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AbstractÐThe central pattern generator (CPG) is a group
of interconnected neurons, existing in biological systems as a
control center for oscillatory behaviors. We propose a new
approach based on the multivariable harmonic balance to
characterize the relationship between the oscillation profile
(frequency, amplitude, phase) and interconnections within the
CPG, modeled as weakly coupled oscillators. In particular,
taking advantage of the weak coupling, we formulate a low-
dimensional matrix whose eigenvalue/eigenvector capture the
perturbation in the oscillation profile due to the coupling. Then
we develop an algorithm to estimate the perturbed oscillation
profile of a given CPG, and suggest an optimization to synthesize
the interconnections to produce a given oscillation profile.

Index TermsÐNetwork analysis and control, Cooperative con-
trol, Neural networks, Coupled oscillators

I. INTRODUCTION

Located in the central nervous system of animals are neural

oscillator circuits, called the central pattern generators (CPGs),

which drive rhythmic behaviors of the body. The ability of

CPGs to cooperate with external constraints and adapt to

changing environment make them an attractive foundation for

control design in many engineering applications. For example,

CPG-inspired controllers have been designed for numerous

robotic systems [1], [2] with such useful properties as gait

adaptation [3], online trajectory generation [4], and resonance

exploitation [5].

Whether modeling a biological CPG in nature or designing

an artificial CPG for engineering applications, the main chal-

lenge remains to find the relationship between the neuronal

connections and the resulting oscillation profile. Specifically,

for a given CPG, it is of interest to find conditions under

which a stable limit cycle exists and to predict the frequency,

amplitude, and phase. For this purpose, the coupled-oscillator

architecture of CPGs has facilitated the analysis.

In the literature, analysis and synthesis problems have been

solved for coupled oscillators with diffusive coupling, based on

the contracting/convergent systems [6]±[8] and Floquet theory

[9]. However, diffusive coupling is not suitable for modeling

of biological CPGs ± for example, the synaptic interactions

between segmental oscillators of leech CPG for swimming are

active during steady swimming [10]. For oscillator networks

with non-diffusive weak coupling, the phase reduction meth-

ods [11]±[13] simplify the synchronization analysis but ignore

the amplitude variation and remove the oscillatory dynamics.
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The multivariable harmonic balance (MHB) provides a flexible

framework for both analysis and synthesis of CPGs with non-

diffusive coupling [14]. The method is not always accurate

due to harmonic approximations but has been found effective

in predicting oscillation profiles [15]±[17].

In this paper, we consider a network of m oscillators with

non-diffusive weak coupling, and present a new characteri-

zation of the relationship between the interconnections and

the oscillation profile through the MHB analysis. Specifically,

the oscillator network is described as a Lur’e system, i.e., a

feedback connection of linear dynamics and static nonlinear-

ities. Exploiting the weak coupling, we condense the multi-

dimensional oscillator dynamics and their interactions into

scalar parameters to obtain an m × m matrix. The matrix

captures the essential dynamics of the network such that its

diagonal entries contain the intra-oscillator perturbations of

the amplitudes and phases due to coupling and its eigenvector

encodes the inter-oscillator phases. Reversing the analysis, we

formulate an optimization to synthesize interconnections that

produce a desired oscillation profile.

The benefits of our approach in comparison with existing

MHB methods are that it (a) reduces computational cost of

the analysis over [14], [16] through dimensional reduction

achieved by exploiting the weakness of coupling, (b) covers a

class of CPGs wider than or different from those in [14]±[16]

as we allow possibly non-diffusive coupling with arbitrary

dynamics for every neuronal connections, (c) provides more

design flexibility over [14], [15] by allowing small variations

of the oscillation profile due to coupling as design freedom,

and (d) gives a rigorous proof for the MHB condition with a

stability property, which was missing in [17].

We use the following notation. We denote by Re(x), Im(x),
and ∠x the real part, imaginary part, and phase angle of

x ∈ C, respectively. A scalar function f : R 7→ R acts on

a vector x ∈ R
n elementwise to generate vector f(x) ∈ R

n.

