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Abstract

Circuit-augmentation algorithms are generalizations of the Simplex method, where in each
step one is allowed to move along a fixed set of directions, called circuits, that is a superset
of the edges of a polytope. We show that in the circuit-augmentation framework the greatest-
improvement and Dantzig pivot rules are NP-hard, already for 0/1-LPs. Differently, the steepest-
descent pivot rule can be carried out in polynomial time in the 0/1 setting, and the number of
circuit augmentations required to reach an optimal solution according to this rule is strongly-
polynomial for 0/1-LPs.

The number of circuit augmentations has been of interest as a proxy for the number of
steps in the Simplex method, and the circuit-diameter of polyhedra has been studied as a lower
bound to the combinatorial diameter of polyhedra. Extending prior results, we show that for
any polyhedron P the circuit-diameter is bounded by a polynomial in the input bit-size of P .
This is in contrast with the best bounds for the combinatorial diameter of polyhedra.

Interestingly, we show that the circuit-augmentation framework can be exploited to make
novel conclusions about the classical Simplex method itself: In particular, as a byproduct of our
circuit results, we prove that (i) computing the shortest (monotone) path to an optimal solution
on the 1-skeleton of a polytope is NP-hard, and hard to approximate within a factor better than
2, and (ii) for 0/1 polytopes, a monotone path of strongly-polynomial length can be constructed
using steepest improving edges.

1 Introduction

Linear Programming (LP) is one of the most powerful mathematical tools for tackling optimization
problems. While various algorithms have been proposed for solving LPs in the past decades,
probably the most popular method remains the Simplex method, introduced by G. B. Dantzig in
the 1940’s. In what follows we assume the input LP is given in the general minimization format

min { c⊺x : Ax = b, Bx ≤ d, x ∈ R
n } . (1)

Here the objective function is minimized over the polyhedron P = {x ∈ R
n : Ax = b, Bx ≤ d} of

feasible solutions. The 1-skeleton of the polyhedron P is the graph given by the 0-dimensional faces
(vertices) and 1-dimensional faces (edges) of P. Given an objective function to minimize on P, a
path on the 1-skeleton is called monotone if every vertex on the path has an associated objective
function value larger than its subsequent one. The Simplex method starts with an initial feasible
extreme point solution of the LP, and in each step, it moves along an improving edge to an adjacent
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extreme point, until an optimal solution is found or unboundedness is detected. Effectively there
is a monotone path from an initial extreme point solution of an LP to an optimal one.
Despite having been used and studied for more than 70 years, it is still unknown whether there
is a rule for selecting an improving neighbor extreme point, called a pivot rule, that guarantees
a polynomial upper bound on the number of steps performed by the Simplex method. In fact,
a longstanding open question in the theory of optimization [43] states: is there a version of the
Simplex method, i.e., a choice of pivot rule, that can solve LPs in strongly-polynomial time?
We contribute the following new results about the behavior of the Simplex method. First, we give a
partial answer to the above question for linear programs whose feasible region P is a 0/1 polytope
(in the rest of the paper we will often refer to them as 0/1-LPs). We are able to exploit their
steepest edges: At a given vertex x, a steepest edge is given by the edge minimizing c⊺g

||g||1
among all

the edges g incident at x. A steepest-descent pivot rule asks to iteratively select a steepest edge
as the improving direction.

Theorem 1. Given an LP in the general form (1) whose feasible region P is a 0/1 polytope, then

(i) One can construct a monotone path between any vertex and the optimum via steepest edges,
whose length is strongly-polynomial in the input size of the LP.

(ii) When the feasible region P is a non-degenerate 0/1 polytope, the Simplex method with a
steepest-descent pivot rule reaches an optimal solution in strongly-polynomial time.

In addition, we consider the following legitimate question: can one hope to find a pivot rule that
makes the Simplex method use the shortest monotone path? We here show a negative answer.

Theorem 2. Given an LP and an initial feasible solution, finding the shortest (monotone) path
to an optimal solution is NP-hard. Furthermore, unless P=NP, it is hard to approximate within a
factor strictly better than two.

The above theorem implies that for any efficiently-computable pivoting rule, an edge-augmentation
algorithm (like the Simplex method) cannot be guaranteed to reach an optimal solution via a min-
imum number of augmentations (i.e., non-degenerate pivots), unless P=NP. We remark that these
hardness results require the use of degeneracy. The same theorem for non-degenerate polytopes
would be a stronger result, and is left as an open question.

The methods we used to prove these two theorems are of independent interest. We arrived to the
results above while thinking about a much more general family of algorithms that includes the
Simplex method. Circuit-augmentation algorithms are extensions of the Simplex method where
we have many more choices of improving directions available at each step—more than just the
edges of the polyhedron. Our results are valid in this more general family of circuit-augmentation
algorithms which we now introduce to the reader.

Given a polyhedron, its circuits are all potential edges that can arise by translating some of its
facets. Circuits are important not just in the development of linear optimization [7, 38], but they
appear very naturally in other areas of application where polyhedra need to be decomposed [35].
Formally:

Definition 1. Given a polyhedron of the form P = {x ∈ R
n : Ax = b, Bx ≤ d}, a non-zero vector

g ∈ R
n is a circuit if

(i) g ∈ ker(A), and

(ii) Bg is support-minimal in the collection {By : y ∈ ker(A),y 6= 0}.
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Here ker(A) denotes the kernel of the matrix A. As we will see later, from a geometric perspective
the circuits can capture the extreme rays of a cone containing any improving direction, and allow
one to represent any augmentation as a sum of at most n circuit-augmentations.
To represent the circuits with a finite set, we can normalize them in various ways. Following
[11, 12, 14, 18], we denote by C(A,B) the (finite) set of circuits with co-prime integer components.

Given an initial feasible point of an LP, a circuit-augmentation algorithm at each iteration moves
maximally along an improving circuit-direction until an optimal solution is found (or unboundedness
is detected). Circuits and circuit-augmentation algorithms have appeared in several papers and
books on linear and integer optimization (see [8, 9, 10, 11, 12, 13, 14, 22, 25, 27, 36, 38, 42] and the
many references therein). In particular, the authors of [14] considered linear programs in equality
form and analyzed in detail three circuit-pivot rules that guarantee notable bounds on the number
of steps performed by a circuit-augmentation algorithm to reach an optimal solution.
Given a feasible point x ∈ P, the proposed rules are as follows:

(i) Greatest-improvement circuit-pivot rule: select a circuit g ∈ C(A,B) that maximizes the
objective improvement −c⊺(αg), among all circuits g and α ∈ R>0 such that x+ αg ∈ P.

(ii) Dantzig circuit-pivot rule: select a circuit g ∈ C(A,B) that maximizes −c⊺g, among all
circuits g such that x+ εg ∈ P for some ε > 0.

(iii) Steepest-descent circuit-pivot rule: select a circuit g ∈ C(A,B) that maximizes − c⊺g
||g||1

, among
all circuits g such that x+ εg ∈ P for some ε > 0.

Note that these circuit-pivot rules are direct extensions to three famous pivot rules proposed for the
Simplex method. Unfortunately, the Simplex method can require an exponential number of edge
steps before reaching an optimal solution [23, 26, 31]. When all circuits are considered as possible
directions to move, much better bounds can be given. Most notably, the greatest-improvement
circuit-pivot rule guarantees a polynomial bound on the number of steps performed by a circuit-
augmentation algorithm on LPs in equality form (see [14, 25, 36] and references therein). However,
the set of circuits in general can have an exponential cardinality, and therefore selecting the best
circuit according to the previously mentioned rules is not an easy optimization problem. Indeed,
the central questions of this paper are the following:

• How hard is it to carry out these three circuit-pivot rules over the exponentially-large set of
circuits?

• Can we exploit (approximate) solutions to these circuit-pivot rules to design (strongly-) poly-
nomial time augmentation algorithms?

