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Abstract

In 2015, Vladimir Fock proved that the spectral transform, associating to an element
of a dimer cluster integrable system its spectral data, is birational by constructing
an inverse map using theta functions on Jacobians of spectral curves. We provide an
alternate construction of the inverse map that involves only rational functions in the
spectral data.

Keywords Dimers - Cluster algebras - Integrable systems - Toric varieties

1 Introduction

The planar dimer model is a classical statistical mechanics model, involving the study
of the set of dimer covers (perfect matchings) of a planar, edge-weighted graph. In the
1960s, Kasteleyn [15, 16] and Temperley and Fisher [22] showed how to compute the
(weighted) number of dimer covers of planar graphs using the determinant of a signed
adjacency matrix now known as the Kasteleyn matrix.

In mathematics the dimer model was popularized with the papers [8, 9] on the “Aztec
diamond" and later with results on the local statistics [19], conformal invariance [17],
and limit shapes [6], connections with algebraic geometry [20, 21], cluster varieties
and integrability [13], and string theory [14].
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While the dimer model can be considered from a purely combinatorial point of
view, it also has a rich integrable structure, first described in [13]. The integrable
structure on dimers on graphs on the torus was found to generalize many well-known
integrable systems, see for example [10] and [1]. What is especially important is that
the related integrable system is of cluster nature, and this allows one to immediately
quantize it, getting a quantum integrable system.

From the point of view of classical mechanics, associated to the dimer model on a
bipartite graph on a torus (or equivalently a periodic bipartite planar graph) is a Poisson
variety with a Hamiltonian integrable system. Underlying this system is an algebraic
curve C = {P(z, w) = 0} (called the spectral curve) and a divisor on this curve—
essentially a set of g distinct points {(p1, g1), ..., (pg, gg)} on C. This is the spectral
data associated to the model. It was shown in [20] that the map from the weighted
graph to the spectral data was bijective, from the space of “face weights" (see below)
to the moduli space of genus-g curves and effective degree-g divisors on the open
spectral curve C°. Subsequently Fock [11] constructed the inverse spectral map (from
the spectral data to the face weights), describing it in terms of theta functions over the
spectral curve. The special case of genus 0 was described earlier in [18, 20] and an
explicit construction in the case of genus 1 was more recently given in [2]. Positivity
of Fock’s inverse map was studied in [3].

In the current paper, we show that the inverse map can be given an explicit rational
expression in terms of the divisor points (p;, g;) € C° and the points of C at toric
infinity. An exact statement is given in Theorem 3.10 below.

While Fock’s construction is very natural and interacts nicely with positivity, it
involves theta functions. Our construction gives the inverse map as ratios of certain
determinants in the spectral data and can be explicitly computed using computer
algebra. We briefly describe our construction now. The spectral data is defined via a
matrix K= K (z, w) called the Kasteleyn matrix, whose rows are indexed by white
vertices, columns by black vertices, and whose entries are Laurent polynomials in z
and w. Let us consider the adjugate matrix of K:

0= 0(z,w) =K detK.

The matrix Q is important when studying the probabilistic aspects of the dimer model
(on the lift of the graph on the torus to the plane): the edge occupation variables form
a determinantal process whose kernel is given by the Fourier coefficients of Q/P, as
discussed in [21]. In the present work, we have a different use for Q: finding (a column
of) the matrix Q from the spectral data allows us to reconstruct the face weights and
thereby invert the spectral transform.

The points (p;, g;) € C are defined to be the points where a column of Q, corre-
sponding to a fixed white vertex w, vanishes. We show that entries in the w-column
of O, which are Laurent polynomials, can be reconstructed from the spectral data by
solving a linear system of equations. Some of the linear equations are easy to describe:
for any black vertex b, we have Qpw(p;, gi) =0fori =1, ..., g, which are g linear
equations in the coefficients of the Laurent polynomial Qyy. However, these equa-
tions are usually not sufficient to determine the coefficients of Qvw. We find additional
equations from the vanishing of Oy, at certain points at infinity of the spectral curve
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C, and show that these equations determine Qpw uniquely, up to a non-zero constant.
We then give a procedure to reconstruct the weights from the w-column of Q.

A key construction in our approach is the extension of the Kasteleyn matrix K
to a map of vector bundles on a toric stack, for which we make crucial use of the
classification of line bundles on toric stacks and the computation of their cohomology
developed in [5]. Toric stacks already appear implicitly in the context of the spectral
transform in [20] and explicitly [23].

The article is organized as follows. In Sect. 2 we review the dimer cluster integrable
system and the spectral transform. In Sect. 3, we state Theorem 3.1, which is our main
result, and describe the reconstruction procedure. We work out two detailed examples
in Sect. 4. Sections 5, 6 and 7 contain proofs of our results. In Appendix A, we
review results from toric geometry. In Appendix B, we provide explicit combinatorial
descriptions for some of our constructions. These are useful for computations.

2 Background

For further information about the material in this section see [13].

2.1 Dimer Models

Let I" be a bipartite graph on the torus T = S! x S' such that the connected components
of the complement of I'—the faces—are contractible. We denote by B(I") and W (I")
the black and white vertices of I, by V(I") the vertices, and by E(I") the edges of I".
When the graph is clear from context, we will usually abbreviate these to B, W, V
and E.

A dimer model on the torus is a pair (I', [wt]), where I" is a bipartite graph on the
torus as above and [wr] € HY(I", C*) (Here and throughout the paper, C* denotes
the group of nonzero complex numbers under multiplication). For a loop L and a
cohomology class [w?], we denote by [wt]([L]) the pairing between the cohomology
and the homology. We orient edges from their black vertex to their white vertex.
The cohomology class [wt] can be represented by a cocycle wt which, using this
orientation, can be identified with a C* —valued function on the edges of I" called an
edge weight.

The edge weight is well-defined modulo multiplication by coboundaries, which are
functions on edges e = bw given by f(w) f(b)~! for functions f : V(I') — C*. Note
that the weight of a loop is not the product of its edge weights, but the “alternating
product" of its edge weights: edges oriented against the orientation of the loop are
multiplied with exponent —1.

A dimer cover or perfect matching m of I is a subset of E(I") such that each vertex
of T is incident to exactly one edge in m. Let .# denote the set of dimer covers of I.
If we fix a reference dimer cover mg, we get a function

Ty & A — H((T,Z)

m — [m — mg].
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Fig.1 The fundamental Vs A
rectangle R, along with the
cycles yz, yw 0

Yw

Here m — myg is the 1-chain which assigns 1 to (oriented) edges of m and —1 to
(oriented) edges of mp, so m — myg is a union of oriented cycles and doubled edges,
whose homology class is [m — mg].

The Newton polygon of T is the polygon

N(I') := Convex-hull(sy, (.#)) C Hi(T, R)

defined modulo translation by H; (T, Z). Changing the reference dimer cover from
my to my results in a translation of the polygon by [mg — mj], so the Newton polygon
does not depend on the choice.

We assume that I is such that N (I") has interior. This is a nondegeneracy condition
on I". (When N has empty interior, the graph I' is equivalent under certain elementary
transformations to a graph whose lift to R? is disconnected, that is, has noncontractible
faces; such a graph breaks into essentially one-dimensional components, and there is
no integrable system.)

2.2 Zig-Zag Paths and the Newton Polygon

A zig-zag path in I is a closed path that turns maximally right at each black vertex
and maximally left at each white vertex. The medial graph of T is the graph I'* that
has a vertex v, at the mid-point of each edge e of I and an edge between v, and v,/
whenever e and ¢’ occur consecutively around a face of I'. Note that by construction,
each vertex of I'’* has degree 4. A zig-zag path in I" corresponds to a cycle in ' * that
goes straight through each degree four vertex, i.e., at every vertex, the outgoing edge
of the cycle is the one that is opposite the incoming one (see Fig. 2). Hereafter, when
we say zig-zag path, we mean the corresponding cycle in the medial graph.

Let T be the biperiodic graph on the plane given by the lift of I' to the universal
cover of T. The bipartite graph I' is said to be minimal if the lift of any zig-zag path
does not self-intersect, and lifts of any two zig-zag paths do not have “parallel bigons”,
where by parallel bigon we mean two consecutive intersections where both paths are
oriented in the same direction from one to the next. For a minimal bipartite graph
I" on the torus, the Newton polygon has an alternative description in terms of the
zig-zag paths of I". Namely, since I" is embedded in T, each zig-zag path « has a
non-zero homology class [«] € H(T, Z). The polygon N (I') is the unique convex
integral polygon defined modulo translation in H (T, Z) whose integral primitive edge
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Fig.2 A zig-zag path in a graph I" and the corresponding cycle in the medial graph I"*

Fig.3 Zig-zag paths and
Newton polygon for the bipartite
graph in Fig. 1

vectors in counterclockwise order around N are given by the vectors [«] for all zig-zag
paths «.

Example 2.1 Consider the fundamental domain for the square lattice shown in Fig. 1,
and let y;, y,, be cycles generating Hy (T, Z) as shown there. We will write homology
classes in H (T, Z) in the basis (), ). There are four zig-zag paths labeled «, 8, y
and & with homology classes (—1, 1), (—1, —1), (1, —1) and (1, 1) respectively (Fig.
3), and therefore the Newton polygon is

Convex-hull{(1, 0), (0, 1), (—1, 0), (0, —1)}.

2.3 The Cluster Variety Assigned to a Newton Polygon

For a convex integral polygon N C H; (T, R) defined modulo translation, consider
the family of minimal bipartite graphs I' with Newton polygon N(I') = N. Any
two graphs I'1, I'; in the family are related by certain elementary transformations;
see Fig. 4. An elementary transformation I'y — I' gives rise to a birational map
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{po Dok

spider move contraction-uncontraction move

Fig.4 The elementary transformations

HY(I';,C*) --» H'(I', C*). Gluing the tori H!(I", C*) by these maps, we obtain
a space Xy, called the dimer cluster Poisson variety. It carries a canonical Poisson
structure. The Poisson center is generated by the loop weights of the zig-zag paths.
The space Xy is the phase space of the cluster integrable system. See details in [13].

2.4 Some Notation

Let ¥ denote the normal fan of N (see Sect. A.2 and Figs. 7 and 10) so that the set of
rays 2(1) = {p} of X is in bijection with the set of edges of N. We denote the edge
of N whose inward normal is directed along the ray p by E,, and the primitive vector
along p by u,.

Let M := H(T, Z)= Z?* and M"Y := Homz (M, Z)= Z? be dual lattices and let
(%, %) : M x MY — Z denote the duality pairing. Let us consider the algebraic torus
with lattice of characters M:

T := Homz (M, C*) = (C*)?.

Let M (resp. M) denote M®z R (resp. MY ®zR), sothat N C Mg and ¥ C M.

An elementary transformation I'y — I'; induces a canonical bijection between
zig-zag paths in I'1 and zig-zag paths in I';. Therefore, the set of zig-zag paths is
canonically associated with N. We denote the set of zig-zag paths by Z, and for an
edge E, of N, we denote by Z, the set of zig-zag paths « such that the primitive
vector [«] is contained in E,.

2.5 The Kasteleyn Matrix

Let R be a fundamental rectangle for T, so that T is obtained by gluing together
opposite sides of R. Let y,, y,, be the oriented sides of R generating H; (T, Z), as
shown in Fig. 1. Let z (resp. w) denote the character x ¥ (resp. x %), so the coordinate
ring of T is C[z*!, w*!].

