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Abstract

Groundwater contamination poses serious threats to public health and environmen-
tal sustainability. In this paper, we explore smart groundwater contamination sens-
ing, which aims to accurately estimate the nitrate concentration in groundwater via a
crowdsensing approach. Existing solutions often require professional groundwater col-
lection and high-quality measurement of groundwater properties, making the data col-
lection process time-consuming and unscalable. In this work, we leverage the approx-
imate nitrate concentration measured by crowd sensors (i.e., participants from well-
dependent communities) to accurately estimate nitrate concentration in groundwater
samples. Three critical challenges exist in developing the crowdsensing-based ground-
water contamination estimation solution: i) the spatial irregularity of the crowdsens-

ing groundwater contamination data, ii) the hidden temporal dependency of ground-
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water contamination in the anthropogenic context, and iii) the uncertainty of crowd-
sensing nitrate measurements from crowd sensors. To address the above challenges,
we develop CrowdWaterSens, an uncertainty-aware graph neural network framework
that explicitly examines the uncertainty and spatial irregularity of the crowdsensing
groundwater contamination data and its relevant anthropogenic context to accurately
estimate groundwater nitrate concentration. We evaluate the CrowdWaterSens frame-
work through two real-world case studies in well-dependent communities in North-
ern Indiana, United States. The evaluation results not only show the effectiveness of
CrowdWaterSens in accurately estimating nitrate concentration, but also demonstrate
the viability of crowdsensing for community-level groundwater quality monitoring.
Keywords: Groundwater Quality, Nitrate Contamination, Crowdsensing, Graph

Neural Network

1. Introduction

Groundwater is one of the critical natural resources on Earth [1]. For example,
more than 115 million people in the United States rely on groundwater as their primary
drinking water source.! However, groundwater resources are vulnerable to contamina-
tion induced by various human activities, such as excessive application of fertilizer and
pesticide in agricultural operations, failure of private septic systems, and uncontrolled
waste disposal on abandoned dumpsites and hazardous waste sites [1]. Groundwater
contamination poses serious threats to public health and the environment [2]. Among
groundwater contaminants, nitrate (NO3 -N) is an important widespread contaminant
that can cause serious health issues [3]. For example, long-term intake of groundwa-
ter with elevated nitrate concentration can cause methemoglobinemia (i.e., blue baby
syndrome) and stomach cancer [3]. In this paper, we developed a smart groundwater
contamination sensing approach that aims to accurately estimate the nitrate concentra-
tion in groundwater via crowdsensing. The estimated nitrate concentration results can

be further reported to federal and local groundwater quality monitoring agencies (e.g.,
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U.S. Environmental Protection Agency, state department of ecology/health) to aid in
improving groundwater quality.

Our work is motivated by the lack of effective government regulations on well-
water quality monitoring in the United States and the lack of consistent testing for
groundwater contamination in well-dependent communities (i.e., households consum-
ing groundwater from private wells) [4]. The quality of groundwater from private wells
is not regulated by federal or state laws (e.g., Federal Safe Drinking Water Act) in the
United States [5] and it is typically homeowner’s responsibility to maintain their pri-
vate well systems and monitoring the groundwater quality. However, due to general
lack of knowledge, residents in well-dependent communities are often unaware of the
health risk posed by groundwater contamination and the importance of groundwater
quality monitoring [4]. Therefore, it is necessary to develop effective groundwater
quality monitoring solutions to accurately estimate the contamination in private well
water while increasing the awareness of groundwater contamination in well-dependent
communities.

Recent efforts have been made towards groundwater contamination estimation [6].
Existing solutions mainly focus on the spatial interpolation of groundwater contami-
nation based on geographic information system (GIS) data [7] and groundwater prop-
erties (e.g., hydrochemical facies [8], geochemical and microbiological features [9])
measured at groundwater sampling sites (e.g., groundwater monitoring stations, des-
ignated private wells). However, such methods often require professional groundwa-
ter collection from well-established sampling sites and high-quality measurements of
groundwater properties, making the data collection process costly, time-consuming,
and unscalable. Therefore, it remains challenging to effectively and efficiently monitor
groundwater contamination at the scales of relevant interest.

In this paper, we develop a crowdsensing-based approach that explores the col-
lective wisdom of crowd sensors (i.e., participants from well-dependent communities)
to accurately estimate groundwater nitrate concentration. Crowdsensing, when imple-
mented correctly, presents an effective data collection paradigm for obtaining mea-
surements from non-technical individuals in an efficient and scalable way [10, 11]. In

particular, our crowdsensing-based contamination estimation approach is in principle
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Figure 1: Crowdsensing Groundwater Nitrate Estimation

infrastructure-free as it does not require any installation or maintenance of physical
water quality monitoring sensors. Moreover, crowdsensing data collection strategies
also actively engage members in well-dependent communities to monitor groundwater
quality and thus become informed about the safety of their drinking water. Figure 1
depicts a schematic representation of our crowdsensing-based groundwater nitrate es-
timation approach. First, we collect the crowdsensing nitrate data (i.e., approximate
nitrate concentration using test strips) from crowd sensors. The collected crowdsens-
ing nitrate data is then leveraged to accurately estimate the nitrate concentration in the
studied communities. However, several challenges exist in developing our solution.
Spatial Irregularity. The first challenge lies with the spatial irregularity of the
crowdsensing groundwater nitrate data. Existing methods for spatial estimation of
groundwater contamination often rely on the groundwater properties (e.g., hydrochem-
ical facies) measured from a set of fixed water sampling stations [8]. In addition, these
fixed sampling stations are pre-identified based on geographic characteristics (e.g., wa-
tershed locations, soil conditions). However, such methods cannot be readily applied to

model the crowdsensing groundwater nitrate data which are irregularly located across



study areas and dynamically change due to the random nature of crowdsensing partic-
ipants. For example, the crowdsensing data from areas with higher residential density
are denser than crowdsensing data from areas with lower residential density. This poses
a challenge in effectively extracting the spatial relations among the irregular crowd-
sensing groundwater nitrate data.

Hidden Temporal Dependency. The second challenge lies in the hidden temporal
dependency of groundwater contamination on the anthropogenic context (i.e., human
activities and land use that can cause groundwater contamination). The concentration
of groundwater nitrate is often correlated with the temporal dynamics of anthropogenic
activities (e.g., temporal variation of fertilizer application and pet activities), especially
for groundwater obtained from shallow wells in well-dependent communities [4]. For
example, the application of fertilizer is often dependent on individual households (e.g.,
professionally maintained landscape vs. poorly maintained landscape) and the season
of the year (e.g., summer vs. winter). The varying dynamics of fertilizer activities can
affect the nitrate concentration in groundwater [12]. Such variability poses a challenge
to efficiently capture hidden temporal dependencies to accurately estimate groundwater
nitrate concentration.

