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Abstract. We study a dynamic model of procurement auctions in which
the agents (sellers) will abandon the auction if their utility does not
satisfy their private target, in any given round. We call this “abandon-
ment” and analyze its consequences on the overall cost to the mechanism
designer (buyer), as it reduces competition in future rounds of the auction
and drives up the price. We show that in order to maintain competition
and minimize the overall cost, the mechanism designer has to adopt an
inefficient (per-round) allocation, namely to assign the demand to mul-
tiple agents in a single round. We focus on threshold mechanisms as a
simple way to achieve ex-post incentive compatibility, akin to reserves
in revenue-maximizing forward auctions. We then consider the optimiza-
tion problem of finding the optimal thresholds. We show that even though
our objective function does not have the optimal substructure property
in general, if the underlying distributions satisfy some regularity prop-
erties, the global optimal solution lies within a region where the optimal
thresholds are monotone and can be calculated with a greedy approach,
or even more simply in a parallel fashion.

Keywords: mechanism design - auctions + procurement - threshold
mechanisms

1 Introduction

The wide applicability of auctions in real life, from the simple traditional sealed-
bid and ascending/descending price auctions, to the modern sponsored search
and eBay auctions, to government-run auctions for spectrum and carbon emis-
sions, has inspired the development of a rich theory of auctions and mechanism
design. The more prevalent auction design focuses on the so called ‘regular’ auc-
tions, where the bidders are buyers wishing to buy an item from the mechanism
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designer (seller), who tries to maximize her revenue (see, e.g. [15]). Less preva-
lent are ‘reverse’ or ‘procurement’ auctions where the bidders are sellers and the
mechanism designer is a buyer wanting to minimize cost.

A principal example of procurement auctions is public procurement—the
process by which governments purchase goods, services and construction—which
comprises a significant fraction, 10-20%, of a country’s GDP [5]. Some of the
more complex procurement auctions include the above mentioned spectrum and
carbon emissions auctions, as well as the procurement of energy, a key motivation
of this work.

Thus, while the large majority of literature on auction and mechanism design
focuses on static mechanisms that optimize the designer goals with a single round
in mind, there has been a recent rise in the study of dynamic mechanism design
which attempts to model and analyze mechanisms across time [1].

In the context of procurement, different strands of literature investigate dif-
ferent types of interdependencies, such as caused by a capacity constraint [21,22],
a switching cost from one service provider to another [9,17], a backlog cost in
dynamic inventory control models [18,23], learning through experience [16,20]
and piecewise procurement where the subprojects of a large project have to be
procured in a predetermined order [2,24]. Yet very simple and basic models for
dynamic procurement remain unexplored that provide fertile ground for theory
exploration and progress. We propose one such model which takes the most basic
reverse auction of multiple sellers needing to provide a unit of divisible good or
service over repeated rounds, with the condition that a seller must make at a
minimum her overhead cost in order to remain present in future rounds of the
auction. This provides a coupling or interdependency of the different rounds of
the auction that precludes existing mechanisms from applying and calls for new
tools in mechanism design.

Our motivation for this model comes from the process for energy procure-
ment called “economic dispatch": Electricity generation is currently managed
by Independent System Operators (ISO) in a myopic way (day by day). Each
generator submits a supply curve, namely one or more bids of how much it is
able to generate at what unit cost, for the following day. The ISO then allo-
cates generation, based on demand (and subject to any system constraints), so
as to minimize the total generation cost. Economic dispatch is thus effectively a
generalized version of the standard procurement auction.

In a lot of US markets, wind is typically the least expensive form of gener-
ation, thus it is favored by the current selection mechanism over conventional
generation (nuclear, coal and gas). Coal, as the least competitive conventional
generation, is gradually being driven out of business due to underuse. Wind
though has higher variability and uncertainty, and requires increased use of
expensive back-up generation, while conventionals are reliable and do not need
to be backed up. Ultimately, this is pushing the system to the two extremes
of cheap, variable renewables and expensive, back-up generation. As a result,
this short-term cost-minimization approach yields a higher long-term cost and
compromises system reliability [14].
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In reality, a less competitive generator whose economic viability is threatened
might be “saved” by the ISO if it is considered critical to system reliability, by
entering a side contract with the ISO that guarantees it sufficient allocation
and payment to help it remain viable. Such contracts are currently done behind
closed doors in an ad hoc way, including the ISO’s decision which generators it
considers critical.

To improve system efficiency and transparency, our model here makes a first
step toward providing a framework for systematic allocation and payments that
minimize cost over multiple periods. Specifically, two issues stand out from the
brief background on energy procurement above. One issue is the need to capture
the agents’ overhead costs necessary to stay in business as a model feature to
make transparent the process of identifying and saving a needed agent. We call
the phenomenon of permanently leaving the auction due to not having met the
overhead cost in a given round as “abandonment". The second, related issue,
is the tension of cost vs competition, or short- vs long-term outlook, namely
that being optimal in the current round might be suboptimal from a long-term
perspective. That is because cost minimization in a given round might result in
fewer agent allocations and thus reduced competition in future rounds, which
would lead to a higher cost in the future. We discuss these two issues in more
detail in the context of our model and results below.

