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ABSTRACT

Conceptual design is the foundational stage of a design pro-
cess, translating ill-defined design problems to low-fidelity de-
sign concepts and prototypes. While deep learning approaches
are widely applied in later design stages for design automation,
we see fewer attempts in conceptual design for three reasons:
1) the data in this stage exhibit multiple modalities: natural lan-
guage, sketches, and 3D shapes, and these modalities are chal-
lenging to represent in deep learning methods; 2) it requires
knowledge from a larger source of inspiration instead of focus-
ing on a single design task; and 3) it requires translating de-
signers’ intent and feedback, and hence needs more interaction
with designers and/or users. With recent advances in deep learn-
ing of cross-modal tasks (DLCMT) and the availability of large
cross-modal datasets, we see opportunities to apply these learn-
ing methods to the conceptual design of product shapes. In this
paper, we review 30 recent journal articles and conference pa-
pers across computer graphics, computer vision, and engineer-
ing design fields that involve DLCMT of three modalities: natu-
ral language, sketches, and 3D shapes. Based on the review, we
identify the challenges and opportunities of utilizing DLCMT in
3D shape concepts generation, from which we propose a list of
research questions pointing to future research directions.
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1 INTRODUCTION

Product shape is essential in the conceptual design of engi-
neered products, because it could affect both the aesthetics and
engineering performance of a product [1]. Figure 1 shows the
overall information flow and the key steps in conceptual design,
where the information can be categorized into three modalities:
natural language (e.g., text), sketches (e.g., 2D silhouette), and
3D shapes (e.g., meshes). We call them design modalities. Gen-
erally, documents of customer needs and engineering require-
ments are in the form of natural languages. Design sketches and
drawings are effective ways for brainstorming and expressing de-
signers’ preferences. Low-fidelity design concepts and proto-
types from the conceptual design stage are often represented by
3D shapes in digital format. Design Search and Design Creation
are two important steps in conceptual design to gather informa-
tion of existing design solutions for inspiration and explore the
design space for novel design concepts.

Early design automation methods, such as grammar- and
rule-based methods, primarily rely on human design experience
and knowledge to generate design alternatives [2]. On the con-
trary, driven by data, deep learning methods have been primar-
ily applied to the later stages of engineering design for design
automation [3]. It is challenging to apply deep learning meth-
ods to the conceptual design stage (i.e., the early design stage)
for several reasons. For example, data in the conceptual design
stage exhibit multiple modalities, but deep learning methods are
usually applied to handle a single design modality. Moreover,
in conceptual design, designers often gather a large set of infor-
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FIGURE 1.

mation for design inspiration, but deep learning methods tend
to focus on a single design task. Finally, human (either user or
designer) inputs and interactions are desired in conceptual de-
sign to improve design creativity and human-centered design, but
deep learning-based design methods do not directly interact with
human data but only implicitly capture human preferences from
training datasets.

With recent development in deep learning of cross-modal
tasks (DLCMT) !, we see the opportunities of applying those
methods to address these challenges, particularly in product
shape design, such as car body and plane fuselage [5,6]. DL-
CMT methods can allow human input of one design modality
and translate them to another design modality, e.g., from natu-
ral language to 3D shapes. In DLCMT, there are cross-modal
retrieval and generation methods. Cross-modal retrieval can be
used to search an existing design repository for inspiring design
ideas, while cross-modal generation can be used to explore a de-
sign space to create novel design concepts. They can be used in
both the Design Search step and the Design Creation step (see
Figure 1).

In this paper, we review 30 recent journal articles and confer-
ence papers from computer graphics, computer vision, and engi-
neering design fields on DLCMT. We focus on text, sketches, and
3D shapes because they are the major design modalities in con-
ceptual design. Specifically, we reviewed deep learning meth-

'DLCMT is a class of problems, aiming to translate one modality of data to
another, e.g., from text to 3D shapes. To solve this problem, there is a large
body of literature on cross-modal representation learning (CMRL). CMRL aims
to build embeddings using information from multiple modalities (e.g., texts, au-
dio, and images) in a common semantic space, which allows the model to com-
pute cross-modal similarity [4]. In this paper, our review is not limited to review-
ing CMRL methods but also include other deep learning methods that can solve
cross-modal problems.
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Conceptual design stage in the development of engineered products

ods on three cross-modal tasks: text-to-sketch, text-to-3D, and
sketch-to-3D. We found that most of the literature comes from
computer graphics and computer vision, with few attempts in
engineering design applications. This poses new opportunities to
adapt the developed models and techniques to solve engineering
design problems, and particularly, to bridge human inputs and
interactions with deep learning methods in the conceptual design
of product shapes.

