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Abstract

This work is motivated by an article by Wang, Casati, and Prosen [Phys. Rev. E vol. 89,
042918 (2014)] devoted to a study of ergodicity in two-dimensional irrational right-
triangular billiards. Numerical results presented there suggest that these billiards are
generally not ergodic. However, they become ergodic when the billiard angle is equal to
⇡/2 times a Liouvillian irrational, morally a class of irrational numbers which are well
approximated by rationals. In particular, Wang et al. study a special integer counter that
reflects the irrational contribution to the velocity orientation; they conjecture that this
counter is localized in the generic case, but grows in the Liouvillian case. We propose a
generalization of the Wang-Casati-Prosen counter: this generalization allows to include
rational billiards into consideration. We show that in the case of a 45�:45�:90� billiard,
the counter grows indefinitely, consistent with the Liouvillian scenario suggested by Wang
et al.
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1 Introduction

In Ref. [1] Wang, Casati, and Prosen studied ergodicity in two-dimensional irrational right-
triangular billiards. The numerical results presented there suggest that while these billiards are
not ergodic in general, they become ergodic when the billiard angle is equal to ⇡/2 times a
Liouvillian irrational. The latter is a class of numbers with properties lying in between irrational
and rational.

Authors present an elegant semi-empirical construction that sheds light to the mechanisms
behind the ergodicity breaking. Using numerical evidence, they conjecture that for a given
rational approximant of the billiard angle (in units of ⇡/2) ergodicity requires an exponentially
long time to establish, while the validity of the approximant expires in a linear time, both in
terms of approximant’s denominator. They state a very modest necessary condition for the
ergodicity of the original, irrational billiard: for each rational approximant, ergodicity must be
reached before approxomant’s successor becomes invalid. A generic irrational number for the
billiard angle won’t pass this test. However, Liouville numbers—numbers for which the error of
a rational approximation decreases faster than any negative power of its denominator—produce
billiards that satisfy the above necessary condition. If the propagation time is bounded from
above, Liouville builliards are indistinct from the rational ones: expectedly, the rational billiards
themselves also pass the test.

As a quantitative measure of ergodicity, Wang et al. introduce a special integer counter (that
we will call, in this text, a Wang-Casati-Prosen counter) that reflects the irrational contribution
to the velocity orientation. Ergodicity requires that this counter grows indefinitely with time.
Authors provide a numerical evidence that the counter is localized in the generic irrational
billiards. They further conjecture that the counter grows in the Liouvillian case. They base this
conjecture on the fact that Liouville billiards satisfy the thecessary condition for the ergodicity
described in the previous paragraph. This former conjecture is also consistent with the rigorous
results presented in [2], for a subset of Liouville numbers.

Motivated by Wang et al., here we study an extencion of the Wang-Casati-Prosen counter
for a 45�:45�:90� billiards—a rational billiard featuring only eight velocity orientations for
any generic trajectory—and find, in accordance with the scenario suggested in [1] for the
Liouville numbers, that this counter grows indefinitely. We prove the absence of localization by
identifying a subsequence along which the Wang-Casati-Prosen counter provably grows, albeit
in a logarithmic fashion.

At a technical level, analytical results we obtained became possible thanks to the solvability
of the 45�:45�:90� billiards using the method of images.
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2 Motivation: Wang-Casati-Prosen counter in right-triangular bil-
liards. First appearance of the rational billiards

In [1], authors consider a single two-dimensional point-like particle moving in a right-triangular
billiards (see Fig. 1) of an acute angle ↵̃/2 = ((

p
5�1)/4)⇡ (↵/2 in the original). The physical

�̃/2
L

R

C

�0

Figure 1: The right-triangular billiards considered in [1]. ✓0 gives the orientation
of the initial velocity. ↵̃/2 is one of the angles. See text for the rationale behind the
names of the sides of the triangle.

model behind the right-triangular billiards consists of two one-dimensional hard-core point-like
particles between two walls. The map is described in [1] and elsewhere. According to the map,
the vertical cathetus, the horizontal cathetus, and the hypothenuse correspond respectively
to the left particle colliding with a wall (L), the right particle colliding with a wall (R), and a
particle-particle collision (C); hence the naming of the sides in Fig. 1 and throughout the text.