Expressions col(·) and diag(·) denote the matrices obtained

by stacking their arguments in a column and diagonal, respec-

tively. For a function F (x) of a scalar variable x, its derivative

is denoted by Ḟ (x). For time signals u(t) and y(t), notation

y = f(s)u means y(t) := L−1 [f(s)L[u(t)]] where L is the

Laplace transform operator.

II. PROBLEM FORMULATION

A. General Objective

We consider coupled m oscillators described by

qi =Mo(s)ψ(qi) + σ
m
∑

j=1

∆ij(s)ψ(qj), i ∈ Im, (1)



where qi(t) ∈ R
n are the membrane potentials and Im :=

{1, 2, . . . ,m}. Here, ψ : R 7→ R is an odd sigmoid function

representing the threshold and saturation effects of the neu-

ronal dynamics. Each oscillator is formed by a local group

of n neurons, which we call a ªsegment,º and the neurons

are ªintrasegmentallyº connected through dynamics Mo(s). In

addition, ªintersegmentalº connections are made between os-

cillators through σ∆ij(s), and are assumed weak compared to

the intrasegmental connections (small σ > 0). The segmental

oscillators are assumed to be nominally identical with the same

dynamics Mo(s), but the terms σ∆ii(s) capture possible small

variations. Note that system (1) is a Lur’e system described

by

q = M(s)ψ(q), (2)

where q := col(q1, . . . , qm) ∈ R
mn and

M(s) := Mo(s) + σ∆(s), Mo(s) := I ⊗Mo(s), (3)

with ⊗ denoting the Kronecker product. This class of systems

cannot be captured by existing models in [14]±[16] which

require identical dynamics for all neurons.

The objective is to characterize the relationship between

the neural connections M(s) and the profile of oscillations

(frequency, amplitude, phase) of the weakly coupled segmental

oscillators. The characterization should be simple and explicit

to allow for computational analysis and synthesis.

B. Precise Problem Statement

To achieve the objective, we use the MHB method [14]

and make a precise mathematical statement of the problem so

that its solution provides a characterization of the oscillation

profile. Assume a periodic solution q(t) to (2) and consider

the sinusoidal approximation q(t) ≈ Im(q̂ejωt) where ω ∈ R

is the frequency and q̂ ∈ C
mn is the phasor capturing the

amplitude α := |q̂| and phase ∠q̂, where only the relative

phases matter since (2) is autonomous. The static nonlinearity

ψ, acting on q(t) in (2), is approximated by

ψ(q) ≈ K(α)q, K(α) := diag(κ(α)), (4)

where κ is the describing function of ψ defined by

κ(a) :=
1

aπ

∫ π

−π

ψ(a sin θ) sin θdθ, (5)

so that κ(a)x is the first harmonic term of the Fourier series

of ψ(x) for x := a sinωt. The dynamics of (2) in the neigh-

borhood of the periodic solution q(t) is thus approximated by

the quasi-linear system

q = M(s)K(α)q, (6)

which has a solution q = Im(q̂ejωt) if and only if

q̂ = M(jω)K(α)q̂, α := |q̂|, (7)

is satisfied. In this case, (6) has characteristic roots s = ±jω.

Definition 1: The quasi-linear system (6) is said to be m-

stable if all the characteristic roots are in the open left half

plane except for a simple pair on the imaginary axis. A pair

(ω, q̂) ∈ R×C
mn satisfying the MHB equation (7) is said to

be an m-stable solution if (6) with α := |q̂| is m-stable.

An m-stable solution (ω, q̂) of the MHB equation (7)

predicts existence of a stable limit cycle for (2), and the

oscillation profile for q(t) is estimated as q ≈ Im(q̂ejωt).
This claim is based on the harmonic approximation and does

not have a theoretical guarantee, but has been supported

by a number of numerical experiments [14]±[17]. We will

rigorously characterize m-stable solutions, and demonstrate

usefulness of the characterization by example systems through

numerical simulations. To this end, let us introduce:

Assumption 1: Consider an isolated segmental oscillator

r = Mo(s)ψ(r) where r(t) ∈ R
n represents one of the

variables qi(t) in (1) with σ = 0. The MHB equation for

this system admits an m-stable solution (ωo, r̂) ∈ R× C
n:

r̂ =Mo(jωo)Kor̂, Ko := K(ao), ao := |r̂| ∈ R
n, (8)

and the associated quasi-linear system r = Mo(s)Kor is m-

stable. Moreover, ±jωo are not poles of ∆ij(s) in (1).