We now describe our results and how they lead to Theorem 1 and Theorem 2.

Hardness of circuit-augmentation. First we settle the computational complexity of the circuit-
pivot rules (i) and (ii).

Theorem 3. The greatest-improvement and Dantzig circuit-pivot rules are NP-hard.

We prove this theorem by showing that computing a circuit, according to both the greatest-
improvement and the Dantzig circuit-pivot rule, is already hard to do when P is a 0/1 polytope.
In particular, we focus on the case when P is the matching polytope of a bipartite graph. We first
characterize the circuits of the more general fractional matching polytope, i.e., the polytope given
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by the standard LP-relaxation for the matching problem on general graphs, in Section 3.1. This
builds on the known graphical characterization of adjacency given in [39, 6]. Then, we construct a
reduction from the NP-hard Hamiltonian path problem in Section 3.2. The heart of the reduction
yields the following interesting corollary.

Corollary 1. Given a feasible extreme point solution of the bipartite matching polytope and an
objective function, it is NP-hard to decide whether there is a neighbor extreme point that is optimal.

With the above corollary, the hardness results stated in Theorem 2 can be easily derived. Even more,
combining this corollary with the characterization of circuits for the fractional matching polytope,
we can show that the hardness results of Theorem 2 hold more generally for circuit-paths, i.e.,
paths constructed by a circuit-augmentation algorithm (see Corollary 4).

Approximating pivoting rules. We next make a very useful observation: Any polynomial-time
γ-approximation algorithm for the circuit-pivot rule optimization problems yields an increase of at
most a γ-factor on the running time of the corresponding circuit-augmentation algorithm – this
follows from an extension of the analysis given by [14]. This simple observation turns out to be
quite powerful in combination with the greatest-improvement circuit-pivot rule, and it plays a key
role in our subsequent results. We therefore formally state its main implication in the next lemma.

Lemma 1. Consider an LP in the general form (1). Denote by δ the maximum absolute value of
the determinant of any n×n submatrix of

(

A
B

)

. Let x0 be an initial feasible solution, and let γ ≥ 1.
Using a γ-approximate greatest-improvement circuit-pivot rule, we can reach an optimal solution
xmin of (1) with O

(

nγ log
(

δ c⊺(x0 − xmin)
))

augmentations.

We exploit Lemma 1 in two ways. First, as an easy corollary, we get a polynomial bound on the
circuit-diameter of any rational polyhedron, where the circuit-diameter is the maximum length of
a shortest circuit-path between any two vertices. To the best of our knowledge, this has not been
observed before. We recall that, as usual, the encoding length of a rational number p

q
is defined as

⌈log(p+ 1)⌉+ ⌈log(q + 1)⌉ + 1.

Corollary 2. There exists a polynomial function f(m,α) that bounds above the circuit-diameter
of any rational polyhedron P = {x ∈ R

n : Ax = b, Bx ≤ d} with m row constraints and maximum
encoding length among the coefficients in its description equal to α.

Second, we prove that for an extreme point x of a 0/1-polytope P, a polynomial approximation
of a greatest-improvement circuit-pivot rule can be obtained by simply computing a steepest edge
incident at x.

Theorem 4. Let x be an extreme point of a 0/1-LP with n variables. An augmentation along a
steepest edge yields an n-approximation of an augmentation along a greatest-improvement circuit.

We stress that the above theorem is not true for arbitrary (non 0/1) LPs, since in general augment-
ing along the edges incident at a vertex can be arbitrarily worse compared to augmenting along
circuits, even in dimension two (see Figure 6 in Section 4). For 0/1-LPs instead, the above theorem
can be combined with Lemma 1 and the seminal result of Frank & Tardos [19], to yield Theorem 1.
Even more, we can show that the result of Theorem 1 holds more generally for circuit-augmentation
algorithms (see Theorem 8).

Finally, as a byproduct of our result we also show (i) that a steepest-descent circuit-pivot rule for
0/1-LPs reduces to computing steepest edges, and this can be done in polynomial time (Lemma 5);
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(ii) a new bound on the number of steps performed by a circuit-augmentation algorithm that uses
a steepest-descent circuit-pivot rule, for general (non 0/1) bounded LPs (Theorem 7). In fact, the
authors of [14], and later [12], gave bounds on the number of steps, which depend on the size of the
set of circuits C(A,B) and the number of different values the objective function takes on that set.
However, such bounds are a bit opaque, and often difficult to analyze. In Theorem 7 we get another
type of bound of independent application. Our bound is more comparable to that obtained with
the greatest-improvement circuit-pivot rule, since, unlike all previous bounds for steepest-descent,
it depends more explicitly on the input description of the LP. Furthermore, it is valid for bounded
LPs in general form, and not just LPs in equality form.

1.1 Relevant prior work and comparison with our results

We now give some extra context to our results, mentioning several important papers.

Pivoting rules. Several pivot rules have been proposed for the Simplex method, but since 1972
researchers have debunked most of them as candidates for good polynomial behavior. As of today,
all popular pivoting rules are known to require an exponential number of steps to solve some concrete
“twisted” linear programs (see [3, 4, 20, 23, 26, 31, 24, 43, 44, 46] and the many references there).
Some ways to pivot over circuits that we do not consider here are presented e.g., in [34, 40, 28, 12].
In particular, the circuit-pivot rule in [34] also guarantees geometric convergence. We stress that in
this article we consider only “pure” pivoting rules that cannot be adjusted along the way (just as the
Simplex method requires). If one is allowed to adapt the pivot step along the way, the complexity
may be different, but at the same time the algorithm would depart more substantially from the
Simplex method. Similarly, we restrict ourselves to pivot rules that, while valid for circuits, relate
to well-known Simplex pivot methods. Kitahara and Mizuno [29] provided a general upper bound
for the number of different basic feasible solutions generated by the Simplex method for linear
programming problems (LP) having optimal solutions. Their bound is polynomial on the number
of constraints, the number of variables, and the ratio between two parameters: δ, the minimum
value of a positive component among basic feasible solutions, and γ, the maximum value among all
positive components. Unfortunately, their bound is not polynomial in the encoding length, and in
fact, while γ can be efficiently computed, it has been shown that δ is NP-hard to determine (see
[33]). Later in [30] the authors showed that the bounds are good for some special LP problems
including those on 0/1 polytopes, those with totally unimodular matrices, and the Markov decision
problems.

0/1 polytopes. Understanding monotone paths of 0/1 polytopes is particularly important in
discrete optimization. Thus it is relevant to understand the performance of augmentation algo-
rithms, and in particular of the Simplex method, in that family of polytopes. The authors of [32]
showed that the monotone paths of some pivot rules are unfortunately exponentially long even in
0/1 polytopes. Later [29, 30] proved that the number of distinct basic feasible solutions generated
by the Simplex method is strongly-polynomial for some 0/1-LPs of special format, namely, 0/1-
LPs in standard equality form. For a comparison, our bound in Theorem 1 is weaker (though, still
strongly-polynomial), but it is valid for all 0/1-LPs. An important remark is the following: The
fact that paths of strongly-polynomial length on the 1-skeleton of 0/1 polytopes can be constructed
from any augmentation oracle that outputs an improving edge-direction is already known (see [41],
and [37] for a recent generalization to lattice polytopes). However, such arguments require some
scaling/modifying of the objective function, and they are not realized with a “pure” pivoting rule.

