The Slow Path Needs an Accelerator Too!

Annus Zulfiqar, Ben Pfaff’, William Tu", Gianni Antichi**, Muhammad Shahbaz
Purdue University "VMware *Queen Mary University of London *Politecnico di Milano

ABSTRACT

Packet-processing data planes have been continuously en-
hanced in performance over the last few years to the point
that, nowadays, they are increasingly implemented in hard-
ware (i.e., in SmartNICs and programmable switches). How-
ever, little attention is given to the slow path residing be-
tween the data plane and the control plane, as it is not typi-
cally considered performance-critical.

In this paper, we show that the slow path is set to become
a new key bottleneck in Software-Defined Networks (SDNs).
This is due to the growth in physical network bandwidth
(200 Gbps is becoming common in data centers) and topolog-
ical complexity (e.g., virtual switches now span hundreds of
physical machines). We present our vision of a new Domain
Specific Accelerator (DSA) for the slow path at the end host
that sits between the hardware-offloaded data plane and the
logically-centralized control plane. We discuss open prob-
lems in this domain and call on the networking community
to creatively address this emerging issue.

CCS CONCEPTS

« Networks — Programmable networks; In-network pro-
cessing; » Hardware — Networking hardware.

KEYWORDS
Slow path; Megaflow cache; SDN; P4; OVS; DSA

1 INTRODUCTION

When we think of Software-Defined Networking (SDN), we
typically think of a data plane managed by a logically central-
ized control plane. This separation is pervasive throughout
our modern computing landscape, in areas ranging from data
centers [4, 42, 43, 64, 67], to wide-area [28], to 4G/5G mobile
core [48], to service meshes [12], and more. The control plane
performs computationally taxing decision-making on a per-
flow basis (using a general-purpose CPU), and the data plane
caches the outcome of the decision as flow rules and applies
it to every packet (using a dedicated ASIC), Figure 1(a).
This separation of the control plane and data plane is how
SDN works in theory. However, in almost all real settings, a
third component links the control plane and the data plane,
an entity known as the slow path, as shown in Figure 1(b).
For example, the slow path is the switch OS [15] in hardware
switches (e.g., Intel Tofino [24, 25]), the userspace logic in
virtual switches (e.g., OVS [46, 52]), the PGW/SMF in 4G/5G

Corresponding author: Annus Zulfiqar (zulfigaa@purdue.edu)

ACM SIGCOMM Computer Communication Review

logically-centralized

| Control Plane |

Runtime API TJ’

logically-centralized

| Control Plane |

Runtime AP TJ, RPCs/PCle TJ'

| Data Plane |§ASIC

| Data Plane |

(a) SDN in Theory (b) SDN in Reality

Figure 1: Slow path is the backbone of SDN systems.

networks [48], and an infrastructure layer in service meshes
(e.g., Istio [26]). These slow paths are not just responsible for
populating data-plane caches (e.g., flow tables) with updates
from the control plane, but also perform myriads of other
critical tasks for the correct and timely operation of the
environment they are running in [13, 52, 58]. For example,
without the OS, a hardware switch would fail to update its
tables quickly in response to changing network conditions
(e.g., link failures and microbursts) [17, 75]. Similarly, the
absence of the userspace logic in virtual switches [52] would
lead to excessive load on the control plane, which would
have to handle flow setup for each new flow. The same holds
true for 4G/5G networks and service meshes (§2).

This paper is about these slow paths' running on a CPU.
We want to bring the attention of the community to this
largely ignored component of the networking stack, which
is on the brink of becoming a bottleneck in emerging, next-
generation networks. So far, as a networking community, our
focus has been on accelerating the data plane using dedicated
silicon chips (e.g., Tofino for hardware switches [24, 25] or
FPGA-based SmartNICs for virtual switches [22, 39, 40, 71]).
Similar efforts are underway in accelerating the user plane
of the 4G/5G mobile core [33, 47] and the data plane (i.e.,
sidecar proxy [56]) of service meshes using programmable
ASICs [27]. This trend is likely to continue as link rates rise
beyond 200 Gbps, both at end-hosts and in the core of the
network. Increasing link rates are not just straining the data
plane but also the slow path. Likewise, the evolving compute
and application landscapes (i.e., mega-scale, multi-tenant
clouds and highly disaggregated micro-services) are further
stressing the slow path when scaling to an ever-increasing
number of tenants and services [59].

1A slow path is operating at a much faster timescale than a control plane—
the “slow” in slow path is in comparison to the data plane, similar to what

slow start is in TCP [49].

Volume 53 Issue 1, January 2023



SDN Offloaded Slow Path
Area Data Plane Example(s)
Virtual Userspace
Switches NIC [41, 73] ovs-vswitchd [45]
Hardware RMT [6] Switch OS
Switches Trident [8] Stratum [15], SONiC [76]

Service Sidecar Proxy
P4 h 2 —_
Meshes ardware [27] Istio [26]
5G Mobile Session Manager
Core P4 hardware [33, 47] TAMF, SF [48]

Table 1: Many areas accelerate their data plane with
dedicated hardware. Yet, the slow path still resides on
general-purpose CPUs, facing myriad scalability and
performance overheads.

We argue and show that state-of-the-art CPU-based plat-
forms alone, whether on the end host, SmartNIC, or switch,
are a poor fit for the slow path (§2). Instead, like the data
plane, the slow path needs an accelerator too. In this paper,
we make the case for such an accelerator for the end-host
slow path using Open vSwitch (OVS) as an exemplar (§3).

