2022) 15–24.

[5] R. Weinmeyer, A. Norling, M. Kawarski, E. Higgins, The safe drinking water act

of 1974 and its role in providing access to safe drinking water in the united states,

AMA Journal of Ethics 19 (10) (2017) 1018–1026.

[6] D. Machiwal, M. K. Jha, V. P. Singh, C. Mohan, Assessment and mapping of

groundwater vulnerability to pollution: Current status and challenges, Earth-

Science Reviews 185 (2018) 901–927.

[7] E.-H. Koh, E. Lee, K.-K. Lee, Application of geographically weighted regression

models to predict spatial characteristics of nitrate contamination: Implications for

an effective groundwater management strategy, Journal of Environmental Man-

agement 268 (2020).

[8] L. Knoll, L. Breuer, M. Bach, Nation-wide estimation of groundwater redox con-

ditions and nitrate concentrations through machine learning, Environmental Re-

search Letters 15 (6) (2020).

[9] Z. He, P. Zhang, L. Wu, A. M. Rocha, Q. Tu, Z. Shi, B. Wu, Y. Qin, J. Wang,

Q. Yan, et al., Microbial functional gene diversity predicts groundwater contami-

nation and ecosystem functioning, MBio 9 (1) (2018) e02435–17.

[10] D. Wang, M. T. Amin, S. Li, T. Abdelzaher, L. Kaplan, S. Gu, C. Pan, H. Liu,

C. C. Aggarwal, R. Ganti, et al., Using humans as sensors: an estimation-theoretic

perspective, in: IPSN-14 proceedings of the 13th international symposium on

information processing in sensor networks, IEEE, 2014, pp. 35–46.

[11] D. Wang, T. Abdelzaher, L. Kaplan, C. C. Aggarwal, Recursive fact-finding: A

streaming approach to truth estimation in crowdsourcing applications, in: 2013

IEEE 33rd international conference on distributed computing systems, IEEE,

2013, pp. 530–539.

34



[12] A. L. Srivastav, Chemical fertilizers and pesticides: role in groundwater contam-

ination, in: Agrochemicals detection, treatment and remediation, Elsevier, 2020,

pp. 143–159.

[13] Y. Zhang, R. Zong, Z. Kou, L. Shang, D. Wang, A crowd-driven dynamic neu-

ral architecture searching approach to quality-aware streaming disaster damage

assessment, in: 2021 IEEE/ACM 29th International Symposium on Quality of

Service (IWQOS), IEEE, 2021, pp. 1–6.

[14] S. Liu, Z. Zheng, F. Wu, S. Tang, G. Chen, Context-aware data quality estima-

tion in mobile crowdsensing, in: IEEE INFOCOM 2017-IEEE Conference on

Computer Communications, IEEE, 2017, pp. 1–9.

[15] M. Spurling, C. Hu, H. Zhan, V. S. Sheng, Estimating crowd-worker’s reliability

with interval-valued labels to improve the quality of crowdsourced work, in: 2021

IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 2021, pp.

01–08.

[16] H. Lan, Y. Pan, A crowdsourcing quality prediction model based on random

forests, in: 2019 IEEE/ACIS 18th International Conference on Computer and

Information Science (ICIS), IEEE, 2019, pp. 315–319.

[17] L. Shang, Y. Zhang, Q. Ye, N. Wei, D. Wang, Smartwatersens: A crowdsensing-

based approach to groundwater contamination estimation, in: 2022 IEEE Interna-

tional Conference on Smart Computing (SMARTCOMP), IEEE, 2022, pp. 48–55.

[18] Y. Wu, Y. Chen, N. Wei, Biocatalytic properties of cell surface display laccase

for degradation of emerging contaminant acetaminophen in water reclamation,

Biotechnology and bioengineering 117 (2) (2020) 342–353.

[19] X. Long, F. Liu, X. Zhou, J. Pi, W. Yin, F. Li, S. Huang, F. Ma, Estimation

of spatial distribution and health risk by arsenic and heavy metals in shallow

groundwater around dongting lake plain using gis mapping, Chemosphere 269

(2021) 128698.

35



[20] P. Li, S. He, N. Yang, G. Xiang, Groundwater quality assessment for domestic

and agricultural purposes in yan’an city, northwest china: implications to sustain-

able groundwater quality management on the loess plateau, Environmental Earth

Sciences 77 (23) (2018) 1–16.

[21] J. C. Egbueri, Groundwater quality assessment using pollution index of ground-

water (pig), ecological risk index (eri) and hierarchical cluster analysis (hca): a

case study, Groundwater for Sustainable Development 10 (2020) 100292.