5



In fact, the resulting path might not even be monotone with respect to the original objective func-
tion. In contrast, our result in Theorem 1 yields a monotone path of strongly-polynomial length
that is realized by simply moving along steepest edges. In the context of the Simplex method, our
Theorem 1 yields a strongly-polynomial bound on the number of distinct basic feasible solutions
visited by the Simplex method, if implemented with a pivot rule that makes it move to an adjacent
extreme point via a steepest edge. Note that our bound (as well as the results of [29, 30]) is not
on the total number of basis exchanges, in presence of degeneracy. While computing a steepest
edge can be done in polynomial time (as explained in the proof of Lemma 5), an interesting open
problem is whether moving along steepest edges on 0/1-LPs can be realized efficiently via a “pure”
pivot rule for the Simplex method in presence of degeneracy. In other words, can one guarantee
that the number of different adjacent bases visited by the algorithm is strongly-polynomial (rather
than the number of different extreme points, as we proved here)?

Hardness. Several authors arrived before us to the conclusion that pivot rules can be used to
encode NP-hard problems [1, 16, 17]. For example, Fearnley and Savani [17] showed that it is
PSPACE-complete to decide whether Dantzig’s pivot rule ever chooses a specific variable to enter
the basis. In contrast, Adler et al. [1] showed the simplex method with the shadow vertex pivot rule
can decide this query in polynomial time. We stress that our hardness result in Theorem 2 does not
follow from the hardness of computing the diameter of a polytope [21, 39]. In fact, the hardness
results in [21] and [39] rely on the existence/non existence of vertices with a certain structure, and
they do not provide a specific objective function to minimize over their polytopes.
We note that Theorem 2 and Corollary 1 can also be derived using the circulation polytope [5],
instead of the bipartite matching polytope. In particular, the characterization of circuits for the
circulation polytope becomes easier, since circuits can be associated with simple cycles. Hence the
hardness results of the above oracles can be derived from the NP-hardness of finding a cycle that
gives the biggest improvement in the cost, a result proven in [5]. However, our proof relies on
the matching polytope for three reasons: First, bipartite matching is a well-studied combinatorial
problem, it is quite interesting that the hardness resides already in such a simple and well-studied
polyhedron. Second, if we had written our hardness result using the circulation polytope in [5], the
presentation would not be any shorter than the proof written for the (integral) bipartite matching
polytope. The extra material regarding the fractional matching polytope is only a couple of pages
longer, and it does add new combinatorial properties to the literature. Third, we believe that the
characterization of the circuits of the fractional matching polytope can be useful in determining the
complexity of computing the circuit-diameter of a polytope. Interestingly, our results in Section 3.1
show that the circuits of the fractional matching polytope correspond to the actual edges of the
polytope (i.e., the translation of any subset of the facets does not increase the initial set of edge-
directions). However, we can construct examples showing that the circuit-diameter can be strictly
smaller than the (combinatorial) diameter for the fractional matching polytope. As a consequence,
the hardness result on the computation of its diameter given in [39] does not trivially extend to the
circuit setting. We feel that the characterization of the circuits of the fractional matching polytope
can still be exploited to resolve the complexity of the computation of its circuit-diameter, and hence
can be useful in attacking the mentioned open question.

2 Preliminaries

We consider P to be a polyhedron of the form P = {x ∈ R
n : Ax = b, Bx ≤ d} for integer matrices

A and B of sizes mA×n and mB ×n respectively, and integer vectors b and d, and assume that we
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wish to minimize a linear integral objective function c⊺x over P. We further assume that A has full
row rank and that the rank of

(

A
B

)

is n. For our purposes, we also assume mB ≥ 1 as otherwise P
contains trivially only one point. As mentioned before, ker(A) denotes the kernel of the matrix A.
For a matrix D and a subset T of row indices, we let DT denote the submatrix of D given by the
rows indexed by T . Furthermore, we let rk(D) denote its rank, and det(D) denote its determinant.
For a vector x, we let supp(x) be the support of the vector x, and x(i) denote its i-th component.

Given a vertex x̄ of P, we define the feasible cone at x̄ to be the set of all directions z such that
x̄ + εz ∈ P for some ε > 0. More formally, it is the set {z ∈ R

n : Az = 0, BT (x̄)z ≤ 0 } where
T (x̄) denotes the indices of the inequalities of Bx ≤ d that are tight at x̄. The extreme rays of the
feasible cone at x̄ are the edge-directions at x̄.

A circuit-path is a finite sequence of feasible solutions x1, x2, . . . ,xq satisfying xi+1 = xi + αigi,
where gi ∈ C(A,B) and αi ∈ R>0 is such that xi + αigi ∈ P but xi + (αi + ε)gi /∈ P for all ε > 0
(i.e., the augmentation is maximal). Note that xi is not necessarily a vertex of P. A circuit-path
is called monotone if each gi satisfies c

⊺gi < 0 (i.e., it is an improving circuit).

A circuit-augmentation algorithm computes a monotone circuit-path starting at a given initial
feasible solution, until an optimal solution is reached (or unboundedness is detected). The circuit
g to use at each augmentation is usually chosen according to some circuit-pivot rule. As discussed
before, in this paper we focus on three such rules, each of which gives rise to a corresponding
optimization problem.
The optimization problem that arises when following the greatest-improvement circuit-pivot rule
will be called Great(P,x, c), and is as follows:

max−c⊺(αg)

s.t.

g ∈ C(A,B),

α > 0,

x+ αg ∈ P.

The optimization problem that arises when following the Dantzig circuit-pivot rule will be called
Dan(P,x, c), and is as follows:

max−c⊺g

s.t.

g ∈ C(A,B),

x+ ǫg ∈ P for some ǫ > 0.

The optimization problem that arises when following the steepest-descent circuit-pivot rule will be
called Steep(P,x, c), and is defined as follows:

max−
c⊺g

||g||1

s.t.

g ∈ C(A,B),

x+ ǫg ∈ P for some ǫ > 0.

A maximal augmentation given by an optimal solution to Great(P,x, c) is called a greatest-
improvement augmentation. A Dantzig augmentation and a steepest-descent augmentation are
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defined similarly. In this work, we will only use maximal augmentations, and therefore will omit
the word “maximal”. We remark that, in the context of pivot rules for the Simplex method, the
name ‘steepest-descent’ often refers to normalizations according to the 2-norm of a vector, rather
than the 1-norm. Here we stick to this name as used previously in [14, 12], but at the end of the
paper we note that this is not a major assumption.

3 Hardness of some Circuit-Pivot Rules

3.1 The Circuits of the Fractional Matching Polytope

Let G be a simple connected graph with nodes V (G) and edges E(G). We assume |V (G)| ≥ 3.
Given v ∈ V (G), we let δG(v) denote the edges of E(G) incident with v. We call a node v ∈ V (G)
a leaf if |δG(v)| = 1, and let L(G) denote the set of leaf nodes of G. Furthermore, for X ⊆ E and
x ∈ R

E(G), we let x(X) denote
∑

e∈X x(e).
Let PFMAT(G) denote the fractional matching polytope of G, which is defined by the following
(minimal) linear system:

x (δG(v)) ≤ 1, for all v ∈ V (G) \ L(G). (2)

x ≥ 0. (3)

In this section, we fully characterize the circuits of PFMAT(G). We will prove that, if x is a circuit
of PFMAT(G), then supp(x) induces a connected subgraph of G that has a very special structure:
namely, it belongs to one of the five classes of graphs (E1, E2, E3, E4, E5,) listed below.

(i) Let E1 denote the set of all subgraphs F ⊆ G such that F is an even cycle.

(ii) Let E2 denote the set of all subgraphs F ⊆ G such that F is an odd cycle.

(iii) Let E3 denote the set of all subgraphs F ⊆ G such that F is a simple path.

(iv) Let E4 denote the set of all subgraphs F ⊆ G such that F is a connected graph satisfying
F = C ∪P , where C and P are an odd cycle and a non-empty simple path, respectively, that
intersect only at an endpoint of P . (See Figure 1).