Given a segmental oscillator satisfying Assumption 1, we

will seek an m-stable solution (ω, q̂) to the MHB equation (7)

for the coupled oscillators in (1). Note that, when uncoupled

(σ = 0), the MHB equation (7) admits a solution (ω, q̂) with

ω = ωo and q̂i = r̂ejϕi where ϕi ∈ R for i ∈ Im are arbitrary.

For a small σ > 0, we assume that the solution is slightly

perturbed in the following form [15]:

ω = ωo + σω̃ +O(σ2), q̂i = (I + σPi)r̂e
jϕi +O(σ2), (9)

where i ∈ Im, Pi ∈ C
n×n is a diagonal matrix, ϕi ∈ R is the

intersegmental phase, and ω̃ ∈ R is the frequency perturbation.

The problem we address is the following:

Problem 1: Consider the coupled oscillators in (1), which

can be written as (2). Suppose Assumption 1 holds. Find a

necessary and sufficient condition on (ω̃, Pi, ϕi) for i ∈ Im,

such that (ω, q̂) of the form (9) is an m-stable solution of (7)

when σ > 0 is sufficiently small.

A solution to this problem is given in the next section, and

its applications to analysis and synthesis will be discussed in

the sections that follow.

III. MAIN RESULT

Let us first provide a perturbation analysis of the MHB

equation (7) with (3) when the coupling strength σ > 0 is

arbitrarily small. The result is proven in Appendix A.

Lemma 1: Consider the weakly coupled oscillators de-

scribed by (2) with (3). Suppose Assumption 1 holds, and let

(Pi, ϕi, ω̃) ∈ C
n×n × R × R be given for i ∈ Im, where Pi

are diagonal. Then (ω, q̂) of the form (9) satisfies the MHB

equation (7) with α := |q̂| up to O(σ) if and only if 1

(

jω̃ṀoKo +MoS +∆Ko + (MoKo − I)P
)

(I ⊗ r̂)ejϕ = 0,

(10)
P := diag(P1, . . . , Pm), Ko := I ⊗Ko,

S := diag(S1, . . . , Sm), Si := K̇oRe(Pi)A,

A := diag(ao), K̇o := diag(κ̇(ao)).

(11)

For computational verification of (10), κ(x) and κ̇(x) can be

calculated via numerical integration and derivative using (5).

1∆ denotes ∆(jωo). This notation applies to all transfer functions.



For Mo(s) = CXB with X := (sI − A)−1, its derivative is

given by Ṁo(s) = CẊB = −CX2B, which can be verified

by taking the derivative of (sI −A)X = I .

Next we give a condition for the MHB solution in Lemma 1

to be m-stable when σ > 0 is sufficiently small. The proof

(Appendix B) is based on an eigenvalue perturbation result,

applied to system (6) in the state space.

Lemma 2: Consider the weakly coupled oscillators de-

scribed by (2) with (3). Suppose Assumption 1 holds, and let

(Pi, ϕi, ω̃) ∈ C
n×n × R × R be given for i ∈ Im, where Pi

are diagonal. Suppose (ω, q̂) of the form (9) satisfies the MHB

equation (7) with α := |q̂|. Then the associated quasi-linear

system (6) is m-stable for sufficiently small σ > 0 if and only

if matrix Λp defined by

Λp := β(I ⊗ ℓ̂∗)
(

MoS +∆Ko

)

(I ⊗ r̂),

β := −1/(ℓ̂∗ṀoKor̂)
(12)

has all the eigenvalues in the open left half plane except for

a pair on the imaginary axis, where S and Ko are defined in

(11), and ℓ̂∗ is the left eigenvector of MoKo associated with

eigenvalue 1, normalized such that ℓ̂∗r̂ = 1.