A particle’s trajectory starts at some point inside the billiards, with a velocity vector at an
angle ✓0 to the horizontal axis. The authors of [1] observe that at any instant of time, the angle
✓ between the velocity and the horizontal has the form

✓ = K↵̃+

8
>>>>>>><
>>>>>>>:

+✓0
or
�✓0
or
+(⇡� ✓0)
or
�(⇡� ✓0)

9
>>>>>>>=
>>>>>>>;

,

with the counter K being an integer. The paper studies the growth of the magnitude of K

over time. The numerical evidence presented in [1] suggests that K is localized within a
⇠ ±20 range around the origin, suggesting absence of ergodicity. The authors suggest that
this phenomenon is general for generic ↵̃, while conjecturing an absence of localization for
↵̃ = Liouvillian_number ⇥ ⇡. In our paper, we study an analogue of the counter K for the
rational case of ↵̃= ⇡/2. We find no localization, in accordance with the expectations of [1].

To proceed, observe that the velocity orientation, and, thus, the counter value does not
change between the particle-wall collisions. Hence, the counter K is a function of the number i

of particle-wall collisions prior. As such, the temporal index i labels the time intervals between
two successive partcle-wall collisions. Accordingly, from now on, we will denote K as Ki . It is
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easy to show (see [1]) that the rule for updating the counter Ki is as follows:

Ki+1 =

8
>><
>>:

�Ki + 1 , if the event that separates the i + 1’st
and i’th time interval is C

�Ki , if the event that separates the i + 1’st
and i’th time interval is L or R

9
>>=
>>;

,

K0 = 0 .

(1)

This is a crucial moment. Let’s try to assign a rational value to ↵̃/⇡. The meaning of the
counter K as the value of the ↵̃/⇡ contribution to the velocity orientation will be completely
lost: there will be an infinite multiplicity of values of K leading to the same velocity orientation.
However, the dynamics of the counter K itself remains nontrivial, constituting a viable object
of study. More interestingly, it remains nontrivial (i.e. no closed form formula exists for the
counter K as a function of i, for a given initial condition) even the for the two integrable

right-triangular billiards: 30�:60�:90� an 45�:45�:90� respectively. The latter billiard is the
one our article focusses on.

3 Irrational rotations

Given an ↵ : 0 ↵< 1, we consider the ↵-rotational trajectory emerging for x0 2 [0, 1),

x
(↵)
j+1 = (x

(↵)
j
+↵) mod 1 , j 2 N0 , (2)

x
(↵)
0 = x0 , (3)

where N0 := N[ {0}.
For a fixed � : 0 � < 1, introduce an “observable” f

(�) : [0, 1)! {�1, +1},

f
(�)(x) =

⇢
+1 , for x 2 II := [0,�) ,
�1 , for x 2 III := [� , 1) , (4)

and a corresponding sequence

f
(↵,�)
j

:= f
(�)(x (↵)

j
) , j 2 N0 . (5)

Finally, for each j 2 N0, consider an “increment”

✏
(↵,�)
j

:= �( f (↵,�)
j

)
jY

j0=0

f
(↵,�)
j0 , (6)

with

�( f ) :=
⇢

2 , for f = +1 ,
1 , for f = �1 . (7)

Our primary object of interest is the following “counter”:

S
(↵,�)
j

=
j�1X

j0=0

✏
(↵,�)
j0 , j 2 N0 . (8)

A similar object was considered in [3]. There, III was any connected nonempty subset of [0, 1)
and �( f ) = 1.
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We recognize that there is a wide range of papers in the mathematics literature, written
from a more general point of view, which are dedicated to studying the ergodic properties of
billiards and cocycle maps of the type considered here. As mentioned earlier, our model can
be considered a part of a certain family of dynamical systems which were first investigated in
1968 by W.A. Veech in [3]. Without aiming for a complete list, we refer the reader to e.g. [4,5]
and [6–8] for a few more recent general accounts of recurrence and ergodicity of cocycles over
a rotation in relation to the model considered here.