Crowdsensing Data Uncertainty. The third challenge lies in the uncertainty of the
crowdsensing nitrate data collected from the crowd sensors who are often untrained
citizens from well-dependent communities. Crowdsensing nitrate concentrations mea-
sured by such non-professional crowd sensors can present significant uncertainties
due to the unknown reliability of the participants, arising from the lack of familiar-
ity with the nitrate test kit and incorrect sampling of groundwater. While several
data uncertainty estimation solutions exist (e.g., truth discovery [13, 14], data relia-
bility assessment [15, 16]), such approaches cannot be directly applied to address data
uncertainty issues in our crowdsensing nitrate estimation problem. This is because
these approaches typically assume that multiple observations/measurements of the tar-
get variable (e.g., nitrate concentration) from different sources (e.g., participants) are
available or they require a large number of data samples with annotated reliability (e.g.,
reliability of the participants). However, in our problem, each participant is only asked

to measure the nitrate concentration from his/her own household, and only a limited



number of ground truth nitrate concentration results are collected to assess the partici-
pants’ reliability due to the high cost of professional nitrate measurements. Therefore,
it remains a challenge to accurately predict groundwater nitrate concentration based on
crowdsensing measurements from participants with unknown reliability.

In this paper, we develop CrowdWaterSens, an uncertainty-aware crowdsensing
framework to accurately and efficiently estimate groundwater nitrate concentration by
exploring the collective accuracy of well-dependent communities. To address the first
challenge, we design a spatio-temporal crowdsensing network to explicitly model the
spatial irregularity of the crowdsensing groundwater nitrate data. To address the sec-
ond challenge, we develop a context-aware information fusion module to effectively
learn the temporal dynamics of crowdsensing contamination and its relevant anthro-
pogenic context to jointly estimate the groundwater nitrate concentration. To address
the third challenge, we design an uncertainty-driven network optimization strategy
that explicitly measures the uncertainty of crowdsensing measurements from individ-
ual crowd sensors to accurately estimate the groundwater nitrate concentration via a
graph-based regression model. To the best of our knowledge, CrowdWaterSens is the
first uncertainty-aware crowdsensing-based groundwater contamination estimation so-
lution for groundwater quality monitoring. We evaluate the proposed CrowdWaterSens
framework by carrying out two case studies of nitrate contamination in well-dependent
communities in Northern Indiana, United States.2 The evaluation results not only show
the effectiveness of CrowdWaterSens in accurately estimating nitrate concentration but
also demonstrate the viability of crowdsensing for community-level groundwater qual-
ity monitoring.

A preliminary version of this work (i.e., SmartWaterSens [17]) has been published
in SmartComp 2022 to study the problem of groundwater monitoring in well-dependent
communities. This paper is a significant extension of our conference paper (i.e., Smart-
WaterSens) in the following aspects. First, we identify a new critical challenge of data

uncertainty in crowdsensing-based groundwater contamination estimation (Section 1).

2The Institutional Review Board (IRB) approval has been granted for all protocols and procedures in
our case study.



Second, we extend the preliminary solution by explicitly modeling the crowd sensor
reliability in the graph regression framework to address the data uncertainty challenge
in crowdsensing-based groundwater nitrate concentration estimation. Third, in light of
the COVID-19 pandemic, we extend our crowdsensing experiments to a new case study
with a fully at-home crowdsensing data collection strategy that obtains the crowdsens-
ing measurements and ground truths of nitrate concentration, while minimizing phys-
ical contact with our participants (Section 5). Fourth, we add three new baselines of
graph neural network based regression models, GCN, GTN, and SmartWaterSens to
further investigate the effectiveness and efficiency of the proposed CrowdWaterSens
framework. Fifth, we carry out a robustness study to comprehensively evaluate the
effect of training data size on the performance of CrowdWaterSens. Last, we extend
the related work discussion by adding a discussion on the topic of data uncertainty in
crowdsensing and including more recent work in groundwater quality, crowdsensing,

and spatio-temporal inference (Section 2).

2. Related Work
2.1. Groundwater Quality

Groundwater quality has gained much attention in recent years [1]. Many efforts
have been made to investigate groundwater pollution and assess groundwater qual-
ity [6, 18]. For example, Long et al. introduced a spatially interpolated mapping system
to estimate the spatial distribution and health risk of heavy metals in shallow ground-
water [19]. Li ef al. designed an entropy-weighted multi-criteria decision analysis ap-
proach to assess the plateau groundwater quality based on hydrochemical facies (e.g.,
concentrations of major ions) [20]. Egbueri ef al. proposed a hierarchical cluster anal-
ysis to jointly investigate the pollution index of groundwater (PIG) and ecological risk
index (ERI) for drinking groundwater quality assessment [21]. Knoll e al. developed a
GIS-based machine learning framework that leverages nitrate measurements at ground-
water monitoring sites to predict groundwater nitrate concentration [22]. However,
existing methods often require well-established infrastructures or laboratory analysis
which are time-consuming and expensive. In this paper, we present an infrastructure-

free solution that explores the crowdsensing wisdom from citizen scientists to assess



the quality of groundwater.

2.2. Crowdsensing in Smart City Applications

Crowdsensing presents a new sensing paradigm, where timely observations of the
physical world are collected from human sensors [23, 24]. With the pervasive network
connections and the prevalence of digital devices, crowdsensing has been increasingly
applied in smart city applications [25, 26, 27]. For example, Liang et al. leveraged
crowdsensing data from public air quality sensors to assess the wildfire smoke impact
of indoor air quality in California [28]. Silva et al. designed a crowd-driven vehicle
pollution monitoring system that couples crowdsensing with an on-board diagnostic
carbon dioxide reader to estimate vehicle emission in smart cities [29]. Zhang et al.
proposed a multi-view learning framework to identify risky traffic locations in smart
transportation systems [30]. Breuer ef al. developed HydroCrowd, a crowdsourcing-
based water sampling strategy that only recruited crowd participants to collect surface
water samples for hydrological study [31]. Lee et al. proposed a crowdsensing noise
mapping framework to monitor urban environmental noise in smart cities by utiliz-
ing crowdsourced noise data from calibrated smartphones [32]. To the best of our
knowledge, CrowdWaterSens is the first uncertainty-aware crowdsensing approach to
estimate groundwater contamination by leveraging crowdsensing contamination mea-

surements.

2.3. Spatio-Temporal Inference

Our work is also related to spatio-temporal inference that jointly exploits spatial and
temporal information in a variety of applications [33]. Examples of spatio-temporal
inference applications includes urban traffic monitoring [34], location-based activity
prediction [35], climate and weather forecasting [36]. For example, Luo ef al. de-
veloped a deep learning solution to predict urban traffic flows by leveraging spatial
traffic flow information extracted from k-nearest neighbor (KNN) monitoring stations
and the temporal traffic flow variability learned with a long short-term memory net-
work [37]. Liu et al. designed a generative neural network framework for personalized
point-of-interest (POI) recommendation using the temporal location-based social net-

work data [38]. Castro et al. proposed a spatio-temporal convolutional sequence to



sequence network that models the historical weather records as temporal sequences of
spatial grids for temperature and rainfall prediction [39]. However, existing spatio-
temporal inference solutions often rely on a large amount of historical and spatial
data for accurate estimation. Therefore, these solutions are insufficient to address our
crowdsensing-based groundwater nitrate estimation problem where the historical and
spatial nitrate contamination data are not always available, especially in rural areas.
By contrast, CrowdWaterSens designs a graph-based context-aware spatial-temporal
inference model that is dedicated to estimating groundwater nitrate concentration with

sparse crowdsensing data.