Modeling Choices and Assumptions. Our goal is to frame the above real-life situ-
ation as a simplified auction theory model that abstracts away many engineering
components, which are important but not central to the core mechanism design
challenges. What are the minimal features our model can be stripped down to,
that make it as simple as possible yet expressive of the two above-mentioned
issues of (i) abandonment and (ii) tradeoff of cost and competition?

We focus on a two-round model with n symmetric agents (sellers), each of
whom can meet the entire demand of 1 unit of divisible good /service per round,
and each of whom submits a bid for her overhead cost, namely the amount
she needs to make this round to “be saved" and remain in the next round of
the auction. The overhead costs are private values, independent and identically
distributed according to some known distribution F', across agents and across
rounds.

To keep the model tractable, we assume that a per unit production cost
that sellers incur for providing the good/service is known and constant (which
turns out mathematically equivalent to it being zero). For example, in the energy
application above, the cost of producing energy can easily be estimated by the
technology; however, the overhead costs of generators (such as financing, labor
costs, maintenance, etc.) are private information.

In a given round, the auctioneer or mechanism designer collects the bids and
decides on the allocations and payments which in turn determine which agents
are going to be saved for the following round. We will argue later that in the last
day, the mechanism designer is going to allocate the entire demand to a single
agent (since there is no need to maintain the competition anymore). Further,
to more succinctly capture the challenges that abandonment and competition
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issues present, we assume that even in that final round, the mechanism should
satisfy the overhead cost constraint of that single agent: this is also equivalent to
removing this assumption and having one extra round, namely a 3-round auction
setting.

Abandonment. In both forward and reverse auctions, when the auction is
repeated over several iterations, it has been noted that the agents may leave
the platform. The typical assumptions used in the literature are of dynamic
arrival and departure that are exogenous and are not related to the outcome
of the auction [11,12]. In a regular auction the agent may prefer to change her
auction platform if she is not receiving enough utility. Similarly, in a reverse or
procurement auction, for example in the energy sector, if the generators do not
meet their overhead costs they are forced to close down.

Two natural modeling choices for the utility function of an agent stand out to
capture the abandonment: the utility for being allocated zero or, more generally,
for being paid less than one’s overhead cost could be modeled as zero or as
negative infinity (or, equivalently, a large negative constant). The first choice
may appear more natural on the surface but it fails to align the incentives with
the phenomenon of abandonment—specifically, it fails to represent the negative
repercussions of a bankruptcy in reality, which is what we are trying to model
with agents abandoning the auction. Indeed, if an agent ever goes out of business,
the agent should not be incentivized to stay in the auction. Furthermore, zero
utility for zero allocation is inaccurate in the energy context where power plants
continue having overhead expenses (such as employee salaries and power plant
maintenance) even if they are not allocated and not producing in a given time
period, so effectively a zero or even insufficient positive allocation implies losses
which are what ultimately drives plants to retire. We thus opt for the negative
infinity model, which also emphasizes the “finality" of an agent’s participation
in the auction if she is not allocated or has not met her overhead cost in a given
round.

We remark that with this modeling choice, the utility function will not sat-
isfy individual rationality, in that participating in the auction may have lower
expected utility than not participating. Again, this is consistent with the energy
and likely a number of other applications where starting a business such as build-
ing and operating a power plant entails risk and is not guaranteed to break even.
We note the relation of our utility function choice to regular auctions where a
buyer has a budget and receives a utility of negative infinity for exceeding it
(e.g., [6,10]). Indeed, we can view the overhead cost that needs to be met each
period as a reverse budget where, once the budget is exceeded, or in our case
the reverse budget is not met, the agent is forced to abandon the auction.

Summary of our results. Our goal is to design the optimal bid-sensitive mech-
anisms, i.e., to find the optimal thresholds for allocating the service to various
number of agents at every round. Specifically, for our two-round auction, it suf-
fices to set the corresponding thresholds for round one, as the final round has
a trivial optimal mechanism. We denote by ¢; the threshold for saving i agents
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in round one. Our main result is to show that the global optimization for the
thresholds %9, 3, ... can be done in a greedy fashion, even though the objective
function does not have the optimal substructure property that usually leads to
optimality of greedy approach (see Theorem 3). Our results can be summarized
as follows:

(a) We model a two-round dynamic procurement auction with abandonment,
where the agents leave the auction if they do not meet their overhead costs
in a given round. We focus on threshold mechanisms, as they are widely
used in practice, and show that they are ex-post incentive compatible for
our dynamic auction model. The thresholds are similar to setting reserves
for revenue maximization in regular auctions.