Rather than aiming for generality, the purpose of this work is to construct explicit analytical
examples for a concrete physical model of interest, for which the numerical studies in [1]
indicated an interesting behavior of the counter depending on Diophantine properties.

Specifically, our main result, Theorem 7.1, considers the “diagonal” case

↵= � =: � ,

for which, motivated by the results in [1], we provide analytical evidence for a subtle dependence
of the counter on the Diophantine properties of the parameter �. Specifically, we explicitly
describe a set of irrational values of � for which we can verify indefinite growth of the counter
for a full-measure set of initial conditions:

Theorem 3.1. There exists a non-empty set of irrationals ⌃ ✓ (0, 1) so that for each � 2 ⌃, the

following holds: There is an associated full measure set of initial conditions ⌦(�) such that for all

x0 2 ⌦(�), one has

limsup
j!1

��Sj

��=1 . (9)

Remark 3.2. The set ⌃ in Theorem 3.1 is described explicitly in terms of continued fraction
expansion of its elements, see Theorem 7.1 of Section 7. The description of the full measure set
of initial conditions ⌦(�) is given in Remark 7.2 of Section 7. It remains an interesting open
question whether the conditions on � and x0 are indeed necessary and whether the growth
along a subsequence could be strengthened to growth along the entire sequence, which would
replace the lim sup in (9) by a limit; see also our remarks at the end of Section 7.

4 Connection between the irrational rotations and the Wang-Casati-
Prosen counter in a 45�:45�:90� billiard

Let us return back to the end of the Section 2. Without loss of generality, assume that i = 0
labels an interval between an L and an R event, the former preceded by C (see Fig. 1). Name
the two events preceding the interval i = 0 as C

? and L
⇤, for future reference. Introduce a

counter

Pi := (�1)i+1
Ki ,

a temporal index

m̄(i) := # C-events between the C
?-event and the i’th interval, excluding C

? ,

and another temporal index

i
0(m) := inf {i : m̄(i) = m} .

Observe that the counter Pi is a function of m̄(i) alone as it does not change after L and R

events. Accordingly, introduce a counter

Qm := Pi0(m) .
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Recall that, by construction,

|Qm|= |Ki0(m)| ,

so that if Qm is found to be unbounded, then Ki will be unbounded as well.
Note also that m labels a temporal interval between two successive C events. A crucial

observation is that the dynamics of the counter Qm is governed by

Qm+1 =Qm + "m ,

Q0 = 0 ,
(10)

with

"m := (�1)M , (11)

where

M := # C LRC- or CRLC-intervals between the C
?-event,

inclusive, and the m’th interval, inclusive .

So far, our discussion concerned a generic right triangle of Fig. 1. From now on, let us
assume a 45�:45�:90� billiards, i.e. that

↵̃=
⇡

2
. (12)

Also assume, without loss of generality, that

⇡

4
 ✓0 <

⇡

2
. (13)

Thanks to the method of images—described in the caption of Fig. 2—particle’s trajectory
becomes fully predictable, even for long propagation times, with no sensitivity to the initial
conditions. The evolution of the counter Q (see (10)-(11)) remains sensitive to the initial
conditions. During a sequence of C LRC and CRLC fragments, the counter Q lingers around a
particular value, with no substantial evolution. Such sequences are interrupted by an occasional
(isolated, given (12)-(13)) CRC LC fragment that changes the value of the counter by ±2.
Whether the change keeps the sign of the previous ±2 jump or flips it depends on the parity of
the number of the C LRC and CRLC fragment in between. This parity, in turn, can be altered
by a small change in the initial position, leading to large deviations at long propagation times.

Let us introduce another temporal index,

j̄(m) := # C LRC , CRLC , and CRC LC fragments between the
C
?-event and the m’th interval .