In OVS, the slow path serves two purposes: (1) to han-
dle infrastructure protocols (such as BFD, LACP, IGMP, and
OpenFlow) and flow-table updates that a data-plane ASIC
(e.g., a switch or NIC) otherwise cannot handle, as a kind
of exception handler, and (2) to abstract away the resource
limitations of the data-plane ASIC, providing the control
plane with an abstraction of any-size flow table while in-
stalling only the most valuable subset in the data plane. Ide-
ally, these infrastructure protocols and table updates should
all run in the data plane; however, today’s data-plane accel-
erators are optimized for forwarding user traffic only, using
match-action table (MAT) pipelines [6, 36]. They treat these
protocols and updates as exceptions, which are handled by a
(CPU-based) slow path [36]. Hence, the slow path handles a
subset of the data-plane traffic that requires exceptional pro-
cessing. These exceptions include the sub-linerate processing
that requires complex control-flow, compute, or memory
resources, which the data plane is not designed to handle.
These slow-path processing requirements are difficult (or
impossible) to express using MATs, so the slow path today
is implemented on a CPU, as shown in Table 1.

At first glance, this division of labor may seem like the
right approach, that, clearly, high-volume user traffic should
be handled in the data-plane ASIC, and slow-path traffic
(i.e., infrastructure protocols and table updates) be processed
on a CPU. However, as we show in §3, slow-path traffic
has grown commensurately with user traffic over the years.
Allocating more CPU resources directly reflects as higher
operational expenses (OPEX), a cause of primary concern
for the network operators running today’s mega-scale cloud

ACM SIGCOMM Computer Communication Review

data centers because of per-core pricing [68]. That’s why
operators of these data centers aim at provisioning a single
CPU core for their virtual switches [66], making the rest
available for revenue-generating tenant workloads. Offload-
ing the slow path to recent ARM-based SmartNICs at the
end-hosts is also not feasible: (1) they would not scale to
ever-increasing link rates (exceeding 200 Gbps) [29], and (2)
their maximum power usage is orders of magnitude higher
than an equivalent ASIC-based NIC [2, 18, 19, 72], further
raising OPEX. The situation is similar for hardware switches:
recent work [75] shows that the onboard CPUs cause tens
or hundreds of microseconds of delay when reacting to net-
work conditions, compared to the ASIC that is operating in
nanoseconds. In short, for slow paths to scale in efficiency
and performance in the next-generation networks, we must
move away from purely CPU-based platforms to accelerated
ones, similar to what we have been doing for the data plane
(i.e., with switching ASICs) [6].

To make our case, we begin by detailing the widespread
presence of slow paths in the modern computing ecosys-
tem (§2.1), and recent efforts to scale it using system-level
enhancements (§2.2). Next, we study Open vSwitch (§3), a
production-quality virtual switch, and thoroughly evaluate
its slow path (§4).

2 BACKGROUND & MOTIVATION

Despite its practical significance, the slow path has been a
neglected area of networking research in the 14-year history
of SDN [35]. In this section, we provide a background and
understanding of how pervasive this slow path is (§2.1) and
what challenges it is (and will be) facing in the emerging
computing landscape (§2.2).

2.1 The Slow Path is Everywhere

Like control and data planes, a slow path is present in almost
all areas of SDN, ranging from traditional virtual and hard-
ware switches to, more recently, 5G mobile core and service
meshes, as summarized in Table 1.

Slow Path in Virtual Switches. Popular and widely used
virtual switches, including OVS [52, 66], Microsoft VFP [13],
and Google Snap [34], use a slow path to separate (and cou-
ple) the control and data plane. Over time, the per-packet
(data-plane) processing functions have been offloaded to
dedicated hardware ASICs (e.g., OVS offload [16, 32, 41, 73],
Accelnet for VFP [14], 1IRMA for Snap [60]). The slow path,
on the other hand, has remained on general-purpose CPUs,
where it is responsible for the creation and deletion of flows,
maintaining large flow caches to abstract away resource lim-
its of data-plane ASICs, executing control protocols (e.g.,
for link failure detection, multicast management, and link
bonding and rebalancing, described in more detail in §3), and
operations like packet sampling.

Volume 53 Issue 1, January 2023



Slow Path in Hardware Switches. Programmable switches
include both an ASIC (e.g., Tofino [24, 25] and Broadcom Tri-
dent [7, 8]) and a CPU. The former processes packets and the
latter runs a switch OS, such as Stratum [15] or SONiC [76].
The switch OS on the CPU is the slow path, serving as a
bridge between the central controller (e.g., ONOS [42]) and
the ASIC. It deals with flow installation, exception handling
(e.g., control protocols), and other requests from the con-
trol plane (e.g., register or counter reads). Recent research
also uses the slow path (i.e., switch OS) for more compute-
intensive purposes. Mantis [75], for example, uses the CPU to
react to congestion events in microseconds, while ACC [74]

uses the switch CPU to perform reinforcement learning using
a DNN to autotune ECN marking thresholds in data planes.
Slow Path in 5G Mobile Core. The mobile core also exhibits
a data-plane (called the user-plane) and control-plane sepa-
ration. Starting with 5G, the cellular industry is adopting a
service-based architecture, by splitting its monolithic pro-
cessing stack into components (e.g., AMF, SMF, and UPF)
that run as independent services [48]. The UPF is the data-
plane component of the core, responsible for routing and
forwarding packets. The SMF and other components form
the slow path, responsible for adding flows in the UPF and
handling various protocol-specific signaling (e.g., attach, de-
tach) [48]. The industry is moving toward offloading the UPF
to dedicated programmable ASICs [33, 37, 47], but little atten-
tion has been given to the slow-path components [5]. As 5G
networks need to connect trillions of mobile and IoT devices
to the Internet edge [38], the load on its slow path is even
higher, thus demanding better slow-path implementations.

Slow Path in Service Meshes. Service meshes [56] enable
inter-service communication to scale beyond the microser-
vice architecture. A set of network proxies, called side cars,
are deployed alongside application code within the service
node. These proxies comprise the data plane, while a con-
troller (e.g., Istio [26]) orchestrates inter-service communica-
tion at the application layer, i.e., the slow path. Here again,
the division between the data plane and the slow path is
well-defined and, while researchers have been looking into
accelerating the proxies [27], not much has been done yet on
the other side. The service mesh’s slow path is feature-rich,
implementing functions such as timeouts, retries, circuit-
breaking, service gateways, service discovery, declarative
traffic management, and adaptive load-balancing [3, 12, 26].
Benchmarks indicate the slow path contributes up to 44%
of service-mesh CPU utilization, indicating a CPU-based
platform to be a performance bottleneck [31].