[22] L. Knoll, L. Breuer, M. Bach, Large scale prediction of groundwater nitrate con-

centrations from spatial data using machine learning, Science of the total envi-

ronment 668 (2019) 1317–1327.

[23] D. Wang, T. Abdelzaher, L. Kaplan, Social sensing: building reliable systems on

unreliable data, Morgan Kaufmann, 2015.

[24] Y. Zhang, X. Dong, D. Zhang, D. Wang, A syntax-based learning approach to

geo-locating abnormal traffic events using social sensing, in: 2019 IEEE/ACM

International Conference on Advances in Social Networks Analysis and Mining

(ASONAM), IEEE, 2019, pp. 663–670.

[25] Y. Zhang, R. Zong, L. Shang, Z. Kou, D. Wang, A deep contrastive learning

approach to extremely-sparse disaster damage assessment in social sensing, in:

Proceedings of the 2021 IEEE/ACM International Conference on Advances in

Social Networks Analysis and Mining, 2021, pp. 151–158.

[26] Y. Zhang, R. Zong, L. Shang, M. T. Rashid, D. Wang, Superclass: A deep duo-

task learning approach to improving qos in image-driven smart urban sensing

applications, in: 2021 IEEE/ACM 29th International Symposium on Quality of

Service (IWQOS), IEEE, 2021, pp. 1–6.

[27] L. Shang, Y. Zhang, C. Youn, D. Wang, Sat-geo: A social sensing based content-

only approach to geolocating abnormal traffic events using syntax-based proba-

bilistic learning, Information Processing & Management 59 (2) (2022) 102807.

36



[28] Y. Liang, D. Sengupta, M. J. Campmier, D. M. Lunderberg, J. S. Apte, A. H.

Goldstein, Wildfire smoke impacts on indoor air quality assessed using crowd-

sourced data in california, Proceedings of the National Academy of Sciences

118 (36) (2021) e2106478118.

[29] M. Silva, G. Signoretti, J. Oliveira, I. Silva, D. G. Costa, A crowdsensing platform

for monitoring of vehicular emissions: A smart city perspective, Future Internet

11 (1) (2019) 13.

[30] Y. Zhang, Y. Lu, D. Zhang, L. Shang, D. Wang, Risksens: A multi-view learning

approach to identifying risky traffic locations in intelligent transportation systems

using social and remote sensing, in: 2018 IEEE International Conference on Big

Data (Big Data), IEEE, 2018, pp. 1544–1553.

[31] L. Breuer, N. Hiery, P. Kraft, M. Bach, A. H. Aubert, H.-G. Frede, Hydrocrowd: a

citizen science snapshot to assess the spatial control of nitrogen solutes in surface

waters, Scientific reports 5 (1) (2015) 1–10.

[32] H. P. Lee, S. Garg, K. M. Lim, Crowdsourcing of environmental noise map using

calibrated smartphones, Applied Acoustics 160 (2020) 107130.

[33] S. Wang, J. Cao, P. Yu, Deep learning for spatio-temporal data mining: A survey,

IEEE transactions on knowledge and data engineering (2020).

[34] D. Pavlyuk, Feature selection and extraction in spatiotemporal traffic forecasting:

a systematic literature review, European Transport Research Review 11 (1) (2019)

1–19.

[35] H. Werneck, N. Silva, M. C. Viana, F. Mourão, A. C. Pereira, L. Rocha, A sur-

vey on point-of-interest recommendation in location-based social networks, in:

Proceedings of the Brazilian Symposium on Multimedia and the Web, 2020, pp.

185–192.

[36] X. Ren, X. Li, K. Ren, J. Song, Z. Xu, K. Deng, X. Wang, Deep learning-based

weather prediction: a survey, Big Data Research 23 (2021) 100178.

37



[37] X. Luo, D. Li, Y. Yang, S. Zhang, Spatiotemporal traffic flow prediction with knn

and lstm, Journal of Advanced Transportation 2019 (2019).

[38] C. Liu, J. Liu, S. Xu, J. Wang, C. Liu, T. Chen, T. Jiang, A spatiotemporal dilated

convolutional generative network for point-of-interest recommendation, ISPRS

International Journal of Geo-Information 9 (2) (2020) 113.

[39] R. Castro, Y. M. Souto, E. Ogasawara, F. Porto, E. Bezerra, Stconvs2s: Spa-

tiotemporal convolutional sequence to sequence network for weather forecasting,

Neurocomputing 426 (2021) 285–298.

[40] V. S. Sheng, J. Zhang, Machine learning with crowdsourcing: A brief summary of

the past research and future directions, in: Proceedings of the AAAI conference

on artificial intelligence, Vol. 33, 2019, pp. 9837–9843.
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