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Abstract
In 2015, Vladimir Fock proved that the spectral transform, associating to an element
of a dimer cluster integrable system its spectral data, is birational by constructing
an inverse map using theta functions on Jacobians of spectral curves. We provide an
alternate construction of the inverse map that involves only rational functions in the
spectral data.

Keywords Dimers · Cluster algebras · Integrable systems · Toric varieties

1 Introduction

The planar dimer model is a classical statistical mechanics model, involving the study
of the set of dimer covers (perfect matchings) of a planar, edge-weighted graph. In the
1960s, Kasteleyn [15, 16] and Temperley and Fisher [22] showed how to compute the
(weighted) number of dimer covers of planar graphs using the determinant of a signed
adjacency matrix now known as the Kasteleyn matrix.

Inmathematics the dimermodelwas popularizedwith the papers [8, 9] on the “Aztec
diamond" and later with results on the local statistics [19], conformal invariance [17],
and limit shapes [6], connections with algebraic geometry [20, 21], cluster varieties
and integrability [13], and string theory [14].
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While the dimer model can be considered from a purely combinatorial point of
view, it also has a rich integrable structure, first described in [13]. The integrable
structure on dimers on graphs on the torus was found to generalize many well-known
integrable systems, see for example [10] and [1]. What is especially important is that
the related integrable system is of cluster nature, and this allows one to immediately
quantize it, getting a quantum integrable system.

From the point of view of classical mechanics, associated to the dimer model on a
bipartite graph on a torus (or equivalently a periodic bipartite planar graph) is a Poisson
variety with a Hamiltonian integrable system. Underlying this system is an algebraic
curve C = {P(z, w) = 0} (called the spectral curve) and a divisor on this curve–
essentially a set of g distinct points {(p1, q1), . . . , (pg, qg)} on C. This is the spectral
data associated to the model. It was shown in [20] that the map from the weighted
graph to the spectral data was bijective, from the space of “face weights" (see below)
to the moduli space of genus-g curves and effective degree-g divisors on the open
spectral curve C◦. Subsequently Fock [11] constructed the inverse spectral map (from
the spectral data to the face weights), describing it in terms of theta functions over the
spectral curve. The special case of genus 0 was described earlier in [18, 20] and an
explicit construction in the case of genus 1 was more recently given in [2]. Positivity
of Fock’s inverse map was studied in [3].

In the current paper, we show that the inverse map can be given an explicit rational
expression in terms of the divisor points (pi , qi ) ∈ C◦ and the points of C at toric
infinity. An exact statement is given in Theorem 3.10 below.

While Fock’s construction is very natural and interacts nicely with positivity, it
involves theta functions. Our construction gives the inverse map as ratios of certain
determinants in the spectral data and can be explicitly computed using computer
algebra. We briefly describe our construction now. The spectral data is defined via a
matrix K= K (z, w) called the Kasteleyn matrix, whose rows are indexed by white
vertices, columns by black vertices, and whose entries are Laurent polynomials in z
and w. Let us consider the adjugate matrix of K :

Q = Q(z, w) =K−1 det K .

The matrix Q is important when studying the probabilistic aspects of the dimer model
(on the lift of the graph on the torus to the plane): the edge occupation variables form
a determinantal process whose kernel is given by the Fourier coefficients of Q/P , as
discussed in [21]. In the present work, we have a different use for Q: finding (a column
of) the matrix Q from the spectral data allows us to reconstruct the face weights and
thereby invert the spectral transform.

The points (pi , qi ) ∈ C are defined to be the points where a column of Q, corre-
sponding to a fixed white vertex w, vanishes. We show that entries in the w-column
of Q, which are Laurent polynomials, can be reconstructed from the spectral data by
solving a linear system of equations. Some of the linear equations are easy to describe:
for any black vertex b, we have Qbw(pi , qi ) = 0 for i = 1, . . . , g, which are g linear
equations in the coefficients of the Laurent polynomial Qbw. However, these equa-
tions are usually not sufficient to determine the coefficients of Qbw. We find additional
equations from the vanishing of Qbw at certain points at infinity of the spectral curve
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C, and show that these equations determine Qbw uniquely, up to a non-zero constant.
We then give a procedure to reconstruct the weights from the w-column of Q.

A key construction in our approach is the extension of the Kasteleyn matrix K
to a map of vector bundles on a toric stack, for which we make crucial use of the
classification of line bundles on toric stacks and the computation of their cohomology
developed in [5]. Toric stacks already appear implicitly in the context of the spectral
transform in [20] and explicitly [23].

The article is organized as follows. In Sect. 2 we review the dimer cluster integrable
system and the spectral transform. In Sect. 3, we state Theorem 3.1, which is our main
result, and describe the reconstruction procedure. We work out two detailed examples
in Sect. 4. Sections 5, 6 and 7 contain proofs of our results. In Appendix A, we
review results from toric geometry. In Appendix B, we provide explicit combinatorial
descriptions for some of our constructions. These are useful for computations.

2 Background

For further information about the material in this section see [13].

2.1 Dimer Models

Let� be a bipartite graph on the torusT ∼= S1×S1 such that the connected components
of the complement of �—the faces—are contractible. We denote by B(�) and W (�)

the black and white vertices of �, by V (�) the vertices, and by E(�) the edges of �.
When the graph is clear from context, we will usually abbreviate these to B,W , V
and E .