2.2 Challenges in Scaling the Slow Path

It is common to dedicate CPU cores to run the infrastruc-
ture code (e.g., the slow path and hypervisor) and to use
dedicated hardware to offload the data plane [44]. The new

ACM SIGCOMM Computer Communication Review

generation of SmartNICs (e.g., Intel IPU [23], Nvidia Blue-
field DPU [40], Xilinx Alveo SN-1000 [71], and AMD Pen-
sando [1]), can offload infrastructure code to on-NIC ARM
cores, which frees host CPU cycles for applications. How-
ever, ARM-based SmartNICs do consume a lot more power
than ASIC-based NICs: a SmartNIC without CPUs typically
consumes 4.6 W [18], whereas one with onboard ARM cores
consumes between 55 and 75W [2, 19, 72]. This increases
the operating costs for cloud vendors. Secondly, offloading
infrastructure processing to NICs does not address perfor-
mance bottlenecks inherent to CPUs (e.g., variable processing
latencies, non-deterministic response time, HoL blocking).
In conversations with a major cloud provider, we learned
that the large volumes of traffic entering the virtual switch
cause control packets to experience excessive head-of-line
(HoL) blocking, when contending with other slow-path traf-
fic (e.g., flow misses). As tenant traffic (including control
packets) is typically tunneled, the NIC’s data plane cannot
prioritize these packets, without requiring deep-packet in-
spection. Proposals to offload individual control protocol to
the data plane are also being explored, both as dedicated hard-
wired logic [36, 70] or programmable ASICs (e.g., P4-based
Tofino [6]). Hardwiring these protocols as fixed logic makes
them harder to change or evolve later, whereas current P4-
based data-plane programmable models are too restrictive
to express stateful operations. Our insight is that to sustain
performance and efficiency while retaining flexibility and
feature velocity, we need a domain-specific architecture for
the slow path, just like we have RMT [6] for the data plane.

3 CASE STUDY: OPEN VSWITCH (OVS)

To study the challenges associated with running a slow path
on CPUs, we picked Open vSwitch (OVS) [52]—a widely
used open-source virtual switch inside cloud data centers—
as our case study. OVS consists of a slow path and a fast
path. Initially, the fast path used to run as software in the
Linux kernel [51] or userspace [44, 66]. However, today it is
offloaded to the NIC’s data plane, as a flow-table classifier,
to handle the rising link rates (200 Gbps) entering the dat-
acenter end-hosts [57]. Popular NIC vendors now support
OVS fast-path offload on their data-plane ASICs (e.g., Nvidia
ConnectX-6 Dx [41], Intel IPU SmartNIC [32], and Xilinx
Alveo SN1000 SmartNIC [73]). Yet, the slow path still runs on
CPUsgs, either host CPUs or SmartNIC’s onboard CPUs [16].

3.1 The OVS Slow Path

The OVS slow path performs three main tasks, shown in Fig-
ure 2: executing OpenFlow pipelines on new incoming flows;
updating caches, including the hardware flow tables; and
processing control packets pertaining to the infrastructure.

a) Flow Caches and Tables. When a packet belonging
to a new flow arrives at the NIC for the first time, it misses

Volume 53 Issue 1, January 2023



PMD Threads ,—‘
BFD, LACP, CFM, ...
OpenFlow Control I
. Pipeline Protocols
J N\ Slow Path
c e k CPUs
S @
B 2| Megaflow  f-------
el o Hits
S § [Wicrofiow -
[
o T v
< T ——
3 Miss
: [T =]
a r—
RSS

Queu Data Plane

. SR-IOV NIC

’| Hardware Flow Classifier

Packet In 5-tuple table Packet Out

Figure 2: The design of OVS: data plane offloaded to an
SR-IOV NIC, and slow path running on server CPUs.

in the hardware flow table. The NIC enqueues the packet in
one of the RSS queues, picked using the hash of the packet’s
5-tuple. Each of these queues is connected to a “poll-mode
driver” (PMD) thread, over PCle. To sustain high throughput,
the OVS slow path runs multiple PMD threads, each with its
own set of caches, control processes, and OpenFlow pipeline.

Upon entering the slow path, the packet again misses in
two layers of flow caches: microflow and megaflow. The
microflow cache is optimized to handle high-bandwidth “ele-
phant” flows, and the megaflow cache holds more general-
purpose entries that can match wildcard rules. Finally, the
packet enters either the OpenFlow pipeline if it is a cache
miss, or the control-protocol handler if it is a control packet.

b) The OpenFlow Pipeline. The pipeline implements a
sequence of OpenFlow-compliant flow tables [65] that net-
work operators can configure from the centralized control
plane. At runtime, the control plane specifies the flow rules
(i.e., the match and action instructions) and other properties
of the pipeline using the OpenFlow and OVSDB APIs [50,
65, 69]. OVS passes each missed packet through the Open-
Flow pipeline table by table, composing each table’s actions
into a final set of actions, plus a set of caching instructions.
The slow path executes these instructions on these packets
and, if the instructions permit, installs a rule in the micro-
/mega-flow cache of its PMD thread and the hardware flow
table in the NIC. Later packets for the same flow match these
rules. The slow path also periodically revalidates the caches
and the hardware flow table, to ensure correctness against
up-to-date rules in the OpenFlow pipeline.

¢) Control Protocols. The OVS slow path needs to process
various infrastructure (control) protocols as well, such as
those for link-failure detection (CFM [21] and BFD [30]), link
bonding and rebalancing (LACP [20]), and multicast group
management (IGMP) [10]. It also runs protocols for packet
sampling (e.g., sFlow and IPFIX) for sending packets to the
remote collector or the control plane.