2.4. Data Uncertainty in Crowdsensing

Data uncertainty is a fundamental problem in the data analysis of crowdsensing sys-
tems, where the data are collected from the observation or measurements of ordinary
human sensors who are not as reliable as the professionally trained experts [40, 41]. A
number of solutions have been proposed to address the data uncertainty issue in crowd-
sensing systems [42, 43, 16, 14]. For example, Lan et al. designed a machine learning
based crowdsourcing quality prediction framework that leverages an advanced ensem-
ble machine learning classification algorithm to detect cheating workers on crowd-
sourcing tasks [16]. Probert et al. developed a linguistic model to estimate the un-
certainty of crowdsourced data of alien species of birds [44]. Such solutions often
require a non-trivial amount of ground truth labels of the crowdsensing measurements
to supervise the training of the data uncertainty estimation model. However, they can-
not be applied to our groundwater monitoring problem, where only a relatively small
number of ground truth nitrate measurements are available due to the expensive cost
of professional measurements of nitrate concentration in groundwater samples. In ad-
dition, several unsupervised crowdsensing data uncertainty estimation solutions also
exist. Wang et al. developed a maximum likelihood estimation algorithm approach
to estimate crowd sensor reliability in crowdsensing applications [45]. Zhang et al.
proposed a quality-aware disaster damage assessment framework that integrates esti-
mation theory with deep learning to obtain an accurate assessment of disaster damage

severity using crowdsourcing inputs for effective disaster response in natural disaster



events [13]. Such frameworks often assume the existence of multiple observations of
the same measured variable (e.g., nitrate concentration) from different sources (e.g.,
crowd sensors). However, they are insufficient to address data uncertainty in our prob-
lem, where each crowd sensor is solely responsible for measuring the groundwater
concentration in his/her own household. To address the crowdsensing data uncertainty
challenge, we design an uncertainty-driven network optimization strategy to explicitly
model the uncertainty of crowdsensing measurements from individual crowd sensors

to optimize the estimation performance of groundwater nitrate concentration.

3. Problem Definition

In this paper, we focus on the problem of estimating groundwater nitrate concentra-
tion using crowdsensing nitrate measurements from community participants. We first

define a few key concepts that will be used in our problem definition.

Definition 1. Participant (p): We define a participant as a person who lives in a well-
dependent community and is engaged to report crowdsensing measurements of nitrate
(see Definition 5 below). In particular, we define a set of K participants denoted by
P ={p1,p2, - ,pK }- We assign each participant a unique anonymized identifier and

strictly follow data security precautions to protect participants’ privacy.

Definition 2. Participating Community (u): We define a participating community
u as the well-dependent community where the households rely on groundwater from
private wells as their primary water resource. We define a set of J participating com-
munities as U = {uy, ug, - - ,us}. All the participants in our study are recruited from

U.

Definition 3. Location (/): The location I, = (pk, Ax) refers to the geographic co-
ordinates at the household of participant pi, where ¢y and g are the latitude and
longitude coordinates, respectively. The collected geolocation information is used for
research purpose only and will not be disclosed to unauthorized individuals and third

parties.
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Definition 4. Sensing Cycle (¢): The sensing cycle is the collection period (e.g., daily,
weekly) during which the crowdsensing measurements are measured by the partici-
pants. In particular, we define 7" as the total number of sensing cycles in our study and

t is the t*" sensing cycle.

Definition 5. Crowdsensing Measurement (c): We define the crowdsensing mea-
surement as the test strip reading of the nitrate concentration from a tap water sam-
ple (measured in mg/L) using the nitrate test kit. More details about the nitrate test
kit will be discussed in Section 5. For each participant p;, € P, we define a set of
T crowdsensing measurements reported by py as Cx = [ck.1,Ck2, -, Ck,1], Where
¢kt € Cy, represents the crowdsensing measurement measured at location [;, and sens-
ing cycle t. The set of crowdsensing measurements from K participants is denoted as

C:{ChCQ?"' aCK}

Definition 6. Anthropogenic Context (h): We define the anthropogenic context of
a participant’s household as a set of human-induced features that are often related to
groundwater nitrate concentration [4]. In particular, we focus on the following anthro-

pogenic features.

ELINT3 9% <.

* Community Type (h°): Community type h° € {“urban”, “suburban”, “rural”}

represents the type of community which the participant’s household belongs to.

+ Farm Proximity (h/): Farm proximity hf € {“Yes”, “No”, “Unsure”} indicates

whether there is a farm nearby the participant’s household.

* Fertilizer Application (h°): Fertilizer application h® € {“Yes”, “No”, “Unsure”}
describes whether fertilizer is applied within one week before the crowdsensing

measurement is reported.

* Pet Activity (h®): Pet activity h* € {“Yes”, “No”} represents whether any out-

side pet activity is allowed at the participant’s household.

Formally, we define the anthropogenic context of T crowdsensing measurements (i.e.,

C') reported by participant py, as Hy, = [hy.1, hi.2,- -+ , hi, 1], where hy, , = [hﬁ_’t, hi’t,
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% 1> hi ] is the anthropogenic context of ¢, € Cj. The set of anthropogenic context

at the households of K participants is denoted as H = {Hy, Ha, -+ , Hx }.

Definition 7. Ground-truth Concentration (y): We define the ground-truth concen-
tration as the nitrate concentration of a tap water sample measured in the laboratory.
For each crowdsensing measurement ¢y, ; € Cj, reported by participant py, we denote

Yk,¢ as the corresponding ground-truth concentration.

Definition 8. Estimated Concentration (y): We define the estimated concentration
of nitrate in groundwater to be the output nitrate concentration predicted by a nitrate
estimation model. For each crowdsensing measurement ¢, ; € C}, and anthropogenic

context {;, ; reported by participant p, we denote g, ; as the estimated concentration.

With the above definitions, the goal of our crowdsensing-based nitrate concentra-
tion estimation problem is to accurately estimate the nitrate concentration in the partic-
ipating communities by exploring the underlying spatio-temporal correlations between
the crowdsensing measurements and the relevant anthropogenic context. Formally,
given a set of N crowdsensing measurements C' and their relevant anthropogenic con-

texts H, our problem is formulated as:

argAmin(]:(gji,yi) |C,H)VI<i<N €))

Yi

where F is the error measurement function (e.g., Mean Squared Error (MSE), Mean
Absolute Error (MAE)) that measures the difference between the estimated and ground-

truth concentrations.