Let (x, %) be the intersection pairing on H| (T, Z). For z, w € C* we multiply
edge weights on edges crossing y. by z*! and those crossing y,, by w*!, with the
sign determined by the orientation. Precisely, we multiply by

B (e) = OVt EerIT )]
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Here (e, *)T := (l¢, *)T is the intersection index with the oriented loop [, obtained
by concatenating ¢ = bw with an oriented path contained in R from w to b. Let
H\(T,Z)" := Homy(H,(T, Z), Z) be the dual lattice of H;(T, Z). There is an iso-
morphism 7 := H{(T, Z)¥ ® C* = (C*)?, defined as follows. For each edge ¢ of
", we associate a character, that is a group homomorphism 7 — C*:

ole) = Z(E,)/z)w(e,)/w), )

where (e, y;) is the intersection index of the edge e and y,, and similarly (e, yy).
Explicitly we fix an embedding of I" in the fundamental rectangle. Isotoping edges if
necessary, we may assume that each edge of I' intersects y, and y,, only finitely many
times. For an edge e, let I, ..., I, be the intersection points of e with y,. We define
(e, y;) == Z;':j (e, yz)l_,., where (e, yz)lj € {—1, 0, 1} is the local intersection index,
where we orient e from its black vertex to its white vertex.

A Kasteleyn sign is a cohomology class [¢] € H'(I", C*) such that for any loop L
in ", [e]([L]) is —1 (resp., 1) if the number of edges in L is 0 mod 4 (resp., 2 mod 4).
Given edge weights wt and € representing [w¢] and [¢] respectively, one defines the
Kasteleyn matrix K= K (z, w), whose columns and rows are parameterized by b € B
and w € W respectively:

Kyp= Y wtle)e(e)p(e). 3)

e€E incident to bw

It describes a map of free C[z*!, w*!]-modules, called the Kasteleyn operator:

K Cletl w™)? — Clet w™ Y, “)
8 — Y Kybdu- (%)
weW

Theorem 2.2 (Kasteleyn 1963, [16]) Fix a dimer cover mg, and let ¢(mg) =
I—[eemo ¢ (e). Then,

1
wt (mg)e(mg)¢ (mg)

det K = ) sign(fm — mol)[wi1([m — mol)x ™™,
meA

where sign([m — mg]) € {%1} is a sign that depends only on the homology class
[m — mg] and [€].

The characteristic polynomial is the Laurent polynomial

P(z,w) := ! det K.
wt(mg)e (mo)e (mo)

Its vanishing locus C° := {P(z, w) = 0} C (C*)?is called the (open part of the) spec-
tral curve. Theorem 2.2 implies that N is the Newton polygon of P(z, w). Although
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24 Page8of51 T. George et al.

Fig.5 Shown on the left is a labeling of vertices and faces of I", and two cycles a (red) and b (green) in I’
that generate Hy (T, Z). Shown on the right is a cocycle representing [wt], along with € and ¢. The signs
are due to €, the z, w due to ¢, and other weights are wt

the definition of the Kasteleyn matrix uses cocycles representing the cohomology
classes wt and €, the spectral curve does not depend on these choices.

Example 2.3 Let a and b be the two cycles in I shown on the left of Fig. 5 whose pro-
jections to T generate H (T, Z). Let [wt] € HYT,C*)andlet A := [wt]([a]), B :=
[we]([b]). Fori =1, 2, 3, let X; denote the [w?]([d f;]), where 0 f; denotes the bound-
ary of the face f; (the weight of the fourth face is determined by the fact that the
product of all face weights is 1). Then (X1, X3, X3, A, B) generate the coordinate
ring of H(I", C*). A cocycle representing [wr] is shown on the right of Fig. 5, along
with € and ¢. The Kasteleyn matrix and the spectral curve are:

by by
K:(l—AZ It AR
—1+Bw Xl—m \\%)
PGw) = (14X + —— + X1 X3 ) — B — 2153 L ax (6)
, W) = — —Bw— — — — — .
z 5 1X3 Bw AXoz 1Z

2.6 The Toric Surface Assigned to a Newton Polygon

In this section, we collect some notation regarding toric varieties, and refer the reader
to the Appendices A.1 and A.2 for more details. A convex integral polygon N C Mp
determines a compactification Xy of the complex torus T called a toric surface, and
a divisor Dy supported on the boundary X — T, so that Laurent polynomials with
Newton polygon N extend naturally to sections of the coherent sheaf Oy, (Dy) (for
background on the coherent sheaf associated to a divisor, see for example [7, Chapter
4)).

Denote by |Dy| the projective space of non-zero global sections of the coherent
sheaf Oy, (D), considered modulo a multiplicative constant. Assigning to a section
its vanishing locus, we see elements of | Dy | as curves in Xy whose restrictions to T
are defined by Laurent polynomials with Newton polygon contained in N.
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The genus g of the generic curve in |Dy| is equal to the number of interior lattice
points in N. Recall that the edges {E,} of N are in bijection with the rays {p} of X.
Each edge E,, of N determines a projective line D, which we call a line at infinity of
XN, and

xy-T= |J D,

peX(1)
The divisor Dy is given by
Dy= )Y a,D,. (7
peX(1)
where a,, € Z are such that
N= () {meMg:(mu,) > —a,). (8)

pex(1)

The lines D,, intersect according to the combinatorics of N: precisely, for o1, 02 €
(1), the intersection D, N D,, isempty if £, NE,, isempty and a pointif E, NE,,
is a vertex of V. The intersection index of a generic curve in | Dy | with the line D), is
equal to the number |E,| of primitive integral vectors in the edge E,. The points of
intersection are called points at infinity. Let C € |Dy| denote the compactification of
the open spectral curve C°, i.e., C is the closure of C° in X . C is called the spectral
curve.

2.7 Casimirs

Let @ be a zig-zag path =b; — w; — by — -+ = wy — by in Z,. We define
the Casimir Cy by

Co = (—D)*[e]([aD[wr]([e)).
The Casimirs determine points at infinity of C as follows: since [«] is primitive and
(up, [a]) = 0, we can extend it to a basis (x1, x2) of M with [a] = xj and (x2, u,) = 1.
The affine open variety in X corresponding to the cone p is

U, = Spec(C[x]i],xz] =C*xC,

and D, N U, is defined by x = 0, and so the character xl_l = x 1 is a coordinate
on the dense open torus C* = D, N U, in D,. Therefore, the equation

x N w, (@) = Cq, )
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defines a point v, () in D,. In other words, the point is defined as the unique point
on the line at infinity such that the monomial z' w’/, where —[«] = (i, j), evaluates to
C,. We will prove later (see (42)) that these are precisely the points at infinity of C.

Example 2.4 Consider the fundamental domain of the square lattice, whose zig-zag
paths were listed in Example 2.1 and Fig. 3. The Casimirs are

C — B Cu— 1 C. — AX1X72X3 AB
*TTAx, PT TABxy VT -

Let us denote the normal ray in X of a zig-zag path @ by p (), 0 uy@) = (=1, —1)
etc. We choose x2 = x =1 so that ((0, —1), u,(4))=1. Then we have U,@) =
Spec Clx| = z'w, xp = w™!] and Dy) C Up(w) is given by xp = 0. In this case,
Dy = Dy@) + Dygy + Dpy) + Dy(sy and P(z, w) is a global section of Ox, (Dy).
We trivialize Oy, (Dy) over U () as follows:

OXN (DN)|Up(a) = {t € C[Zily wil] s div t|Up(a) + Dp(oz) > 0} = OUp(a)

= tx)

Then making the change of variables z = ﬁ and w = %, and multiplying by x7,

the portion of the spectral curve C in U,, is cut out by

X1X3 , xlx% AX,y
¥2 _ _
B 7 AX> 1

’

1
<1+X1+—+X1X3>xz—B—
X2

so that C N D, () is given by

Therefore, v(a) is given by & = % = Cy, which agrees with (9). The table below

lists the points at infinity for each of the zig-zag paths.

Zig-zag path Homology class ~ Basisxy, x2 Point at infinity
a (-1, 1) (—=1,1),0,-1) x1=¢,x=0
B (—L=D  (=L=D.0.~Dx=g.x02=0] (1)
y (1, —1) (1,-1),(0,1) x = CLy,xz =0
8 (1, 1) (1, D, 0, 1)  xi=g&x0=0
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2.8 The Spectral Transform

Our next goal is to define the spectral transform, which plays the key role in this
paper. We present two equivalent definitions of the spectral transform. The first is the
original definition of Kenyon and Okounkov [20], and it is the one which we use in
computations. However, it depends on the choice of the distinguished white vertex
w. The second is more invariant, and does not require choosing a distinguished white
vertex w.

Recall that for each edge E, of N, we have #Z, = #C N D,, but there is no
canonical bijection between these sets. We define a parameterization of the points at
infinity by zig-zag paths to be a choice of bijections v = {v,},ex (1), Where

v, :Zp:)CﬂDp. (12)

For a curve C € |Dy|, we denote by Div,(C) the abelian group of divisors on C
supported at the infinity, that is at C N Dy.

Compactifications of the Kasteleyn operator will play a important role in this paper.
The main ingredient in the construction of these compactifications is a combinatorial
object called the discrete Abel map introduced by Fock [11] that encodes intersections
with zig-zag paths. Let I' be a minimal bipartite graph in T with Newton polygon N
and spectral curve C. The discrete Abel map

d: BUWUF — Dive(C)

assigns to each vertex and face of I" a divisor at infinity. It is defined uniquely up to a
constant by the requirement that for a path y from x to y, contained in the fundamental
domain R, where x and y are either vertices or faces of I', we have

dy)—d) = > Y (@ y)rvp(@).

peX()aeZ,

Here (@, y)r is the intersection index in R, i.e., the signed number of intersections of
o with y. Since we require y to be contained in R, this is well-defined, independent
of the choice of path y. Locally, the rule is as follows:

1. If b is a black vertex incident to a face f, and b and f are separated by o € Z,,,
then d(b) = d(f) + v, ().

2. If w is a white vertex incident to a face f, and w and f are separated by o € Z,,,
then d(w) = d(f) — vy(a).

We normalize d, setting the value of d at certain face fy of I' to be 0. Then for any
black vertex b, face f, and white vertex w of [' we have:

degd(b) =1, degd(f) =0, degd(w) = —1. (13)
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Remark 2.5 Only differences of the form d(y) — d(x) will appear in our constructions
later, so the choice of normalization does not play a role.

Example 2.6 Let us compute the discrete Abel map d for the square lattice in Fig. 5.
We normalize d( f1) = 0. Then we have

d(b1) = vy (¥), db2) = vy (@), d(w1) = —vpp)(B), d(w2) = —v,)(d),

where v is shown in table (11).