The remainder of this paper is organized as follows. Section
2 introduces background knowledge in conceptual design and de-
sign modalities. Section 3 presents the scope and criteria of our
review. We show and summarize the review results in Section 4.
In Section 5, we discuss the challenges and research questions
when applying DLCMT in the conceptual design of engineered
products. Section 6 concludes our work with closing remarks
and a brief discussion on future research directions.

2 BACKGROUND
2.1 CONCEPTUAL DESIGN IN PRODUCT ENGINEER-
ING

In the conceptual design stage of a design process, prod-
uct shape is a key consideration that is highly related to a prod-
uct’s engineering performance and aesthetics [1,7]. Therefore,
in this paper we focus on 3D shape design. As shown in Figure
1, we adapt the five-step concept generation method [1] to facili-
tate the review process. The five steps are Problem Clarification,
Design Search, Design Creation, Design Integration, and Reflec-
tion. Through these five steps, the method transfers information,
such as customer needs, engineering requirements, and design
ideas, to design concepts in the form of sketches and 3D shapes.
The corresponding input and output of each step are represented
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FIGURE 2. Cross-modal tasks in conceptual design

by dotted rectangles. The process is linear in sequence from left
to right but almost always iterative. For example, feedback from
Reflection could influence Problem Clarification and its subse-
quent steps. In this paper, we primarily focus on the review of
DLCMT that can be applied in the steps of Design Search and
Design Creation because they are the important steps for the in-
spiration of novel design concepts.

2.2 DESIGN SEARCH

Design Search is the step of gathering information of ex-
isting design solutions to a design problem. In practice, sev-
eral ways, such as patents, literature, and benchmarking, can be
used to gather useful information [1]. By analyzing those ex-
isting products, designers can summarize their advantages and
disadvantages, so that they can make necessary and customized
changes to existing designs to create satisfying ones. However,
the repository of existing design options could be huge, so the
search process would be time consuming and cumbersome, plac-
ing significant cognitive and physical burdens on designers. One
possible solution to this issue is to use an Al-assisted search pro-
cess, where designers can pre-define search criteria and utilize
computers to search for relevant design solutions. For 3D shape
design, shape retrieval methods are representative examples.

2.3 DESIGN CREATION

Design Creation emphasizes exploring novel design con-
cepts. Designers brainstorm ideas and explore the design space
to create novel design concepts based on the knowledge of de-
signers [1]. Sketches are often used for brainstorming design
concepts, and low-fidelity 3D models are then created for bet-
ter visualization and further development. However, creating
3D models involves lots of manual work and could be time-
consuming. DLCMT can be used to automate the sketch-to-3D
shape process, thus facilitating the creation of novel 3D shapes.

TABLE 1. Statistics of the papers reviewed

Category Method Number of Papers
Retrieval None
Text to Sketch

Generation 5

Retrieval 4
Text to 3D Shape

Generation 6

Retrieval 6
Sketch to 3D Shape
Generation 9

2.4 MODALITIES IN CONCEPTUAL DESIGN

As shown in Figure 1, there are three major design modal-
ities: natural language (NL), sketches, and 3D shapes, in the
conceptual design process. In the example of a car body de-
sign as shown in Figure 2, the three modalities could be T want
a red sedan car” (NL), hand-sketching a car with desired fea-
tures (sketch), and then creating a CAD model of the car (3D
shape). Natural language allows people to convey and commu-
nicate ideas and thoughts. It is also the primary means for doc-
umentation, such as documentation of customer needs and en-
gineering requirements. Sketches are often used to brainstorm
design concepts because sketching can stimulate designers’ cre-
ative imagination [8]. Then, a 3D shape is often built to provide
better visualization and a low-fidelity prototype model for further
evaluation and development of a concept.

Natural language data are often in the format of text.
Sketches are in 2D imaginary format consisting of strokes and
lines. 3D shapes are typically built as boundary representation
(B-rep) models (e.g., NURBS) using CAD software in engineer-
ing design. However, in the computer graphics field and the
3D deep learning field, 3D shapes are usually parameterized as
meshes, point clouds, and voxel grids. Compared to CAD mod-
els, these 3D representations typically have lower fidelity with
fewer geometric details and structural information because of the
limitations of computational resources.

3 REVIEW SCOPE AND METHODOLOGY

We confined the scope of our review to the following three
aspects: 1) 3D shape design of discrete, physical, and engineered
products. 2) Design Search and Design Creation steps (see Fig-
ure 1) in conceptual design, and 3) deep learning of cross-modal
tasks for the three design modalities: text-to-sketch, text-to-3D,
and sketch-to-3D.