4. Solution

In this section, we present the CrowdWaterSens framework to address the crowdsensing-
based nitrate concentration estimation problem. CrowdWaterSens is a context-aware
graph neural network framework that carefully captures the underlying correlations
between groundwater nitrate concentration and anthropogenic context variables to in-
fer the hidden spatial and temporal dynamics of groundwater nitrate concentration for

desirable estimation performance. An overview of the CrowdWaterSens framework

12



is shown in Figure 2. CrowdWaterSens contains three main modules: i) the Spatio-
temporal Crowdsensing Network (SCN) module that constructs a graph-based crowd-
sensing contamination network to explicitly extract the spatial and temporal relations
of the crowdsensing measurements, ii) the Context-aware Information Fusion (CIF)
module that designs a principled context-aware information propagation mechanism
to jointly fuse the spatial and temporal relation of crowdsensing nitrate concentration
and the anthropogenic context in the crowdsensing contamination network, and iii) the
Uncertainty-driven Network Optimization (UNO) module that develops an uncertainty-
driven graph regression model that examines the data uncertainty of the crowdsensing
measurements to accurately estimate the nitrate concentration in participating commu-
nities.

(" "Crowdsensing | ™ Anthropogenic | { L. T
Measurements Context

1 [

I : Estimated :
: 1 Groundwater Nitrate 1
! 1 Concentration H
1! !
I : :
[ H

Spatio-temporal Context-aware Uncertainty-driven
Crowdsensing Information Fusion Network
Network (SCN) (CIF) Optimization (UNO)

Figure 2: Overview of the CrowdWaterSens Framework

4.1. Spatio-temporal Crowdsensing Network (SCN)

The spatio-temporal crowdsensing network module is designed to construct a graph-
based crowdsensing contamination network (CCN) to explicitly model the spatial and
temporal relations of the crowdsensing nitrate concentration at different time and lo-
cations. Existing nitrate concentration estimation methods mainly rely on geographic
grid-based matrices to encode the spatio-temporal information of nitrate concentration.
However, such grid-based methods are insufficient to fully capture the spatio-temporal

features of crowdsensing data in our problem due to the spatial irregularity of the crowd
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participants. To address this limitation, we design a graph-based crowdsensing contam-
ination network (Figure 3) to jointly characterize the spatial and temporal relations of
spatial irregular crowdsensing nitrate concentration. Formally, we define the crowd-

sensing contamination network as below.

Definition 9. Crowdsensing Contamination Network (CCN): An undirected graph
G = (V,€&), where V is a set of crowdsensing nodes, £ is a set of edges between
crowdsensing nodes. In particular, each crowdsensing node v ; € V represents the
crowdsensing measurement obtained at location [;, and sensing cycle t. We consider
two types of edges in &, including the spatial edge £; € £ that represents the spatial
distance between two crowdsensing nodes, and temporal edge £,, € £ that represents

the temporal relation between two crowdsensing nodes at the same location.

Vi t—1 Vk,t Uk,t+1

Crowdsensing
ceeo Nodes )/

— Spatial Edge &,

Temporal Edge £,

Sensing Cycle Sensing Cycle Sensing Cycle
t—1 t t+1

Figure 3: Example of Crowdsensing Contamination Network

We further define the weight of each spatial edge £ in CCN to be the physical
distance between the locations of two crowdsensing nodes. The assumption is that
groundwater samples at nearby locations often have similar nitrate concentrations due
to spatial correlation in groundwater settings [12]. In addition, we define the weight of
each temporal edge &, in CCN as the binary value to indicate the temporal dependency
of two crowdsensing nodes (i.e., whether the nitrate concentrations in two crowdsens-
ing nodes are measured in consecutive sensing cycles). The temporal dependency of
two crowdsensing nodes that are not measured in consecutive sensing cycles can be
captured through the shortest path that includes multiple temporal edges between two
nodes. The idea is that groundwater nitrate concentration also changes over time in re-

sponse to weather events, such as rainfall and drought [46]. To characterize the spatial

14



and temporal relations between crowdsensing nodes, we define the adjacency matrices

to formally represent the spatial and temporal edges and their weights in CCN as below.

Definition 10. Adjacency Matrices (A): A = {S, M} denotes the spatial and tem-
poral adjacent matrices S € RV>*¥ and M € RV that correspond to the weights
of spatial and temporal edges, respectively. The weight of each spatial edge in .S mea-
sures the reversed spatial proximity between the locations of two crowdsensing nodes
as 1 —6(ly,12), where §(-) is the normalized Haversine distance [47] between location
l1 and I5. Each value in M is a binary value that indicates whether the nitrate concen-
trations in two crowdsensing nodes are measured in consecutive sensing cycles (i.e., 1)

or not (i.e., 0).

Given the above CCN design, our next step is to learn the temporal dynamics of
anthropogenic context of participating communities at different sensing cycles, which

is discussed in the next subsection.

4.2. Context-aware Information Fusion (CIF)

The context-aware information fusion module aims to effectively learn the repre-
sentation of each crowdsensing node in CCN to jointly fuse the spatial and temporal re-
lations of the crowdsensing measurements and anthropogenic contexts (e.g., abnormal
rainfall during severe weather and seasonal application of lawn fertilizer) for accurate
nitrate concentration estimation. To that end, we collect observations of anthropogenic
activities from the crowdsensing participants to explore the spatial and temporal dy-
namics of the anthropogenic context. In particular, we design a dual-relational graph
convolutional network (DR-GCN) to encode the crowdsensing anthropogenic context
into CCN to improve the nitrate contamination estimation performance.

DR-GCN is designed to effectively fuse the information of crowdsensing measure-
ments and their anthropogenic context from spatially or temporally related crowdsens-
ing nodes in CCN. Specifically, we first define the encoded vector representation of

each crowdsensing node v; € V as:
Ui =[G, hi] €RY, Vv €V 2)

15



where ¢; is the normalized crowdsensing measurement (Definition 5) at v; and El is
the one-hot encoding of the anthropogenic context (Definition 6) of v;. We denote
V € RV*4 a5 the representation matrix of all crowdsensing nodes in V.

Finally, we define the dual-relational aggregation strategy in DR-GCN as:

W =0 (13'17@8 + lzTIf/@m) 3)

T's T'm

K2

where w; is the latent representation of v; from DR-GCN. o(-) is the non-linear ReLU
activation function. S and M are the normalized first-order approximation [48] of
spatial and temporal adjacent matrices, respectively. r, and r,,, are the normalization

constants. O, and ©,,, are learnable parameters.