(b) Next, we study the optimization problem for finding the optimal set of
thresholds. We show that if the distribution F' for overhead costs is regular
(as defined later), the optimal thresholds are independent of the number of
agents participating in the auction. In other words, we do not need to know
the number of agents to determine the optimal set of thresholds.

(c) We prove that if the underlying distribution F' satisfies certain properties,
the optimal thresholds will be monotone, meaning that the optimal thresh-
old for saving i agents is lower than the optimal threshold for saving j agents
for any i > j. Moreover, we show that this monotonicity helps divide the
optimization problem into n separate problems, which ultimately leads to
an efficient algorithm to calculate the optimal thresholds in parallel.

2 Related Work

Single-parameter mechanism design has been extensively studied in theoretical
computer science over the last decade and lead to several interesting results in
the intersection of approximation and mechanism design (e.g. [13] and refer-
ences therein). Over the last few years there has been an increased interest in
dynamic mechanism design and specifically, revenue maximization in repeated
auctions [3,19]. The challenge in this line of work has been that depending on
the assumptions about when the agents obtain their information, these models
become multi-dimensional, leading to a notoriously hard problem in mechanism
design (see [4] for a survey).

For example, Ashlagi et al. [3] study incentive compatible mechanisms for
revenue maximization. In contrast to prior economic literature they require that
the mechanism is strongly individually rational, namely the utility of each agent
should be non-negative at any stage of the game. One interpretation of strong
individual rationality in the context of a dynamic auction is that agents would
abandon the service if they ever receive negative utility. Our model of aban-
donment in a procurement auction setting can be thought of as a relaxation
of individual rationality, where each agent expects to achieve a specific level of
utility and if she does not meet her target then she abandons the platform.
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Different models of dynamic procurement auctions have been studied in the
past. The common aspect between these different models is an intertemporal
dependency, either on the procurer/buyer side or the suppliers/bidders, that
ties the outcomes of the individual auctions. Examples of such dependencies
include:

Capacity constraint: When the bidders are capacity-constrained, their costs
increase if they win the current auction (due to higher future capacity utiliza-
tion). Therefore, capacity-constrained firms face an intertemporal trade-off in
sequential auctions: higher profits in the current period lead to lower profits in
future periods. This model has been studied over both a finite [21] and an infinite
horizon [22].

Switching cost: When a procurer buys goods from competing suppliers repeat-
edly over time, she may incur an additional switching cost each time she switches
from one supplier to another. These costs arise because the buyer must acquire
skill at using a new supplier’s product, and affect the competition between the
incumbent supplier and his rivals [9,17].

Backlog/holding cost: In dynamic inventory control models, the procurer
becomes a retailer who has to repeatedly run a procurement auction among
a number of potential suppliers before observing the actual demand. At the end
of each period, any unsatisfied demand will be backlogged with a backlog cost
and any unsold inventory will be carried over to the next period with a holding
cost [18,23].

Learning through experience: In many industries learning by doing or learn-
ing through production experience enables suppliers to provide better service at
lower costs. Lewis and Yildirim [16] consider such model in which the cost of
each supplier at each round consists of a (public) intrinsic cost of production,
which decreases every time that producer supplies the procurer, and a (private)
transitory cost drawn according to a prior distribution. They study how buyer
optimally manages dynamic competition among rival suppliers to exploit learn-
ing economies.

Piecewise procurement: Sometimes sequential procurement auctions belong
to a large-scale project whose subprojects have to be procured in a predetermined
order. The project yields its full value once it is completed. The question is then
how the procurer optimally designs a procurement auction for each subproject,
especially when she cannot write long-term contracts [2,24].

In comparison to these previous models, we introduce the notion of aban-
donment to the procurement auction, meaning that the suppliers may leave the
auction if their received payments do not cover their internal costs. Under this
model, it is no longer true that repeating a single-round-optimal auction will
lead to assigning the demand to the best set of agents at the best price [14]. To
the best of our knowledge, this fundamental model has not been studied in the
literature.
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3 Preliminaries

There are 2 periods and a set of agents N, where |N| = n. Each period the
mechanism designer wants to allocate a unit of production to a subset of agents.
In period j = 1,2, each agent 7 is characterized by her overhead cost M; and her
production cost CZ . We assume that the overhead costs are private and indepen-
dently identically distributed according to a distribution F' (independent across
both agents and rounds). We will assume that F' is a continuous distribution
supported on [0, 1].

Let 2] be the production percentage allocated to agent i in round j and p’
the anonymous payment rate for round j. The utility of agent 7 in round j is
given by:

J(d _ (1] J
o g = {10 )
—00, zl(p? — ) < M.