Combining the above two lemmas, we have a characteriza-

tion of m-stable solutions to the MHB equation (7). Since the

stability condition is given in terms of the matrix Λp in (12),

we break down the MHB equation (10) into two equations: one

gives an eigenvalue condition on Λp, and the other captures

the remaining constraints.

Proposition 1: Consider the weakly coupled oscillators

described by (2) with (3). Suppose Assumption 1 holds, and

let (Pi, ϕi, ω̃) ∈ C
n×n × R × R be given for i ∈ Im, where

Pi are diagonal. Then (ω, q̂) of the form (9) satisfies (7) with

α := |q̂| up to O(σ) and the associated quasi-linear system

(6) is m-stable for sufficiently small σ > 0 if and only if

eig
(

β(U + Λ)
)

\{jω̃} ⊂ C
−,

β(U + Λ)ejϕ = jω̃ejϕ,
(W +Ω)ejϕ = 0,

(13)

where C
− is the open left half plane,

U = diag(u1, . . . , um), Λij = ℓ̂∗∆ijKor̂,
W = diag(w1, . . . , wm), Ωij = N∗∆ijKor̂,

ui := ℓ̂∗MoSir̂, Si := K̇oRe(Pi)diag(ao),

wi := N∗(jω̃ṀoKo +MoSi + (MoKo − I)Pi)r̂,

and N ∈ C
n×(n−1) is the orthogonal complement of r̂.

Proof. Multiplying β(I⊗ ℓ̂∗) and (I⊗N∗) from the left, it

can be verified that (10) is equivalent to the equalities in (13).

The eigenvalue condition in (13) follows from Lemma 2 once

we verify that Λp in (12) is equal to β(U + Λ).
To gain insights, let us consider a simple case where

the neuronal dynamics within each segment are nominally

identical and represented by a scalar transfer function fo(s).
In this case, Mo(s) is given by the product of fo(s) and

a constant matrix M̄o capturing the connection topology,

strength, and inhibitory/excitatory property. We also focus on

the intersegmental oscillation properties and choose to ignore

the small intrasegmental variations due to the weak coupling.

Specifically, we assume Pi = piI in (9) so that pi, ϕi ∈ R

capture the intersegmental amplitude and phase, while the

oscillation profile within each segment remains to be captured

by the nominal phasor r̂. With these two simplifications,

Proposition 1 reduces to the following.

Corollary 1: Consider Proposition 1. Suppose

Pi = piI, Mo(s) = fo(s)M̄o,

where pi ∈ R and M̄o ∈ R
n×n are constant parameters and

fo(s) is a scalar transfer function. Then conditions

eig(Λp)\{jω̃} ⊂ C
−,

Λpe
jϕ = jω̃ejϕ, Λp := γP+ βΛ,

Ωpe
jϕ = 0, Ωp := P⊗ v +Ω,

(14)

are equivalent to (13), where

P := diag(p1, . . . , pm), γ := βℓ̂∗MoK̇odiag(ao)r̂,

β = −fo/ḟo, v := N∗MoK̇odiag(ao)r̂,

Proof. The result follows by noting that

ṀoKor̂ = ḟoM̄oKor̂ = (ḟo/fo)r̂,

β = −1/(ℓ̂∗ṀoKor̂) = −fo/ḟo,

wi = N∗MoK̇odiag(ao)r̂pi ⇒ W = P⊗ v.

Without coupling (σ = 0), the quasi-linear system (6) has

eigenvalue jωo with multiplicity m and the rest are in the

open left half plane due to Assumption 1. With weak coupling

(small σ > 0), the segmental oscillations with frequency near

ωo would be coordinated with orbital stability if the m− 1 of

the eigenvalues at jωo move to the left. Because the eigen-

values of Λp are the derivatives of the eigenvalues jωo with

respect to σ, the orbital stability is expected when Λp satisfies

(14). The condition in (14) gives a simple characterization of

m-stable solutions and its practical use will be discussed in

the next two sections.