4.3. Uncertainty-driven Network Optimization (UNO)

Given the context-aware representation of each crowdsensing node learned by DR-
GCN, our next goal is to explicitly examine the data uncertainty of the crowdsensing
measurements of each crowdsensing node in CCN and accurately estimate the corre-
sponding groundwater nitrate concentration. A key challenge of crowdsensing-based
groundwater nitrate estimation is the data uncertainty of crowdsensing nitrate mea-
surements which are measured by ordinary community participants who may not be as
reliable as the professionally trained experts due to the lack of sufficient knowledge or
experience. For example, a participant may misunderstand the nitrate testing instruc-
tion and not wait a sufficient amount of time to read the nitrate concentration results
from the test strip, where the test pad color is not stabilized and may lead to an inaccu-
rate nitrate measurement of the groundwater sample. To address such a challenge, we
explicitly model the uncertainty of the crowdsensing nitrate measurements contributed
by individual crowd sensors. In particular, for each crowd node v; in CCN, we define
the crowdsensing uncertainty €; as the variance or the average error of crowdsensing
measurements in v; contributed by the same crowd sensor py during the same sens-
ing cycle t. The computing method of crowdsensing uncertainty (i.e., variance or the
average error) depends on the design of the crowdsensing experiments which will be

discussed in detail in Sections 5 and 6.
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While DR-GCN in the CIF module can aggregate the crowdsensing measurements
from spatially or temporally correlated crowdsensing nodes in CCN, it ignores the
uncertainty of the crowdsensing measurements and considers all crowdsensing mea-
surements as equally important. Such an approach may degrade the nitrate estimation
performance when nitrate information from inaccurate crowdsensing measurements is
fused in CCN. Therefore, we further learn the uncertainty-aware vector representation
of each crowdsensing node in CCN to jointly model the crowdsensing measurement
uncertainty and the crowdsensing vector representation learned from the CIF module.
In particular, we first update the encoded vector representations v; (Equation 2) of each

node v; € V to obtain the uncertainty-aware vector representation as:

1
= 4
v Ei+€0v, 4

where ¢ is a normalization factor to avoid the division-by-zero issue. We also de-
note the uncertainty-aware representation matrix of all crowdsensing nodes in V as
V* € RVNXd, The goal of learning the uncertainty-aware vector representation of each
crowdsensing node is to control the crowdsensing measurement error in estimating the
nitrate concentration by reducing the effect of crowdsensing measurements from un-
reliable crowdsensing participants (i.e., the crowdsensing nodes with high crowdsens-
ing uncertainty ¢;). Intuitively, the uncertainty-aware vector representation v; from a
crowdsensing node v; with a high uncertainty ¢; is expected to contribute less in esti-
mating the nitrate concentration through the context-aware information fusion and vice
versa.

With the uncertainty-aware vector representation, our next objective is to learn the
uncertainty-aware latent representations of all crowdsensing nodes in ) with the dual-
relational aggregation strategy as presented in Equation 5. In particular, let Vo=
[vf,v5, -+ ,U%] be the matrix of the uncertainty-aware vector representation for all
crowdsensing nodes in V. The uncertainty-aware latent representation w; of node v; €
V is defined as below.
=0 (1§ms " 1m*q>m) )

K3
Zs Zm

2

where o(-) is the non-linear ReLU activation function. S and M are the normal-
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ized first-order approximation [48] of spatial and temporal adjacent matrices, respec-
tively. z5 and z,, are the normalization constants. ®, and ®,,, are learnable parame-
ters. Then, the learned uncertainty-aware latent representations are input into a stacked
feed-forward neural network (i.e., multi-layer perceptron) to estimate the correspond-
ing nitrate contamination. Formally, the output of the CrowdWaterSens framework is
computed as:

i = MLP(w;) (6)

where w; is the latent representation of the crowdsensing node v; € V), and g; is the es-
timated concentration. Let y; be the ground-truth concentration, our learning objective
is to minimize the mean squared error loss as:
1L )
L= NZ(% —Y) (N

i=1
We adopt the Adaptive Moment Estimation optimizer to learn the accurate value of

nitrate concentration in CrowdWaterSens.

5. Crowdsensing Data

In this section, we introduce two case studies we have conducted to collect the
crowdsensing groundwater contamination data for the evaluation of CrowdWaterSens.
We select Northern Indiana in the United States as the primary area of study with a
focus of nitrate contamination. Nitrate (NOj -N) is a critical water contaminant that can
lead to increased risk of certain cancers, birth defects, and thyroid problems resulting
from prolonged exposure [3]. Notably, Northern Indiana is a high-risk area of nitrate
contamination due to the high application rate of nitrogen fertilizer in agricultural and
residential land use [49]. More importantly, a large number of households in Northern
Indiana are well-dependent and at high risk of elevated nitrate concentration in their
drinking water [49]. While nitrate is the primary groundwater contaminant investigated
in this study, the presented crowdsensing data collection approach can be easily adapted
to collect crowdsensing groundwater contamination data for other water contaminants
(e.g., atrazine, phosphorus) with proper contaminant test kits and generalized to other

geographic areas with high-risk of groundwater contamination.
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DIRECTIONS:

1. Dip a strip into water for 1 second (or pass under gentle water
stream) and remove. Do not shake excess water from the test strip.

2. Hold the strip level, with pad side up, for 30 seconds.
Compare the NITRATE test pad (top pad) and the NITRITE test pad
(bottom pad) to the color chart above. Estimate results if the color
on the test pad falls between two color blocks.

(@ (b ()

Image (a) is the test tube used for test strip dipping and tap water sample collection. Image (b)
is the test strip that is used for testing the nitrate concentration in the water sample of interest.
Image (c) is the colorimetric chart for the participants to determine the nitrate concentration
results on the dipped test strips. Please note that the unit of the nitrate concentration measured
by the colorimetric chart is parts per million (ppm) which is equivalent to mg/L (i.e., 1 ppm =1
mg/L) for measuring contaminant in water.

Figure 4: Example of Test Kit for Nitrate Concentration

5.1. Participant Recruitment and Nitrate Test Kit

The crowdsensing participants were recruited from well-dependent residential com-
munities in St. Joseph County, Northern Indiana, through the outreach program at the
University of Notre Dame. We strictly followed the corresponding IRB protocol for
participant recruitment and data collection in this study. Proper participant consents
were obtained prior to the experiments. In our experiments, we distribute the nitrate
test kits to the participants for measuring the crowdsensing nitrate concentration. We
show an example of the nitrate test kit used in our study in Figure 4. In particular, dur-
ing the participant recruitment process, the participants are instructed on how to use the
test kit to: 1) collect tap water samples in a water tube (Figure 4 (a)), and 2) measure
the crowdsensing nitrate concentration of water samples using the test strip (Figure 4

(b)) and colorimetric chart (Figure 4 (c)).
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5.2. Crowdsensing Data Collection

In our experiments, we perform two case studies to collect the crowdsensing ni-
trate contamination data under different experimental settings. In particular, the first
case study (Case Study I) is designed to collect crowdsensing nitrate concentration
measurements with the groundwater samples to be used for validating the ground-truth
nitrate concentration. However, during the global COVID-19 pandemic, it is impracti-
cal to collect groundwater samples from the participants due to various societal restric-
tions (e.g., stay-at-home orders, quarantines) and the participants’ health concerns. In
light of such a challenge, we further design a second case study (Case Study II) to
collect the crowdsensing nitrate concentration data in a fully at-home setting without
requiring the participants to bring in the groundwater samples for ground-truth nitrate

concentration validation. We elaborate on the two case studies in detail below.