To identify relevant studies and publications, we searched in
Google Scholar by keywords: “’text-to-sketch retrieval”, “text-to-
sketch generation”, “’sketch-based 3D shape retrieval”, ”sketch-
based 3D shape generation”, “’text-to-shape retrieval”, and “text-
to-shape generation”. These keywords are identified from the
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existing publications. For sketch-based 3D shape generation”,
it has another three commonly used names: “sketch-based 3D
shape reconstruction”, ”sketch-based 3D shape synthesis”, and
3D shape reconstruction from sketches”, so we also used them
in our search. The initial search yielded a large set of seed pa-
pers (more than 600). The majority of those papers are related
to sketch-based 3D shape retrieval and generation, from which
we picked representative papers with high citations in Google
Scholar and recently published papers after the year 2020. We
didn’t find any work related to text-to-sketch retrieval, possibly
due to the lack of interests in practical applications. For the other
categories, we filtered some irrelevant papers based on the three
criteria defined in the scope of the review. The statistics of the
papers reviewed are summarized in Table 1. We acknowledge
that the inclusion of relevant work regarding the sektch-to-3D
shape may not cover all areas, so it leaves a more comprehensive
review task for our future work. However, this paper initiates the
first step towards a comprehensive review of all relevant research
on DLCMT that could be beneficial to the conceptual design of
product shapes.

4 REVIEW RESULTS
4.1 METHODS FOR DESIGN SEARCH

In this section, we summarize our review related to text-to-
3D and sketch-to-3D shape retrieval.

4.1.1 TEXT-TO-3D SHAPE RETRIEVAL There has
been only a little research on text-driven 3D content search. For
the state-of-the-art methods, learning a joint embedding for text
and 3D shapes is a common strategy.

Chen et al. [9] constructed a joint embedding of text and 3D
shapes by using a convolution neural network (CNN) + recurrent
neural network (RNN) encoder on text and a 3D-CNN encoder
on 3D voxel shapes. A triplet loss was applied and learning
by association was used to align the embedded representations
of text and 3D shapes. They also introduced two datasets: 1)
ShapeNet [10] (chairs and tables only) with a natural language
description and 2) geometric primitives with synthetic text de-
scriptions. However, the computational cost caused by the cubic
complexity of 3D voxels limits this method to the machine learn-
ing of low-resolution voxels. Consequently, the learned joint
representations will have a low discriminative ability. Han et
al. [11] built a Y2Seq2Seq network architecture using a Gated
Recurrent Unit (GRU) to encode features of multiple-view im-
ages to represent the shape. To obtain the joint embedding of text
and sketches, they trained the network using both intermodality
and intramodality reconstruction losses, in addition to the triplet
loss and classification loss. Therefore, the proposed network
could learn more discriminative representations than [9]. Tang
et al. [12] proposed to incorporate part-level information of 3D

shapes represented by point clouds. They applied a shape en-
coder with a pre-trained point-based segmentation network [13]
to learn part embedding and a bidirectional GRU text encoder
to learn word embedding. An alignment-based cross-attention
module was then used to predict a pair of symmetrical formula-
tions (i.e., shape-text and text-shape) to achieve the matching of
parts with words.

The methods mentioned above need to use complex atten-
tion mechanisms or losses to learn the joint embedding. To avoid
these complexities, using large batch contrasive learning, Ruan
et al. [14] proposed a tri-modal learning scheme, which achieved
state-of-the-art text-to-shape retrieval. The scheme consists of
a 3D CNN vozxel shape encoder, a bidirectional GRU (Bi-GRU)
text encoder, and a multi-view CNN image encoder. The em-
bedding vectors of the voxel shape, text, and image are aligned
in a latent space. Then, a bidirectional contrastive loss was mini-
mized to learn effective representations of shape, text, and image.

4.1.2 SKETCH-TO-3D SHAPE RETRIEVAL Wang
et al. [15] proposed to learn feature representations for sketch-
to-3D shape retrieval, which avoided computing multiple views
of a 3D model. They applied two Siamese CNNs for views of
3D shapes and sketches, respectively, and a loss function defined
on the within-domain and cross-domain similarities. To reduce
the discrepancies between the sketch features and the 3D shape
features, Zhu et al. [16] built a pyramid cross-domain neural net-
work of sketches and 3D shapes. They used the network to es-
tablish a many-to-one relationship between the sketch features
and a 3D shape feature. The learned features of 3D shapes and
sketches were used for retrieval. Dai et al. [17] proposed a novel
deep correlated holistic metric learning method with two distinct
neural networks for sketch and 3D shape. Such a deep learn-
ing method mapped features from both domains into one feature
space. In the construction of its loss function, both discriminative
loss and correlation loss were used to increase the discrimination
of features within each domain and the correlation between do-
mains.