Note that j̄(m) counts the number of “vertical” C-events between C
?, exclusive, and the m’th

interval (see Fig. 2).
Accordingly, introduce

m
0( j) := inf

�
m : j̄(m) = j

 
.

Observe now that the counter Qm is a function of j̄(m) alone. Finally, introduce the counter

Sj :=Qm0( j) .

Again, by construction,

|Sj |= |Ki0(m0( j))| ,
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�I

�II

�II

�I

x = 0
�II

�I

x = 1� C� L�

R
C

L

R C
R

C

L
C

L
R C

�0
�0

S0 x1 x2 x3 x4S1 S2x0 S3

Figure 2: The relationship between the dynamics in a 45� : 45� : 90� billiards and
irrational rotations. The grey triangle corresponds to the billiards in question. The
white triangles are the images of the original billiards obtained via mirror reflections
with respect to the wall that the particle hits. The subsequent fragment of the particle’s
trajectory is reflected as well; as a result, the trajectory becomes a straight line traveling
through a plane tiled by the copies of the original billiards. The large black circle
corresponds to the initial position of the particle. The vertical dotted and “hand-drawn”
lines correspond to two intervals in the related irrational rotation model. x j is the
phase space variable in the irrational rotations. See the text for the definition of the
counter Sj . The time j counts the vertical C-lines crossed by the trajectory.

and a growth of the artificially constructed counter Sj would indicate a growth of the physical
counter of interest, Ki .

Recall that j labels the temporal intervals between successive “vertical” C events. Let it also
label the left “vertical” C event for a given j’th interval. Without loss of generality assume that
the hypothenuse C has unit length:

length(C) = 1 .

Introduce

x j := position of the “vertical” particle-wall collision ,

in terms of the tiling depicted in Fig. 2. Notice that—for notational convenience—the origin
x = 0 is a distance tan(�0) away from the top corner. It is easy to see that x j undergoes a
sequence of irrational rotations, with a shift

� = tan(�0) ,

where

�0 := ✓0 �
⇡

4
,

0 �0 <
⇡

4
.
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Now, divide each of the “vertical” C-walls onto two areas

II := [0, �[ and III := [�, 1[ .

Observe that if x j gets to the II area, a CRC LC fragment will follow and the counter S will
change by ±2, with the same sign as the preceding increment. (Recall that (12)-(13) dictate
that C LCRC fragments are impossible, and that each CRC LC fragment is isolated, i.e. it is
surrounded by either C LC or CRC fragments.) Likewise, when x j is in III, a C LC or CRC

fragment follows, and the counter S changes by ±1, reversing the sign of the previous change.
All in all, it is easy to show that the counter Sj follows the dynamics described by the equations
(2), (4), (5), (6), (7), and (8).

5 The method of study: auxiliary rational rotations

Let us return back to the end of the Section 3. For a given irrational � : 0< � < 1, consider its
continued fraction expansion

� = [0; a1, a2, . . .] ,

and the corresponding convergents (rational approximants),

�n := [0; a1, a2, . . . , an] =
pn

qn

, n 2 N ,

where pn and qn are mutually prime.
For n 2 N, consider an auxiliary trajectory (x (�n)

j
) j2N0

. Observe that this trajectory is
qn-periodic, i.e.

x
(�n)
j+qn

= x
(�n)
j

, for all j 2 N0 , (14)

whence so is the sequence of observables ( f (�n,�n)
j

) j2N0
. The definition in (6) thus implies that

(✏(�n,�n)
j

) j2N0
is either periodic or anti-periodic with period qn,

✏
(�n,�n)
j+qn

= ⌘(�n,�n)
n

✏
(�n,�n)
j

,

where

⌘(↵,�)
n

:= sign(✏(↵,�)
qn�1 ) =

qn�1Y

j=0

f
(↵,�)
j

.