5.2.1. Case Study I (Before COVID-19 Pandemic)

The first case study was conducted in the Fall of 2019 for a data collection period
of four weeks. An overview of the data collection pipeline is shown in Figure 5. In
particular, we asked the participants to measure the nitrate concentration of the tap wa-
ter in their households 3 times a week (i.e., on Monday, Wednesday, and Friday). The
crowdsensing nitrate concentration was measured by dipping the test strip with the tap
water from the participant’s household and comparing the dipped test strip with the col-
orimetric chart to obtain the approximate measurement of nitrate concentration (Figure
4). The measured nitrate concentrations were recorded via online and/or paper form
depending on each participant’s accessibility to the Internet. The participants were
also asked to report the anthropogenic context (Definition 6) along with their mea-
surements. Finally, the participants returned the collected tap water samples, which
were collected and transported to the university laboratory for the professional nitrate
concentration measurement. In our study, we used the cadmium reduction method on
a Lachat QuikChem™ Autoanalyzer to measure the ground-truthed nitrate concentra-
tion [50]. To ensure the integrity and quality of the ground-truth data, we excluded
invalid water samples that were not properly stored in the sample tube or have sample

tube labels that could not be matched with the crowdsensing nitrate measurements for
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ground truth validation.
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Figure 5: Crowdsensing Data Collection Pipeline - Case Study I

We totally received 161 weekly crowdsensing data samples with ground-truth ni-
trate concentration, where each weekly crowdsensing data sample contained 3 crowd-
sensing measurements. The size of the crowdsensing dataset matches the scale of the
datasets studied in state-of-the-art groundwater contamination estimation literature that
is shown to be sufficient to evaluate groundwater nitrate concentration estimation mod-
els for a regular watershed [51]. A summary of the collected crowdsensing and ground-
truth data is presented in Table 1. We observe that the average crowdsensing nitrate
concentration is lower than the average ground-truth nitrate concentration. A possible
reason is that the crowd participants may underestimate the test strip readings when the
color of the dipped test strips falls between two color blocks. The crowdsensing mea-
surement error (i.e., the difference between the crowdsensing and ground-truth nitrate
concentration) is particularly significant when the ground-truth nitrate concentration is
high due to the low colorimetric precision of the test strips for high nitrate concentra-

tion (e.g., above 2 mg/L).

5.2.2. Case Study II (During COVID-19 Pandemic)
The second case study was conducted in the Fall of 2020 and the Spring of 2021

with an adapted data collection procedure to accommodate the restrictions during the
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Data Trace Crowdsensing  Ground Truth

Mean 0.78 1.10
Minimum 0.00 0.00
Maximum 8.00 9.33

Standard Deviation 1.21 1.75

Table 1: Summary Statistics of Crowdsensing Nitrate Data (mg/L) - Case Study I

COVID-19 pandemic. We showed an overview of the crowdsensing data collection
pipeline in Figure 6. The goal of the adaptation was to eliminate the requirement in the
original experimental design (i.e., Case Study I) that asked the participants to collect
and bring in the groundwater samples, which was often infeasible given various societal
restrictions during the COVID-19 pandemic. In particular, we modified the nitrate test
kit in Case Study I (Section 5.2.1) by including three pairs of test strip and nitrate
water solution sample (Figure 6) at pre-identified ground-truth nitrate concentrations
that belong to the following three levels: low (0-1 mg/L), medium (1-10 mg/L) and
high (10-20 mg/L). We distributed the test kits to our participants without disclosing
the ground-truth nitrate concentration of the nitrate solutions in the test kits. For each
pair of the test strip and nitrate water sample, we asked the participants to measure
the nitrate concentration using the test strip (Figure 4(b)) and compare the dipped test
strip with the colorimetric (Figure 4(c)). The participants were asked to record their
crowdsensing measurements and submit them through an online submission system.
Such a process is repeated for all three nitrate water samples in the test kits.

We totally received 177 crowdsensing data samples where each data sample con-
tains the crowdsensing measurements of three NO; -N solutions at different pre-identified
ground-truth nitrate concentration levels. A summary of the collected crowdsensing
and ground-truth data is presented in Table 2. We observe similar patterns as in Case
Study I where the crowdsensing measurement errors are higher for measuring the ni-
trate solution with high nitrate concentration resulting from the low colorimetric preci-

sion of the test strips at high nitrate concentration levels.
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Figure 6: Crowdsensing Data Collection Pipeline - Case Study II

Nitrate Concentration Level

Data Trace Low (0-1 mg/L) Medium (1-10 mg/L) High (10-20 mg/L)
Mean 1.02 551 16.55
Minimum 0.00 1.00 0.00
Maximum 5.00 35.00 50.00
Standard Deviation 0.93 4.48 13.70

Table 2: Summary Statistics of Crowdsensing Nitrate Data (mg/L) - Case Study II

6. Evaluation

In this section, we evaluate the nitrate concentration estimation performance of
the proposed CrowdWaterSens framework using the crowdsensing datasets collected
from the two case studies as described in Section 5. Evaluation results demonstrate
that CrowdWaterSens achieves substantial performance gains compared to the Smart-
WaterSens we developed in our conference paper and the state-of-the-art groundwater
contamination estimation solutions in accurately estimating nitrate concentration in

both case studies.

6.1. Baseline Methods

We compare CrowdWaterSens with a set of state-of-the-art methods for groundwa-

ter nitrate concentration estimation.
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SmartWaterSens: A context-aware graph neural network framework that is
developed in our conference paper [17]. SmartWaterSens explores the anthro-
pogenic context of crowdsensing nitrate data to estimate the nitrate concentration

in crowdsensing groundwater samples.

NCE: A naive crowd estimation baseline method that directly uses the averaged
crowdsensing measurements of nitrate concentration as the estimated nitrate con-

centration.

ELR: It is an ensemble learning based regression method that utilizes spatial
hydrogeological features to predict nitrate concentration in groundwater [22].
We adapted ELR to estimate nitrate concentration using the crowdsensing nitrate

concentration and location context information.

NCRA: A nitrate contamination risk assessment solution that leverages the sam-
pled nitrate concentration (i.e., nitrate measurement from sampled wells) to es-
timate the groundwater nitrate pollution in nearby locations [52]. We replace
the sampled nitrate concentration with the crowdsensing nitrate concentration

obtained from the crowd participants.

GWR: A geographically weighted regression scheme that learns the weighted
regression coefficients based on the distance between the sampling site locations
and the target location at which the nitrate concentration is estimated [7]. In
particular, we use the pairwise Haversine distance between the crowd locations

in the training and testing sets as the distance weights in GWR.

AVI: A deep learning water contamination estimation approach that builds a mul-
tilayer perceptron neural network to estimate the concentration of groundwater
nitrate [53]. In particular, we use the crowdsensing measurements and the an-
thropogenic context features as the input to AVI and predict the estimated nitrate

concentration.