Definition 1. A divisor spectral data related to a Newton polygon N is atriple (C, S, v)
where C € |Dy| is a genus g curve on the toric surface Xy, S is a degree g effective
divisor in C°, and v = {v,} are parameterizations of the divisors D, N C, see (12).
Denote by Sy the moduli space parameterizing the divisor spectral data on N. Let us
fix a distinguished white vertex w of I'. Then there is a rational map (here and in the
sequel, --» means a rational map), called the spectral transform, defined by Kenyon
and Okounkov [20],

KI,w : XN g SN (14)

defined on the dense open subset H' (I, CX) of Xy by [wt] — (C, S, v) as follows:

1. C is the spectral curve.

2. For generic [wt], C is a smooth curve and coker K is the pushforward of a line
bundle on C°. Let sy, be the section of coker K given by the w-entry of the cokernel
map. S is defined to be the divisor of this section. In Corollary 6.3, we show that
S has degree g. Then S is the set of g points in C° where the w-column of the
adjugate matrix Q = Q(z, w) =K ~'detK vanishes.

3. The parameterization of points at infinity by zig-zag paths v is defined as follows:
v, (@) is the pointin C N D, satisfying ¥~ =, (see Sect. 2.7). We call v, (o)
the point at infinity associated to «.

Definition 2. A line bundle spectral data related to a Newton polygon N is a triple
(C, L,v) where C € |Dy| is a genus g curve on the toric surface X, £ is a degree
g — 1 line bundle on C, and v is a parameterization of points at infinity by zig-zag
paths. Denote by S}, the moduli space parameterizing the line bundle spectral data on
N.

The spectral transform is a rational map

Kl",d : XN i S;\/

defined on the dense open subset HYT, CX) of Xy by [wt] — (C, L, v), where:

1. C is the spectral curve.

2. Let K|, denote the restriction of the Kasteleyn matrix to C°. The discrete Abel
map d determines an extension K of K co to a morphism of locally free sheaves
on C; see Sect. 6. The coherent sheaf £ is defined as the cokernel of K. When C is a
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The Inverse Spectral Map for Dimers Page 130f 51 24

smooth curve, which happens for generic [wt], £ is a line bundle. The convention
deg d(w) = —1 implies that deg £ = g — 1; see Proposition 6.4.

3. The parameterizations of the divisors Dy NC are defined by associating to a zig-zag
path o the point at infinity v, (o).

Since p is determined by o, we will use the simpler notation v(«):= v, () hereafter.
The two types of spectral data are equivalent. Given a degree g effective divisor S,
we have (Proposition 6.4)

L=0c (S +d(w). (15)

On the other hand, given a line bundle £ and a white vertex w, we can recover S as
follows. Consider the Abel-Jacobi map
A8 : Sym8C — Jac(C),
Er— LQOc(E+dWw)).
Then A¢ is birational by the Abel-Jacobi theorem [4, Corollary 4.6]. We obtain § =
(A$)~1(Op).

Example 2.7 We compute the spectral transform for our running example of the square
lattice. Let us take the distinguished white vertex to be w = wj.

W1 W2
1 X1 X
o= (X1—7xz —1+ )b, (16)
1 — Bw 1—A4z ) b
Solving Qv,w(p, q) = Qb,w(p, q) =0, we get
1 1
P qg=—. (17)

T AX1Xy B
Therefore, the spectral transform is:

Kkrw i HY(T,C*) --» Sy
(X1, X2, X3, A, B) = (C, (p,q),v),
where C = {P(z, w) = 0} with P(z, w) asisin (6), S = (p, q) is a single point (the

genus g = 1 since N in Fig. 3 has one interior lattice point) and v is as shown in table

(11).

3 The Main Theorem

Below we introduce functions Vi, on the moduli space Sy of spectral data, relying
on results in the remaining Sects. 5, 6, 7. They are defined for any pair (bw) € B x W
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of black and white vertices, and defined as the solution to a system of linear equations
Viw.
The main result of the paper is the following.

Theorem 3.1 For the distinguished white vertex w, the pull-back of the function Vi
under the spectral map coincides, up to a multiplicative constant, with the bw matrix
element Quy of the adjugate matrix Q := K~ det K of the Kasteleyn matrix K. That
is,

Obw = ¢ - k7 w(Vow), (18)

where ¢ depends on b (and w).

As an application of this result, we get an explicit description of the inverse to the
spectral map (14); see Sect. 3.2.

The next few sections discuss the structure of the system of linear equations Vy,.
Detailed examples are given in Sect. 4.

3.1 The Matrix Vy,,

The system of linear equations Vpy, is in the variables (a,,)menm,,,nM Where Ny C Mg
is a convex polygon, introduced in Sect. 3.1.1.2, and called the small Newton polygon.
There is one system for every pair (bw) € B x W. The system Vi, is of the form
(matrix)(a,) = 0; we also denote this matrix by Vy,,. Therefore, the columns of the
matrix Vi, are indexed by the lattice points Npw N M. By Corollary 5.3, the polygon
Npy is the Newton polygon of the Laurent polynomial Qpy,.

The equations in Vyy, i.e., the rows of the matrix Vy,, are defined in Sect. 3.1.2.
There are two types:

1. There is a row for each of the points (p1, q1), ..., (pg, gg) of the divisor S on the
spectral curve. The entry of the row in column m € Npy N M is x™ (pi, gi)-

2. The remaining rows correspond to certain zig-zag paths «. The entries in the row
corresponding to « are certain monomials in Cy.

Let us proceed to the precise definition of the matrix V.

3.1.1 Columns of the Matrix Vy,,

We now describe the small Newton polygons, whose lattice points correspond to
columns of V.
3.1.1.1. Rational Abel Map D.

Recall the set { D, } of lines at infinity of the toric surface X . Consider the Q-vector

space Dng (X n) of Q-divisors at infinity, defined as the Q-vector space with a basis
given by the divisors D :

Divi(Xy) = P QD,.

pex(l)
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We define a rational Abel map
D:V — Divi(Xy)

which assigns to each vertex v of the graph I" a Q-divisor at infinity D(v) as follows:

1. Normalize D(w) = 0. As in the case of d, the choice of normalization plays no
role, and we can replace 0 with any Q-divisor.
2. For any path y contained in R from v to vy,

Do) D=y 3 LR

E
pex(l)aeZ, |Epl

where (-, -)r is the intersection index in R, i.e., the signed number of intersections
of o with y.

The following lemma follows from definitions.
Lemma3.2 Let a, B be the zig-zag paths through e =bw, with o € Z,, B € Z,.

Then, we have

1 1
D(W) — D(b) = —ng — mDp — le¢(€) (19)
o p

where ¢ (e) is the character defined in (1) and div ¢ (e) denotes its (Weil) divisor as in
(49).

3.1.1.2 Small Newton Polygons

Recall the divisor Dy at infinity of X, see (7). Given an edge ¢ = bw, we define
a Q-divisor at infinity

1
Yow := Dy — D(w) + D(b) — Z Z mDp. (20)
peS(l)aeZ,bea P

Here the double sum is over all zig-zag paths « passing through b. We define b, € Q
as the multiplicities of the projective lines at infinity D, in the divisor Ypy:

Yow = Z b,D,. Q21
peX(1)

Definition 3.3 The small Newton polygon Ny, is the polygon defined by the formula

wa = ﬂ {m € MR . <m, MP) > _bp} (22)
peX(1)

@ Springer



24 Page 16 of 51 T. George et al.

O

Fig.6 The two small polygons in Example 3.4. The big black dot denotes the origin, while the other black
dots are integral points

There is a canonical bijection between divisors D in Div%(X ~) and convex polygons
P with rational intercepts (see Proposition A.2 for its importance in toric geometry):

D= Z a,D, < P= ﬂ {meMg : (m,u,) > —a,}, a,ecQ.(23)
pex(l) pex(l)
Therefore, Npy is the polygon associated to the divisor Yy in (23).

The polygon Ny may not be integral. We will consider only integral points in it.
The convex hull of the integral points in Ny, contains the Newton polygon of Qpy
(Corollary 5.3).

Example 3.4 We compute the small polygons for the square lattice in Fig. 5. Recall that
we chose w = wj. Since there is only one zig-zag path in each homology direction,
the rational Abel map D is obtained from d by replacing the point at infinity with the
corresponding line at infinity, so from Example 2.6, we have

D(b1) = Dyy), D(b2) = Dy), D(W1) = =Dy, D(W2) = —Dpys).
We have Dy = Do) + Dp(g) + Dp(y) + Dp(s), using which we compute

Yorwy = (Dp@) + Dpp) + Dpiy) + Do) = (=Dpp)) + Dpy) — (Dp@) + Dp(p)
+ Dpy) + Do) = Do) + Do)

Yoowi = (Dp@) + Dpg) + Dpy) + Dps)) = (=Dp(p)) + Dp@) = (Dp@) + Dp(p)
+ Dpy) + Dp3)) = Dp@) + Dp(p)-

Therefore,

Nojwy ={—-i—jz0n{i—j=-I}n{i+j=-1}Nn{-i+j=0}
Noyw, ={—-i—j=z-1}n{i—j=-1}n{i+;j=0}N{-i+j =0},

see Fig. 6. Note that the convex hulls of the lattice points are the Newton polygons of
Qb1w1 and QbZWI in (16)

3.1.2 Rows of the Matrix Vi,
Recall that the variables in Vyy are (a,)meny,,nm. We identify a Laurent polynomial

F = Zm em bm x™ with its vector of coefficients (b,,)em. The equations in Vi, are
of two types:
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1. Foreach 1 <i < g, we have the linear equations

Y amx"(pirq) =0, (24)

méeNpwNM

so the entry of the corresponding row of Vy,, in column m is x" (pi, qi).
2. Recall the notation |x | for the largest integer n such that n < x. Given a Q-divisor
D=3 cs)bpDp, we define a divisor with integral coefficients

D] = Y |by] D,.

peX()

Recall the divisor Yy in (20). For a divisor D at infinity, let D | c denote the divisor
corresponding to the intersection of D with C. Precisely, if D =Y vy a,Dp,
then D |C = ZpEE(l) ap Zaezp v(a). We have a linear equation for every zig-zag
path « such that v(«) appears in

— Dyl +dw) —d(b) + ) v(@) + [Yowl |- (25)

oeZ

Suppose a € Z,, is a zig-zag path that contributes an equation. We extend [«] to
a basis (x1, x2) of M, where x1 := [a] and (x2, u,) = 1, so that for any m € M,
we can write

m bm _.cm

X" =x"x", bm,cm € L.

Let N{fw be the set of lattice points in Npy closest to the edge E, of N i.e., the set of
points in Ny, that minimize the functional (*, u,). Then the equation associated
with « is

> anCm =0. (26)
meNp, NM
So the entry in column m € Né)w N M is the monomial C, bm , and the entries in

the other columns are 0. Choosing a different basis vector x; leads to the same
equation multiplied by a monomial in Cy,.

Remark 3.5 When all the sides of the Newton polygon are primitive, we call the

Newton polygon simple. In this case, we have [Ypw] = Ypw and d(w) — d(b) =
(D(w) — D(b)) | c Then Formula (25) simplifies considerably to

> v 27)

aeZ:b¢a
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So for a simple Newton polygon the Casimir rows of the matrix Vyy, i.e., the rows
providing equations (26), are parameterized by the zig-zag paths o which do not
contain the vertex b.

3.1.3 The Functions Vy,,

The number of rows of Vy,, is at least as large as the number of columns minus one, but
not necessarily equal. However, Proposition 7.3 shows that there is a unique solution
to Vpw up to a multiplicative constant. Therefore,

Viw = Y anx™ (28)
meNpwNM

is uniquely defined up to a multiplicative constant (where (a,;,)men,, M 1S a solution
to Viyw). Only ratios of the values of these functions that are independent of the
multiplicative constant appear in the inverse map, see Sect. 3.2.