Figure 1: An Example of a subgraph belonging to E4

(v) Let E5 denote the set of all subgraphs F ⊆ G such that F is a connected graph with F =
C1 ∪ P ∪ C2, where C1 and C2 are odd cycles, and P is a (possibly empty) simple path
satisfying the following: if P is non-empty, then C1 and C2 are node-disjoint and P intersects
each Ci exactly at its endpoints (see Figure 2); if P is empty then C1 and C2 intersect only
at one node v (see Figure 3).

8



Figure 2: An Example of a subgraph belonging to E5 where P is non-empty.

Figure 3: An Example of a subgraph belonging to E5 where P is empty.

We will associate a set of circuits to the subgraphs in the above families, by defining the following five
sets of vectors. It is worth noticing that similar elementary moves appeared in [15] in applications
of Gröbner bases in combinatorial optimization.

C1 =
⋃

F∈E1

{

g ∈ {−1, 1}E(G) : g(e) 6= 0 iff e ∈ E(F )

g(δF (v)) = 0 ∀v ∈ V (F )
}

,

C2 =
⋃

F∈E2

{

g ∈ {−1, 1}E(G) : g(e) 6= 0 iff e ∈ E(F )

g(δF (w)) 6= 0 for one w ∈ V (F )

g(δF (v)) = 0 ∀v ∈ V (F ) \ {w}
}

,

C3 =
⋃

F∈E3

{

g ∈ {−1, 1}E(G) : g(e) 6= 0 iff e ∈ E(F )

g(δF (v)) = 0 ∀v : |δF (v)| = 2
}

,

C4 =
⋃

F=(P∪C)∈E4

{

g ∈ ZE(G) : g(e) 6= 0 iff e ∈ E(F )

g(δF (v)) = 0 ∀v : |δF (v)| ≥ 2
g(e) ∈ {−1, 1} ∀e ∈ E(C)

g(e) ∈ {−2, 2} ∀e ∈ E(P )
}

,

C5 =
⋃

F=(C1∪P∪C2)∈E5

{

g ∈ ZE(G) : g(e) 6= 0 iff e ∈ E(F )

g(δF (v)) = 0 ∀v ∈ V (F )
g(e) ∈ {−1, 1} ∀e ∈ E(C1 ∪ C2)

g(e) ∈ {−2, 2} ∀e ∈ E(P )
}

.

See Figure 4 for an example of a vector g ∈ C5.
Let us denote by C(PFMAT(G)) the set of circuits of PFMAT(G) with co-prime integer components.

Lemma 2. C(PFMAT(G)) = C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5.

9



1

1
−1

1

−1

−2 2 −2 2

−1

−1

1

Figure 4: Example of a vector g ∈ C5. Each edge e is labeled with g(e).

Proof. It is known that the vectors of C1 ∪ · · · ∪ C5 correspond to edge-directions of PFMAT(G) (see
e.g. [6, 39]), so it remains to be shown that all circuits belong to one of these sets.
Let B denote the constraint matrix corresponding to the inequality constraints (2). In what follows,
the rows of B will be indexed by V (G)\L(G), and the columns of B will be indexed by E(G). With
this notation, we can treat supp(Bx) and supp(x) as a subset of V (G) or E(G), respectively. Let
g ∈ C(PFMAT(G)), and let G(g) be the subgraph of G induced by the edges in supp(g).

First we note that G(g) is connected. Otherwise, restricting g to the edges of any component of
G(g) gives a vector f with supp(Bf) ⊆ supp(Bg) and supp(f) ( supp(g), contradicting that g is
a circuit.

Now, suppose that G(g) contains no cycles. Let P be any edge-maximal path in G(g), with
endpoints u and w. Note that supp(Bg) ⊇ {u,w} \ L(G). Let f ∈ {−1, 1}E(G) be a vector that
satisfies (i) f(e) 6= 0 if and only if e ∈ E(P ), and (ii) f(δP (v)) = 0 ∀v 6= u,w. Note that f ∈ C3.
Then, supp(Bf) = {u,w} \ L(G) ⊆ supp(Bg), and supp(f) ⊆ supp(g). Therefore, it must be that
the edges of G(g) are exactly E(P ), and g(δP (v)) = 0 for all v ∈ V (G) \ {u,w}. Thus, g = f or
g = −f . In any case, g ∈ C3.

Now, suppose that G(g) contains an even cycle C. Let f ∈ {−1, 1}E(G) be a vector that satisfies
(i) f(e) 6= 0 if and only if e ∈ E(C), and (ii) f(δC(v)) = 0 ∀v ∈ V (C). Note that f ∈ C1. Then,
supp(Bf) = ∅ ⊆ supp(Bg), and supp(f) ⊆ supp(g). Therefore, it must be that the edges of G(g)
are exactly E(C), and g(δC(v)) = 0 for all v ∈ V (G). Thus, g = f or g = −f . In any case, g ∈ C1.

We are left with the case where G(g) contains at least one cycle, but it does not contain any even
cycle. In this case, first we state an easy claim that gives some more structure for the graph G(g).

Claim 1. Under the assumption that G(g) contains at least one cycle, but it does not contain an
even cycle, any two odd cycles in G(g) must share at most one node.

Proof. Let C,D ⊆ G(g) be two odd cycles, and suppose for the sake of contradiction that |V (C)∩
V (D)| ≥ 2. Then C can be written as the union of two edge-disjoint paths C1 ∪ C2 where C1 is
some sub-path of C such that V (C1) ∩ V (D) = {u, v} where u and v are the endpoints of C1, and
E(C1) ∩ E(D) = ∅. Since D is a cycle, we can decompose D into two sub-paths D1 and D2 each
with endpoints u and v. Since |E(D)| is odd, for exactly one i ∈ {1, 2}, |E(Di)| is even. Note
that since V (C1) ∩ V (Di) = {u, v}, C1 ∪Di is a cycle for all i ∈ {1, 2}, and therefore there exists
i ∈ {1, 2} such that C1 ∪Di is an even cycle, a contradiction with the assumption.

Suppose that G(g) contains at least two distinct odd cycles C1 and C2. Since G(g) is connected,
then either these two cycles share a node or there exists a simple path P in G(g) connecting them.
In particular, we can choose P so that E(P ) ∩ E(Ci) = ∅ for i ∈ {1, 2}. Let F = C1 ∪ P ∪ C2

(where E(P ) = ∅ if C1 and C2 share a node). Let f ∈ ZE(G) be a vector that satisfies (i) f(e) 6= 0
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if and only if e ∈ E(F ), (ii) f(δF (v)) = 0 ∀v ∈ V (F ), (iii) f(e) ∈ {−1, 1} for all e ∈ E(C1 ∪ C2),
and (iv) f(e) ∈ {−2, 2} for all e ∈ E(P ). Note that f ∈ C5. Then supp(Bf) = ∅ ⊆ supp(Bg),
and supp(f) ⊆ supp(g). Therefore, it must be that the edges of G(g) are exactly E(F ), and
g(δG(v)) = 0 for all v ∈ V (G). Thus, g ∈ C5.

Finally, suppose that G(g) contains exactly one odd cycle C. If there exists a node w ∈ V (C) such
that g(δG(w)) 6= 0, then let f ∈ {−1, 1}E(G) be a vector that satisfies (i) f(e) 6= 0 if and only if
e ∈ E(C), and (ii) f(δC(v)) = 0 ∀v ∈ V (C) \ {w}. Note that f ∈ C2. Then, supp(Bf) = {w} ⊆
supp(Bg), and supp(f) ⊆ supp(g). Therefore, it must be that the edges of G(g) are exactly E(C),
and g(δC(v)) = 0 for all v ∈ V (G) \ {w}. Thus, it must be that g ∈ C2.