Agent i seeks to maximize her aggregate utility u} + u? from both rounds.
The utility function is capturing the fact that if an agent does not meet her
overhead cost M in round j, she goes out of business and loses everything she
gained today. In addition we assume that if an agent receives —oo utility she
will abandon the auction. _

We further focus on the case where the individual production costs ¢! are
known to the designer and homogeneous across the agents. For simplicity all our
results will assume ¢/ = 0 for all 7 and j but, as we show in the full version of the
paper, this can be generalized if they are the same for all agents in a particular
round but not necessarily 0, and can vary across rounds. Hence, without loss of
generality, the utility of agent ¢ becomes:

oop aepi =M,
—00, zl-p? < M.

GO M, M) — { @

The mechanism designer does not know the overhead costs, Mf , which are all
identically and independently distributed according to a distribution F, i.e.,
M ~ F independent across rounds j = 1,2 and across agents ¢ = 1,...,n.

Mechanism. Each agent reports her current overhead cost MZJ to the designer
during round j and the designer decides on the allocation x(M7,---, M) for

all i € N and the anonymous payment rate p/ (M7, --- , M7). We seek to design
a mechanism that minimizes the expected total cost of the outcome

EMjNF pl(M1177M11) —|—p2<M12, ’MTQL) ’

where M? = M? if z} - p* > M} and M? = oo otherwise.
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Truthfulness. There are several generalizations of truthfulness once we depart
from the standard single-shot environment. Ex-post incentive compatibility
requires that agents want to report truthfully their overhead costs if this maxi-
mizes their aggregate utility even if they have access to the realization of their
overhead costs in advance. For example, in our setting with two rounds, agent
i should not have an incentive to report a different value than M} in round 1
despite knowing the value M?. Periodic ex-post incentive compatibility relaxes
this condition to agents having access to the history of the game and having
only distributional assumptions for their future overhead costs. Nevertheless,
the natural class of threshold mechanisms that we analyze in this paper satisfies
the stronger notion of ex-post incentive compa‘pibilityl. Each round j is charac-
terized by a choice of n different thresholds (¢{,t},...,t/), where ¢/ represents
the maximum amount that the mechanism is willing to pay to save the i-th agent
in round j. This is more precisely described in the following definition.

Definition 1. A single threshold mechanism using thresholds ti,...,t, € [0,1]
is defined as follows: Assume M; < My < --- < M, and let us define the
predicate Ty, (My, ..., M,) = 1 if and only if My < tj, in other words the ki
smallest value is less than the k' threshold.? Let k be the highest index such that
T, = 1. Then the mechanism allocation is:

mi:{l/k ifi<k 3)

0 otherwise

and the payment to agent i is x;-p, where p is the total mechanism payment (also
the per unit cost of providing the demand) defined as p = k - min{ty, Myy1}. In
other words, the cheapest k agents equally provide the service, while each receiving
a payment of min{ty, My11}.

The mechanism uses the thresholds to determine the number of agents it
wishes to allocate the service to. Note that allocating the service to more than one
agent is inefficient. Allocating to multiple agents and respecting their overhead
costs means that for every agent such that z; > 0 it must be that the agent
payment is at least her overhead cost, z; - p > M;.

Proposition 1. Any threshold mechanism is truthful® in the corresponding
single-shot game and each agent that has non-zero allocation has mon-negative
utility.

! We conjecture that threshold mechanisms are optimal for this setting among mech-
anisms that satisfy ex-post incentive compatibility.

2 In the case of ties we need to slightly adjust the description of the mechanism.
We refer the reader to the full version of the paper for the general version of the
mechanism. Since we assume continuous distributions, we can assume no ties for
optimizing our objective, without loss of generality.

3 Assuming no ties.
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Proof. If an agent 7 is not allocated the service, she receives utility of —oc.
Bidding a lower overhead cost may result in her being allocated some part of the
demand. There are two scenarios in which this may happen: (1) If there exists
some k such that T} is the highest true predicate both before and after agent ¢
lowered her bid. In this case, it must be that her lower bid is less than or equal
to My < M;. This results in a payment equal to M}, which makes her utility
—oo again. (2) If T is not the highest true predicate after agent i lowers her bid.
Assume that the new highest predicate satisfied is T, for some w > k. Since Ty,
was not true before, it must be that the threshold t,, is now the critical value,
therefore each agent receives a payment equal to t,. But since T, was false
before, we know that t,, < M;, meaning that agent ¢ will receive —oo utility.

If agent ¢ is allocated the service, notice that her payment is independent
of her actual overhead cost. Reporting a lower overhead cost does not change
her allocation nor payment. Similarly, if she reports a higher amount, she will
receive the same payment, as long as she is still being allocated the service. If
her increase makes her not being allocated, then her utility becomes —oco. In
neither case is deviating from reporting the true overhead cost profitable.