IV. ANALYSIS

This section will address the analysis problem: Given a CPG

model (1), estimate the oscillation profile of a stable periodic

solution, if any. Specifically, we assume that each segmental

oscillator r =Mo(s)ψ(r) in isolation has a stable limit cycle

on which r(t) ≈ Im[r̂ejωot]. When weakly coupled as in (1)

with a small σ > 0, the segmental oscillators may coordinate

with specific intersegmental phases, while exhibiting small

variations in the amplitude and frequency:

qi(t) ≈ Im[(1 + σpi)r̂e
j((ωo+σω̃)t+ϕi)].

Corollary 1 states that the oscillation profile can be estimated

by solving (14) for (ω̃, ϕ,P).
In (14), jω̃ is the ªmaximalº eigenvalue of Λp with the

largest real part. The corresponding eigenvector ejϕ gives the

estimated intersegmental phases ϕi, provided the eigenvector

has the same magnitude for all its entries. Thus, the amplitude

parameter P should be selected such that the maximal eigen-

value λ is purely imaginary, and the associated eigenvector

v satisfies the uniform magnitude property. We propose a

heuristic algorithm to numerically search for such P based on a

fixed point iteration. Define the mapping P̄ = µ(P) as follows.

For a given P, let (λ, v) be the maximal eigenvalue-eigenvector



pair of Λp, let (jω̃, ejϕ) be the projection of (λ, v) onto the set

(jR, ejR
m

), and let P̄ be the solution P to the second equation

in (14). Then a solution (ω̃, ϕ,P) to the first two constraints

in (14) satisfies P = Re[µ(P)]. Thus the fixed point iteration

Pk+1 = Re[µ(Pk)], or its relaxation, may provide a solution

at convergence.

Algorithm 1

1) Initialize k = 0 and pk = 0 ∈ R
m, and choose positive

scalars ε1 < 1 and ε2 ≪ 1.

2) Let Pk := diag(pk) and compute the maximal eigen-

value λ ∈ C and the associated eigenvector v ∈ C
m of

γPk + βΛ. Set ω̃ := Im(λ) and ϕ := ∠v.

3) Update pk by

p̄k := Φ∗(jω̃I − βΛ)ejϕ/γ, Φ := diag(ejϕ),
pk+1 = pk + ε1Re

(

p̄k − pk
)

,

4) If ∥pk+1 − pk∥ < ε2, then set P := Pk and stop.

Otherwise increment k and go to step 2.

This algorithm is heuristic, its convergence is not guaran-

teed, and the third constraint in (14) is ignored. However,

our numerical experience suggests that it works well for the

purpose of obtaining a rough estimate for the intersegmental

properties. Since the analysis involves eigenvalue computation

for m × m matrix Λp, the computational cost is reduced

in comparison with [14], which ignores the weak coupling

structure and involves nm× nm matrix M(jωo).
Example 1. We consider a model of the leech CPG for

swimming described as a chain of 17 segmental oscillators.

The model is identical to the one in [18] except that interseg-

mental time-delay e−kτds is replaced by its approximation

fk(s) :=
αk

1 + τks
,

αk := 1/ cos(kωoτd),
τk := tan(kωoτd)/ωo,

where kτd is the communication delay over k segments, ωo

is the nominal frequency, and (αk, τk) are chosen such that

fk(jωo) = e−jωokτd . We will estimate the oscillation profile

using Corollary 1. The existing methods [14]±[17] cannot be

applied since the model does not belong to the classes of CPGs

they considered.

Each segmental oscillator has three neurons, and the phasor

r̂ ∈ C
3 and the nominal frequency ωo can be computed using

Proposition 2 in [14]. The amplitude is uniform and

ao = |r̂| = 13.45× col(1, 1, 1), ωo = 14.43.