ACM SIGCOMM Computer Communication Review

3.2 Slow Path Bottlenecks

Traffic Patterns and Emerging Trends. Bottlenecks arise
when slow-path traffic, such as cache misses and control
packets, arrives faster than it can be processed. Cache misses
in the data-plane ASIC are a common source of bottlenecks
that has received attention both in industry [52] and re-
search [54, 55]. Most often, these misses are because of the
NIC’s data plane’s limited memory and feature support (i.e.,
it can only do 5-tuple matches), which causes flows matching
on other fields to be processed by the slow path. The amount
of incoming traffic a slow path can handle is also proportional
to the number of PMD threads required (1 thread per core);
as the traffic rate increases, the load on these threads also
increases. With sufficient load, congestion in these threads
causes HoL blocking and queuing delays, which in turn in-
creases flow setup time. We show in §4 that increasing the
number of PMD threads does not help.

Changing traffic patterns can also cause high miss rates.
For example, some traffic patterns (such as microflows with
varying source and destination addresses or packets for P2P
rendezvous applications) can cause excessive misses [52].
Similarly, configuring rules to construct a complicated Open-
Flow pipeline in the slow path, without following OVS best
practices, can render the megaflow cache ineffective, so that
each entry essentially ends up doing an exact match (leading
to more misses). Bad actors can also exploit the flow tables
remotely, by taking advantage of OVS classifier weaknesses
to send pathological traffic that causes cache explosion [11].

Periodic Cache Revalidation. The slow path periodically
revalidates the data plane cache, usually every second, to
ensure correctness against up-to-date OpenFlow rules in the
slow path. OVS revalidates in dedicated slow-path threads,
which visit all the data-plane cache entries. For each entry,
they simulate a traversal of the OpenFlow pipeline and com-
pare the output to what is currently installed in the cache,
and update the entry if necessary. The slow-path revalida-
tion threads, therefore, must be able to verify the whole
cache in under one second. And, if the cache entries exceed
a prescribed limit, then further cache-flow entries cannot
be installed—resulting in all packets of new arriving flows
consistently entering the slow-path (as demonstrated in §4),
which hampers performance due to an overloaded slow path.

Infrastructure Packet-processing Overhead. The packet-
processing load of control protocols can also produce bottle-
necks. The worst case happens for the BFD and CFM proto-
cols when monitoring the liveness of peers. When slow-path
processing falls behind, e.g., due to HoL blocking under ex-
cessive load (e.g., cache misses), it can prevent BFD and CFM
packets from being processed and replied to in a timely fash-
ion. This can cause a host’s peers to conclude that the link is
down and that they should choose an alternate host, which

Volume 53 Issue 1, January 2023



0 50 100 150 200 250 300 350 400
Slow Path Latency (us)
Figure 3: Empirical distribution of cache miss process-
ing times. We only show a quarter of the total number
of cache misses that are processed in under 400 ys. The
rest take more than 400 ys (not shown here).

wao
”’60
040
020

PMD Thread Count

Figure 4: Number of served (blue) and dropped (red)
cache misses vs. number of PMD threads. The number
of PMD and revalidator threads are kept equal.

increases the traffic to that host and potentially causes fur-
ther disruption. Using longer protocol timeouts eases the
issue, but it can potentially slow down the detection of gen-
uine network or host failures.

4 IMPLICATIONS OF THE SLOW PATH

To understand the efficiency and performance implications
of the slow path, we set up a testbed with two machines
equipped with dual-port ConnectX-6 DX SmartNICs [39]
connected back-to-back. Both machines have two Intel Xeon
Platinum 8358P processors with 64 cores, running at 2.60 GHz
with 512 GB of memory. They both run Ubuntu 22.04 with
kernel version 5.15.0-33-generic. We also set up OVS 2.17.90
with DPDK 22.03.0-rc1 and Mellanox OFED 5.6-1.0.3 drivers
(m1x5_core), and configured SR-IOV on the NIC with OVS
offload. One machine ran the TRex traffic generator and a cus-
tom DPDK script to generate a ClassBench-rules-compatible
CAIDA [9] traffic profile, on-the fly [55, 63], to the other
machine, which is the device under test (DUT).

Cache misses cause highly skewed slow-path process-
ing times with long tails. We installed 200K rules in OVS,
and tested its cycles per cache-miss performance against
real-world CAIDA [9] traffic profile taken from the Equinix
datacenter in January 2019. A custom DPDK script [55] took
CAIDA’s traffic profile (e.g., flow locality, inter-arrival times)
and generated compatible packets on-the-fly by replacing
the 5-tuples from the traffic with 5-tuples from ClassBench
rules to maintain the properties of a realistic traffic trace.
We configured OVS to use 4 RXQs for the physical interface

ACM SIGCOMM Computer Communication Review

with 4 PMD threads, and generated the traffic at 10 Gbps
to send a total of 790 million packets. With these rules, we
observed a total of 893K cache misses in OVS, 1.5% of which
were dropped at all four PMD threads. Figure 3 shows a cu-
mulative distribution of the CPU cycles consumed by the
cache misses in the OVS slow path. Worth noting is the two
orders of magnitude variation (between median and tail) in
CPU processing times for these cache misses? (all matching
on 5 tuples). A cache miss can take anywhere from 30K to
millions of clock cycles in slow-path processing. These pro-
cessing times will be even higher in a realistic environment,
with OpenFlow rules matching other header fields (31 in
a representative NSX deployment [44]), not just a 5-tuple.
These rules can further burden the slow-path, leading to
even higher tail latencies. The impact on applications’ per-
formance can be significant: Memcached suffers by over 50%
performance hit in the presence of 50 yus added delay [53].