We now define a threshold mechanism for a two-round game.

Definition 2. A threshold mechanism for a two round game is characterized by
two sets of thresholds t* = (t1,...,tL) and t2 = (#3,...,t2). For any round j,
we allocate the demand to at least i agents, if there are i bids below t!.

While technically the threshold mechanism defined in the second round could
depend on the number of surviving agents, the optimal mechanism in the last
round is oblivious to this fact; it will always allocate the service to a single
agent and offer her a payment equal to the second lowest bid or the top of
the distributional support if only one agent has survived. Since the mechanism
is only feasible if it always allocates the entire demand, we need to have that
t] = 1 (the upper bound of the support of F') and therefore we will be omitting
t1 from now on.

Proposition 2. A threshold mechanism for a dynamic game is ex-post incentive
compatible.

Proof. Tt is easy to see that for j = 2 (the last round), truthfulness of the
threshold mechanism in the single-shot version implies that reporting the truth
in the last round is optimal for each agent. For j = 1, we have to argue that
deviating from the truth does not increase the aggregate utility for the agent.
Since the mechanism is independent of the outcome of round 1, the only way that
the reported overhead cost in round 1 affects the second round is if the agent is
not allocated in the first round, hence has to abandon the auction. Instead, the
agent could misreport a smaller overhead cost in order to ensure some allocation
in round 1 so as to be considered in round 2. But in this case the aggregate
utility of this agent remains —oo, hence she cannot benefit from the deviation.
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As mentioned earlier, our objective in designing a threshold mechanism is to
minimize the total payment of our allocation. In other words, we seek a mech-
anism (z,p) with thresholds (t!,t2) such that it minimizes the total payment.
The optimal mechanism for the second round is independent of what happens
during the first round and there is no reason to allocate the production of the
service to more than one agent.

Proposition 3. The optimal threshold mechanism for the second round of a
two-round auction is always equal to t3 =13 = ... =12 = (.

Proof. Setting t3 > 0 means that with some probability two agents will be
allocated the service resulting in a payment more than the second lowest bid.
Note that allocating the service to the second lowest agent does not result in any
benefit in the future (since this is the last round). On the contrary, setting all
thresholds for round two to 0 ensures that we allocate the service to the agent
with the lowest bid, and the payment would be equal to the second lowest bid.
Similarly, setting any ¢? to a non-zero value is a sub-optimal choice. Therefore,
the optimal mechanism in round 2 is to set all thresholds ¢? to zero for i > 2.
(As always we have t7 = 1.)

Note that when the threshold mechanism allocates to an agent, it ensures
that the payment she receive is at least her reported overhead cost so she will
not abandon the auction. This is not necessarily needed for the second round
according to the definition of our objective. If we allow the mechanism to allocate
to an agent and not respect her overhead cost, then we could simply add an
additional round.

In that case, any feasible mechanism must ensure that one agent survives to
the third round; therefore, the payments should satisfy her overhead cost in the
second round as well. Thus our analysis exactly captures this case when we only
focus on the first two rounds.

The main result of our paper is to characterize the first round optimal thresh-
old mechanism for dynamic procurement. It is important to note the connection
of our problem to revenue maximization where effectively we use a similar anal-
ysis in terms of virtual costs. An alternative way to interpret our mechanism is
that it implements a form of supply increase to reduce the aggregate cost of the
mechanism. Our results hold for natural assumptions on the distribution of the
overhead cost defined below.

Definition 3 (Regularity [7]). We say that a probability distribution f (with

cumulative distribution function F) supported on [0,1] is regular if its virtual

cost function defined as x + i((;:)) is monotone increasing.

Definition 4 (Order Statistics [8]). Let Xi,..., X, be a random sample of
size n (independent) from a distribution F and X1., < Xo., < ... < Xp.n be the
order statistics obtained by arranging X;’s in mon-decreasing order. We denote
by pirn the expectation of the r' order statistic, i.e.:

Hrin = E[Xrn]
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Definition 5 (Diminishing Returns of Order Statistics). We say that the
r*" order statistic of a distribution F has the diminishing returns property if

Hrin—1 — Prin 2 Mrin — Hrin+15 Vn > .

Our main theorem is stated below. A surprising property we find is that the
mechanism does not need to know the initial number of agents that participate
in any round of the auction.

Theorem 1. If distribution F satisfies the reqularity condition (Definition 3),
and its second order statistic has the diminishing returns property (Definition 5),
then the optimal threshold mechanism can be found in polynomial time.

The remainder of our paper is organized as follows. In Sect.4 we define the
canonical threshold mechanism. In Sect.5 we present the main theorem of our
paper proving the optimality of the canonical threshold mechanism. Finally, in
Sect. 6 we discuss significant departures from our setting via breaking various
types of homogeneity and symmetry and propose future directions.