The actual frequency from simulation of the segmental os-

cillator is ωsim
o = 15.26. Using Algorithm 1 with ε1 = 0.1

and ε2 = 10−9, we have computed (ω̃,P, ϕ) to estimate

the oscillation profile. In Fig. 1, history of the first entry of

qi(t) ∈ R
3 for i ∈ I17, and amplitude and phase of q̂i from

simulation (blue) and estimation (red) are shown for three

neurons in each segment. The time course shows convergence

to the stable limit cycle within a few cycles, and the peaks

of the 17 curves in the steady state shift from left to right

(linear decrease of the phase plots) with peak values largest

in the middle segments (top blue curve in the amplitude plot).

While the phase estimate closely agrees with the simulated

phase, the amplitude estimate (single red curve), which is

assumed uniform within a segment, provides a reasonable

approximation to the average amplitudes within each segment

(average of blue curves).

The frequency perturbation ω̃ = −9.24 is negative, re-

sulting in the estimated frequency ω = ωo + σω̃ = 13.88
with σ = 0.06, which roughly agrees with ωsim = 14.53
from simulation. The quasi-linear system has eigenvalues

0.04±13.86j and the rest with the maximum real part −0.51,

approximately satisfying the m-stability (and hence correctly

suggesting orbital stability of the limit cycle) although the third

condition in (14) is ignored in the analysis.
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Fig. 1. MHB analysis of the leech CPG

V. SYNTHESIS

This section will address the synthesis problem: Given a

segmental oscillator r =Mo(s)ψ(r) and desired intersegmen-

tal phase ϕ ∈ R
m, determine the intersegmental connections

∆(s) such that the CPG model (1) with small σ > 0 possesses

a stable limit cycle on which qi(t) oscillates with phase ϕi for

i ∈ Im. While this problem is for the design of a synthetic

CPG, it can also be interpreted as the modeling of a biological

CPG to identify the neuronal connections that reproduce the

observed intersegmental phase ϕ.

In the general synthesis problem, the perturbations of the

frequency ω̃ and amplitude P may also be specified as desired,

or alternatively, may be left as design variables to facilitate

satisfaction of the phase specification. The latter approach may

be preferred when the intersegmental connections are subject

to dynamical/structural constraints, such as a communication

delay or distributed network topology, which make the former

approach infeasible. In this case, the phase specification may

be satisfied at the expense of slight perturbations in the

frequency and amplitudes from the nominal values of the

segmental oscillator.

To formalize the synthesis, let the (k, ℓ) entry of ∆(s),
denoted by δkℓ(s), specify the connection from the ℓth neuron

to the kth neuron as δkℓ(s) = gkℓ(s)xkℓ where gkℓ(s) captures

the dynamics of the synaptic connection and xkℓ captures

the excitatory/inhibitory type and strength of that connection.

Then the connection parameter vector x is defined by stacking

the scalar parameters xkℓ for possible connections. Since there

may exist multiple solutions for ∆(s), let us consider the ℓ1-

norm minimization:

min
x

∥x∥1 s.t.

{

Λpe
jϕ = jω̃ejϕ, Ωpe

jϕ = 0,
W ∗(Λp + Λ∗

p)W < γI,
(15)



where W ∈ C
(m−1)×m is the orthogonal complement of

ejϕ. The use of the ℓ1-norm is motivated by the LASSO

regularization, which attempts to minimize the number of

nonzero weights in a linear regression model. For the synthesis

of coupled oscillators, using the ℓ1-norm seeks the essential

connections. Noting that Λp and Ωp depend linearly on x, the

problem is convex and easily solved.

We may also allow small perturbations in the frequency

and amplitudes by adding (ω̃,P) as additional optimization

variables in (15) while keeping convexity. This provides design

flexibility for the synthesis of a CPG. With the existing

approaches [14], [15], the desired amplitudes and phases of

all mn neurons have to be specified. Such tight specifications

can lead to infeasible design especially in the presence of

constraints on the network topology. In contrast, our approach

allows us to specify only the intersegmental phases, leaving the

small intersegmental amplitude variations as a design freedom

and possibly making the design feasible.