As a result, the sequence of corresponding counters either grows indefinitely, period after
period, or remains trapped around zero:

S
(�n,�n)
Nqn

=

8
<
:

N , for ⌘
(�n,�n)
n = +1⇢

0 , for N = even
1 , for N = odd

�
, for ⌘

(�n,�n)
n = �1

9
=
; · S

(�n,�n)
qn

,

for any N 2 N. In particular, if ⌘(�n,�n)
n = +1 and S

(�n,�n)
qn

6= 0, the counter S
(�n,�n)
j

is obviously
unbounded, since it is unbounded on the subsequence with j = Nqn, where it grows as

S
(�n,�n)
Nqn

⌘
(�n ,�n)
n =+1
= NS

(�n,�n)
qn

. (15)

This observation is the cornerstone of the proof of unboundedness of S
(�,�)
j

for appropriately
chosen irrational rotations � and initial conditions x0, which will be constructed in Section 7
(Theorem 7.1).
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6 Growth for (rational) auxiliary rotations

Fix n 2 N and consider the qn-periodic auxiliary trajectory (x (�n)
j
) j2N0

. The goal of this section

is to explore the structure of the trajectory to quantify the growth of the counters S
(�,�)
j

over
one period 0 j  qn � 1. Specifically, we will establish the following:

Proposition 6.1. Suppose that both pn and qn are odd. Then, one has the lower bound

���S(�n,�n)
qn

���� 2 . (16)

To prove Proposition 6.1, we start by recalling some basic facts about rational rotations.
First observe that since gcd(pn, qn) = 1, the finite trajectory {x (�n)

j
, 0 j  qn � 1} consists of

qn distinct points, each of which is visited only once. Moreover, identifying R/Z with the unit
circle S

1 ✓ C via the bijection t 7! e2⇡i t and noticing that
⇣

e2⇡i(x0�x
(�n)
j
)
⌘qn

= 1 (17)

shows that the points e2⇡i(x0�x
(�n)
j
) are merely permutations of the qn-th roots of unity, i.e.

{x (�n)
j

, 0 j  qn � 1}= {x0 +
k

qn

, 0 k  qn � 1} . (18)

In particular, writing

x0 =
Å

x0 mod
1
qn

ã
+
bx0qnc

qn

=: x0,n + k0,n
1
qn

, (19)

we may represent the elements of the finite trajectory {x (�n)
j

, 0 j  qn � 1} in the form

x
(�n)
j
= x0,n +

kj,n

qn

, 0̧ j  qn � 1 , (20)

with
kj,n := (k0,n + jpn) mod qn . (21)

The main merit of the representation of the auxiliary trajectory in (19)-(21) is that it allows to
keep track of the value of the observable since

f
(�n,�n)
j

=
⇢
+1 , for kj,n = 0, 1, . . . , pn � 1 ,
�1 , for kj,n = pn, . . . , qn � 1 . (22)

In particular, (22) immediately yields

Lemma 6.2.

⌘(�n,�n)
n

= +1 , for qn � pn = even .

Proof. For 0  j  qn � 1, kj,n will visit each of the qn points 0, 1, . . . , qn � 1 precisely once.
Therefore, (22) implies that

⌘(�n,�n)
n

=
qn�1Y

j=0

f
(�n,�n)
j

is a product of pn factors +1 and qn � pn factors �1. Thus, if qn � pn is even, we conclude that
⌘
(�n,�n)
n = +1.
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We are now ready to prove the main result of this section:

Proof of Proposition 6.1. According to (22), we have

✏
(�n,�n)
j

=
⇢
+2 , for kj,n = 0, 1 . . . , pn � 1
�1 , for kj,n = pn, pn, . . . , qn � 1

�
· sign(✏(�n,�n)

j�1 ) . (23)

Using the fact that, for 0 j  qn � 1, kj,n will visit each of the qn points 0, 1, . . . , qn � 1
precisely once, we may consider the subsequence jl consisting of all instances j for which
f
(�n,�n)
j

= �1; in particular, along this subsequence one has

✏
(�n,�n)
jl

= �✏(�n,�n)
jl�1

.

The sequence ✏(�n,�n)
jl

has an even number of terms (i.e. qn � pn), and thus does not

contribute to the sum S
(�n,�n)
qn

=
P

qn�1
j0=0 ✏

(�n,�n)
j

. By (23), the remaining summands are all

±2, and there is an odd number of them (i.e. pn). In summary, we conclude |S(�n,�n)
qn

|� 2, as
claimed.