We are left with the case where g(δG(v)) = 0 for all v ∈ V (C). Note that this is not possible if
supp(g) = E(C), because C is an odd cycle. Then let P be any simple path in G(g) which is
inclusion-wise maximal subject to the condition that E(P ) ∩E(C) = ∅ and |V (P ) ∩ V (C)| = {u},
where u is an endpoint of P . Let F = C ∪ P , and let w ∈ V (G) be the unique node such that
|δF (w)| = 1. Let f ∈ ZE(G) be a vector that satisfies (i) f(e) 6= 0 if and only if e ∈ E(F ), (ii)
f(δF (v)) = 0 ∀v ∈ V (F ) \ {w}, (iii) f(e) ∈ {−1, 1} for all e ∈ E(C), and (iv) f(e) ∈ {−2, 2}
for all e ∈ E(P ). Note that f ∈ C4. Then supp(Bf) = {w} \ L(G) ⊆ supp(Bg), and supp(f) ⊆
supp(g). Therefore, it must be that the edges of G(g) are exactly E(F ), and g(δF (v)) = 0 for all
v ∈ V (G) \ {w}. Thus, it must be that g ∈ C4.

In all the above cases, g ∈ C1 ∪ · · · ∪ C5, as desired.

3.2 Hardness Reduction

We will start by proving hardness for the Dantzig circuit-pivot rule.

Theorem 5. Solving the optimization problem Dan(P,x, c) is NP-hard.

Proof. We will prove this via reduction from the directed Hamiltonian path problem. Let D =
(N,F ) be a directed graph with n = |N |, and let s, t ∈ N be two given nodes. We will construct
a suitable auxiliary undirected graph H, cost function c, and a matching M in H, such that the
following holds: D contains a directed Hamiltonian s, t-path if and only if an optimal solution to
Dan(PFMAT(H), χM , c) (where χM is the characteristic vector of M) attains a certain objective
function value.

We start by constructing H = (V,E). For each node v ∈ N \ {t} we create two copies va and vb
in V . For all v ∈ N \ {t}, we let vavb ∈ E. For all arcs uv ∈ F , with u, v 6= t, we add an edge
ubva ∈ E. That is, every in-arc at a node v corresponds to an edge incident with va, and every
out-arc at v corresponds to an edge incident with vb. We add t in V , and for all arcs ut ∈ F , we
have that ubt ∈ E. Finally, we add nodes s′ and t′, where s′sa ∈ E and tt′ ∈ E (see Figure 5).

s′

sa

sb

va

vb

t

t′

Figure 5: An example of the auxiliary graph H.
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Now we define the cost function c. We set c(vavb) = 0 for all v ∈ N \ {t}, c(s′sa) = −W = −c(tt′)
such that W ∈ Z, W ≫ |E|, and let all other edges have cost −1. Finally, we let

M =
{

vavb : v ∈ N \ {t}
}

∪ {tt′}

be a matching in H. We claim that there exists a directed Hamiltonian s, t-path in D if and only
if there is a solution g to Dan(PFMAT(H), χM , c) with objective function value at least −c⊺g =
2W + n− 1.

(⇒) Suppose that there exists a directed Hamiltonian s, t-path P = (sv1, v1v2, · · · , vk−1vk, vkt) in
D. Then, P can be naturally associated to an M -alternating path P ′ in H with endpoints s′ and
t′, as follows:

P ′ = (s′sa, sasb, sbv
1
a, v

1
av

1
b , v

1
bv

2
a, v

2
av

2
b , · · · , v

k−1
a vk−1

b , vk−1
b vka , v

k
av

k
b , v

k
b t, tt

′).

Let g be defined as

g(e) :=











1 if e ∈ E(P ′) \M,

−1 if e ∈ M,

0 otherwise.

Then g ∈ C3, and is therefore a circuit of PFMAT(H). Note that χM + g ∈ PFMAT(H), and
−c⊺g = 2W + n − 1. Thus, g is a feasible solution to Dan(PFMAT(H), χM , c) with the claimed
objective function value.

(⇐) Now suppose that there is a solution g to Dan(PFMAT(H), χM , c), with objective function
value at least 2W + n − 1. First, we argue that the support of g is indeed an M -alternating path
with endpoints s′ and t′.
Note that, by construction, H is bipartite, so g ∈ C1 ∪ C3. In either case, g ∈ {1, 0,−1}E . By our
choice of W , since −c⊺g ≥ 2W + n− 1, it must be that g(s′sa) = 1 and g(tt′) = −1. Then, since
s′ and t′ are not in any cycles of H, necessarily g ∈ C3 and its support is an s′, t′-path. It follows
that g has at most |V | − 1 non-zero entries. Two of the non-zero entries are g(s′sa) and g(tt′), and
of those that remain, exactly half have value 1. Thus,

−c⊺g ≤ 2W +
1

2
(|V | − 3) = 2W +

1

2
((2n + 1)− 3) = 2W + n− 1.

It is clear that the above inequality holds tight only if g(e) = 1 for 1
2(|V |−3) edges of E \{s′sa, tt

′},
all of which have c(e) = −1, and c(f) = 0 for all edges f such that g(f) = −1. Since the
number of edges e with g(e) = 1 equals the number of edges f with g(f) = −1, we have that
| supp(g)| = |V | − 1, and therefore supp(g) is a path P ′ spanning H. Furthermore, all edges of M
are in E(P ′). By removing the first and the last edge of P ′, and by contracting all edges of M
that are the form (vavb) (for v ∈ N), we obtain a path that naturally corresponds to a directed
Hamiltonian s′, t′-path in D.

Note that the above proof immediately yields the following theorem as a corollary.

Theorem 6. Solving the optimization problem Great(P,x, c) is NP-hard.

Proof. The proof is identical to that of Theorem 5, we only need to replace Dan(PFMAT(H), χM , c)
with Great(PFMAT(H), χM , c). This is because for any circuit y ∈ C(PFMAT(H)), we have χM +
1y ∈ P, and χM +αy /∈ P for any α > 1. Therefore, for all y ∈ C(PFMAT(H)) such that −c⊺y > 0,
we have

max{−c⊺(αy) : χM + αy ∈ PFMAT(H), α > 0} = −c⊺y.

It is not difficult to see that this implies the result.
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We highlight that these hardness results hold indeed for 0/1 polytopes. In fact, since by our
construction the graph H is bipartite, the polytope PFMAT(H) is integral.

3.3 Hardness implications

Here we prove that the reductions in the previous section have interesting hardness implications
for the Simplex method.

Corollary 3. Given a feasible extreme point solution of a 0/1-LP, computing the best neighbor
extreme point is NP-hard.

Proof. Consider again the hardness reduction used in the proof of Theorem 6, and note that the
optimal solution of Great(PFMAT(H), χM , c) is a circuit g that corresponds to an edge-direction
at χM . As a consequence, if we consider the LP obtained by minimizing c⊺x over PFMAT(H), and
take χM as an initial vertex solution, there is a neighbor optimal solution of objective function
value −W − n + 1 (which is the minimum possible value) if and only if the initial directed graph
has a Hamiltonian path. The result follows.

Note that the above proof also yields a proof for Corollary 1. We can now prove Theorem 2, that
we restate for convenience.

Theorem 2. Given an LP and an initial feasible solution, finding the shortest (monotone) path
to an optimal solution is NP-hard. Furthermore, unless P=NP, it is hard to approximate within a
factor strictly better than two.

Proof. Once again, consider the hardness reduction used in the proof of Theorem 6, and the LP
obtained by minimizing c⊺x over PFMAT(H). In order for a Hamiltonian path to exist on D, the
optimal solution of this LP must have objective function value −W − n + 1, so without loss of
generality, we can assume that this is the case. Take χM as the initial vertex solution. Under
the latter assumption, as noted in the proof of the previous corollary, there is a neighbor optimal
solution to χM if and only if D has a Hamiltonian path. This implies the following: (i) if D
has a Hamiltonian path, then there is a shortest (monotone) path to an optimal solution on the
1-skeleton of PFMAT(H), that consists of one edge; (ii) if D does not have a Hamiltonian path, then
any shortest (monotone) path to an optimal solution has at least two edges. The result follows.