Remark 3.6 When the equations in Vy,, are linearly independent (so there is exactly
one less equation than the number of variables), we can prepend to Vy,, the equation
Y ome Ny (M @m X" 10 get a square matrix, which we denote by ng. Then the function
Viw 1S the determinant:

Vpw = det ng.

Indeed, given an (n — 1) X n matrix (a;; ), the system of linear equations Z?:l ajjx;j =
0 has a solution given by the signed maximal minors A ; of the matrix A:

xj = (=1)/A;.

Here A is the determinant of the matrix obtained by deleting the j-th column of A.
Therefore, the determinant of the augmented matrix V{fw recovers the expression Vi,
in (28).

Example 3.7 We compute the linear system of equations Vy,y, for the square lattice in
Fig. 5 with w = w. Since both black vertices are contained in every zig-zag path, the
formula (27) is 0, so there are no equations of type 2 in Vyy, for b € B. Therefore,

Voow=(1p7"), Vow=(149).

By Remark 3.6, we get

Vow = ‘ (29)

1 p’1

Using (17), we have
N 1
krw(Vow) = AX1 X2 — o= AX>0bw»
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1
Kt w(Voow) = W= EQbQWs

verifying the conclusion of Theorem 3.1.

3.2 Reconstructing Weights via Functions V.

Take a white vertex w and a zig-zag path « containing w. The pair (w, o) determines

awedge W :=b S w S b/, where w is a white vertex incident to the vertices b, b’
such that bwb' is a part of . Recall ¢ (e) from (1), and the Kasteleyn sign €(e). We
assign to this wedge the ratio

__€@)$()Vim

c@b@Vow 9

Note that we use the distinguished white vertex w in the expression rather than w. The
expression is in fact independent of w, as we will see in the proof of Theorem 3.10
below.

Remark 3.8 The ratio on the right is a rational function on the curve. We evaluate the
ratio at the point at infinity of the spectral curve v(«) corresponding to the zig-zag path
o, see (12). To do this, we first extend [«] to a basis (x, x) of M with [o] = x| and
(x2,u,) =1, as explained in Sect. 2.7. Then v(«) is given by xll = Cy,xp =0.The
numerator and denominator in (30) vanish to the same order in x, by Corollary 6.2
below, so after factoring out and canceling the highest power of x, in the numerator
and denominator, we can evaluate at x| = Cla x2 = 0 to get a well-defined number.

Let L =b; - w; — by - .-+ — by = by be an oriented loop on I'. It is a
concatenation of wedges W; := b;_jw;b;,i = 1,..., £ (with i taking values cyclic
modulo £) provided by the white vertices. Denote by «; the zig-zag path assigned to
the wedge W;. We define a cohomology class [w] by

¢
[l (L)) =] [rw.. 31)

i=1

Lemma 3.9 The product (31) does not depend on the ambiguities of the multiplicative
constants in the involved functions Vyy.

Proof For each black vertex b; in L, Vy,w appears twice in (31), once each in the
numerator and denominator, and so the multiplicative constants cancel out. O

Theorem 3.10 The cohomology classes [wt] and Kli"w[a)] are equal.

Proof Letb = w 5 b be a wedge with zig-zag path o € Z,. The restriction of the

characteristic polynomial P (z, w)| p. s the partition function of those dimers whose
)

homology class in N lies on E,. From the explicit construction of external dimers
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in [13] (that is, dimers whose homology classes are in d N), we have that each dimer
with homology class in E, uses exactly one of the edges e or ¢'. Since Qpw(z, w) is
the partition function of dimers with the vertices bw removed, we have

P|Dp = wt(€)6(6)¢(6)wa|Dp + Wt(@/)e(e/)¢(e/)Qb/w|Dp-
Since v(«) is on the spectral curve, P(v(«)) = 0, from which we get

wi(e)  €()p(e)Qvw

— . 32
wi@) e @9@ 0 2)

We have corank(K) = 1 at smooth points of C. Note that K Q ’C = 0. Therefore, for
generic wt, since C is smooth, Q is a rank 1 matrix given by

Q = ker K* ® coker K.

This implies that

wa _ wa
(@) = 0

Ov'w b'w

(v(a)).

m}

Example 3.11 Consider the cycle @ in Fig. 5 given by the red horizontal path. We
write it as the concatenation of the two wedges W and W5 represented by (wy, §) and
(w1, y) respectively. From Table (11), we know that in the basis x| = zw, x2 = w,
the point v(§) is given by x; = Cia, x2 = 0. Using (29), and making the substitution
7= %,w:m,weget

—1-w™ Vi
= W
rw, T VO
1 —w
——— 17" o)
Zwp —z
—(g — x2) (1 >
:—71 —,O
xip~ —x2 \Cs
= —pqCs.

Similarly, from table (11) we know that in the basis x| = %, X7 = w, the point v(y) is

givenby x; = CL, x3 = 0. Using (29), and making the substitution z = x1x2, w = X2,
we get !
I-1-Vow
r = - (V
"= T YY)

-1 _ 1
=wl "2 ()
qg—w
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Therefore, [w]([a]) = pC, Cs, and using (10) and (17), we have

AX1X2X3 AB
siatolo) = () (+57) - (%)
A.

4 Examples

In this section, we work out two detailed examples.

4.1 Primitive Genus 2 Example

Consider the hexagonal graph I" with Newton polygon N and normal fan ¥ as shown
in Fig. 7. We label the vertices of I as in Fig. 8. We label the zig-zag paths by «, 8, y,
and denote the ray of ¥ dual to t € {«, 8, y} by o7.

We can take X; = [wr]([0fi]),i = 1,...,4,and A = [wt]([a]), B = [wt]([b])
as coordinates on H!(T", C) (see Fig. 8).

The Casimirs are

B2X | X>X4 X5 A’BX,
Co=——""", Cp=———, C= .
A AB3X{X4 X2X3

(33)

Fig.7 A hexagonal graph, its Newton polygon N and normal fan ¥, with zig-zag paths and rays labeled
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b

Fig. 8 Labeling of the vertices and faces of I', a cocycle representing [wt] and ¢, where X; =
[wt]([0 fi]), A = [wt]([a]l), B = [wt](b), and a and b are the red and green cycles respectively. The
Kasteleyn sign € is 1 for all edges. If no weight or ¢ is indicated for an edge, it means that it is 1

The Kasteleyn matrix is

b by bs bs bs
1 0 1 0 Azy wi
% X3 0 1 0| w
k= 0 1 AB)l(lzw 0 1 w3
X1 X3Bw 0 1 1 0] wy
0 Bw 0 1 17 ws

Let P(z,w) = detK and C = {P(z, w) = 0}. The spectral transform is krw =
(C, §,v) € Sy, where since the interior of N contains two lattice points, the divisor
S = (p1,q1) + (p2, g2) is a sum of two points, where

pP1=

\/(—BX1X2X3X4 — BX1X2X4 — B)2 —4B2X X2 X4 + BX1X2X3X4 — BX1X2X4+ B
2ABX| ’
_ —V(=BX[X2X3X4 — BX1X2X4 — B)2 —4B2X X2 X4 + BX| X2X3X4 + BX | X2 X4 + B
N 2B2X | X2 X4 ’
—\/(—BX1X2X3X4 — BX1X2X4 — B)2 —4B2X X2 X4 + BX1X2X3X4 — BX1X2X4+ B
2ABX| ’
_ V(=BXX2X3X4 — BX|X2X4 — B)2 —4B2X| X2 X4 + BX1X2X3X4 + BX1 X2 X4 + B
N 2B2X X2 X4 '

q1

p2 =

2
(34)
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The points at infinity are given by the following table:

Zig-zag path Homology class  Basisxy, x2 Point at infinity
o (-1,2) (-1,2),(0,-1) xlzcia,xzzo
1 (35)
ﬂ (_17_3) (_13_3)7(07_1) X1 =C_ﬂ5x2:O
y @1 @D (=10 x1=g.x0=0

The discrete Abel map D is given by

D(w) =0, D(b)) = Dg+ Dy, D(by) = =Dy +2Dg + Dy,
D(b3) = Dy + Dg,  D(bs) = 2Dy, D(bs) = =Dy + 3Dg,

and Dy = 2Dy +2Dg + D). Since D(w) = 0 and every black vertex b is contained
in every zig-zag path, we have

Yow = 2Dy +2Dg + Dy +D(b) — Dy — Dg — D,
=D(b) + Dy + Dpg.

Using this, we compute

Yo,w = Dy +2Dg + Dy, Yo,w =3Dg + Dy, Yoyw = 2Dy + 2Dg,
Youw = Dy + 3Dg, Yosw = 4Dg.

The small polygons are shown in Fig. 9. Since the Newton polygon N is primitive,
we are in the setting of Remark 3.5. Every zig-zag path contains every black vertex,
so the expression (27) is 0. Therefore, there are no equations of type 2 in the linear
system Vi, for any black vertex b. Since g = 2, we have two equations of type 1
for every black vertex b. Moreover, we note that each of the small polygons in Fig. 9
contains exactly three lattice points, so by Remark 3.6, we get

1wz lw! 1z7! 7wt 1w w?
Vow = |1 g1 p;jq;: . Viw = lpf: p;}q;: . Ve =|1q1 g2,
1 g2 py'a;y Lpy pyiay 192 g5
1wz ! 1 z7w 77!
Vogw = |1 q1 pl_l , Visw = |1 Pl_léh Pl_l .
1q2 py! 1py'q2 py!
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[ ] [ ] [ ] o [ ] [ [ ]
[ [ [ ] [ ] [ ]
o [ ® [ ] [ ] [ ]
Nbl,w Nbg,w
Nbg,w

[ [ J [ ] [ ] o [

[ ] [ ] [ ] [ ]

[ ] [ ]

Nb47W Nb5,w

Fig. 9 The small polygons for the hexagonal graph

The boundary of the face f> is the concatenation of the three wedges Wi, W, and W3
represented by (w2, ), (w, 8) and (w4, y) respectively. We compute

1wz lw!
1 g pf:qfi
Vo Lg2 py qy
rw, = —b;Wz(V(Ol)) = _Tzz’lz
4 W2
I q1 Pfl
Lg» py

(v(a)).