7 Constructing an unbounded subsequence of the counter trajec-
tory, for an irrational rotation

We are now in a position to formulate and prove our main result:

Theorem 7.1. Let � = [0; a1, a2, . . . ] 2 (0,1) be irrational such that its continued fraction

expansion has the following properties: there exists a subsequence (nm)m2N of 2N such that

(a) (anm
)m2N is unbounded,

(b) for all m 2 N, both pnm
and qnm

are odd ( and thus the conditions of the Lemma 6.1 are

satisfied, for n= nm).

Then there exists a full measure set of initial conditions ⌦(�) ✓ [0,1) such that for each

x0 2 ⌦(�), one has

limsup
j!1

��Sj

��=1 . (24)

Remark 7.2. Our proof of Theorem 7.1 implies the following explicit description of the set
⌦(�):

⌦(�) :=
[

Q2N

ß
x0 2 [0, 1) : {x0qnm

}< 1� 1
Q

, for infinitely many m 2 N
™

. (25)

Here {x} := x � bxc denotes the fractional part of x 2 [0, 1).
Observe that ⌦(�) is a set of full Lebesgue measure in [0,1). Indeed, considering its

complement

[0,1) \⌦(�) = {x0 2 [0,1) : {x0qnm
}! 1} (26)

✓
�

x0 2 [0, 1) : |||x0qnm
|||! 0

 
, (27)

where |||x ||| := infn2Z |x � n| is the usual norm in R/Z, shows that the set on the right-hand
side of (27) is a proper subgroup of R/Z. Thus, a well known fact from harmonic analysis
(see e.g. problem 14 in Sec. 1 of Katznelson’s book [9]) implies that (27), and hence also
[0, 1) \⌦(�), has zero Lebesgue measure.
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Before turning to the proof of Theorem 7.1, we comment on the existence of irrationals �
described in that theorem. To construct explicit examples of such �, we first recall that the
continued fraction expansion of � = [0; a1, a2, . . . ] 2 (0, 1) satisfies the recursion relations (see
e.g. [10]):

pn = anpn�1 + pn�2 , (28)

qn = anqn�1 + qn�2 , for all n 2 N , (29)

with initial conditions

p0 = 0 , p�1 = 1 ,

q0 = 1 , p�1 = 0 . (30)

Suppose that (an) is a sequence in (2N � 1). Using induction, the recursion relations
(28)-(29) together with the initial conditions (30) imply that

pn =

®
odd , if n⌘ 1,2 mod 3 ,
even , if n⌘ 0 mod 3 ,

(31)

and

qn =

®
odd , if n⌘ 0,1 mod 3 ,
even , if n⌘ 2 mod 3 .

(32)

The conditions of Theorem 7.1 are thus satisfied for (n⌘ 1 mod 3), specifically by letting

nm = 3(2m� 1) + 1 , m 2 N . (33)

In summary, we have shown that all irrationals � = [0; a1, a2, . . . ] 2 (0,1) for which the
sequence of elements (an) has odd parity satisfy the hypotheses of Theorem 7.1.

Proof of Theorem 7.1. Let � 2 (0,1). Observe that since both conditions (a) and (b) are
assumed to only hold along some subsequence (nm)m2N of 2N, possibly passing to a sub-
subsequence one may replace hypothesis (a) with

lim
m!1

anm
=1 . (34)

Fix an initial condition x0 2 ⌦(�), where ⌦(�) is described in (25); in particular, there
exists a Q 2 N such that

{x0qnm
}< 1� 1

Q
, for infinitely many m 2 N . (35)

Again, possibly passing to an appropriate subsequence, we may simply assume that

{x0qnm
}< 1� 1

Q
, for all m 2 N . (36)