In the methods mentioned above, deep metric learning [18]
was applied to mitigate the modality discrepancy between the
sketch and the 3D shape. There are also methods studying how
to represent 3D shapes more comprehensively so that 3D shapes
can better correspond to sketches. Xie et al. [19] proposed to
learn a Wasserstein barycenter of CNN features extracted from
the 2D projections of a 3D shape. They constructed the metric
network to map sketches and the Wasserstein barycenters of 3D
shapes to a common deep feature space. A discriminative loss
was then formulated to learn the deep features. The deep features
learned could then be used for the sketch-to-3D shape retrieval.

SHREC 2014 sketch-based 3D shape retrieval benchmark
[20] was commonly used by all methods introduced above.
These methods aimed to retrieve objects by coarse category-level
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retrieval of 3D shapes given an input sketch. Qi et al. [21] intro-
duced a novel task of fine-grained instance-level sketch-to-3D
shape retrieval, with the aim of retrieving one specific 3D shape
that best matches the input sketch. They created a set of paired
sketch-to-3D shape data of chairs and lamps from ShapeNet [10].
Then, they built a deep joint embedding learning-based model
with a novel cross-modal view attention module to learn the fea-
tures of sketches and 3D shapes. There is also an interest in
using CAD data in 3D shape retrieval. Qin et al. [22] developed
a sketch-to-3D CAD shape retrieval approach using variational
auto encoder (VAE) and structural semantics. They created their
training dataset by collecting 3D CAD models from local com-
panies and obtained their six-view projections as sketch data.

4.2 METHODS FOR DESIGN CREATION

In this section, we summarize our review relevant to text-
to-3D shape, text-to-sketch, and sketch-to-3D shape generation
methods.

4.2.1 TEXT-TO-3D SHAPE GENERATION Chen et
al. [9] proposed a challenging task of text-to-3D shape genera-
tion. As introduced in Subsection 4.1.1, they constructed a joint
embedding of text and 3D shape and used it for text-to-3D shape
retrieval task. Furthermore, they combined the joint embed-
ding model with a conditional Wasserstein GAN (WGAN) [23]
framework, which enables the generation of colored voxel shapes
in low resolution (323). To resolve this low-resolution issue,
Fukamizu et al. [24] proposed a two-stage method that can first
generate a low-resolution shape (32%), which roughly reflected a
given text (Stage I), and then generated a high-resolution (64°)
shape reflecting the detail of the text (Stage II). Stage I was built
based on [9] and in Stage II, a new network model was built
based on StackGAN [25]. Li et al. [26] proposed to use class la-
bels to guide the generation of 3D voxel shapes with the assump-
tion that shapes with different labels (e.g., chairs and tables) have
different characteristics. They added an independent classifier to
the WGAN framework to guide the training process. The classi-
fier could be trained together with the generator to enable more
distinctive class features in the generated 3D shapes.

The methods introduced above only support the generation
of 3D shapes in individual ShapeNet [10] categories (e.g., the
chair category or the table category). Generalization of these
methods remains challenging due to the unavailability and lim-
ited size of paired data of 3D shapes and text description. To
improve the ability of generalization, some methods try to utilize
some pretrained models (e.g., Contrastive Language-Image Pre-
Training (CLIP) [27]) and zero-shot learning techniques. Sanghi
et al. [28] proposed a method called CLIP-forge, which could
generate 3D voxel shapes from text descriptions for ShapeNet
objects. It required training data (i.e., rendered images, voxel
shapes, query points, and occupancies) obtained from ShapeNet

3D shapes without text labels. They first learned an encoding
vector of a 3D geometry and then learned a normalizing flow
model [29] of that encoding vector conditioned on a CLIP fea-
ture embedding. However, CLIP-Forge cannot be well general-
ized outside ShapeNet categories. Chu [30] proposed a method
consisting of a generator, a scorer, and an optimization loop us-
ing a genetic algorithm to optimize 3D geometry. The objective
function of the optimization was to maximize the CLIP score ob-
tained from the rendered images of 3D surfaces. This method
could generate 3D shapes and 2D renders at different view an-
gles for a wide range of categories beyond ShapeNet data. Jain
et al. [31] combined Neural Radiance Field (NeRF) [32] with an
image-text loss from CLIP to form Dream Fields. A Dream Field
is a neural 3D representation that can return a rendered 2D im-
age given a desired viewpoint. After training, the method could
generate colored 3D neural geometry from text prompts without
using 3D shape data, resulting in a better generalization ability.