Increasing flow rules saturate caches and increase the
revalidation cost. We installed 450K ClassBench rules (uti-
lizing ACL seed-5 profile) and used OVS internal counters to
measure the number of cache misses when OVS processes
CAIDA traffic (with rule-compatible headers) at 25 Mpps.
We sent traffic for 12 seconds and repeated it with different
PMD thread counts (while having equal or more RXQs con-
figured on the ports). The number of revalidator threads are
also kept equal to the number of PMD threads. The number
of successfully processed cache misses (that resulted in a
cached entry) versus the dropped (did not result in a cached
entry) are shown in Figure 4. Cache misses are dropped due
to the cost of revalidation (§3), which increases with larger
cache sizes. To keep the cost within limits, additional cache
misses are dropped, which causes all later packets of those
flows to enter the slow path. The consequence of this bottle-
neck is wasted CPU cycles in processing all the subsequent
non-cachable upcalls, which could have been avoided if the
revalidation cost were affordable.

CPU-based slow paths struggle to keep up with increas-
ing traffic volume. These are two further consequences of
the results shown in Figures 3 and 4. First, the volume of
slow-path traffic (cached or dropped) on a single PMD core
is about 8K requests per second when running at a link rate
of 25 Mpps. With link rates projected to exceed 200 Gbps
(288 Mpps for minimum-sized packets), the slow-path traffic
would rise to roughly 92K requests per second, which on a
state-of-the-art server CPU, running at 2.6 GHz translates to
28K clock cycles (10.8 ps) per request. Figure 3 indicates that,
even with simple rule matching, there is an order of magni-
tude of variation in completion times for different slow-path

Figure 3 shows only 25% of the actual upcalls. The OVS performance
counters aggregate all upcalls consuming over 1M clock cycles. These upcalls
end up on the right side of this CDF (not shown).

Volume 53 Issue 1, January 2023



requests, making a single PMD core dedicated to handle
slow-path traffic grossly insufficient, hence calling for CPU
scaling just to handle the slow-path traffic.

Second, scaling the number of cores only partially ad-
dresses the problem. As shown in Figure 4, as we increase
the PMD thread count, the slow-path traffic volume does
not reduce since cache misses occur when new flows arrive
regardless of having more cache space (§3). The revalidation
cost of flow caches demands limited cache sizes and increas-
ing the revalidation threads doesn’t benefit. Moreover, the
dropped traffic volume also increases and the number of
clock cycles left for slow-path processing per request per
CPU at higher rates does not benefit much.

Uncertainties in control-packet processing yields devas-
tating datacenter-wide consequences. OVS runs the BFD
protocol for link failure and fault detection. Typical produc-
tion environments configure pairwise BFD among virtual
tunnel endpoints. If a BFD packet is delayed while waiting
behind long slow-path queues (Figure 3), OVS might falsely
label a link down and, as a consequence, stop forwarding
traffic to a node. Similarly, OVS handles IGMP snooping in
the slow path to detect multicast routers. Delayed processing
of IGMP packets would cause multicast packets to be incor-
rectly delivered to obsolete ports, increasing traffic on those
links and exacerbating slow-path traffic volume. Creating
dedicated queues for processing such packets is not feasible
since these packets are tunneled in real environments (i.e.,
encapsulated in a VXLAN/Geneve tunnel header), and most
hardware NICs cannot classify and prioritize using inner
protocol headers [1, 23, 40, 71].

5 DISCUSSION & CALL TO ARMS

Towards a Slow-Path Accelerator & Beyond. Slow-path
bottlenecks (§4) can be removed by offloading to a dedicated
accelerator optimized for slow-path processing. Recently, In-
tel has proposed Infrastructure Processing Units (IPUs) [23]
for offloading the entire infrastructure code (including the
hypervisor) from host machines to NICs. These processors
and other similar efforts [71] provide on-NIC ARM cores
and FPGAs to offload the control plane. While this helps in
freeing the host machine CPU cores, the problems with tail
latencies and scaling core count for increasing traffic (e.g.,
for ARM NICs), as well as the expertise needed to program
them (e.g., for FPGA NICs) still remain. Considering these
factors, we argue that the best way forward is to build a
domain-specific architecture (DSA) specifically designed to
offload the slow path that sits in between the (ASIC-based)
data plane and the centralized control plane.

The main challenge we envision is finding the right set of
abstractions that will make our architecture generic enough
to support many use cases (e.g., from virtual switching to
service meshes). Analogous to what RMT [6] represents for

ACM SIGCOMM Computer Communication Review

Off-Chip Memory, Multi-Cycle Ops

0o ]

On-Chip Memory
Single-Cycle Ops

(a) Match-Action (b) Match-Compute

Figure 5: The match-compute abstraction can process
multi-cycle DAGs with off-chip memories (e.g., HBMs).

packet forwarding, Taurus [62] for machine learning, and
PIFO [61] for scheduling, we need to identify common prim-
itives in the slow path for infrastructure control protocols
and other slow-path operations—abstracting away their im-
plementation details and providing a programmable target
specialized for the slow path. We believe the DSA for slow
path needs three properties: Predictable response times: It
must guarantee bounded tail latency given the trend towards
deterministic response times in feed-forward networking ar-
chitectures. Fast table updates: It should provide fast and
high-bandwidth IO processing for flow caching, as it is a
critical function of a slow path. Large memory pools: It must
support large pools of memory (using HBMs) to augment
the limited on-chip memory of the data planes (§3).

From Match-Action to Match-Compute. Match-action
pipelines in today’s RMT switches implement simple (single-
cycle) operations to ensure per-packet processing at multi-
Tbps speeds. The slow path, on the other hand, operates at
lower speeds (e.g., 40-200Gbps) and, therefore, can perform
more complicated (multi-cycle) operations per packet per
stage. To program these slow-path accelerators, we could ex-
tend the match-action abstraction (Figure 5a) to a more gen-
eral match-compute abstraction (Figure 5b), where a match
is followed by a DAG of compute primitives. This ability to
expend more cycles per stage can enable many interesting
capabilities necessary to support slow-path applications. For
example: (a) Stateful and event-driven processing: For fast reac-
tivity, we need event-based primitives and timers to perform
stateful operations, to support flexible pipelines and packet-
processing capabilities. (b) Iterative processing: To perform
periodic operations, we require loops with deep pipelines
and parallelism, to iteratively traverse data structures (e.g.,
for cache revalidation in OVS).