We recall two useful properties of continued fractions (see e.g. [10]): For all n 2 N, one has

|�n ��|<
1

qnqn+1
, (37)

morevoer, since by hypothesis nm 2 2N, one has

�nm
< � , for all m 2 N . (38)
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Now fix m 2 N, and let

j
(Q)
m

:= b
anm+1

Q
cqnm

. (39)

Then, for 1  j < j
(Q)
m

, using (37), (39), and the recursion relation in (29), we make the
estimate

|x (�)
j
� x

(�nm
)

j
|< j

(Q)
m
|���m|

1
Qqnm

. (40)

Moreover, notice that the representation of the elements of the rational auxiliary trajectory
in (19)-(20) implies

x
(�nm

)
j

=
✓

x0 mod
1

qnm

◆
+

kj,nm

qnm

=
{x0qnm

}
qnm

+
kj,nm

qnm

<
1� 1

Q

qnm

+
kj,nm

qnm

(41)


1� 1

Q

qnm

+
qnm
� 1

qnm

 1� 1
Qqnm

, for 0 j  qnm
� 1 . (42)

Thus, for 0 j < j
(Q)
m

, we conclude from (40) and (42) that

x
(�)
j
=

0
BBB@ j(���nm

)| {z }
< 1

Qqnm

+ x
(�nm

)
j| {z }

1� 1
Qqnm

1
CCCA mod 1

= j(���nm
) + x

(�nm
)

j
,

whence

x
(�)
j
< x

(�nm
)

j
+

1
Qqnm

, 0 j < j
(Q)
m

, (43)

x
(�)
j
� x

(�nm
)

j
+ (���nm

) , 1 j < j
(Q)
m

. (44)

Let us now prove that

f
(�,�)
j

= f
(�nm

,�nm
)

j
, for 0 j < j

(Q)
m

. (45)

Using (43), one has for j < j
(Q)
m

f
(�nm

,�nm
)

j
= +1 , x

(�nm
)

j
< �nm

and kj,nm
 pnm

� 1

) x
(�nm

)
j

+ 1
Qqnm

(41)
 �nm

(43)) x
(�)
j
 �nm

(38)
< �

) f
(�,�)
j

= +1 .

(46)

Similarly, for 1 j < j
(Q)
m

, (44) yields that

f
(�nm

,�nm
)

j
= �1 , x

(�nm
)

j
� �nm

, x
(�nm

)
j

+ (���nm
)� �

(44)) x
(�)
j
� �

, f
(�,�)
j

= �1 .

(47)
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Finally, since x
(�nm

)
0 = x

(�)
0 = x0,

f
(�nm

,�nm
)

j

j=0
= f

(�,�)
j

. (48)

In summary, (46), (47), and (48) validate (45).
Therefore, for j < j

(Q)
m

, any conclusion about the auxiliary sequence f
(�nm

,�nm
)

j
will be valid

for the sequence f
(�,�)
j

. By the definition of the increments ✏(↵,�)
j

in (6), (45) implies

✏(�,�)
j

= ✏
(�nm

,�nm
)

j
, for 0 j < j

(Q)
m

. (49)

Finally, since the counter S
(↵,�)
j

is only sensitive to the values of ✏(↵,�)
j0 for j

0 : 0  j
0  j � 1

(see (8)), we obtain

S
(�,�)
j

= S
(�nm

,�nm
)

j
, for j  j

(Q)
m

. (50)

In particular, the property (15) will be valid for S
(�,�)
Nqnm

, with N = banm+1/Qc. To see this,
we combine (50), condition (b) of Theorem 7.1, and Proposition 6.1 to get

����S
(�,�)
j
(Q)
m

����=
����S
(�nm

,�nm
)

j
(Q)
m

����=
����S
(�nm

,�nm
)

b anm+1
Q
cqnm

����= b
anm+1

Q
c
���S(�nm

,�nm
)

qnm

���� 2b
anm+1

Q
c . (51)

By hypothesis (a) of Theorem 7.1, this implies the claim in (24).

What follows from the Theorem 7.1, is that overall, the sequence S
(�,�)
j

is unbounded, in a
seeming contradiction to the observation [1].