4.3 TEXT-TO-SKETCH GENERATION

Sketches could inspire design ideas and text-to-sketch tools
could help designers efficiently capture fleeting design inspira-
tions. The generation of images from text descriptions (i.e., text-
to-image synthesis/generation) has seen greatly progressed re-
cently [33]. Unlike text-to-image generation, text-to-sketch syn-
thesis is more challenging, and can only rely on rigid edge/stroke
information without color features (i.e., pixel values) in an im-
age [34].

Text2Sketch [35] applied a Stagewise-GAN to encode hu-
man face attributes identified from text descriptions and trans-
forms those attributes into sketches, which was trained on a
manually annotated dataset of text-face sketches. Although the
method was applied in face recognition instead of product de-
sign, it is worth being introduced here because the method is
inspiring and could be applied to the design domain if a dif-
ferent dataset is used. Yuan et al. [34] constructed a bird
sketch dataset by modifying the Caltech-UCSD Birds (CUB)
dataset [36], based on which they trained a novel GAN-based
model, called T2SGAN. The model featured a Conditional
Layer-Instance Normalization module that could fuse the image
features and sentence vectors, thus efficiently guiding the gener-
ation of sketches.

The methods mentioned above were developed for single-
object sketch synthesis, and there are also methods for multi-
object generation, which could be useful for generating designs
part by part. Huang et al. [37] adopted a two-step neural net-
work: 1) a transformer-based mixture density network for the
scene composer to generate high-level layouts of sketches, and
2) a sketch-RNN [38] based object sketcher to generate indi-
vidual object sketches. The scene composer and the object
sketcher were trained using the Visual Genome dataset [39] and
the “Quick, Draw!” dataset [40], respectively. Since different
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datasets of text and sketches can be used, this method helped
avoid the requirement for paired data of text description and
sketches of an object. Based on their previous work, Huang et
al. [41] took a further step and proposed an interactive sketch
generation system called Scones. It used a Composition Pro-
poser to propose a scene-level composition layout of objects and
an Object Generator to generate individual object sketches. Bhu-
nia et al. [42] introduced a network architecture consisting of a
part locator network and a part sketcher network to generate re-
alistic creative sketches. The part locator networks, composed
of two graph-aware transformer encoders and a Gaussian mix-
ture model decoder, were used to capture the coarse structure
of a sketch by predicting the position of the box including one
part of the whole sketch. The part sketcher network then took
the predicted box locations and generated the final sketch us-
ing a standard GAN architecture. The network was trained on a
dataset [43] that contains birds and creatures.

4.3.1 SKETCH-TO-3D SHAPE GENERATION
There are mainly two paradigms for 3D shape reconstruc-
tion from 2D sketches: the geometric-based method and the
learning-based method. Sketch-based interfaces for modeling
(SBIM) is the major branch of geometric-based methods [44]
and we do not review this line of work in light of the review
scope. We also excluded some methods that apply deep learning
techniques but require predefined geometric models to guide 3D
reconstruction, such as the methods presented in [45,46]. We
focus on reviewing the end-to-end deep learning-based methods.

Sketch-to-3D shape generation without any predefined geo-
metric models was initialized by Lun et al. [47]. They proposed
an encoder-multiview-decoder architecture that can extract the
depth and normal maps from a single sketch or multiple sketches,
and output a 3D shape in point clouds. The resulting point-cloud
representation can be converted to a polygon mesh for better vi-
sualization. Similarly, Nozawa et al. [48] extracted the depth
and mask information from a single input sketch by an encoder-
decoder network. Then a lazy learning [49] method was per-
formed to find similar samples in the dataset to synthesize a 3D
shape represented by point clouds. Later, Nozawa et al. [50] ex-
tended that method by changing the architecture with a combina-
tion of GAN and lazy learning. Delanoy et al. [51] proposed an
interactive sketch-to-3D generations system. They used a CNN
to transform sketches to 3D voxel shapes, and another CNN as
an updater to update the predicted 3D shape while the user is pro-
viding more sketches. Su et al. [52] applied an encoder-decoder
network to predict normal maps from sketches and optional in-
put of user-specified normal samples. Those methods can only
deal with 3D shape generation from sketches within a specific
category. To improve generality, Li et al. [53] introduced an in-
termediate CNN layer to model the direction of dense curvature.
They also used an additional output confidence map along with

the depth and normal maps extracted using CNNs. They trained
the network based on a variety of categories (e.g., fishes, birds,
and human characters), which can then output 3D mesh shapes.
Using meshes as the 3D representation for deep learning meth-
ods is challenging, but the quality of the resulting 3D shapes is
better than that of using point clouds and voxels.