We believe that building a DSA for the slow path is an
essential next step in our community’s intellectual trajectory.
We, therefore, call on academic and industry researchers and
developers to join us on this mission.
Acknowledgements. This research was supported by NSF
award CNS 2211381; by ACE, one of the seven centers in
JUMP 2.0, an SRC program sponsored by DARPA; and by the
European Union’s Italian National Recovery and Resilience
Plan (NRRP) of NextGenerationEU, partnership on “Telecom-
munications of the Future” (PE00000001, “RESTART”).

Volume 53 Issue 1, January 2023



REFERENCES

[1] AMD. last accessed: 11/28/2022. Pensando. https://www.amd.com/en/
accelerators/pensando.

[2] AMD. last accessed: 11/28/2022. Pensando DSC-200 Distributed Ser-
vices Card. https://www.amd.com/system/files/documents/pensando-
dsc-200-product-brief.pdf.

[3] Gianni Antichi and Gabor Rétvari. 2020. Full-Stack SDN: The Next Big
Challenge?. In SOSR.

[4] Antrea last accessed: 11/28/2022. Antrea: Enhance pod networking and
enforce network policies for Kubernetes clusters. https://antrea.io/.

[5] Abhik Bose, Shailendra Kirtikar, Shivaji Chirumamilla, Rinku Shah,
and Mythili Vutukuru. 2022. AccelUPF: Accelerating the 5G User Plane
Using Programmable Hardware. In SOSR.

[6] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-
eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. For-
warding Metamorphosis: Fast Programmable Match-Action Processing
in Hardware for SDN. In ACM SIGCOMM.

[7] BROADCOM. last accessed: 11/28/2022.  BCMS88690.  https:
//www.broadcom.com/products/ethernet-connectivity/switching/
stratadnx/bcm88690.

[8] BROADCOM. last accessed: 11/28/2022. Trident4 / BCM56880 Se-
ries. https://www.broadcom.com/products/ethernet-connectivity/
switching/strataxgs/bcm56880-series.

[9] CAIDA. last accessed: 11/30/2022. The CAIDA UCSD anonymized inter-

net traces. https://www.caida.org/catalog/datasets/passive_dataset/.

Bradley Cain, Dr. Steve E. Deering, Bill Fenner, Isidor Kouvelas, and Ajit

Thyagarajan. last accessed: 11/30/2022. Internet Group Management

Protocol, Version 3. https://www.rfc-editor.org/info/rfc3376.

Levente Csikor, Dinil Mon Divakaran, Min Suk Kang, Attila K6rosi,

Balazs Sonkoly, David Haja, Dimitrios P. Pezaros, Stefan Schmid, and

Gabor Rétvari. 2019. Tuple Space Explosion: A Denial-of-Service

Attack against a Software Packet Classifier. In ACM CoNEXT.

Alexis de Talhouét. last accessed: 11/30/2022. The evolution of SDN:

What service mesh offers telco. https://www.redhat.com/en/blog/

evolution-sdn-what-service-mesh-offers-telco.

Daniel Firestone. 2017. VFP: A Virtual Switch Platform for Host SDN

in the Public Cloud. In USENIX NSDL

Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou,

Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,

Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh

Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen

Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,

Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth

Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug

Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018.

Azure Accelerated Networking: SmartNICs in the Public Cloud. In

USENIX NSDL

[15] Open Networking Foundation. last accessed: 11/28/2022. Stratum -

Enabling the Era of Next Generation SDN. https://opennetworking.

org/stratum/.

Malvika Gupta. last accessed: 11/30/2022. Open vSwitch Offload by

SmartNICs on Arm. https://community.arm.com/arm-community-

blogs/b/tools-software-ides-blog/posts/open-vswitch-offload-by-

smartnics-on-arm.

Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto

Dainotti, Stefano Vissicchio, and Laurent Vanbever. 2019. Blink: Fast

Connectivity Recovery Entirely in the Data Plane. In USENIX NSDL

Serve The Home. last accessed: 11/28/2022. Intel X710 OCP NIC 3.0

Power Consumption Specs. https://www.servethehome.com/intel-

x710-da2-ocp-nic-3-0-review-10gbe-for-the-form-factor/intel-x710-

ocp-nic-3-0-power-consumption-specs/.

—
—_
=J

=

(11

—

[12

—

(13

[t

(14

=

[16

=

[17

—

(18

=

ACM SIGCOMM Computer Communication Review

[19] Serve The Home. last accessed: 11/28/2022. Pensando Distributed
Services Architecture SmartNIC. https://www.servethehome.com/
pensando-distributed-services-architecture-smartnic/.

[20] IEEE. last accessed: 11/30/2022. IEEE Standard for Information Tech-
nology - Local and Metropolitan Area Networks - Part 3: Carrier Sense
Multiple Access with Collision Detection (CSMA/CD) Access Method
and Physical Layer Specifications-Aggregation of Multiple Link Seg-
ments. https://standards.ieee.org/ieee/802.3ad/1088/.

[21] IEEE. last accessed: 11/30/2022. IEEE Standard for Local and Metro-
politan Area Networks Virtual Bridged Local Area Networks Amend-
ment 5: Connectivity Fault Management. http://standards.ieee.org/
getieee802/download/802.1ag-2007.pdf.

[22] Intel. last accessed: 11/30/2022. Intel Ethernet Controller 700 Series
- Open vSwitch Hardware Acceleration Application Note. https:
//builders.intel.com/docs/networkbuilders/intel-ethernet-controller-
700-series-open-vswitch-hardware-acceleration-application-note.pdf.