4 Mechanism

Our objective in designing a threshold mechanism is to minimize the payment
of our allocation. We will use C,,(ta, ..., t,) to denote the aggregate cost of two
rounds given a specific set of thresholds (o, ...,t,) for the first round, where n
is the number of agents in round 1.

Definition 6 (Canonical Thresholds). The canonical threshold for saving i
agents, denoted by t;, is the optimal value for t; when all previous thresholds are
set to one, and all remaining thresholds are set to zero. More precisely,

ti= argmin  Cy(ta,...,t,)
t;

s.t. o= =t =1, (4)
ti1 = =1, =0,

In Sect.5 we show that the canonical thresholds defined above are indeed
optimal thresholds for minimizing the objective function C(ta,...,t,). To pre-
pare the ground for this result, we first establish some properties of our objective
function. In particular, in Theorem 2, we calculate the partial derivative of the
objective function with respect to any threshold t;. For this theorem, we have
to define the following notation.

Notation. Recall that we defined the predicate Ty (M, ..., M,,) = 1 if there are
at least k bids below t;. We define the vector M = (M, ..., M,,) to be the vector
of all private values and we write T}, (M) = 1, or for short T}, = 1, if the k"
predicate is satisfied. Otherwise, we write T}, = 0.
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Given that the first ¢ bids are below ¢; (hence predicate i is satisfied), we
define P; , as the probability that the remaining bids are above ¢; so as not to
satisfy any higher predicate (Tj11,...,Ty).

More precisely, we define

Pi,n =Pr [MiJrl, My, > ti,TiH =.=T1,=0 | My, ...,M; < ti]7 (5)

where we assume P, , = 1 (since higher bids/thresholds do not exist for this
case). An important property that we use in our proofs is that by this definition,
P, ,, is independent of all lower thresholds (t2, ..., t;—1).

Finally, given a vector of all private values M, we define g(M, ¢, ..., t,,) to
be the total cost of the mechanism using thresholds %o, ...,¢,. This total cost
consists of a deterministic cost for the current round (since the bids are given
by M) and an expected cost for the future round(s). With our earlier notation,
Cn(tay .ootn) = Em[g(M, ta, ..., t,)]. We are now ready to calculate the partial
derivative of the objective function. The proof of the theorem can be found in
the full version of the paper.

Theorem 2. The derivative of the cost with respect to any threshold t; is given
by:

W - Z(TD Piy x {F(ti)i + P () f(t) (6)

EM[Z X t; + Hoy _g(M7t27-“7tn) | Ti=..=T,= 0,t; < M., < t; +6] ’

where € — 0.

Let us provide some intuition on different parts of this expression. Roughly
speaking, the cost C),(ta,...,t,) is determined by the “active” threshold, which
corresponds to the highest predicate that is satisfied. As long as we do not change
the active threshold, perturbing the remaining thresholds should not change the
cost, therefore the derivative should be zero with respect to them. When we
think of the derivative with respect to a particular t;, we want to know how
much the cost would increase/decrease if we change ¢; to t; + €. There are two
scenarios where this perturbation changes the cost:

1. The first scenario is when there are exactly 7 agents below t;. This corresponds
to (7)F(t;)" in (6). We also want the remaining bids to be above t; in a way
that higher predicates are not satisfied (so that ¢; is active), which is captured
by P; . Finally in this case, when we add € to ¢;, all those ¢ agents receive €
more payment, which corresponds to the multiplicative term ¢ in (6).

2. The second scenario is when t; becomes active after we add e to it. This
requires that the i*" bid is between t; and t; + €, which is why we get
i(")F(t;)""1 f(t;). We again need the remaining bids to be above t; + € and

to not satisfy any higher predicate (P;,). The change in the cost is more

complicated in this scenario. We know that at t; + € we are going to save
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agents and therefore the cost would be roughly ¢ x ¢; for this round, and us.;
for the next round. However, it is not clear how many agents we were saving
at t;. That is why we have the expectation of the cost with negative sign,
while the expectation is conditioned to this particular scenario in which there
are exactly ¢ — 1 agents with bids below t;.

5 Optimality of Canonical Thresholds

In this section, we study the optimality of the canonical thresholds. We first begin
by showing that canonical thresholds form a monotone decreasing sequence.
While this property seems intuitive, it is not necessarily true if the underlying
distribution F' does not satisfy our two assumptions of regularity and diminishing
returns property of the second-order statistic, discussed in Sect. 3.

Lemma 1. For a reqular distribution F' that its second order statistic has the
diminishing returns property (Definition 5), the canonical thresholds are mono-
tone non-increasing and independent of the number of agents n.

Proof. By definition, #; is the optimal value for t; when ty = --- =t;,_; = 1 and
tiy1 =--=1t, =0.