The methods introduced above have to be trained using su-
pervised learning, which means that the training data must be
pairs of sketches and 3D shapes (i.e., labeled data). Wang et
al. [54] proposed an unsupervised learning method for sketch-
to-3D shape reconstruction. They embedded unpaired sketches
and rendered images from 3D shapes to a common latent space
by training an adaption network via autoencoder with adversarial
loss. During the inference of 3D shapes from sketches, they re-
trieved several nearest-neighboring 3D shapes from the training
dataset as prior knowledge for a 3D GAN to generate new 3D
shapes that best match the input sketch. This method can only
output very coarse 3D voxel shapes but provides an interesting
idea based on unsupervised learning for sketch-to-3D shape gen-
eration.

Besides the usage of general 3D shape representations (i.e.,
point clouds, voxels, and meshes), there are other 3D represen-
tations used in this application. For example, Smirnov et al. [5]
proposed a novel deformable parametric template composed of
Coon patches that can be easily fitted into a conventional CAD
modeling pipeline. The resulting 3D shapes can be easily con-
verted to NURBS representation, allowing edits in CAD soft-
ware. Guillard et al. [6] proposed a pipeline for reconstructing
and editing 3D shapes in DeepSDF [55] format from 2D sketches
using an encoder-decoder architecture, which can output high-
quality mesh shapes.

5 DISCUSSION

In this section, we start our discussion on 3D representations
in DLCMT methods and their ability of generalization. We then
discuss how DLCMT can facilitate human-centered design and
how to apply DLCMT methods in engineering conceptual de-
sign. Finally, we summarize the challenges and propose research
questions to be answered in this field.

5.1 3D REPRESENTATIONS IN DLCMT METHODS

3D shapes with high visual quality and rich geometric details
can help designers better understand a design concept. Voxel
grids, point clouds, and meshes are the most commonly used
representations for 3D geometry. Similar to the pixels of im-
ages, voxel grids are naturally adapted to convolutional neural
network (CNN) model, which is the major reason for its preva-
lence in 3D geometry learning research. The majority of the
studies we reviewed uses voxels for 3D shape representation
[9,11,14,23,24,26,28,51,54]. Voxel shapes are usually needed to
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TABLE 2. Comparison of pros and cons of the three representations to deep learning methods

3D Representation Pros

Cons

MRl be adapted in 3D convolution operations

* Compatible with the output data format of common

Point clouds scanning software

*  Compact for data storage and management

* High visual quality
* Compact for data storage and management

Meshes *  Widely-accepted 3D representation in computer graphics
* Compatible with downstream engineering software

requirements such as the FEA and CFD tools

The data structure in fourth-order tensor makes it easy to

*  Low visual quality

* High computational cost because the number of the 3D
representation parameters scale with the increase of
spatial resolution in cubes

* Cannot be directly used in engineering analyses (e.g.,
the FEA analyses) for performance evaluation

* Low visual quality

* No detailed geometric information about relationships
between points making it hard to convert to meshes

* Cannot be directly used in engineering analyses (e.g.,
the FEA analyses) for performance evaluation

* Discrete and disordered elements make it challenging to
be processed by deep learning methods

converted to mesh shapes for better visualization. However, the
transformed mesh shapes will look coarse if the resolution of the
voxel shapes is low. This could negatively influence the subjec-
tive evaluation of the shape of a design concept, and the design
concept might be overlooked by designers. An intuitive way to
improve the resolution of the resulting 3D voxel shapes is to use
high-resolution training data, but this may not be feasible due to
the limited computing resources for training the neural network.
Fukamizu et al. [24] provided a two-stage strategy to synthesize
high resolution 3D voxel shapes from natural language, which
could be an inspiring method for dealing with low resolution is-
sues. Point clouds [12,13,47,48,50] are more efficient in repre-
senting 3D objects, but do not cover geometric details. For ex-
ample, it does not encode the relationship between points and the
resulting topology of an object, leading to a challenging conver-
sion to meshes. Using meshes [53] for 3D representation could
generally alleviate the low visual quality and data storage prob-
lems, but, in the meantime, it is challenging to prepare meshes
for deep learning methods due to their discrete face structures
and unordered elements. Please see Table 2 for the pros and cons
of applying those three representations to deep learning methods.