As mentioned in the introduction, our result implies that for any efficiently-computable pivoting
rule, the Simplex method cannot be guaranteed to reach an optimal solution via a minimum number
of non-degenerate pivots, unless P=NP. In a way, this result is similar in spirit to some hardness
results proven about the vertices that the Simplex method can visit during its execution [17, 16, 1].

The latter hardness result also holds for circuit-paths, via the exact same argument.

Corollary 4. Given an LP and an initial feasible solution, finding the shortest (monotone) circuit-
path to an optimal solution is NP-hard. Furthermore, unless P=NP, it is hard to approximate within
a factor strictly better than two.

Note that Theorem 5 and Theorem 6 yield a proof of Theorem 3.
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4 Approximation of Circuit-Pivot Rules

We start with the following formal definition of approximate greatest-improvement augmentations.

Definition 2. Let γ ≥ 1, x ∈ P, and α∗g∗ be a greatest-improvement augmentation at x. We say
that an augmentation αg is a γ-approximate greatest-improvement augmentation at x, if

c⊺x− c⊺(x+ αg) ≥
1

γ

(

c⊺x− c⊺(x+ α∗g∗)
)

.

As mentioned in the introduction, we define

δ := max

{
∣

∣

∣

∣

det

(

A

D

)
∣

∣

∣

∣

}

,

where the max is taken over all n× n submatrix
(

A
D

)

of
(

A
B

)

such that
(

A
D

)

has rank n.

We also define

δ̄ := max

{
∣

∣

∣

∣

det

(

Ā

D̄

)
∣

∣

∣

∣

}

,

where the max is taken over all n× n submatrix
(

Ā
D̄

)

of
(

A|b
B|d

)

such that
(

Ā
D̄

)

has rank n.

Furthermore, we let ω1 be the minimum 1-norm distance from any extreme point to any facet not
containing it. Formally, let vert(P) be the set of vertices of P. For a given v ∈ vert(P), let F(v)
be the set of feasible points of P that lie on any facet F of P with v /∈ F .

ω1 := min
v ∈ vert(P), f ∈ F(v)

‖v − f‖1.

Finally, we let M1 be the maximum 1-norm distance between any pair of extreme points, i.e.

M1 := max
v1,v2 ∈ vert(P)

‖v1 − v2‖1.

4.1 Approximate greatest-improvement augmentations

Let us recall the statement of Lemma 1:

Lemma 1. Consider an LP in the general form (1). Denote by δ the maximum absolute value of
the determinant of any n×n submatrix of

(

A
B

)

. Let x0 be an initial feasible solution, and let γ ≥ 1.
Using a γ-approximate greatest-improvement circuit-pivot rule, we can reach an optimal solution
xmin of (1) with with O

(

nγ log
(

δ c⊺(x0 − xmin)
))

augmentations.

The proof of Lemma 1 closely mimics the arguments used in [14]. However, since the authors of [14]
consider LPs in equality form, for the sake of completeness we will re-state (and sometimes reprove)
some of their lemmas for our more general setting. Indeed, when working with circuits, converting
an LP to equality form by adding slack variables cannot be done without loss of generality, since
this operation might increase the number of circuits (see [12]).

The first proposition that we state is the sign-compatible representation property of circuits. We
say two vectors v and w are sign-compatible with respect to B if the i-th components of the vectors
(Bv) and (Bw) satisfy (Bv)(i) · (Bw)(i) ≥ 0 for all 1 ≤ i ≤ mB. The representation property is
as follows:

14



Proposition 1 (see Proposition 1.4 in [18]). Let v ∈ ker(A) \ {0 }. Then we can express v as
v =

∑k
i=1 αig

i such that for all 1 ≤ i ≤ k

• gi ∈ C(A,B),

• gi and v are sign-compatible with respect to B and supp(Bgi) ⊆ supp(Bv),

• αi ∈ R≥0,

• and k ≤ n.

Let xmax be a maximizer of the LP problem (1), i.e., an optimal solution of the LP obtained from
(1) by multiplying the objective function by −1. We will use the following lemma from [14] based
on well-known estimates of [2]:

Lemma 3 (see Lemma 1 in [14]). Let ǫ > 0 be given. Let c be an integer vector. Define fmin :=
c⊺xmin, f

max := c⊺xmax. Suppose that fk = c⊺xk is the objective function value of the solution
xk at the k-th iteration of an augmentation algorithm. Furthermore, suppose that the algorithm
guarantees that for every augmentation k,

(fk − fk+1) ≥ β(fk − fmin).

Then the algorithm reaches a solution with fk−fmin < ǫ in no more than 2 log ((fmax − fmin)/ǫ)/β
augmentations.

We now state the following easy lemma, that we reprove for completeness.

Lemma 4. Let x̄ be any feasible solution of the LP problem (1). Then with a sequence of at most
n maximal augmentations, we can reach an extreme point x̂ of (1) such that c⊺x̂ ≤ c⊺x̄.

Proof. Let T = { i : Bix̄ = d(i) }. If x̄ is not a vertex, then we can select any direction g ∈ ker
(

A
BT

)

such that c⊺g ≤ 0, and such that for some ǫ > 0, x̃ := x̄+ ǫg satisfies Bix̃ ≤ d(i) for all i /∈ T . We
then use g to perform a maximal step αg at x̄. Since the step is maximal, there exists an index
i /∈ T such that Bi(x̄+ αg) = d(i). This enables us to grow the set T at the new feasible solution.
Furthermore, c⊺(x̄+ αg) ≤ c⊺x̄.
We can iterate this process, and note that the number of linearly independent rows of

(

A
BT

)

increases
by one at each step. Therefore, after at most n− rk(A) iterations we arrive at a vertex x̂.
Note that the above argument does not require the use of circuits, but it requires only that the
selected directions are improving with respect to c. By the sign-compatible representation property
of circuits though, at any non-optimal point x̄, there always exists an improving direction that is
a circuit.

We can now give a proof of Lemma 1.

Proof of Lemma 1. Let xk be the solution at the k-th iteration of an augmentation algorithm. By
the sign-compatible representation property of the circuits,

xmin − xk =

p
∑

i=1

αig
i

where gi ∈ C(A,B) and p ≤ n. Note that, as a consequence of Proposition 1, for any i we have
that αi ≥ 0 and xk + αig

i is feasible. More precisely, A(xk + αig
i) = Axk + αiAg

i = Axk = b.
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Furthermore, we know Bxk ≤ d and B(xmin) = B(xk +
∑p

i=1 αig
i) ≤ d. This and the sign-

compatibility of gi and (xmin − xk) implies that B(xk + αig
i) ≤ d for all i = 1 . . . p.

We then have

0 > c⊺(xmin − xk) = c⊺
p

∑

i=1

αig
i =

p
∑

i=1

αic
⊺gi ≥ −n∆,

where ∆ > 0 is the largest value of −αc⊺z over all z ∈ C(A,B) and α > 0 for which xk + αz is
feasible. Those circuit vectors and coefficients include the gi, αi above in particular. Equivalently,
we get

∆ ≥
c⊺(xk − xmin)

n
.

Now let αz be a γ-approximate greatest-improvement augmentation applied to xk, leading to
xk+1 := xk + αz. Since −αc⊺z ≥ 1

γ
∆, we get

c⊺(xk − xk+1) = −αc⊺z ≥
1

γ
∆ ≥

c⊺(xk − xmin)

γn
.

Thus, we have at least a factor of β = 1
γn

of objective function value decrease at each augmentation.

Applying Lemma 3 with ǫ = 1/δ2 then yields a solution x̄ with c⊺(x̄−xmin) < 1/δ2, obtained within
at most 4nγ log(δ c⊺(x0 − xmin)) augmentations.