To evaluate at v(«), as explained in Remark 3.8, we extend [«] = (—1, 2) to the basis

(x1, x2) of M, where x; = [a] = (—1,2) and x» = (0, —1). Then v(«) is given by

X] = Cla, x3 = 0. Expressing z, w in the basis (x1, x2) as z = )6117, w = x]—z, we get
2

1+ xx x2 1 xpxd 01 0
L q1 pfiqfi L q1 Pfiqfi L qi pfiqfi
rw1=—lqu2 95 (170)2_ 1L g2 p; 4 (170):_1q2p2 9
lé xlxg Cy x 1 xix° Cy 01 01
g py! g1 py! Laipp)
1qy p,! 1g p,' 1g2 py
I AU X0

q192(p1 — p2)’
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where we factored out x, from the numerator and denominator and then evaluated at
1
(x1,x2) = (&, 0)

3
For W», letting (x1, x2) = ((—1, —3), (0, —1)) we have z = %, w = %, and v(B)

is given by x| = CL,g x2 = 0. Therefore, we get

2 1 =

1 w w X2 x%
1 g1 q1 L q1 a
1 1 1
b3w q2 ‘12 q2 4,
rw. — 0B = VB = (—O)
2 Vb 1wz 'w _i 1x_2 J)§—2'2 Cp
1 -1 -1
1Q’1171716]171 1q1p£1q£1
q2 P> 4, 1 g Py 4
00 1
1gq q;
1 ¢
__ eal
00 C—ﬁ
g1 py ql
1q2 py'ay!
Finally, for W3, letting (x1 x) =(2,1),(—1,0)) wehave z = —, w = x1x2, and
v(y) is given by x| = C_y’ x3 = 0. Therefore, we get
1wz} lxlx% X2
1 g Pl_i L ¢ Pl_i
1 . 1 5 1
Vouw 92 p; 92 P < )
r =——=—(v == | —,0
Wy = Vb — ) = 0w ) T 2] \ G,
11 qi 1 q q;
1 g2 g5 1 92 q;
10 0
1 g1 p;i
e | pg—pg
100 p1p29192(q1 — q2)°
1q1 47
g2 q3
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Putting everything together, we get

o1 0 00 1 10 0
1gi pl_i"l_i largi| 1@ p;i
Xy=— Lo py 45 La2q5 |12 p _ Cp(piq1 — p2g2)*
(U S 00 & 100 P1p2aia3(p1 — p2) (a1 — q2)’

1 B 2
1 q1 pl_l 1 q1 pl_lql_l 1 q1 qlz
1 q2 Py 1 9 p2—1q2—1 1 q2 q2

with similar formulas for X1, X3, X4, A, B. It may be easily verified that these invert
the spectral transform by plugging in the formulas (33) and (34) into the right-hand
side and simplifying using computer algebra.

4.2 Non-primitve Example

Consider the square-octagon graph I' with Newton polygon N and normal fan X as
shown in Fig. 10. We label the vertices of I" as in Fig. 11. We label the rays of X by
Oy, 08, 0y, 0s and the two zig-zag paths dual to ray o by {11, 12}, fort € {a, B, v, §}.

We can take X; := [wt]([0 fi]),i = 1,...,7,and A := [wt]([a]), B := [wt]([b])
as coordinates on H!(T", C) (see Fig. 11). The Casimirs are

BX2X3X4X6X7 X> 1
Cay = X1X3X7B, Cop = — 220 Cpy = . Cp= ——,
X1 Xs AX1Xs AX;
Xs X6 AX AX1Xs
Cy = , Cyp, = —, Cs, = , = -
BX X5 B X5 X6 X2 X3X4X6X7

[B1] + [B2]
(1] + [72] L [o] + [a]

[61] + [62]
N

g5
Oq <—I—> U’Y

op

DY

Fig. 10 A square-octagon graph, its Newton polygon N and normal fan ¥, with zig-zag paths and rays
labeled
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Fig. 11 Labeling of the vertices and faces of I', and a cocycle and Kasteleyn sign, where X; =
[wil([8fiD), A = [wrl(al), B = [wt](b) and U = m The edges with no weight indicated
have weight 1

Since the Newton polygon N has only one interior lattice point, the divisor § = (p, ¢q)
consists of a single point. The Kasteleyn matrix is

[N 0 Az 0 0 0 O
1 X7 1 00000

0 0 1 1 00 0 4

X1 X

k=| O 0 wmxxin 10010
I, 014 00

BwX; 0 0 0 1-10 0

X
0 0 0 00 £ X 1
0 0 0 040 1 —1I

Let P(z,w) = detK and C = {P(z, w) = 0}. The spectral transform is krw =
(C, S,v) € Sy, where

_ XoX4Xe (XaX5X6X7 (X12(Xa + 1) + X2 X4) + X1 X2 X532 X4 X6 X772 + X1 X57)
T A(X1 X5 + X2X3X4X6X7)
1
* (X5XaXs X7 (X12Xs + Xo(Xs + D(Xs + D) + X1 X5(Xo(Xs + X5+ ) + X5+ 1))
X5 (=X3X4X6X7 (X1% + X2 X6 + X2) — X1 X5(X6 + 1))
1= BX1X3X7(X1X5(X4Xe + Xo + 1) + X2 X3X4X6(Xe + D X7)
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The table below lists the points at infinity for each of the zig-zag paths:

Zig-zag path Homology class Basisxy, x, Point at infinity
1
o Xx]==,x=0
: On  ODeLy T G
o) x1=Ca2,x2=o
1
X1==,x=0
o (L0 (LoD T
B2 X1 =g, 2= 0 (36)
1
x1=+,x =0
7 O O T
V2 X1 =g X = 0
8 X1 = A, x=0
: 1o oo T
8o x| = C_az’xz =0
The discrete Abel map D is given by D(w) = 0 and
D(b)—lD +1D D(b)—lD —i—lD
1) = 2 V4 2 8 2) = 2 B 2 Vo

1 1 1
D(b3)=§(—Da+D5+Dy+D5), D(b4)=—Da+§Dﬂ+Dy+§D5
1 1
D(bs) = Dg, D(b) = — Do + D + 5 Dy

1 1 1 1
D(b7)=_§Da+§Dﬁ+Dyv D(bS)Z_EDa‘i‘Dﬁ‘i‘Dy_ED(S

We have Dy = Dy + Dg + Dy, + Ds, using which we compute

1 1

YblwzzDa"‘Dﬁ‘i‘Dy‘i‘Dﬁv YbZWZEDU+Dﬂ+Dy+D8a
3 3

Yb3w=Dﬁ+§Dy+D5, Yb4W:D/3+§Dy+D5,

1 3 1 1 3 1
Yb5w=§D°‘+§D.3+DV+§D87 YbﬁWZEDa+EDﬂ+Dy+§D5,

3 3 1 3 3 1
Yb7W:§D/3+§D)’+§D5’ YbsWZEDﬂ'f‘EDy—f‘ED(S.

The corresponding small polygons are shown in Fig. 12. Therefore, we have

1

Vow =ac1,-nz w4 a(o,—1>w_l + a(1,—1)zw_1 + a(_1,0)z_l + a,0) + ac1,0)2,
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® ° ® ° ° °

° [ ) ° ° [ ) ° ° ° ° °

® ° ® ° ° °
Nbyw Nosw Nog,w Nbyw

° ° ° ° ° ° ° ° ° °

° [ ) ° ° [ ) ° ° ° ° °

° ° ° ° ° ° ° ° ° ° ° °
Nbs,w Nbg,w Nb7,w Nbg,w

Fig. 12 The small polygons for the square-octagon graph

where the a,, satisfy the system of equations Vy, that we now determine. We have
the equation of type 1:

ac1,-nyp g rao—ng " +aa—nypg T +aciop +ae0 +aqop = 0.

To find the zig-zag paths that contribute equations of type 2, we compute (25). We
have

_DN|C =v(a1) + v(az) +v(B1) +v(B2) + v(y¥1) + v(y2) + v(1) + v(2),
d(w) —d(by) = —v(y1) — v(é2),
[ Yorw ] |o = v(BD) + v(B2) + v(¥1) + v(y2) + v(81) + v(82),

using which we get that (25) is equal to v(81) + v(B2) + v(y2) + v(81), so we have
four equations of type 2, one for each of the zig-zag paths B, B2, v2, 1.

Therefore, we have 5 equations and 6 variables, so we are in the setting of Remark
3.6 where Vi, = det Vg.w' Computing the equations of type 2, we get

Zww o Zw ez 1 z
plqgt g pgTtpTt 1 p

1 cy 0 0 00
Vow=| 1 cy 0 0 0 o
Cp, 0 1 0Clo

0 0 0 0 Cl
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In like fashion, for Vy,w, we have an equation of type 1 and four equations of type 2
for the zig-zag paths B1, y»2, 81, 62. We compute

Z_lw w Z_l lz_lw_l w—l
plq g pt1pTlgTt g7t
1 Cs 00 0 0

Vb,w = ! _
MTlC, 0 10 Cclt o0
0 0 00 C5 1
0 0 00 C5 1

We write the boundary of the face f7 as the concatenation of the two wedges W; and
W, represented by (w, y1) and (ba, ) respectively. We have

Cy 0 10 01;11 0

r'a g p M 1pTlqT q”

1 Cs 00 0 0

Cp, 0 10 C)! 0

0 0 00 Gy 1

0 0 00 G5 1

b2W 8

r v = s
W=y, ) = G 0 1 0cio
a7 g pgTt T 1 p

I Cy 0O 0 00

1 Cp 0 0 00

Cp, 0 1 0Clo

0 0 0 0 Cs1

where to evaluate at v(y1), we use the basis xp, x from table (36). Similarly, we
compute

0 C;' 0 1 0 Cgy
p g gV pgT pTt 1 p
1 C, O 0 0 0
1 C 0O 0 0 O
Cp, O 1 0C, 0
0 0 0 0 G5 1
b )
rw, = — - (v()) = — — 1
byw 0 Cl 01 0 Cy
plq g pt1plgTlg!
1 Cs 00 O 0
Cp, 0 10 CJ! 0
0 0 00 C5 1
0 0 00 C5 1

It can be verified using computer algebra that X7 = ry, rw,.
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5 The Small Polygons

In the remaining sections, we prove the results stated in Sect. 3. In order to invert the
spectral transform, we want to first reconstruct the Qpy, the entries of the w-column
of the adjugate matrix, from the spectral data. To do this, we need to first find the
Newton polygon of the Qpw, which we call the small polygons and denote by Npy.
Explicitly, Npy is the convex hull of homology classes of dimer covers of I' — {b, w}.
However, it appears difficult to describe Npy in a direct combinatorial way. Instead,
we will re-express the problem in terms of toric geometry. The key to doing this is an
extension of the Kasteleyn matrix, which is a map of trivial sheaves on T, to a map of
locally free sheaves on a compactification of T. We are led to consider a stacky toric
surface 2y instead of the toric surface X y, because such an extension does not exist
on Xy unless the polygon has only primitive sides.

The basics of stacky toric surfaces are recalled in detail in Appendix A.3. For the
convenience of the reader we reproduce some notation.

Let ¥ be the normal fan of N. There is a stacky fan £ = (X, B) where

g 7> - MY,

8p = |Eplup,

where u,, is the primitive normal to E,. We identify the set of rays (1) of the fan X
with the components D, of the divisor at infinity

p < 1, =Rxou,.

We assign to X a smooth toric Deligne-Mumford stack %, which contains the torus
T as a dense open subset.

We consider the stack rather than the toric surface since we construct an extension
of the Kasteleyn operator to a compactification of the torus T in Lemma 5.1. There
is no such extension on the toric surface when the Newton polygon is not simple, but
there is one on the stack.