[23] Intel. last accessed: 11/30/2022. Intel Infrastructure Processing Units
(IPUs) and Smart-NICs. https://www.intel.com/content/www/us/en/
products/details/network-io/ipu.html.

[24] Intel. last accessed: 11/30/2022. Tofino: P4-programmable Eth-
ernet switch ASIC that delivers better performance at lower
power. https://www.intel.com/content/www/us/en/products/network-
io/programmable-ethernet-switch/tofino-series.html.

[25] Intel. last accessed: 11/30/2022. Tofino2: Second-generation
P4-programmable  Ethernet Switch ASIC  that Contin-
ues to Deliver Programmability —without Compromise.
https://www.intel.com/content/www/us/en/products/network-
io/programmable-ethernet-switch/tofino-2-series.html.

[26] Istio. last accessed: 11/30/2022. Simplify observability, traffic man-
agement, security, and policy with the leading service mesh. https:
//istio.io/.

[27] Anjali Singhai Jain, Mrittika Ganguli, Valas Valancius, and Nupur
Jain. last accessed: 11/30/2022. Service Mesh P4 Data Plane. https:
//opennetworking.org/2022-p4-workshop-gated/.

[28] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan
Zhou, Min Zhu, Jon Zolla, Urs Holzle, Stephen Stuart, and Amin Vah-
dat. 2013. B4: Experience with a Globally-Deployed Software Defined
WAN. In ACM SIGCOMM.

[29] Georgios Katsikas, Tom Barbette, Marco Chiesa, Dejan Kostic, and
Gerald Maguire. 2021. What You Need to Know About (Smart) Net-
work Interface Cards. In International Conference on Passive and Active
Network Measurement (PAM).

[30] Dave Katz and David Ward. last accessed: 11/30/2022. Bidirectional
Forwarding Detection (BFD). https://www.rfc-editor.org/info/rfc5880.

[31] Kinvolk.io. last accessed: 11/30/2022. Performance Benchmarks Anal-
ysis of Istio and Linkerd. https://kinvolk.io/blog/2019/05/performance-
benchmark-analysis-of-istio-and-linkerd.

[32] Patricia Kummrow. last accessed: 11/30/2022. The IPU:
A New, Strategic Resource for Cloud Service Providers.
https://community.intel.com/t5/Blogs/Tech-Innovation/Data-
Center/The-IPU-A-New-Strategic-Resource-for-Cloud-Service-
Providers/post/1335081.

[33] Robert MacDavid, Carmelo Cascone, Pingping Lin, Badhrinath Pad-
manabhan, Ajay ThakuR, Larry Peterson, Jennifer Rexford, and Oguz
Sunay. 2021. A P4-Based 5G User Plane Function. In SOSR.

[34] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,
William C. Evans, Steve Gribble, Nicholas Kidd, Roman Kononov,
Gautam Kumar, Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas Valancius, Xi
Wang, and Amin Vahdat. 2019. Snap: A Microkernel Approach to Host

Volume 53 Issue 1, January 2023



[

—

[t

= =

—

= S

—

—

= =

—

—

=

Networking. In SOSP.

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
2008. OpenFlow: Enabling Innovation in Campus Networks. ACM
SIGCOMM CCR (2008).

Edgar Costa Molero, Stefano Vissicchio, and Laurent Vanbever. 2018.
Hardware-Accelerated Network Control Planes. In HotNets.
Napatech. last accessed: 11/30/2022. UPF offload for Napatech Program-
mable SmartNICs. https://www.napatech.com/support/resources/data-
sheets/5g-user-plane-function-upf-offload,/.

Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ahmad Hassan,
Shuowei Jin, Xiao Zhu, Xiaoxuan Zhang, Denis Rybkin, Zhengxuan
Yang, Zhuoqing Morley Mao, Feng Qian, and Zhi-Li Zhang. 2021. A
Variegated Look at 5G in the Wild: Performance, Power, and QoE
Implications. In ACM SIGCOMM.

Nvidia. last accessed: 11/30/2022. CONNECTX-6 DX. https://www.
nvidia.com/en-us/networking/ethernet/connectx-6-dx/.

Nvidia. last accessed: 11/30/2022. NVIDIA BLUEFIELD DATA
PROCESSING UNITS. https://www.nvidia.com/en-us/networking/
products/data-processing-unit/.

NVIDIA. last accessed: 11/30/2022. OVS Offload Using ASAP2 Di-
rect. https://docs.nvidia.com/networking/display/MLNXENv531001/
OVS+0ffload+Using+ASAP2+Direct.

ONOS last accessed: 11/30/2022. ONOS: Open Network Operating
System. https://opennetworking.org/onos/.

Open Daylight last accessed: 11/30/2022. Open Daylight: modular
open platform for customizing and automating networks of any size
and scale. https://www.opendaylight.org/.

Open-vSwitch. last accessed: 11/30/2022. Open vSwitch with DPDK.
https://docs.openvswitch.org/en/latest/intro/install/dpdk/.
Open-vSwitch. last accessed: 11/30/2022. ovs-vswitchd(8). https://
www.openvswitch.org/support/dist-docs-2.5/ovs-vswitchd.8.txt.
Github Open-vSwitch. last accessed: 11/30/2022.  ofproto-dpif-
upcall.c. https://github.com/openvswitch/ovs/blob/master/ofproto/
ofproto-dpif-upcall.c.

Francesco Paolucci, Davide Scano, Filippo Cugini, Andrea Sgambel-
luri, Luca Valcarenghi, Carlo Cavazzoni, Giuseppe Ferraris, and Piero
Castoldi. 2021. User Plane Function Offloading in P4 switches for
enhanced 5G Mobile Edge Computing. In International Conference on
the Design of Reliable Communication Networks (DRCN).