By Lemma 4, a vertex solution x′ with c⊺x′ ≤ c⊺x̄ can be reached from x̄ in at most n additional
augmentations. It remains to prove that x′ is optimal.

Suppose x′ is a non-optimal vertex. There exist subsets T1 and T2 of { 1, . . . ,mB } such that x′ is
the unique solution to

(

A

BT1

)

x =

(

b

d(T1)

)

,

and xmin is the unique solution to

(

A

BT2

)

x =

(

b

d(T2)

)

.

Let δ1 = |det
(

A
BT1

)

| and δ2 = |det
(

A
BT2

)

|. By Cramer’s rule, the entries of x′ are integer multiples

of 1
δ1

and the entries of xmin are integer multiples of 1
δ2
. Then, by letting δ′ = lcm(δ1, δ2), we have

that the entries of (x′−xmin) are integer multiples of 1
δ′
. Since c is an integer vector, we have that

c⊺(x′ − xmin) ≥
1
δ′
, and by the definition of δ, we have that 1

δ′
≥ 1

δ2
. This is a contradiction to the

fact that c⊺(x′ − xmin) < 1/δ2.

Note that the above proof also establishes that the result obtained by [14] regarding the number
greatest-improvement augmentations needed to solve an equality form LP extends to the general-
form LP (trivially by taking γ = 1). Therefore, an easy corollary of the above result shows
a (weakly) polynomial bound on the circuit-diameter of a rational polyhedron. We recall the
statement of Corollary 2:

Corollary 2. There exists a polynomial function f(m,α) that bounds above the circuit-diameter
of any rational polyhedron P = {x ∈ R

n : Ax = b, Bx ≤ d} with m row constraints and maximum
encoding length among the coefficients in its description equal to α.
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Proof. Consider a polyhedron P = {x ∈ R
n : Ax = b, Bx ≤ d}, and without loss of generality

assume m = mA +mB ≥ n. Recall that, by possibly scaling, we can assume that all coefficients
in its description (i.e., all entries of A,B, b,d) are integers. Let x and x̄ be two extreme points
of P. Let T := {i : Bix̄ = d(i)}. Let c⊺ be the vector obtained by adding the rows of A
and BT , multiplied by −1. By construction, using this vector as an objective function, x̄ is the
unique optimal solution to the LP problem (1). Lemma 1 shows that we can reach x̄ from x with
O(n log

(

δ c⊺(x − x̄)
)

) augmentations. Note that c⊺(x − x̄) ≤ ||c||∞||x − x̄||1. The result then
follows by observing that log(||c||∞) = O(α + logm), log(||x − x̄||1) ≤ log(2nδ̄) (using Cramer’s
rule), and log(δ) ≤ log(δ̄) = O(n(α+ log n)).

4.2 Steepest-descent circuit-pivot rule

Using the approximation result developed in the previous section, we here give a new bound on the
number of steepest-descent augmentations needed to solve a bounded LP.

Theorem 7. Let ω1 denote the minimum 1-norm distance from any extreme point v ∈ P to any
facet F of P such that v /∈ F . Let M1 be the maximum 1-norm distance between any pair of extreme
points of P. Using a steepest-descent circuit-pivot rule, a circuit-augmentation algorithm reaches
an optimal solution xmin of a bounded LP (1) from any initial feasible solution x0, performing

O

(

n2M1

ω1
log

(

δ c⊺(x0 − xmin)
)

)

augmentations.

Proof. First, we can apply Lemma 4 to move from x0 to an extreme point x′ of the LP in at most
n steps.
Let ẑ be an optimal solution to Steep(P,x′, c), and let z := 1

‖ẑ‖1
ẑ. Note that z is a circuit of P,

being a rescaling of ẑ ∈ C(A,B). Let αz be a steepest-descent augmentation at x′. Similarly, let ẑ∗

be an optimal solution to Great(P,x′, c), let z∗ := 1
‖ẑ∗‖1

ẑ∗ and let α∗z∗ be a greatest-improvement

augmentation at x′. Then we have that −(c⊺ẑ)/‖ẑ‖1 ≥ −(c⊺ẑ∗)/‖ẑ∗‖1, and so −c⊺z ≥ −c⊺z∗.
Therefore

−αc⊺z ≥ −αc⊺z∗ =
( α

α∗

)

(−α∗c⊺z∗).

Since the augmentation αz is maximal, we have that at the point x′ + αz, there exists some facet
of our feasible region which contains x′ + αz but not x′. Then ω1 ≤ ‖(x′ + αz) − x′‖1 = α‖z‖1.
Since ‖z‖1 = 1, it follows that α ≥ ω1. Since x

′+α∗z∗ is feasible, we have that ‖(x′+α∗z∗)−x′‖1
is at most the maximum 1-norm distance from x′ to any other feasible point. As above, it follows
that α∗ is at most the maximum 1-norm distance from x′ to any other feasible point. Since the
function f(y) = ‖y−x′‖1 is convex, this maximum is achieved at an extreme point. It follows that
α∗ ≤ M1.

Given these bounds on α and α∗, it follows that

− αc⊺z ≥

(

ω1

M1

)

(−α∗c⊺z∗) (⋆)

Now let x̄ = x′ + αz. By Lemma 4, an extreme point solution x̂ can be found from x̄ in at most
n−1 additional augmentations (e.g., using again steepest-descent augmentations, but on a sequence
of face-restricted LPs) with c⊺x̂ ≤ c⊺x̄. Then we have that x̂− x̄ is an

(

ω1

M1

)

-approximate greatest-
improvement augmentation at x′, and since x̂ is also an extreme point, we can continue to apply
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x = (0, 0)

y1 = (0, 1)

y2 = (k, k)

c = (1, 1)

Figure 6: This gives a family of examples (parameterized by k) where i) moving along the
edges incident at a vertex yields an arbitrarily bad approximation of moving along the greatest-
improvement circuit, and ii) a steepest-descent augmentation at x is a (tight) M1

ω1
-approximate

greatest-improvement augmentation. This polygon has vertices x = (0, 0),y1 = (0, 1),y2 =
(k, k), (k, k − 1), (k − 1, k) and (1, 0). One can check that at x, y1 is both a steepest-descent
augmentation as well as a steepest edge, while y2 is a greatest-improvement augmentation. We
have that c⊺y1 =

1
2kc

⊺y2 =
ω1

M1
c⊺y2.

this procedure. Since it takes at most n steepest-descent augmentations to find such an
(

ω1

M1

)

-
approximate greatest-improvement augmentation, it follows from Lemma 1 that from an initial

solution x0, we can reach xmin in O
(

n2M1

ω1
log

(

δc⊺(x0 − xmin)
)

)

steepest-descent augmentations.

We note that the inequality (⋆) yields the following corollary.

Corollary 5. Let x be an extreme point of a bounded LP. A steepest-descent augmentation is a
(

M1

ω1

)

-approximate greatest-improvement augmentation.

The example given by Figure 6 shows that the approximation factor M1

ω1
can be tight.

5 Implications for 0/1 Polytopes

In this section, we explore the implications that Theorem 7 has in the case of 0/1 polytopes,
eventually proving Theorem 4 and Theorem 1. We start with the following lemma:

Lemma 5. Consider a problem in the general form (1) whose feasible region P is a 0/1 polytope,
and let x be a non-optimal vertex of P. Then, the optimal solution to Steep(P,x, c) corresponds
to an edge-direction at x, and can be computed in polynomial time.

Proof. Consider the optimal objective function value of Steep(P,x, c). It is not difficult to see that
this value is bounded above by the optimal objective function value of the following optimization
problem Q:

max−c⊺z

s.t.

‖z‖1 ≤ 1 (4)

x+ εz ∈ P for some ε > 0 (5)
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over all z ∈ R
n. This is true since if g ∈ C(A,B) is a feasible solution to Steep(P,x, c), then g

‖g‖1
is a feasible solution of Q with the same objective function value.