The Lyapunov inequality in (15) is a sufficient condition

for the eigenvalue condition in (14) when γ ≤ 0 since γ/2
is an upper bound on Re(λi) for i ∈ Im−1 where λi for

i ∈ Im are the eigenvalues of Λp with λm = jω̃. Since the

eigenvalues of the quasi-linear system (6) near the imaginary

axis are approximately equal to jωo + σλi, the magnitude of

σγ/2 estimates a lower bound on the rate of convergence to

the target oscillation ± the larger, the faster.

Example 2. We consider the design of coupled oscillators

(1) for the specifications in Table I. The segmental oscillator

is found using Proposition 4 of [14] as

Mo(s) = fo(s)M̄o,
fo(s) := 1/(1 + τos),

M̄o :=





0.79 0.65 0
0 1.14 1.20

−2.68 0 1.58



 ,

where the ℓ1-norm of vec(M̄o) is minimized. For the inter-

segmental connections, we assume ∆ij(s) = fk(s)∆̄ij with

constant ∆̄ij that is allowed to be nonzero if k := |i− j| = 1,

and fk(s) is defined as in Example 1 with ωo = π and

τd = 0.015. The entries of nonzero ∆̄ij are stacked into vector

x ∈ R
72 and are optimized to achieve the oscillation profile

in Table I. As in Example 1, the existing methods cannot be

used for the synthesis unless fk(s) = fo(s).
We have found that the optimization (15) over (x, ω̃) with

uniform amplitudes (P = 0) was infeasible for any γ < 0 due

to the restriction of the nearest neighbor coupling (k = 1).

Hence, we let P be an additional free variable in (15) to

allow small amplitude variations. With variables (x, ω̃,P), the

value of γ < 0 does not alter the essential result since it just

scales the solution and the scaling freedom can be absorbed

into σ. The design result with σγ = −0.1 is shown in Fig.

2, where the optimized amplitudes (1 + σpi)ao and specified

phases ∠r̂ + ϕi for i ∈ I5 are compared with the simulated

values. We see slight perturbations in the amplitudes from ao
as intended, making the optimization feasible. The interseg-

mental phases are closely matched with the specification. The

optimized frequency ωo+σω̃ = 3.07 and simulated frequency

ω = 2.98 are both close to the nominal frequency ωo = π
of the segmental oscillator. Simulated time courses of qi1(t)
indicated fast convergence from random initial conditions,

TABLE I. Design specifications

threshold nonlinearity in neurons ψ(x) = tanh(x),

# of neurons in a segmental oscillator, n 3

nominal frequency, ωo [rad/s] π
intrasegmental amplitude, ao 1,2,3

intrasegmental phase, ∠r̂ [deg] 0,60,120

intrasegmental time constant, τo [s] 0.2

# of segmental oscillators, m 5

intersegmental phase, φ [deg] 0,-35,-50,-90,-180

confirming stability of the limit cycle. Finally, we note that

the ℓ1 optimization in (15) eliminated 37 out of the 72

connections, with 2 to 6 retained out of 9 connections between

two adjacent oscillators.
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Fig. 2. MHB synthesis of CPG via optimization (15)

VI. CONCLUSION

Exploiting the weakness of the coupling, we have trans-

formed the MHB condition into a simple eigenvalue-

eigenvector equation. The resulting condition enabled the

analysis of a given CPG to predict the oscillation profile,

as well as the synthesis of intersegmental connections to

achieve phase coordination with specified or unspecified inter-

segmental variation of amplitudes. Consideration of amplitude

variation in weakly coupled oscillators will help to model bio-

logical observations realistically as well as design engineering

systems with added design freedom. For example, the leech

CPG for swimming may be modeled as coupled oscillators

based on experimental data. Membrane potential data qi(t) of a

segmental oscillator, partially known topology of the neuronal

connections, and physiological parameters, such as synaptic

time constants, are known from the literature. Solving the

optimization (15), one can determine the synaptic strengths

and identify missing connections to develop a high fidelity

model, which could be validated by further experiments.