In addition to the above three representations, there are a
few new 3D representations that are promising to handle the
trade-off between the effectiveness of training neural networks
and the quality of the resulting 3D shapes. Neural Radiance
Field (NeRF) [31, 32] is a method for generating novel views
of scenes or objects. NeRF can take a set of input images of an
object and render the complete object by interpolating between
the images. NeRF is topology-free and can be sampled at high
spatial resolutions. However, 3D shapes represented by NeRF
are “hidden in the black box” and we can only observe it by
images rendered from different viewpoints. The deep implicit

field [6, 55] represents a shape’s surface by a continuous volu-
metric field, encoding a shape’s boundary as the zero-level set of
the learned implicit 3D shape function. It is a promising repre-
sentation for high-resolution 3D shapes, but requires fewer data
storage. However, all the 3D representations mentioned above
(i.e., voxels, point clouds, meshes, NeRF, and deep implicit field)
are generally not adapted to CAD software. This often brings
about compatibility issues that could impede downstream edit-
ing and engineering analyses of the generated 3D shapes. To
solve these issues, there are typically two ways. One way is to
convert them to CAD models (e.g., converting STL/OBJ meshes
to B-Rep solids). Another way is to handle the CAD shape data
directly in deep learning models. CAD datasets [22,56—-58] and
deep learning methods based on uni-modal CAD data [59-63]
have recently been introduced. Deep learning of uni-modal CAD
data is still an underexplored field, and DLCMT using such a data
format [5] turns out to be a promising research direction.

5.2 GENERALIZATION OF DLCMT METHODS

In engineering design applications, a deep learning method
can be effective in one design object but may not be easily ap-
plied to other design objects, because many deep learning meth-
ods are developed based on available training data in one de-
sign domain. It could be challenging for deep learning meth-
ods to generalize to multiple design problems. Seeking a gen-
eralization of applying DLCMT in engineering design could be
even challenging due to the unavailability of data pairs between
3D shapes and their corresponding text descriptions or sketches.
Some methods utilize transfer learning techniques (e.g. zero shot
learning) [28,30,31] or specially designed neural network archi-
tectures to improve generalization, which could be good refer-
ences for the design community.
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5.3 INCORPORATING HUMAN INPUTS INTO DEEP
LEARNING-AIDED DESIGN PROCESSES

In general, deep learning methods (e.g., VAEs and GANs)
could generate new data that are not seen in the training data set,
but are still based on interpolation within the boundary of the
training data. Therefore, the new designs generated still share
great similarities with the existing ones. Recently, efforts have
been spent on developing new network architectures to enable
deep-learning models’ extrapolating capabilities, and thus can
generate true novel designs [64,65]. However, despite advances
in model development, one observation is that human input and
interaction are not much emphasized in the deep learning-aided
design process [3]. Burnap et al. [66] pointed out that a human’s
perception of the quality of the generated design concepts is of-
ten not in correspondence with their numerical performance mea-
sures. The reason could be that in most deep learning-aided de-
sign processes, designers can only passively select the preferred
design concepts from a set of computer-generated design options.
There is a need to actively involve designers and/or users in the
data-driven design process [3,7]. There have been some efforts
on this recently. For example, the method shown in [67] al-
lows users to manipulate the latent space vectors learned by a
GAN model to create preferred design options. We argue that a
more intuitive and natural way to actively interact with humans
is through natural language or sketches, and DLCMT could play
arole in this regard in transferring one modality to another (e.g.,
text to 3D shape and sketch to 3D shapes). As computers can
propose novel designs beyond the human’s imagination, design-
ers could learn from computers. On the other hand, designers can
continuously supplement new design ideas during the interaction
to guide computers to generate creative and feasible design con-
cepts that meet the requirements of aesthetics, functionality, and
manufacturability.

5.4 APPLYING DLCMT TO ENGINEERING DESIGN

The majority of the DLCMT literature is from computer
graphics or computer vision communities, with only one sketch-
to-3D retrieval work focusing on design research [22]. Similarly,
there are only a few studies (e.g., [68—71]) on unimodal 3D shape
synthesis from the engineering design community. Regenwetter
et al. [3] state that 3D synthesis works are less relevant to engi-
neering design because they focus more on visual appearance, in-
stead of functional performance or manufacturability. We agree
that engineering performance and manufacturability should be
considered in engineering design research. But, we argue that
3D shape synthesis methods could be beneficial to the product
shape design in conceptual design and should receive more at-
tentions from the design community.