Let PQ denote the feasible region of Q. Note that PQ is the feasible cone at x in P—given by
the constraint (5)—intersected with an n-dimensional cross-polytope—given by the constraint (4).
The constraint (4) can be modeled using the linear constraints

v⊺z ≤ 1 for all v ∈ { 1,−1 }n . (6)

It follows that PQ is a polytope, and therefore Q is a feasible bounded LP. There exists an optimal
vertex y of PQ which is determined by n linearly independent constraints of PQ.

Since x ∈ { 0, 1 }n and P is a 0/1 polytope, each entry of x is either equal to its upper bound or
its lower bound. Thus, the feasible cone at x lies within a single orthant of Rn. This implies that
among all the linear constraints that model ‖z‖1 ≤ 1, only one is facet defining. Therefore, y is
contained in at least n− 1 facets corresponding to inequalities that describe the feasible cone at x.
Since x is not optimal, y 6= 0.

As a consequence of this, we have that the optimal solution of Q corresponds to an edge-direction
of P incident with x. It follows that the optimal solution of Steep(P,x, c) is an edge-direction of
P incident with x, and it can be computed in polynomial time.

We note that it was shown in [12] that for a slightly different definition of steepest-descent, a
steepest-descent circuit-augmentation can be computed in polynomial time for all LPs. Despite
similarities in the two versions of the steepest-descent pivot rule, the technique they employ cannot
be straightforwardly applied to work for the definition of steepest-descent used here, and our
computability result in Lemma 5 is not implied by theirs.
We can now prove Theorem 4, which we restate for convenience.

Theorem 4. Let x be an extreme point of a 0/1-LP with n variables. An augmentation along a
steepest edge yields an n-approximation of an augmentation along a greatest-improvement circuit.

Proof. We combine Corollary 5 and Lemma 5. Since P is a 0/1 polytope, we immediately have
that M1 ≤ n. We now show that ω1 ≥ 1. Let v be any extreme point of P and let F be any facet
of P which does not contain v. By reflecting and translating P, we may assume without loss of
generality that v = 0 (Note that these operations do not change the 1-norm distance between any
pair of points in P). It therefore suffices to show that for any facet F not containing 0, ‖y‖1 ≥ 1
for all y ∈ F . Since all points in F have non-negative coordinates, the minimum value of ‖y‖1 over
all y ∈ F is equal to the optimal solution to the following LP:

min1⊺y

s.t.

y ∈ F.

There exists an optimal solution y∗ to this LP which is an extreme point solution. Since y∗ is an
extreme point of F , it is also an extreme point of P, and since y∗ ∈ F , it is an extreme point not
equal to 0. Therefore, y∗ has at least one coordinate equal to 1, and so ‖y∗‖1 ≥ 1, as desired.
Therefore, ω1

M1
≥ 1

n
.

We will rely next on the following result of Frank and Tardos [19].

Lemma 6 ([19]). Let w ∈ Rn be a rational vector, and α be a positive integer. Define N :=
(n+ 1)!2nα + 1. Then one can compute an integral vector w′ ∈ Zn satisfying:
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(a) ‖w′‖∞ ≤ 24n
3

Nn(n+2);

(b) Consider any rational LP of the form max { w⊺x : A′x ≤ b′, x ∈ R
n }, where the encoding

length of any entry of A′ is at most α. Then, x ∈ Rn is an optimal solution to that LP if and
only if it is an optimal solution to max { w′⊺x : A′x ≤ b′, x ∈ R

n }.

We are now ready to prove the following theorem.

Theorem 8. Given a problem in the general form (1) whose feasible region P is a 0/1 polytope, a
circuit-augmentation algorithm with a steepest-descent circuit-pivot rule reaches an optimal solution
performing a strongly-polynomial number of augmentations.
Furthermore, if the initial solution is a vertex, the algorithm follows a path on the 1-skeleton of P.

Proof. Let us call (LP1) the given LP problem of the form (1) whose feasible region is P. Since
P is a 0/1 polytope, for the sake of the analysis we can assume that the maximum absolute value

of any element in A and B is ≤ nn/2

2n [45]. Apply Lemma 6 to the LP obtained from (LP1)
after changing the objective function to maxw⊺x, with w := −c. Set c′ := −w′. Finally, let
(LP2) := min { c′⊺x : Ax = b, Bx ≤ d, x ∈ R

n }.

Let x0 and xmin be respectively the initial solution and the optimal solution. By performing at
most n additional augmentations, we can assume x0 is an extreme point.
First, we will show that Theorem 8 holds for (LP2). Then, we will show that a circuit-augmentation
algorithm traverses the same edge-walk when solving (LP2) and (LP1), if one uses the steepest-
descent circuit-pivot rule. This will prove the statement.

Recall that the steepest-descent circuit-pivot rule selects at each step an improving circuit g that
minimizes c⊺g

‖g‖1
. Since the feasible region of (LP2) is a 0/1 polytope, we can apply Lemma 5.

Therefore, each augmentation corresponds to moving from an extreme point to an adjacent ex-
treme point. Furthermore, the total number of augmentations can be bounded via Theorem 4 and
Lemma 1 by

O
(

n2 log
(

δ c′⊺(x0 − xmin)
))

.

Since the maximum absolute value of any entry of A and B is at most nn/2

2n , we have that the

maximum absolute value of the determinant of any n× n submatrix is at most
(

nn/2

2n

)n
n!. By the

definition of δ, we have that δ ≤
((

nn/2

2n

)n
n!
)

, and so log(δ) is polynomial in n.

Finally, we address the term log
(

c′⊺(x0 − xmin)
)

. Since x0 and xmin are both in { 0, 1 }n, we have
that log

(

c′⊺(x0−xmin)
)

≤ log(‖c′‖1) ≤ log(n‖c′‖∞), which is polynomial in n due to Lemma 6(a).
Therefore, the number of augmentations required to solve (LP2) is strongly-polynomial in the input
size.

To finish our proof, it remains to show that when the circuit-augmentation algorithm is applied
to (LP1), it performs the same edge-walk as it does when it is applied to (LP2). To see this,
we will rely on the polyhedral characterization of the problem Steep(P,x, c), used in the proof of
Lemma 5. As explained there, the edge-direction g selected by our algorithm applied to (LP2) is
an optimal solution to the LP max{−c′⊺x : x ∈ PQ}, which describes Steep(P,x, c′). Note that

the maximum absolute value of a matrix-coefficient of this LP is also at most nn/2

2n . Therefore, due
to Lemma 6(b), g is an optimal solution to max{−c′⊺x : x ∈ PQ} (i.e., Steep(P,x, c′)) if and
only if it is an optimal solution to max{−c⊺x : x ∈ PQ} (i.e., Steep(P,x, c)). Therefore, the
circuit-augmentation algorithm implemented according to the steepest-descent circuit-pivot rule,
performs the exact same pivots for the objective functions c′ and c.
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It can be readily seen that Theorem 8 implies Part (i) of Theorem 1. This gives a strongly-
polynomial bound on the number of distinct basic feasible solutions visited with a steepest-descent
pivoting rule. In the context of the Simplex method, moving to a neighboring vertex along a steepest
edge might require several degenerate basis exchanges. Having a ‘pure’ pivoting rule that implies
a strongly-polynomial bound on the total number of basis exchanges remains an open question,
but if the polytope is non-degenerate, then the two concepts coincide, hence we obtain Part (ii) of
Theorem 1.
We conclude our paper with the following remark. As already mentioned, in the context of pivot
rules for the Simplex method, the name steepest-descent often refers to normalizations according to
the 2-norm of a vector, rather than the 1-norm. Since for any vector g ∈ Rn, we have

√

(n)||g||2 ≥
||g||1 ≥ ||g||2, it is not difficult to note that the result of Theorem 8 still holds if we normalize
according to the 2-norm.
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