To find the optimal ¢;, we start from the general expression (6) for the
derivative and show that it simplifies as follows whenever t; < t;_; (which

is true here since t;—; = 1). When the i bid is between t; and t; + e,

T, = ..=T, =0, and t; < t;_1, we would save 7 — 1 agents and therefore

g(M, ta, ... t,) = (i — 1)t; + p2.;—1. This simplifies equation (6) to:*
aCn(t27---7tn)

o, = 1(7;) P X |:F(ti)i + F(t) 7 f () [t + pow — N2:i71]:|

F(ti)
f(ti)

Other than the trivial roots ¢; = 0 and #; = 1 (which are local maximizers),
there is a single root for this derivative that determines ¢; as follows:

= i(?)Pi,nF(ti)Flf(ti) |:ti + + p2: — M2:i71:| , Vi<t (7)

U+ — = = M2—1 — M2:- (8)

&h
—~
~
S
N

Therefore, we have i, > fj for all ¢ < j, since the left-hand side is a mono-
tone increasing function and the right-hand side is a constant, monotone non-
increasing in 4. Also note that (8) makes ¢; independent of n (as long as n > 7).
This concludes the proof.

Now, we prove that the canonical thresholds provide the global optimal solution
for minimizing the expected cost of the auction. In Lemma 2 we show that when
the previous thresholds are set to 1, as we increase threshold ¢; from zero to its
canonical value fi, the expected cost Cy,(t2, ..., t,) decreases; and as we increase
t; beyond fi, the cost increases again.

4 For consistency of notation, we define p2.; = 1. This is because when we save @
agents in round one, the expected cost of the second round would be po.; for i > 2,
and 1if ¢ = 1.
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Lemma 2. Ifty =1 for all k <i—1, then %C(tg, ey tn) 18 non-positive for
t; € (0,1;), zero at t; = t;, and non-negative for t; € (£;,1).°

Proof. Since t;_1 = 1, we can again use the simplified version of the derivative

(7) instead of the general version (6) for all ¢;. Since P, ,,, F'(t;), and f(¢;) are all

non-negative, we have to show that ¢; 4+ ?((tt’)) + Mo — fo.i—1 is non-positive for

ti € (0,1;), zero at t; = t;, and non-negative for t; € (£;,1). Assuming that the

virtual cost is monotone non-decreasing, it suffices to show that ¢; + 1;((;)) o

poii—1 = 0 at t; = £;, which is true due to (8). (Note that t; + % + fho; — 21

is strictly negative/positive at 0/1, therefore #; is a fractional point.)

The previous lemma shows that the canonical threshold #; is the global minimizer
of the cost when t5 = ... = t;_1 = 1, independent of the values of the remaining
thresholds ¢;41, ..., t,. However, in the following lemma and its corollary, we show
that this holds even if we lower the value of the previous thresholds from 1 to
their canonical values.

Lemma 3. Ift, =t for all k <i—1, then %C(tz, <oy tn) 18 mon-positive for
ti € (0,1;), zero at t; = t;, and non-negative for t; € (£;,1).

Proof. Note that compared to the previous lemma, we only lowered the value of
to,...,t;_1 from 1 to their canonical value t; = ;. One can argue from (6) that
this lowering of thresholds does not change the derivative for any t; € [0,%;_1].
This is true because we can use Eq. (7) in this region, which shows that the
derivative is independent of ts, ..., ¢;_1, whenever ¢; < ¢,_; (remember that P; ,
is independent of ts,...,t;—1). Figure1 shows an example of how lowering the
thresholds to, ..., t;_1 affects the derivative with respect to ¢;.

aC,
ot;

d
] ECH(I,...,L:,., fipts-ees t,)

ad ~ ~
[ ] Ecﬂ(’zv--»w’iq%» Ligps oo os 1)
g

iy

Fig. 1. Derivative of the cost with respect to ¢; when: (blue) the previous thresholds are
set to one, (red) the previous thresholds are lowered to their canonical values. (Color
figure online)

5 Note that whenever t;_; = 1, the previous thresholds to, ..., t;—2 are irrelevant. There-
fore, this lemma holds even if we only had t;_1 = 1. However, we state the lemma
as is for the sake of the next lemma.
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Note that from Lemma 1 we know that #; < ¢;_;. This immediately implies
that %C’(Q,...,tn) is non-positive for ¢; € (0,%;), zero at t; = £;, and non-
negative for t; € (f;,#;_1). Therefore, we only need to show that the derivative
is non-negative for ¢; > t;_1. To do this, we show that the lowering of thresholds

to,...,t;_1 indeed increases the derivative in this region, i.e.,

a - - 0 .
gc(t27 "'7ti—17ti7ti+la ...,t") 2 %O(la cey lativti+1a "'atn)a Vtz Z ti—l (9)

which implies the non-negativity of the derivative, since the right hand side is
non-negative due to Lemma 2. To prove (9), note that from (6), comparing the
above two derivatives is equivalent to showing that