On the other hand, focusing on design synthesis or retrieval,
DLCMT could be applied to engineered product shape design,
but they still have a less emphasis on engineering performance

of the product. For example, using text-to-3D shape methods, a
user said that I want an SUV with low fuel consumption”. The
method could generate an SUV car shape for the user, but no en-
gineering performance is considered. We might ask a question:
how can we make the computer understand that text description
and translate it to a primitive SUV car shape with account for
the engineering performance, such as drag coefficient? There-
fore, how to integrate engineering performance evaluation, e.g.
surrogate modeling, into DLCMT to enable shape design taking
into account the engineering performance of the product could
be an interesting research direction. Similarly, it is also worth
exploring how other aspects (e.g., manufacturability) of engi-
neering design can be counted when applying DLCMT to en-
gineering design. To facilitate such applications, we encourage
proposals of cross-modal datasets with corresponding engineer-
ing performance and manufacturability analysis of the designs
(e.g., sketch-to-3D shape dataset with engineering performance
of the 3D shapes).

5.5 CHALLENGES AND RESEARCH QUESTIONS

As discussed above, our review of the current state-of-the-art
DLCMT reveals opportunities to use these methods for human-
centered product shape design in the conceptual design stage.
In addition, these methods have the potential to accelerate the
democratization of the product design process, which allows or-
dinary people to get involved in personalized design [72]. This
could also be a good opportunity to develop education tools for
design education and training junior design engineers.

Challenges coexist with opportunities. First, there is a defi-
ciency of multi-modality data of engineered products. Data is the
fuel for deep learning-based design methods. We encourage the
sharing and publishing of 3D shape datasets of engineered prod-
ucts paired with the data collected from customer needs analysis,
engineering performance, and manufacturability. Such datasets
could greatly promote the verification and validation of existing
DLCMT methods and the development of new DLCMT meth-
ods for engineering design. Second, choosing the most appropri-
ate 3D representation compatible with the adopted deep learning
technique is still a challenging task. It involves considerations
of data availability, data preprocessing, computational cost, vi-
sual quality of the resulting 3D shapes, data postprocessing, and
the ability to adapt to later design stages. Third, integrating DL-
CMT with engineering performance evaluation and the analy-
sis of manufacturability of the resulting designs poses new chal-
lenges. Lastly, the challenge in generalizing DLCMT methods
couples with other challenges, and requires a community-wide
effort to share data sets, create data repositories, define bench-
mark problems, and develop testing standards. Based on these
challenges, we propose the following research questions (RQs)
pointing to future research directions, in the hope of arousing a
greater discussion within the engineering design community.
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RQ1: DLCMT has the potential to facilitate human-centered de-
sign, but what are the possible ways to maximize human
involvement and stimulate their design creativity at the
human-Al interface?

RQ2: With the establishment of human-Al interaction in concep-
tual design based on DLCMT, how could the co-evolution
between human and Al look like?

RQ3: Since DLCMT can shorten the cycle of generating 3D
shapes and even connect to the downstream engineering
analyses and manufacturing requirements, then how could
the information coming from the later design stages influ-
ence the regeneration of 3D shape concepts, and thereby a
designer’s decisions?

RQ4: What are the guidelines for selecting the most appropriate
data representations in DLCMT?

RQS5: To what extent can the generalizability and transferability of
the latent representation of multi-modality data learned from
DLCMT be across different product shape categories?

6 CLOSING REMARKS

In this paper, we reviewed deep learning of cross-modal
tasks (DLCMT), including text-to-sketch, text-to-3D shape, and
sketch-to-3D shape retrieval and generation methods, for the
conceptual design of product shapes. Those methods could be
applied in the Design Search and Design Creation steps of the
conceptual design. Different from other deep learning methods
applied in engineering design, DLCMT allows human inputs of
texts and sketches, which reflect designers’ and/or user’s pref-
erences. As designers can be more actively involved in such a
design process, human-computer interaction and collaboration
are promoted, thereby it has a great potential to improve human-
centered conceptual design of products compared to traditional
design automation methods and computer-aided design methods.
DLCMT could also facilitate the engineering design education
and democratization of product development by allowing intu-
itive inputs (e.g., texts descriptions and sketches).

With the attempt of applying new 3D data representations in
DLCMT and the availability of more public datasets, opportuni-
ties open up for the development of new DLCMT methods. How-
ever, the deficiency of training datasets, trade-off in the choice of
representations of 3D shapes, lack of consideration of engineer-
ing performance and manufacturability, and the ability of gener-
alization still challenge the design community to apply DLCMT
to engineering design. We would like to encourage attentions
and efforts from the design community.

In our future work, we will continue the review and conduct
a more comprehensive analysis of the relevant work on DLCMT.
We hope that this review effort could facilitate the discussion
and attract more attention of design researchers in utilizing DL-
CMT to improve the human-centered conceptual design of prod-
uct shapes and beyond.
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