BNN: A Bayesian neural network framework that utilizes Bayesian optimiza-
tion to estimate prediction uncertainty and improve the nitrate estimation perfor-

mance [51]. Specifically, BNN takes the crowdsensing measurements and the
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anthropogenic context information as input features to estimate nitrate concen-

tration.

¢ GCN: A principled spatio-temporal graph convolutional neural network solu-
tion that jointly aggregates the spatial and temporal relations of graph nodes for
traffic flow prediction [54]. We adapted GCN with the crowdsensing contamina-
tion network (CCN) constructed in our CrowdWaterSens to estimate the nitrate

concentration of each node in CCN.

* GTN: A generalized graph transformer network that fuses propositional node
features in graph neural networks for regression tasks [55]. We train GTN using
the crowdsensing nitrate data to predict the concentration of groundwater nitrate

in our study.

6.2. Experiment Settings

To ensure a fair comparison, we use the same input features to train CrowdWa-
terSens and all compared baselines, except the NCE baseline, which only uses the
crowdsensing measurements as the estimated nitrate concentration. In our experiments,
we use 80% of the dataset as a training-validation set and the remaining 20% as a fest
set. We perform 5-fold cross-validation on the training-validation set to tune hyperpa-
rameters of all compared methods and evaluate the estimation performance based on
the test set. In addition, for the experiments in Case Study I, we use the mean crowd-
sensing measurements in each week as the input crowdsensing measurements (i.e., ¢;
in Equation 2) collected from the participants to estimate the true nitrate concentration
in the groundwater samples, and use the variance of the crowdsensing measurements in
each week as the crowd sensor uncertainty in the UNO module. For the experiments in
Case Study II, we focus on the medium-level nitrate solution in our study and use the
normalized estimation error on the low-level and high-level nitrate solutions to compute
the crowd sensor uncertainty in the UNO module. This is because nitrate concentra-
tion in the medium level (i.e., 1-10 mg/L) is the most concerned range of groundwa-

ter nitrate concentration in well-dependent communities where nitrate concentrations
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greater than 3 mg/L generally indicate contamination in groundwater.* In addition, we
observe that nitrate concentration in the high level (i.e., 10-20 mg/L) rarely happens in
our studied well-dependent communities according to the nitrate concentration mea-
sured in the groundwater samples collected in Case Study I (Table 1). Therefore, we
adopt the crowdsensing measurements on the medium level as our evaluation dataset
to study the performance of CrowdWaterSens on groundwater nitrate concentration in
well-dependent communities.

We implement our CrowdWaterSens model using PyTorch 1.10* and run our ex-
periments on Ubuntu 20.04 with four NVIDIA A40. We set the total number of epochs
as 50 and train CrowdWaterSens at an initial learning rate of 0.001 with a decay of
0.95 in each epoch. We adopt a set of evaluation metrics that are commonly used for
evaluating regression models. In particular, let ¢; and y; be the estimated and ground-
truth nitrate concentration of the i** sample in a test set of N samples, we consider the

following evaluation metrics:
* Mean Absolute Error (MAE): MAE = + Zivzl 19 — il

* Mean Squared Error (MSE): MSE = % vazl(g]Z —y;)?

* Root Mean Squared Error (RMSE): RMSE = \/ % Zfil (Ui — yi)?

* Coefficient of Determination (R?):
R* =121 (i = 90)°)/[20 (i — 9)*) where g = 5 3311w

Intuitively, a lower value of MAE, MSE, and RMSE, and a higher value of R? represent

a more accurate nitrate concentration estimation.

6.3. Nitrate Concentration Estimation Performance

In the first set of experiments, we evaluate the performance of nitrate concentration
estimation using the crowdsensing nitrate datasets collected from the two case stud-

ies. We report the evaluation results on Case Study I and Case Study II in Table 3

3https://www.epa.gov/nutrient-policy-data/estimated-nitrate—
concentrations—-groundwater-used-drinking
‘https://pytorch.org/
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and Table 4, respectively. We observe that our CrowdWaterSens achieves substantial
performance improvements compared to all baseline methods in terms of all evalu-
ation metrics on both case studies. In particular, CrowdWaterSens outperforms the
best-performing baseline (i.e., SmartWaterSens) by 7.1%, 4.3%, 4.1%, and 10.2%, in
terms of MAE, MSE, RMSE, and R? in Case Study I, respectively. We observe similar
performance gains in Case Study II as well. However, we also observe that the ni-
trate estimation errors of all methods in Case Study II are higher than the ones in Case
Study I. This is mainly due to the difference of the nitrate concentration in the water
samples between the two case studies, where the ground-truth nitrate concentrations
in Case Study I are in general much lower than the ground-truth nitrate concentrations
in Case Study II (Table 1 and 2). Such a difference also amplifies the crowdsens-
ing nitrate measurement errors given the fact that crowdsensing measurements are less
accurate on nitrate concentration above 2 mg/L due to the limited colorimetric pre-
cision of the test strips. Such significant performance improvements demonstrate the
effectiveness of CrowdWaterSens in accurately estimating the groundwater nitrate con-
tamination through the novel spatio-temporal crowdsensing contamination network. In
addition, we also attribute the performance gains of CrowdWaterSens to the principled
uncertainty network optimization strategy that explicitly examines the uncertainty of
crowdsensing nitrate measurements from unreliable crowd sensors to optimize the ni-

trate estimation performance in crowdsensing-based groundwater monitoring systems.

6.4. Ablation Study
In the second set of experiments, we conduct an ablation study to investigate the
contribution and effectiveness of major components in the CrowdWaterSens frame-

work. In particular, we consider the following model variants of CrowdWaterSens.

* CrowdWaterSens\S: The variant of CrowdWaterSens that ignores the spatial
distance between each pair of the crowdsensing nodes in CCN and assigns the

same weight to the spatial edges.

* CrowdWaterSens\T: The variant of CrowdWaterSens that excludes the tem-

poral relations between the crowdsensing nodes in different sensing cycles by
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Method MAE MSE RMSE R?
CrowdWaterSens  0.4639 0.4817 0.6829 0.3618
SmartWaterSens  0.4993 0.5032 0.7125 0.3247

NCE 1.0327 29376 1.7783 -0.2543
ELR 0.7794 1.6832 1.2784 -0.1407
NCRA 0.5376 0.6597 0.8133  0.2970
GWR 0.7926 1.1247 1.1359 0.0823
AVI 0.7326 0.7548 0.8837 -0.1032
BNN 0.7821 0.8733 09417 -0.2015
GCN 0.6849 0.8446 0.8973  0.0372
GTN 0.8734 09728 1.1873 -0.1769

Table 3: Nitrate Concentration Estimation Performance - Case Study I

Method MAE MSE RMSE R?
CrowdWaterSens 0.8932 29836 1.7729 0.3374
SmartWaterSens  0.9628 3.1726  1.8932  0.3089

NCE 1.9722 11.0278 3.3208 -0.0459
ELR 1.2376  6.7738  2.3849  0.1839
NCRA 1.0287 4.0215 2.1634 0.2337
GWR 1.3486  7.3849  2.5381 0.1329
AVI 1.4295 7.9447 2.8328 0.0916
BNN 1.4872 82476 3.0182 -0.1837
GCN 1.2293  6.2145 2.2935 0.1748
GTN 1.1834 5.6724 2.2403 0.1183

Table 4: Nitrate Concentration Estimation Performance - Case Study 11

removing the temporal edges in CCN.