5.1 Extension of the Kasteleyn Operator

Define for each black vertex b the line bundle

I
& =00 (D0)- 3 @DP),

peX(l) aeZ,bea
and for each white vertex w, the line bundle

Fu = 05, (D(W)).
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Let

£ = @&,, F = @ Fuw-

beB weW

They are locally free sheaves of the same rank #B = #W on Zy.
Proposition 5.1 The Kasteleyn operator K extends to a map of locally free sheaves
on Xy:

K:&— F. (37)

Proof By definition,

Kyp = > wi(e)e(e)gp(e).

e€E(I") incident to bw

We need to show that for any edge e with vertices bw, the character ¢ (e) is a global

section of
1
Hom 5, (S, Fu) = O, (D(w) -p+ Y > |E—p|Dp).
peX(l) aeZ,ybea

Let m € M be such that ¢(e) = x™ and let D := D(w) — D) +
2o pex(l) 2oaez,bea ﬁDP' By Proposition A.2, x™ is a global section of the line
bundle O 9, (D) if and only if m € Pp N M. Using (53), this is equivalent to showing
that for every edge e = bw, we have

divg(e) +Dw) —Db) + Y > —D > 0,

pex(l) aeZ,bea |Epl

where div(e) = 3 o5 yy(m, up) Dy as in (49).
Let a, B be the zig-zag paths through e, with @ € Z;, 8 € Z,. Then by Lemma
3.2, we have

1 1
o 4

This implies

divg(e) +DwW) —D®) + Y Y

teX(l) yeZ,bey

=2 )

tex(l)yeZ;: bey
y#a,p

(38)
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The small polygon Ny, is by definition the Newton polygon of Q. By Propo-
sition A.2, this is equivalent to saying that Qpy is a global section of a line bundle
O 2, Ybw), where Yy, is the divisor associated to Npy by the correspondence (53).
Now that we have shown that K is a global section of H{} 2, (£, F), we can take
exterior powers to find which line bundle O g, (Ybw) the minor Qpy of K is a global
section of.

Taking the determinant of the map (37), we see that det Kisa global section of the
line bundle

Homgg}\,(/\ &, /\ fw) = O%N(Z D(w) — Z(D(b)

beB weW wew beB

PO |E| p)) (39)

peX(l)aeZybea

Lemma 5.2 Let Dy be the divisor associated to N by the correspondence (53) between
divisors and polygons. Then one has

S ow-Y(Pn- Y > —Db,) =Dy (40)

wew beB peT(1) @eZy: bea Epl
Therefore,
det K € H'(Zy, O, (Dy)).

Proof Let a, be the coefficient of D, in Dy. Let (i1, i2) be a vertex of P contained
in £, and let m be the associated extremal dimer cover. We pair up black and white
vertices in the sum according to m:

Y (D(w) P+ > >

e=bwem pex(l)acZ, beoz 'O

51%)

Now we observe that if e is not contained in any zig-zag path in Z,, then D, does not
appear in the summand, and if e is contained in a zig-zag path associated to £, then
D, appears twice but with opposite signs, modulo contributions from intersections
of edges with y., y,,. Therefore, there is no net contribution to the coefficient of D,
except for the intersections of edges in m with y;,, y,,, which is the same as in

- Zdi\/(b(e) = —divzw?,

eecm
which is a,. Comparing with (39), we see that (40) implies the second statement. O
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Now we consider the codimension 1 exterior power, where we remove {b, w}. Let
0 be the adjugate matrix of K. Set

1
Yow =Dy —Dw)+D®b)— >~ " mDp.
peS(l)aeZybea P

Corollary 5.3 Oy € H(Z, O 2, (Yow)).

We therefore arrive at the definition of the small polygon Ny, given in Definition 3.3
by the correspondence (53).

5.2 Points at Infinity

In this section, we prove that the points at infinity of C are as described in Sect. 2.7.
We use the notations Uy € CE() and the standard coordinates (z,) on CE( from
Appendix A.3. The toric variety X is the quotient Usx, /H, where H is the kernel of

the map (C*)*) — T sending (z,)pex(1) to 1, Z,E;(I'O)’up>, [, Z;(O'l)’uw). There

is a canonical map 7w : Us — Xy given by sending (z,) to H - (z,loEp |) which induces
the coarse moduli space map 7 : Zy — Xpn. The spectral curve C is cut out by the
section P = P(z, w) of Ox, (Dy). The pullback 7 * P defines a section of O g, (Dy)
which is a G-invariant section of Oy, so it vanishes on a G-invariant subvariety Cyy. .
Each point at infinity of C corresponds to a G-invariant set of points at infinity of Cyy;,
so we will determine the points at infinity of C from the points at infinity of Cyy. By
Lemma 5.2, 7*P = det K so the points at infinity of Cyy are obtained by setting
zp =det K =0 for p € X(1).

From (38) and Proposition A.2, for ¢ = bw, we get that ¢ (e) corresponds to the
G-invariant section of Oy, given by

¢@= 1 II = (41

te€X(l) yeZ;:bey
y#a.p

The divisor D, in Xy corresponds to {z, = 0} C Us. ¢(e) vanishes on {z, = 0}
precisely when there is a zig-zag path @ € Z, such that b is contained in & but w is not
contained in «. This implies that when restricted to {z,, = 0}, after reordering the black
and white vertices, the extended Kasteleyn operator K takes a block-upper-triangular
form

oo _ *
K|a2 *
K|, o

K|F—{a1 ..... o}
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where Z, = {ay, ..., 0}, K | is the restriction of K to the black and white vertices
in «;, and the *’s denote some p0331bly nonzero blocks whereas any block that has not
been indicated is zero. In particular, the nonzero blocks * are only in the last column

(in these blocks, b is not in « but w is in «). Note that the zig-zag paths o, ..., oy
do note share any vertices because of mlnlmlality since otherwise we would have a
parallel bigon, so the blocks K ial K | do not overlap.
_ IfaeZ,isby > w; — by — -+ - wg — by, the determinant of the block
K|, is

ISW]b] - Kdel

Ky b, szbz

det K . = det Kb

Ky by kVded
d d

= l_[ KW,‘b,‘ - (_l)d 1_[ KW,‘,Ibl‘
i=1 i=1

d d

where we have used the definition of the Kasteleyn matrix (see (1), (3). Plugging in
(41) and using the fact that « intersects a zig-zag path 8 € Z; ([«], u;) times, we get

i=1 ! ex(l)
Therefore, the points at infinity of Cy, are given by setting z, = 0 and
H,Ez(l) 27 LBl Cy. The point atinfinity of C is the point obtained by applying
7 to any of these points. From the definition of v, we get that HIEE(I) Z_IET“[‘X]’”’) =
7*x 1% 5o the point at infinity of C is given by
x = Co. 2)

6 Behaviour of the Laurent Polynomial Qp,, (2, w) at infinity

We proved in Corollary 5.3 that the Laurent polynomial Qpw(z, w) lies in the finite
dimensional vector space H 0(% N> O 25 (Ybw)). We need some additional constraints
on Qpw(z, w) to determine it. Corollary 6.3 provides g linear equations for the coef-
ficients of Qpw(z, w) coming from the vanishing of Qyy (z, w) at the g points of the
divisor Sy. We obtain additional equations from the behaviour of Q. (z, w) at the
points at infinity of the spectral curve, which we study in this section.
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Recall that X is the toric surface associated to N compactifying 7. The restriction
of the Kasteleyn operator to the open spectral curve C° is a map of trivial sheaves:

co ' P Oc: — B Oc-.

beB weW

K

Recall the correspondence between divisors D and invertible sheaves with rational
sections (L, s): given a divisor D, the corresponding invertible sheaf £L = O¢ (D) is
defined on an open U by

H(U, Oc(D)) := {r € K(©)* : (divt + D)|,, = 0} U {0},

with the obvious restriction maps, where K (C)* denotes the nonzero rational functions
on C. The rational section s corresponds to the rational function 1. On the other hand,
given (L, 5), we obtain D as the divisor divs. Moreover, there is a correspondence
between rational functions 7 on C and rational sections 7 of £ given by t > 7 := st.
In particular,

divi =divt +divs =divt + D, (43)

and so 7 is regular if and only if divz + D > 0.

A similar proof to Proposition 5.1 shows that the Kasteleyn matrix K, which is a
matrix of rational functions on C, defines a regular map K of locally free sheaves on
C extending K | ., providing an exact sequence

0— M — @Oc(d(b) -y v(a)) LY P Ocdw) — £ — 0, 44

beB aeZbea weW

where M and £ are the kernel and cokernel of the map K respectively. When we say
K is regular, we mean that each entry Ky, is a regular section of the corresponding
H{ line bundle

Homo, (Oc@®) = Y v@), Oc@w)).

aeZ:bea

For generic dimer weights, ¥ is smooth, and M and L are line bundles (so @ has
rank 1). Let 5, and sy, be sections of

MY @ Oc(db)— 3" v(@)) and £& Oc(d(w)”

aeZ:bea

respectively, given by the b-entry of the kernel map and w-entry of the cokernel map
respectively. Since Q has rank 1, we have Q,, = Spsw. Denote by S, and Sy, the
effective divisors on the open spectral curve C° given by vanishing of the b-row and
w-column of Q respectively, or equivalently, the vanishing of s}, and s, respectively.
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Lemma 6.1

diveso = Sp+ Y v(@),
a€Z:b¢a
dive 5w = Sw,

Proof By the definition, (div¢ 5p) co = St and (dive Sw)
to find their orders of vanishing at infinity.

Let U C C be a neighbourhood of v(«) that does not contain any other point at
infinity. Let u# be a local parameter in U that vanishes to order 1 at v(«) and nowhere
else. When restricted to U, each of the line bundles in the source and target of K in
(44) is of the form Oy (kv(«)) for some k € Z. We trivialize Oy (kv(«)) as follows:

co = Sw, so it only remains

Oy k(@) > Oy
f = ukf.

Let us order the black and white vertices so that the vertices on o come first. Then
in U, we have

— (K1 B
K = (uA K2> + O (u),

where K, K, are the restrictions of K to  and I' — « respectively. Since corank
K =1 and since we know corank K| > 0 from the computation of the determinant
in Sect. 5.2, we have corank K| = 1 and that K> is invertible. Let v € ker K. Then,

ker K = (v, —uK5 ' Av) + O (u).

If any entry in v or K, 'Av is 0, then it means that some 5}, is identically 0. Let O
denote the adjugate matrix of K. Since Q has rank 1, we have Qy,, = 5pSw = 0, s0
we will have Qy,, = 0 for all w € W. On the other hand, Qyy is the signed partition
function for dimer covers of I \ {b, w}, so if we choose w such that bw is an edge of
I" used in a dimer cover, then Qpyw # 0 for generic dimer weights, a contradiction.
Therefore, the entries of ker K are nonzero when u # 0, so 5, has a simple zero at
V(o) for all b ¢ o and has no zeroes or poles for b € «.
Similarly, let v" € ker K}. We have

ker K = (v, —(K;‘)_IBU/) + O(u).

For generic dimer weights, none of the entries of (Kik)_1 B’ can vanish, so 5y, has no
zeroes or poles at v(«). O

Corollary 6.2 dive Qbw = Sb + Sw — D | +d(W) —d(b) + Y7 v(@).
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Proof Let Q denote the adjugate matrix of K. Since Q has rank 1, we have Q,, =
SbSw, SO that

dive Opw = So+ Sw+ Y v(@).
aeZ:b¢a

A computation similar to Corollary 5.3 shows that

Qpw € H'(C, Oc(=Dy|p +dw) —d®) + Y v(@)).

aeZ:bea

Qb is the rational function corresponding to the rational section Qy,,. Therefore,
using (43), we have

dive Qpw = dive Opy — Dy|e +dw) —db) + Y~ v(@)

aeZ:bea

= S + Sw = D[ +dw) —d(b) + ) v(@).

aeZ
m}

Corollary 6.3 We have for allb € B,w € W, deg S, = deg Sy = g, where g is the
genus of C.