Remark 7.3. Inequality (51) implies, using (39) and the properties of continued fractions [10],
that the growth along the subsequence j

(Q)
m

is at least logarithmic. Note that the subsequence
itself is at least exponentially sparse. However, choosing a very fast growing sequence anm+1

one can also ensure any faster sublinear growth rate along j
(Q)
m

, although it will come at the
expense of making the subsequence of growth even sparser.

We mention that it remains an open question whether the condition on the rotations � in
Theorem 7.1, or the respective condition on the initial conditions in (25), are indeed necessary.
In particular, an interesting question for future research may be to examine the case of � of
bounded type (e.g. take � equal to the golden mean), which however requires development of
a different proof strategy.

8 Conclusions: implications of our results on irrational rotations
for the Wang-Casati-Prosen counter in a 45�:45�:90� billiard

The result of Theorem 3.1 suggests that the counter Ki (see (1)) of [1] shows absence of
localization of the counter, for a 45� : 45� : 90� billiards, at least for one particular initial
condition, and, if proven, for all rational initial conditions. It seems unlikely localization can
reemerge in the generic ↵̃/2:(90� � ↵̃/2) :90� case of [1]. Numerical results of [1] do however
suggest localization. A potential resolution for this contradiction can be offered by a probable
very slow growth of the counter. In what follows, we will provide an explicit example that
confirms this slowness.
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|S
j|

Figure 3: Counter Sj as a function of “time” j. We show 200 randomly chosen
instances. In addition, we show Sj at jm=0, 1, 2 (see (39) for Q = 1 and x0 = 0), along
with the lower bound (51). Blue, green, and orange dots correspond to m= 0, 1, 2,
respectively.

Consider

� = [0; 2, 3, . . . , n+ 1, . . .] (52)

⇡ 0.433127 .

Using the recurrence relations (28)-(29) with the initial conditions (30) one can easily show
that the subsequence of the rational approximants with

nm = 4m+ 2 ,

will satisfy all conditions of Theorem 7.1. Thus, for x0 = 0, the proof of Theorem 7.1 (use (39)
with Q = 1) shows that Sjm

is unbounded for

jm = a4m+3 q4m+2 .

The first three temporal instances showing a provable growth are

m= 0 1 2 . . . ,
j = 28 55688 695991252 . . . ,

Sj = +8 +16 +24 . . . ,��Sj

��� 2 a4m+3 = 8 16 24 . . . ,

(see Fig. 3). The last line gives the lower bound (51). Notice that
��Sj

�� stays at its lowest value
allowed, something that we can neither prove nor disprove at the moment.

The growth of the counter, while present, appears to be slow. We suggest the following
order of magnitude estimate for the growth of the counter. From (29), we get

ln(qn)⇠ ln(an!)⇡ an ln(an)) ln(an)⇠
ln(qn)

ln(ln(qn))
) Sj ¶ 2

ln( j)
ln(ln( j))� 1

.
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Figure 4: Counter Ki of [1] as a function of “time” i. In terms of [1], the rest is the
same as in Fig. 3

The corresponding values of the “physical” counter in question, from Ref. [1], can also be
computed (see Fig. 4).:

m= 0 1 2 . . . ,
i = 96 191184 2389426656 . . . ,

Ki = �8 �16 �24 . . . ,
|Ki |� 2 a4m+3 = 8 16 24 . . . .

Recall that Sj = (�1)i( j)+1
Ki( j). Also, i( j) can be estimated as

i( j)⇡ (�⇥ 4+ (1��)⇥ 3)⇥ j ⇡ 3.43313⇥ j ,

producing j = 96.1, 191184.0, 2389426656.0, . . . in the second line above. The estimate is
using (a) the ergodicity of the irrational rotations, leading to Prob (x 2 II ⌘ [0, �[ ) = � and
Prob (x 2 III ⌘ [�, 1[ ) = 1 � � and (b) the fact that x 2 II corresponds to a four-physical-
events RCLC fragment, while x 2 III corresponds to either LRC or RLC three-physical-events
fragments.
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