APPENDIX

A. Proof of Lemma 1

The MHB equation (7) can be written as

q̂i =Mo(jω)K(αi)q̂i + σ
m
∑

j=1

∆ij(jω)K(αj)q̂j , (16)

where αi := |q̂i| and i ∈ Im. From (9), we have

αi =
(

I + σRe(Pi)
)

ao +O(σ2),

K(αi) = Ko + σK̇oRe(Pi)diag(ao) +O(σ2),

Mo(jω) =Mo(jωo) + jω̃σṀo(jωo) +O(σ2),
∆ij(jω) = ∆ij(jωo) +O(σ),

(17)



where Ko := K(ao) and we used the approximation

x, y ∈ C ⇒ |(1 + σy)x| =
(

1 + σRe(y)
)

|x|+O(σ2).

Directly substituting these relationships and (9) into (16),

neglecting O(σ2) terms, and dividing by σ yield

(

jω̃ṀoKo +MoSi + (MoKo − I)Pi

)

vi +

m
∑

j=1

∆ijKovj = 0,

for i ∈ Im, where vi := r̂ejϕi . Here, we note that the O(σ0)
terms vanish due to Assumption 1. Assembling the above

equations for i ∈ Im, we obtain (10).

B. Proof of Lemma 2

Let (Ao, Bo, Co) be a minimal realization of Mo(s). Then

the system r =Mo(s)Kor can be written as

ẋo = Āoxo, Āo := Ao +BoKoCo, r = Coxo.

Due to Assumption 1, the system is m-stable with an eigen-

value at jωo. Note that the MHB equation (8) and the

definition of ℓ̂∗ imply

r̂ = Cox̂o, x̂o := (jωoI −Ao)
−1BoKor̂,

ℓ̂∗ = ŷ∗oBoKo/β, ŷ∗o := βℓ̂∗Co(jωoI −Ao)
−1,

(18)

where β is chosen such that ŷ∗o x̂o = 1, and we also have

(Āo − jωoI)x̂o = 0, ŷ∗o(Āo − jωoI) = 0. (19)

Now, consider the quasi-linear system (6). Note that

Mo(s) = C(sI −A)−1B,
A := I ⊗Ao, B := I ⊗Bo, C := I ⊗ Co,

and let a minimal realization of ∆(s) be given by

∆(s) = H(sI − F )−1G.

Then the quasi-linear system (6) is described by

ẋ = Ax, x := col(x, ξ),

A :=

[

A 0
0 F

]

+

[

B
G

]

K(α)
[

C σH
]

.

From (17), we have

α = col(α1, . . . , αm), K(α) = Ko + σS +O(σ2).

We then see that

A =

[

A+BKoC 0
GKoC F

]

+ σ

[

BSC BKoH
GSC GKoH

]

+O(σ2).

Note from (19) that

(A+BKoC)Xo = jωoXo, Xo := I ⊗ x̂o,
Y ∗

o (A+BKoC) = jωoY
∗

o , Yo := I ⊗ ŷo.

Therefore,
[

A+BKoC 0
GKoC F

] [

Xo

Ξ

]

= jωo

[

Xo

Ξ

]

,

[

Yo
0

]

∗
[

A+BKoC 0
GKoC F

]

= jωo

[

Yo
0

]

∗

,

Ξ := (jωoI − F )−1GKoCXo,

From Theorem 4.1 in [19], the eigenvalue jωo of A at

σ = 0, with geometric multiplicity m, is perturbed to the

open left half plane except for one on the imaginary axis with

sufficiently small σ > 0 if all the eigenvalues of

Λp :=

[

Yo
0

]

∗
[

BSC BKoH
GSC GKoH

] [

Xo

Ξ

]

have negative real parts, except for one on the imaginary axis

which is equal to jω̃ where ω̃ gives the first order term in (9).

Direct calculation gives

Λp = Y ∗

o B(S +Ko∆(jωo)Ko)CXo.

Noting from (18) that

I ⊗ r̂ = CXo, I ⊗ ℓ̂∗ = Y ∗

o BKo/β,

Y ∗

o B = β(I ⊗ ℓ̂∗)Mo(jωo),

we can verify that Λp is given by (12).
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