Proof Let w, denote the canonical divisor of . We have wx, = =3 .5y Dp (7,

Theorem 8.2.3]).By the adjunction formula, we get w¢ = Dy |C — Y yez V(). Since
Qb is arational function on C, we have deg dive Qpw = 0. Since deg(d(w) —d (b)) =
—2anddeg we = 2g—2, we getdeg(Sp+Sw) = 2g. By symmetry under interchanging
B and W, we get deg S, = deg Sy = g. O

Recall that the number g is also equal to the number of interior lattice points in N for
generic C € |Dy/|.

Proposition 6.4 The line bundle L is isomorphic to O¢(Sy + d(w)) for any w € W.
It has degree g — 1.

Proof By Lemma 6.1, 5y, is a section of £ ® O¢(d(w))Y with divisor Sy,. Therefore,
we must have

L® Oc(d(w)” = Oc (Sw)

which implies £ = O¢(Sw + d(w)). Since deg Sy = g and deg d(w) = —1, we get
deglL =g — 1. O
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7 Equations for the Laurent Polynomial Qy,,

Since Qpw has Newton polygon Ny, we have

Ow= Y amx",

meNpwNM

for some a,, € C. We know that Qpy vanishes on Sy, which gives g linear equations
among the (@) men,,,nM- However these g linear equations are not usually sufficient
to determine Qyyw, so we need to find some additional equations. These additional
equations will come from the vanishing of Qyy at the points at infinity.

7.1 Additional Linear Equations for Qy,,

The fact that the Newton polygon of Qpy is the small polygon Ny, imposes certain
inequalities on the order of vanishing of Qpy at points at infinity of C. Corollary 6.2
imposes additional constraints that are linear equations in the coefficients of Qpy.
Inverting this linear system gives (¢, )men,,nM and therefore Qpy.

We now give the precise statement. For a Q-divisor D = pex (1) bpDp, we define
a (Z-) divisor | D] := ZpEE(l) |_pr D, where |x| is the largest integer n such that
n < x. It is the pushforward of D by the canonical projection Zy — Xy.

Proposition 7.1 The extra linear equations for (am)men,,nM from vanishing of Qbw
at points at infinity correspond to the points in

— Dyl +d(w) —d(b) + > v(@) + [Yow] |- )

aeZ

Proof A generic Laurent polynomial F of the form ), NpwnM @m X" has order of
vanishing

dive F|C > —[Yow] |c

at the points at infinity of C. From Corollary 6.2, we have that dive Qpw = Sp + Sw —
Dy \C +d(w) —d(b) + >, ., v(x). The discrepancy provides the extra equations. O

Now we describe these extra linear equations explicitly. Suppose @ € Z,, is a zig-
zag path that contributes a linear equation. We extend [«] to a basis ([a] = x1, x3) of
M such that (x, u,) = 1, so that for any m € M, we can write

x" = xi’”‘x;’”, b, cm € 7.
Let lew be the set of lattice points in Ny closest to the edge £, of N i.e., the set of
points in Npy that minimize the functional (x, u,).
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Proposition 7.2 Suppose Qpw = ZmerwﬁM amx"™ and suppose o € Z, is a zig-zag
path that contributes a linear equation. Then, the linear equation given by o is:

> anC.m =0.

meN, MM
Proof The affine open variety in Xy corresponding to the cone p is
U _ S +1 ~ X
p» =SpecClx;, x2] =C* x C,
and D, N U, is defined by x, = 0.
A generic curve C meets D, transversely at v(c), and therefore we may take x, as

a uniformizer of the local ring O¢ , () at v(«). For each m € lew N M, we have

x™ :xf'"xé’, by, peZ,

where p is the same for all of them, and is the coefficient of v(«) in —[Epy, ] | c Then

using xl_l = Cy at v(w), we have

Obw = Z anCt | x2 + ol (46)

0
meN{, "M

Since « contributes a linear equation, (46) must vanish at order xé’ , SO

—bm
ZmeNt’fwﬂM Am Cﬂl =0. o

7.2 The System of Linear Equations Vy,,,

Recall from Sect. 3 the system of linear equations Vyy. These are linear equations in
the variables (a;;,)men,,, M. Recall also that the matrix Vy,y is defined such that these
equations are given by

Vow(am) = 0.

It is not necessarily a square matrix. However, we have:

Proposition 7.3 For generic spectral data, Qv is the unique solution of the linear
system of equations Vyw modulo scaling.

Remark 7.4 1. While the definition of Vy,, makes sense for all w € W, Proposition
7.3 only holds when w = w since (p;, qi)f: | depends on w.

2. For generic spectral data, the equations (24) are linearly independent, but the
equations (26) may not be.
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The rest of this section is devoted to the proof of Proposition 7.3. Consider following
the exact sequence on X y, obtained by tensoring the closed embedding exact sequence
ofi : C — Xy by Ox, ([ Yowl).

0 — Oxy(Yow] — Dn) = Oxy (LYowl) = ixOc(Yowl | ) = 0.
The following is a portion of the long exact sequence of cohomology.
0~ H'(Xy, [Yow) — Dy) = H'(Xn. [Yow]) = HC, Yowl ). (4D

We need the following technical lemma.

Lemma 7.5 The restriction map HO(Xy, [Yow]) — H°(C, | Yow] |C) is injective.

Proof If x™ € HO(Xw, | Yowl — Dy), then div x™ + [Yow] — Dy > 0. This implies
that

div "™ 4 Ypw — Dy = Z Z (m, u,) W — D(w) +D(b)
pex(l)aeZ,

-y > —D > 0. (48)

pex(l)acZ, bea

Let y be acycle in T with homology class m. The total number of signed intersections
of y with all zig-zag paths is zero. This number is the sum of the coefficients of

D pex(l) 2oaez, (M Up) \g_ﬁl' Let w’ be any white vertex adjacent to b. Then we have

~-DW)+D®) - Y —D,=DW)-Dw)-Y > —

peX(l)aeZ,: bea peX(l) aeZ,: bea
bw' ¢

The sum of the coefficients of D(w’) — D(w) is the signed number of intersections
with zig-zag paths of any path in R from w to w’, which is also 0. Since the coefficients
of the last term — ) pex(l) > aez pibea TE; |D are strictly negative, the sum in (48)

bw'¢a
cannot be non-negative. Therefore, H O(Xy, [ Yowl — Dn) = 0, which by (47) means
that the map HO(Xy, [Yow)) = H°(C. [Yow] | ) is injective. o

Proof of Proposition 7.3 1. Existence: By Theorem 7.3 of [13], the map «r y is dom-
inant. So a generic spectral data is in the image of «T . For such a spectral data,
QOpw satisfies:

(a) The system of equations (24) because, by definition of the spectral transform,
Qpw vanishes at the points of the divisor S = Zf: 1(Pis qi)-
(b) The equations (26) by Proposition 7.2.
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2. Uniqueness: Suppose Vi is a solution of Vyy. Since Vi has Newton polygon
Npw, we have dive F | c = — 1 Yow] | c as in the proof of Proposition 7.1. The
additional equations in Proposition 7.1 then imply that

dive Vow > S+ D,

where D := —Dy |C +d(w) —d(b) + Zan V() satisfies deg D = —2g. There-
fore, Viw | ¢ can be identified with a section of O¢(— D) vanishing at the points of
S. Let w¢ denote the canonical divisor of C as in Sect. 6. By the Riemann-Roch
theorem,

h°(C, Oc(—D) — h'(C, Oc(—D)) = deg(—D) —g+1 =g+ 1.

By Serre duality, 2! (C, Oc(—D)) = hO(C, we (D)), which equals 0 since wc (D)
has negative degree —2. For generic S that avoids the base locus of O¢(— D), the
requirement that the section of O¢(— D) corresponding to Vi vanishes at each
of the g points of S imposes g independent conditions, and therefore determines
Vbw | uniquely up to multiplication by a nonzero complex number. By Lemma
7.5, Vbw 1s unique up to multiplication by a nonzero complex number.

O

Remark 7.6 1t is easy to see using Riemann-Roch that the number of equations in
Vow is equal to Ko, [ Yow] } C) — 1. On the other hand, the number of variables is

hO(Xy, [ Yowl). However, the map in Lemma 7.5 is not necessarily an isomorphism
(there may be sections on the curve that are not restrictions of sections on the surface),
so we only have the inequality

# equations in Vi, > # variables — 1.
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A Toric Geometry

In A.1 and A.2, we give a brief background on toric varieties; further details can be
found in the books [12] and [7].
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A.1 Toric Varieties

A toric variety X over C is an algebraic variety containing the complex algebraic torus
T = (C*)" as a Zariski open subset, such that the action of T on itself extends to an
action of T on X.

Let M be a lattice, and let MY := Homgy (M, Z) denote the dual lattice. Let T :=
MYQ®C* = Hom(M, C*) be the complex algebraic torus with the lattice of characters
M. We denote by x™ : T — C* the character associated to m € M. Let (x, %) be the
pairing between M and MY . In our case M = H|(T, Z)= Z?,soM" = H(T, Z)= 7?
and T = HY(T, C*)= (C*)2. We have x ©(z, w) = Z'w/.

A fan ¥ is a collection of cones in the real vector space My := MY ®z R, which
is just the Lie algebra of the real torus T(R), such that

1. Each face of acone o € X is alsoin X.
2. The intersection of two cones o, 0o € X is a face of each of them.

Each cone o € X gives rise to an affine toric variety

Uy = Spec C[ Sy ],

\%

where S, = o¥ N M is a semigroup, o is the cone dual to o, and C[S,] is its

semigroup algebra:

C[S;]1 = Z emx™ i em € C, ¢y = 0 for all but finitely many m € S,

meSy

If ¢ C o, then Uy is an open subset of U, . Gluing the affine toric varieties Uy, , Ug,
along Uy, for all cones o1, 02 € X, we get the toric variety X5 associated to X.
In particular, if ¢ = {0}, then S, = M, so C[S,] = C[M] and U, = T. So Xy
contains T.
We define the action T x U, —> U, via the dual map of the algebras of functions:

ClSo] — CIM] ® C[S ],
Xm — Xm ® Xm.

When o = {0}, this is the action of T on itself. The action of T on U, is compatible
with the gluing, and therefore gives an action of T on Xx.

We denote by X (r) the set of r-dimensional cones of X. There is an inclusion-
reversing bijection between T-orbit closures in Xy and cones in X. Under this
bijection, each ray p € X(1) corresponds to a T-invariant divisor D,. Let u, be
the primitive vector generating p. Then, the (Weil) divisor of the character x" is

divx™ = > (m.up)D,. (49)
peX(l)
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The following fundamental exact sequence computes the class group of Weil divisors
of X o

0—>M— 72D - Cl(X5) — 0,

m = ((m,up))pex(1)- (50)

A.2 Polygons and Projective Toric Surfaces

Given a convex integral polygon N in the plane Mg := M ®z R, we construct the

normal fan ¥ of N as follows:

1. £(0) ={0}.

2. Foreachedge E, of N,letu, € MY be the primitive inward normal vector to E 05
providing an element of X (1) given by the ray spanned by u,,.