Larry L. Peterson, Carmelo Cascone, Brian O’Connor, Thomas
Vachuska, and Bruce Davie. 2021. Software-Defined Networks: A Sys-
tems Approach. Systems Approach LLC.

Larry L. Peterson and Bruce S. Davie. 2021. Computer Networks: A
Systems Approach (9th ed.). Morgan Kaufmann.

Ben Pfaff and Bruce Davie. last accessed: 11/30/2022. The Open vSwitch
Database Management Protocol. https://www.rfc-editor.org/info/
rfc7047.

Ben Pfaff and Jesse Gross. last accessed: 11/30/2022. Open vSwitch
datapath developer documentation. https://git.kernel.org/pub/scm/
linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/
openvswitch.rst.

Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou,
Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar,
Keith Amidon, and Martin Casado. 2015. The Design and Implementa-
tion of Open vSwitch. In USENIX NSDL

Diana Andreea Popescu. last accessed: 11/30/2022. Latency-driven
performance in data centers. https://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-937.pdf.

Alon Rashelbach, Ori Rottenstreich, and Mark Silberstein. 2020. A
Computational Approach to Packet Classification. In ACM SIGCOMM.

ACM SIGCOMM Computer Communication Review

[55] Alon Rashelbach, Ori Rottenstreich, and Mark Silberstein. 2022. Scaling

Open vSwitch with a Computational Cache. In USENIX NSDIL
Redhat. last accessed: 11/30/2022. What’s a service mesh?
https://www.redhat.com/en/topics/microservices/what-is-a-service-
mesh.

Gerald Rogers and Pravin Shelar. last accessed: 11/30/2022. Using
Open vSwitch with DPDK. https://github.com/openvswitch/ovs/blob/
master/Documentation/howto/dpdk.rst.

Richard Sanger, Brad Cowie, Matthew Luckie, and Richard Nelson.
2018. Characterising the Limits of the OpenFlow Slow-Path. In IEEE
Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN).

Muhammad Shahbaz, Lalith Suresh, Jennifer Rexford, Nick Feamster,
Ori Rottenstreich, and Mukesh Hira. 2019. Elmo: Source Routed Multi-
cast for Public Clouds. In ACM SIGCOMM.

Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F. Wenisch, Monica
Wong-Chan, Sean Clark, Milo M. K. Martin, Moray McLaren, Prashant
Chandra, Rob Cauble, Hassan M. G. Wassel, Behnam Montazeri, Si-
mon L. Sabato, Joel Scherpelz, and Amin Vahdat. 2020. 1RMA: Re-
Envisioning Remote Memory Access for Multi-Tenant Datacenters. In
ACM SIGCOMM.

Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh,
Sharad Chole, Shang-Tse Chuang, Anurag Agrawal, Hari Balakrishnan,
Tom Edsall, Sachin Katti, and Nick McKeown. 2016. Programmable
Packet Scheduling at Line Rate. In ACM SIGCOMM.

Tushar Swamy, Alexander Rucker, Muhammad Shahbaz, Ishan Gaur,
and Kunle Olukotun. 2022. Taurus: A Data Plane Architecture for
per-Packet ML. In ASPLOS.

David E. Taylor and Jonathan S. Turner. 2007. ClassBench: A Packet
Classification Benchmark. IEEE/ACM Transations on Networking
(2007).

Tigera. last accessed: 11/30/2022. Project Calico. https://www.tigera.
io/project-calico/.

[65] Jean Tourrilhes, Justin Pettit, et al. last accessed: 11/30/2022. Open-

Flow Switch Specification, Version 1.5.1 (Protocol version 0x06).
https://opennetworking.org/wp-content/uploads/2014/10/openflow-
switch-v1.5.1.pdf.

William Tu, Yi-Hung Wei, Gianni Antichi, and Ben Pfaff. 2021. Revisit-
ing the Open VSwitch Dataplane Ten Years Later. In ACM SIGCOMM.
VMware. last accessed: 11/30/2022. VMware NSX: Network Virtual-
ization Platform. https://www.vmware.com/products/nsx.html.
VMware. last accessed: 11/30/2022.  VMware’s per-CPU Pric-
ing Model. https://news.vmware.com/company/cpu-pricing-model-
update-feb-2020.

Open vSwitch. last accessed: 11/30/2022. Open vSwitch Manual. http://
www.openvswitch.org/support/dist-docs/ovs-vswitchd.conf.db.5.pdf.
Yong Wang, Boon Ang, Guolin Yang, and Wengyi Jiang. last ac-
cessed: 11/30/2022. BFD Offload in Virtual Network Interface
Controller. https://patents.google.com/patent/US11196651B2/en?oq=
%2316%2£661%2c879.

Xilinx. last accessed: 11/30/2022. Alveo SN1000 SmartNICs.
https://www xilinx.com/content/dam/xilinx/publications/product-
briefs/sn1000-product-brief.pdf.

[72] Xilinx. last accessed: 11/30/2022. Alveo U25 SmartNIC. https://www.

xilinx.com/products/boards-and-kits/alveo/u25.html.

[73] Xilinx. last accessed: 11/30/2022. OVS Offload. https:

//www xilinx.com/publications/solution-briefs/partner/vvdn-
ovs-solution-brief.pdf.

[74] Siyu Yan, Xiaoliang Wang, Xiaolong Zheng, Yinben Xia, Derui Liu, and
Weishan Deng. 2021. ACC: Automatic ECN Tuning for High-Speed

Datacenter Networks. In ACM SIGCOMM.

Volume 53 Issue 1, January 2023



[75] Liangcheng Yu, John Sonchack, and Vincent Liu. 2020. Mantis: Reactive
Programmable Switches. In ACM SIGCOMM.

[76] Lihua Yuan. last accessed: 11/30/2022. SONIiC: Software for Open
Networking in the Cloud. https://conferences.sigcomm.org/events/
apnet2018/slides/lihua.pdf.

ACM SIGCOMM Computer Communication Review Volume 53 Issue 1, January 2023