IEM [g(M7£27 "'7£i—17ti7ti+1a atn) | A] < ]EM [g(M7 17 d) lativti—‘rlv 7tn) | A}v

where A is the event that there are exactly ¢ — 1 bids below t; and we save at
most those ¢ — 1 agents. Note that this expected cost is exactly equal to the
situation if we had only ¢ — 1 agents in the auction, and we knew that their bids
are upper bounded by t;. In other words, it suffices to show that

Ci1(ty,.tioy) < Ci1(1,...,1), (10)

where C;_; is the expected cost in a game with i — 1 agents with distribution
F which is obtained from truncating F to have the support [0,t;] (note that
distribution F only applies to the first day, and on day 2 the bids are again
drawn according to the original distribution F).

To show 10, we use the following set of inequalities:

Cia(ta, 3ty s ti1) < Cioa (1,83, 84,000 ti 1)
Ci

Cio1(1,1,..,1,41) < Ci_1(1,1,...,1,1)

Each of the above inequalities is implied by Lemma 2, since this lemma says
that the derivative with respect to any ¢, is non-negative for ¢, > t;, as long as
the previous thresholds are all equal to one. Therefore, increasing any t; from
t to 1 cannot decrease the cost. The only concern here is that the thresholds #j,
were calculated for the auction with n agents and distribution F', while we are
using the same thresholds here for the auction with ¢ — 1 agents and truncated
distribution F'. The reason why we are allowed to do this is that neither changing
the number of agents nor truncating the distribution can affect the optimality
of £;,. This is because ), is the solution of the following equation:

F(ty)
t R SLTA g — o1 =0
k+ Ft) + pok — p2:k—1
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In addition to being independent of n, this equation is invariant to conditioning
F from above. In other words, for the truncated distribution F' we have:

= F(t) ; f(®)
F(t) = t) = Vvt < t;
0= g5 FO=Fh s
Hence % = %, which implies having t, = #, (for k = 2,...,i — 1) gives a

lower cost compared to t; = 1, regardless of having distribution F or F.6

Since we showed that the derivative (with respect to t;) is non-positive up to #;
and non-negative afterwards, we arrive at the optimality of ¢;.

Corollary 1. If t), = ty for all k < i — 1, then Cy(ta,...,t,) is minimized at
t; = t;, independent of the values of the remaining thresholds t;y1,...,t,.

So far we showed that as long as the previous thresholds are set to their canonical
values, t; is the global optimal value for ¢;. To achieve the global optimal values
for the entire set of thresholds (tx,k = 2,...,n) it suffices to use the previous
lemma in an inductive manner.

Theorem 3. If distribution F satisfies the regularity condition (Definition 3),
and its second order statistic has the diminishing returns property (Definition 5),
then the global optimal thresholds that minimize C,(ta,...,t,) are

tr =1, VEk.

Proof. Let us assume that this is not true and there exists another set of thresh-
olds (th,...,t!) with cost smaller than C,,(fs, ..., ,). Looking at t,, Corollary 1
can be used without any condition on the remaining thresholds, which immedi-
ately implies that either #, = £, or we can change it to f, without increasing
the cost. Given t), = {5, we can now use this argument again for t3 and conclude
that ¢4 = t3. Repeating this argument, we arrive at C,, (5, ..., t.) = Cy(ta, ..., tn),
which contradicts our starting assumption.

6 Conclusion and Future Work

In this paper we studied a dynamic procurement auction for n symmetric agents.
We assumed 3 different properties for the agents that were crucial to achieve the
optimality of the canonical thresholds: (i) we assumed a common distribution
F for the overhead costs, (ii) we assumed that the per-umit cost of providing
the service is the same for all agents, and (iii) we assumed that each agent
can provide the entire demand. Relaxing any of these assumptions breaks the
symmetry of the agents and opens a new research question for future work.

6 This is similar to revenue maximization where if we condition F to be above a certain

value v and obtain the conditional distribution F', we have that 1 — ﬁ'(x) = i:?gi;
and f () = 5 f Ef()v). This implies that the inverse hazard rate and as a result the

virtual value functions of these distributions remain the same.
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If we assume a different distribution F; for each agent’s overhead cost, then
the savings from allocating the service to k agents and having them participate in
the future rounds depend on the identity of those agents. This could potentially
lead to having a different threshold for any subset of agents, which would make
the problem computationally intractable. On the other hand, if we assume that
agents have different per-unit costs, the optimal assignment would not be trivial,
even if the set of agents with non-zero assignments are known. In other words,
if we want to save a particular set of k£ agents, the optimal assignment is not
necessarily 1/k, and it depends on the per-unit costs of those particular k agents.
The same challenge holds when we consider different capacities for the agents,
as equal assignments of 1/k may not even be feasible in that setting.
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