3. For each vertex v of N, we get an element of ¥ (2) by taking the convex hull of
the two rays in X (1) associated to the two edges incident to v in N.

The normal fan X gives rise to a toric surface denoted below by X . The orbit-
cone correspondence assigns to each edge E, of N adivisor D, = P!, These divisors
intersect according to the combinatorics of N. Their union is the divisor at infinity
Xy —T.

In fact the polygon N determines a pair (X, Dy), where Dy is an ample divisor
at infinity:

Dy = Z apDp,
peX(l)

where a,, is such that the edge E, of N is contained in the line {m € MR : (m, u,) =
—ap}.
The linear system of hyperplane sections | Dy | has the following properties:

1. HO(X N, Oxy(DN)) = @,enrm € 1™

2. The genus of a generic curve C in |Dy/| is the number of interior lattice points of
N.

3. Curves in |Dy]| intersect the divisor D, with multiplicity |E,| (the number of
primitive vectors in E,).

A.3 Toric Stacks

We follow [5, Sect. 2]. Given a convex integral polygon N C Mg, we define a stacky
fan X as the following data:

1. The normal fan X of N, defined above.
2. For eachray p € X (1), the vector |E,|u, generating the ray p.

We define a fan & ¢ RE(D ag follows: for o € ¥, we define & € £ by
6 =cone(e, : p €0 (1)) C R,
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where {e,} is the standard basis in p in R=M and o (1) denotes the rays of ¥ incident
to o. Then ¥ is the fan generated by the cones & and their faces.
Let Uy, be the toric variety of the fan . It is of the form
C*M — (closed codimension2subset).
Consider the following map, modifying the map (50) for polygons N with a non-
primitive side:
g:M— z*M

mi— (|Epl{m,up))p.

Applying the functor Homz (, C*), we get a surjective map (C*)*() — T. Denote
by G its kernel. So there is an exact sequence

1> G— (CH*D 51751, (51)
So G is a subgroup of the torus (C*)*() of the toric variety Us. Therefore, G acts

on Uy.
Explicitly, » = (A,) € (C*)ZW isin G if and only if

l_[ )»lE'OI m,up) =1 (52)

pex(l)

forallm € M. Letz = (z,) € C*M denote the standard coordinates on C*(1). The
actionof GonUs is A -z = (Ap2)).

Definition A.1 The roric stack Z is the smooth Deligne-Mumford stack [Ug /G].
A.4 Example: A Stacky P2,
Consider the polygon N given by the convex-hull of {(0, 0), (2, 0), (0, 2)}. The rays

of its normal fan X are generated by u; = (1,0),up = (0,1), u3 = (—1, —1) with
|E1| = |E2| = |E3| = 2. The fan T CcR3is generated by the cones

01 = cone(en, e3), 0 = cone(eq, e3), 03 = cone(eq, €3),

and their faces, where {e;} is the standard basis of R3. These cones define affine
varieties

Ui = Spec C[X{". X2, X3], Uz = SpecC[X}, X5, X3],
Us = Spec C[X1, X2, X531,

respectively. The face 61» := 6] N 0 = cone(es) defines the affine variety Uy =
Spec C[Xftl, Xzil, X3], identified with Uy N U,. Similarly, we define U3 and Uj3.
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Gluing U; and U; along the U;; for all i, j, we see that the toric variety Uy of T is
C? — 0. The map M — Z*W is
7?7
(19 O) = (21 07 _2)
0, 1) — (0,2, -2).

The group G is the kernel of

((Cx)3 s ((CX)2
2 2
o= (2 (2))

Thus, G = {(£A, A, A) : A € C*} and it acts on C3-0 by multiplication. The
quotient [C? — 0/G] is a stacky P2.

A.5 Line Bundles and Divisors on Toric Stacks

A line bundle on the quotient stack Zy = [Ux /G]is the same thing as a G-equivariant
line bundle on Uy, The Picard group of Uy, is trivial, so line bundles on 2 correspond
to the various G-linearizations of Oys .

Proposition A.1 (Borisov and Hua, 2009 [5, Proposition 3.3]) There is an isomor-
phism, describing the Picard group of Zn via divisors D,,:

7¥W /B*M = Pic Xy,
by

bp)p = O Y mDp).
pex(l) P

The line bundle O g, (ZpeZ(l) %Dp) is the trivial line bundle Oy, = Us x C

with the G-linearization

GxUgxC)—Uxg xC

@ | reze T ay
pex()

Let D = Zpez(l) %Dp be a divisor at infinity on 2. We assign to D a polygon

Pp in MR defined by the intersection of the half planes provided by the coefficients
of D:

b
Pp = ﬂ {meMR:(m,up)Z—E—p}. (53)
pex(l) £l
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A global section of a line bundle on 2} is the same thing as a G-invariant global
section of Oy,.. As in the case of toric varieties, global sections of toric line bundles
are identified with integral points in the associated polygons:

Proposition A.2 (Borisov and Hua, 2009 [5, Proposition 4.1]) We have

H(Zy. 02, (D)= P C-x™
mePpNM

The G-invariant section of Oyy. corresponding to x™, m € Pp N M, is HpeE(l) ZZ/),
where a, = |Ep|(m, uy) + by.

Proof We have H(Usx, Ouys) = Clz, : p € Z(1)]. The global section ]_[pez(l) zf{’
is G-invariant if and only if

[T w7 I == [] Gerp)™ forallp e £(1),

pex(l) peR(D) pex(l)
. . . . bp_ap
which is equivalent to the equations HpeE(l) Ap = 1 for all p € X(1). By
exactness of (51), this is equivalent to the existence of m € M such thata, — b, =
|E,|{m, u,) forall p € L(1). O

B Combinatorial Rules for the Linear System of Equations Vy,,

In this appendix, we collect some combinatorial rules that facilitate the computation
of the small polygons and equations in V.

B.1 Equivalent Description of the Small Polygons
Consider the lines

Ly:={meMg:{m,uy) =—by} (54)
that form the boundary of the small Newton polygon Ny . We give an alternate descrip-
tion of these lines. Recall that I be the biperiodic graph on the plane given by the lift

of I" to the universal cover of T. The zig-zag paths in I" for a given p divide the plane
into an infinite collection of strips ., (d) parameterized by d € ﬁZ such that

Ip@d)yNV(T) =(ve V(@) :[D,IDW) =d},

where for a divisor D, [D,]D denotes the coefficient of D, in D. We assign to each
strip .7, (d) aline L ,(d) in Mg parallel to E, using the following rule illustrated on
Fig. 13:

1. The line associated to a strip .#, (d) contains the side E, if and only if either
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Qg Qg
QL Qe
empty [ ) A, ..., 0
Qay [ ) (€31
g, y Ok Qg y Xk
Q2 Q2
Qk—1, Qi ' Q1 Qg
Qf—1 Ok—1
Qg Qg
Qg Qg
empty [ ) Ay ..,
ay [ ) a1
Fig. 13 The lifts of zig-zag paths o, ..., o in Z, divide the plane into strips. The side L, of the small

polygon My, and the columns of the matrix Vi, are determined by the strips containing b and w. The
black vertex b is the black dot. On the left panel, b is on a zigzag path, and on the right, it is between two
zigzag paths. Written inside each strip in blue is the subset of Z, that gives rise to equations in Vyy, if w
is contained in that strip. Exceptional strips are shaded

i) The strip .7, (d) is on the right (when facing in the direction of the path) of a
zig-zag path oy € Z,, and o] contains b.
ii) The strip .}, (d) contains b, and b is not in a zig-zag path in Z,,, or
2. Moving to the strip to the left shifts the line 1/|E,| steps to the left.

We call the strip to the left of the one whose line contains £, and all strips obtained
by its translations by H{ (T, Z), exceptional strips.

Proposition B.1 If we associate lines to strips as above, the boundary of the small
Newton polygon Ny is given by the lines {L,(d,)}, where d, € ﬁZ is determined
by the condition w € ./, (d,), that is, it is the index of the strip containing w in the
direction p.

Proof In order for the line L, in (54) to contain E,, we must have b, = 0, where b,
is the coefficient of D, in (21). We have to consider two cases.

1. Thereisazig-zagpatha € Z, suchthatbis containedin o. Weneed [ D, (D (b)) =
ﬁ + [D,]1(D(w)), which means w is contained in the strip .7 to the right of the

one containing b, with « separating the two strips.
2. No zig-zag path in Z, contains b. In this case, we need the coefficients
[D,1(D(b)) = [D,](D(w)), which means w is in the strip .’ containing b.

If wy is a white vertex in the strip to the left of the strip containing a white wy, then
[D,1(D(w2)) = [D,](D(w)) + \E_lﬂl So if we define b, (w1) and b, (w>) as in (21)

with w = wy and w = wj respectively, then b,(w2) = b, (W) + \E_l,,l Note that the
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line (54) which bounds Ny, is given by

Ly(w2) :={m € Mg : (m,up) = bp(W2)}.
The similar line which bounds Ny, is

Ly(wy) :={m € Mg : (m,up) =by(W1)},

so the line L ,(w>) is obtained from the line L,(w1) by shifting 1/|E,| steps to the
left. O

B.2 The Equations in Vy,,

We describe the equations of type 2 in Sect. 3.1.2.

Let p € X(1) be aray and let Z, = {1, ..., o}, where a1, ..., o are labeled
in cyclic order. Their lifts to the universal cover of the torus divides it into strips, see
Fig. 13. We denote by .¥; the strip immediately to the right of «;.

Proposition B.2 The set of extra linear equations is described as follows:

1. One of these zig-zag paths contains b. We can assume it is a1. Then the subset of
Z, that contributes an equation to Vyy is:

empty if w € S;
Aigl, ..., 0 ifw €S for somei # k. (55)

2. The vertex b is not in any of zig-zag paths in Z,,. Then the subset of Z,, is

oYy ey O ifWEfﬂk;
Aigl, .. .0 ifW € S, forsomei # k. (56)

Proof Plugging

1
Yow = Dy — D(w) + D(b) — Z Z mDp.
P

peX(l) aeZybea

into (45), we first observe that (45) does not change if we replace w by its any translate
on the universal cover because d(w) —d(b) changes by the same amount as [ Epy ] | c but
with the opposite sign. Therefore we may assume that among all its possible translates
in the universal cover, the strip .#; is the one that is immediately to the right of b. Then
we have

(d(w) — d(b))ICmDp =—v(a) —--- —v(w)

and the coefficient of D, in (D(w) — D(b)) is —%.
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Now we distinguish two cases:

1. Suppose b is contained in &, so that the coefficient of D in 3 51y Xaez, bea

£, |D is k Then we have

~DW) +Db) — Y Y- —D =0,

|
peX(1) aeZ,: bea Ep cnb,

so that (45) is v(etj+1) + - - - + v(ag), which proves (55).
2. Suppose b is not contained in any of the «;, so that the coefficient of D, in

1 .
ZpeE(l) Zaezp:bea \E_,J\D,O is 0. We have

0 ifi £k,
-DwW) +Dbd) - > > — =1 Tfl.fk
pex(l) aeZ,: bea [Enl chp, 2j=ivie)) ifi =k
This gives
45) = v(@i+1) + -t () ifi #k,
PRI ) ifi = k.
We obtain (56).
o
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