* CrowdWaterSens\ C: The variant of CrowdWaterSens that excludes the anthro-
pogenic context of the crowdsensing nodes and only uses the crowdsensing mea-

surements as the node feature in DR-GCN.
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* CrowdWaterSens\U: The variant of CrowdWaterSens that removes the uncer-
tainty attention layer in DR-GCN and considers each node as equally important

in CCN.

We summarize the evaluation results of the ablation study on the datasets collected
from Case Study I and II in Table 5 and Table 6, respectively. Please note that our
Case Study II is designed to collect the crowdsensing data in a single round (i.e., the
participants were asked to only measure the nitrate concentration once on multiple ni-
trate solutions) and does not capture the temporal dynamics. Therefore, the results of
CrowdWaterSens\T are the same as CrowdWaterSens on the dataset from Case Study
IT and thus are omitted in Table 6. We observe that CrowdWaterSens achieves the
best performance when it integrates all components in the framework. The evaluation
results demonstrate the effectiveness and necessity of the key components in Crowd-

WaterSens.

Method MAE MSE RMSE R?
CrowdWaterSens ~ 0.4639 0.4817 0.6829 0.3618
CrowdWaterSens\S  0.5327 0.5287 0.7748 0.1938
CrowdWaterSens\T 0.5106 0.5172 0.7183 0.2174
CrowdWaterSens\C  0.4985 0.5013 0.7031 0.2635
CrowdWaterSens\U 0.5182 0.5216 0.7227 0.2218

Table 5: Ablation Study - Case Study I

Method MAE MSE RMSE  R?
CrowdWaterSens 0.8932 29836 1.7729 0.3374
CrowdWaterSens\S  0.9026 3.1195 1.8278 0.3185
CrowdWaterSens\C  0.8983 3.0837 1.8026 0.3027
CrowdWaterSens\U  1.1277 6.0739 2.2334 0.1039

Table 6: Ablation Study - Case Study II
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6.5. Effect of Training Data Size

In the third set of experiments, we further investigate the effect of training data
size on the performance of nitrate concentration estimation in CrowdWaterSens. In
particular, we vary the size of training data from 40% to 100% of the entire training
data and report the nitrate concentration estimation performance on the testing set in
Figure 7 and Figure 8 for Case Study I and II, respectively. We observe that the nitrate
estimation performance consistently increases as we increase the amount of training
data, indicating that additional training data will have great potential to enhance the
model performance. Such observation also encourages our future work to further ex-
tend the number of crowdsensing communities and recruit additional crowdsourcing

participants in our study.
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Figure 7: Estimation Performance vs. Training Data Size (Case Study I)

7. Discussion

In this study, we focus on the crowdsensing-based groundwater contamination es-

timation problem for groundwater quality monitoring in well-dependent communities

in the United States. We note that generalizability is an important aspect and therefore
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Figure 8: Estimation Performance vs. Training Data Size (Case Study II)

we highlight a few criteria for applying the CrowdWaterSens framework to monitor
groundwater quality in different scenarios (e.g., different geographical areas, ground-
water contaminants). First, CrowdWaterSens is designed to estimate groundwater con-
tamination in suburban and rural communities which do not have central water supply
systems and rely on groundwater from private wells as the primary drinking water
resource. There are a number of countries with well-dependent communities, includ-
ing the United States [56], Canada [57], Brazil [58], and Italy [59], to name a few.
Second, the CrowdWaterSens may be applied in the areas with groundwater contam-
inants that can be monitored by affordable test strips (e.g., lead [60], chlorine [61]).
Third, a reasonable number of participants need to be recruited, trained, and engaged
for the crowdsensing experiments to ensure the estimation accuracy of the contami-
nant concentration. In the case studies, we collaborated with local school systems to
demonstrate the feasibility of recruiting participants for crowdsensing-based ground-
water monitoring. We believe such a strategy can be generalized to recruit crowd-
sensing participants in common well-dependent communities to deploy the CrowdWa-

terSens framework. In all, if the above criteria are satisfied, we envision the Crowd-
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WaterSens framework has great potential to be generalized to a broader range of geo-
graphical regions (e.g., countries beyond the U.S.) to monitor groundwater quality in
well-dependent communities.

We also acknowledge that there may exist certain scenarios that do not meet the
above criteria. For example, an area may rely on the central water supply as the primary
water resource. Then, it may be unnecessary to apply the CrowdWaterSens framework
to monitor the groundwater quality because central water supply systems are routinely
monitored in the water supplying utilities. Alternatively, our CrowdWaterSens frame-
work could complement existing water quality management systems by monitoring
and estimating the water contamination occurring in water distribution systems (e.g.,
lead contamination caused by pipe corrosion [62]) at the household end. Therefore,
we believe there are many opportunities for CrowdWaterSens to be applied beyond the
aforementioned criteria and will continue to explore the potential opportunities in our
future work.

Moreover, we note that the crowdsensing participants have played an essential role
in the CrowdWaterSens framework. In this work, we recruited and trained our crowd-
sensing participants through the local high school systems to collect the crowdsensing
data for the experiments. While such a strategy is applicable to common residential
communities with municipal government, it may limit the participant population to a
determined group of high school students who have similar backgrounds (e.g., age,
education). Such a group of participants may have limited knowledge about the an-
thropogenic context of their households (e.g., farm proximity, fertilizer application),
leading to inaccurate crowdsensing data. To overcome such a limitation, we plan to fur-
ther explore the role of participants in CrowdWaterSens by expanding our participant
population to community residents beyond high school students. A possible solution
is to leverage the local homeowner associations or direct mail services to reach out to
a larger group of residents in the community of interest. In the meanwhile, we also
plan to design an anonymized survey to obtain the participant background informa-
tion associated with the crowdsensing measurements, which can be further leveraged

to enhance the estimation accuracy of CrowdWaterSens.
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8. Conclusion

This paper presents CrowdWaterSens, a crowdsensing-based scheme to address the
groundwater nitrate concentration estimation problem in well-dependent communities.
CrowdWaterSens designs a spatio-temporal crowdsensing contamination network to
explicitly model the underlying correlation between crowdsensing nitrate measure-
ments and the anthropogenic context of the studied areas to accurately estimate the
groundwater nitrate concentration. We carry out two real-world case studies using
crowdsensing nitrate measurements collected from Northern Indiana, United States,
to evaluate the CrowdWaterSens framework. Evaluation results show that CrowdWa-
terSens significantly outperforms state-of-the-art contamination estimation solutions in

accurately estimating nitrate concentration in groundwater.
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