A dimer model on the torus is a pair (�, [wt]), where � is a bipartite graph on the
torus as above and [wt] ∈ H1(�,C×) (Here and throughout the paper, C× denotes
the group of nonzero complex numbers under multiplication). For a loop L and a
cohomology class [wt], we denote by [wt]([L]) the pairing between the cohomology
and the homology. We orient edges from their black vertex to their white vertex.
The cohomology class [wt] can be represented by a cocycle wt which, using this
orientation, can be identified with a C×−valued function on the edges of � called an
edge weight.

The edge weight is well-defined modulo multiplication by coboundaries, which are
functions on edges e = bw given by f (w) f (b)−1 for functions f : V (�) → C

×. Note
that the weight of a loop is not the product of its edge weights, but the “alternating
product" of its edge weights: edges oriented against the orientation of the loop are
multiplied with exponent −1.

A dimer cover or perfect matchingm of � is a subset of E(�) such that each vertex
of � is incident to exactly one edge in m. LetM denote the set of dimer covers of �.
If we fix a reference dimer cover m0, we get a function

πm0 : M → H1(T,Z)

m �→ [m − m0].

123



24 Page 4 of 51 T. George et al.

Fig. 1 The fundamental
rectangle R, along with the
cycles γz , γw

γz

γw

Here m − m0 is the 1-chain which assigns 1 to (oriented) edges of m and −1 to
(oriented) edges of m0, so m − m0 is a union of oriented cycles and doubled edges,
whose homology class is [m − m0].

The Newton polygon of � is the polygon

N (�) := Convex-hull(πm0(M )) ⊂ H1(T,R)

defined modulo translation by H1(T,Z). Changing the reference dimer cover from
m0 to m′

0 results in a translation of the polygon by [m0 −m′
0], so the Newton polygon

does not depend on the choice.
We assume that � is such that N (�) has interior. This is a nondegeneracy condition

on �. (When N has empty interior, the graph � is equivalent under certain elementary
transformations to a graphwhose lift toR2 is disconnected, that is, has noncontractible
faces; such a graph breaks into essentially one-dimensional components, and there is
no integrable system.)

2.2 Zig-Zag Paths and the Newton Polygon

A zig-zag path in � is a closed path that turns maximally right at each black vertex
and maximally left at each white vertex. The medial graph of � is the graph �× that
has a vertex ve at the mid-point of each edge e of � and an edge between ve and ve′
whenever e and e′ occur consecutively around a face of �. Note that by construction,
each vertex of �× has degree 4. A zig-zag path in � corresponds to a cycle in �× that
goes straight through each degree four vertex, i.e., at every vertex, the outgoing edge
of the cycle is the one that is opposite the incoming one (see Fig. 2). Hereafter, when
we say zig-zag path, we mean the corresponding cycle in the medial graph.

Let ˜� be the biperiodic graph on the plane given by the lift of � to the universal
cover of T. The bipartite graph � is said to be minimal if the lift of any zig-zag path
does not self-intersect, and lifts of any two zig-zag paths do not have “parallel bigons”,
where by parallel bigon we mean two consecutive intersections where both paths are
oriented in the same direction from one to the next. For a minimal bipartite graph
� on the torus, the Newton polygon has an alternative description in terms of the
zig-zag paths of �. Namely, since � is embedded in T, each zig-zag path α has a
non-zero homology class [α] ∈ H1(T,Z). The polygon N (�) is the unique convex
integral polygon definedmodulo translation in H1(T,Z)whose integral primitive edge

123



The Inverse Spectral Map for Dimers Page 5 of 51 24

Γ Γ×

Fig. 2 A zig-zag path in a graph � and the corresponding cycle in the medial graph �×

Fig. 3 Zig-zag paths and
Newton polygon for the bipartite
graph in Fig. 1

αβ

δγ

vectors in counterclockwise order around N are given by the vectors [α] for all zig-zag
paths α.

Example 2.1 Consider the fundamental domain for the square lattice shown in Fig. 1,
and let γz, γw be cycles generating H1(T,Z) as shown there. We will write homology
classes in H1(T,Z) in the basis (γz, γw). There are four zig-zag paths labeled α, β, γ

and δ with homology classes (−1, 1), (−1,−1), (1,−1) and (1, 1) respectively (Fig.
3), and therefore the Newton polygon is

Convex-hull{(1, 0), (0, 1), (−1, 0), (0,−1)}.

2.3 The Cluster Variety Assigned to a Newton Polygon

For a convex integral polygon N ⊂ H1(T,R) defined modulo translation, consider
the family of minimal bipartite graphs � with Newton polygon N (�) = N . Any
two graphs �1, �2 in the family are related by certain elementary transformations;
see Fig. 4. An elementary transformation �1 → �2 gives rise to a birational map
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←→

spider move

←→

contraction-uncontraction move

Fig. 4 The elementary transformations

H1(�1,C
×) ��� H1(�2,C

×). Gluing the tori H1(�,C×) by these maps, we obtain
a space XN , called the dimer cluster Poisson variety. It carries a canonical Poisson
structure. The Poisson center is generated by the loop weights of the zig-zag paths.
The space XN is the phase space of the cluster integrable system. See details in [13].

2.4 Some Notation

Let � denote the normal fan of N (see Sect. A.2 and Figs. 7 and 10) so that the set of
rays �(1) = {ρ} of � is in bijection with the set of edges of N . We denote the edge
of N whose inward normal is directed along the ray ρ by Eρ , and the primitive vector
along ρ by uρ .

Let M := H1(T,Z)∼= Z
2 and M∨ := HomZ(M,Z)∼= Z

2 be dual lattices and let
〈∗, ∗〉 : M × M∨ → Z denote the duality pairing. Let us consider the algebraic torus
with lattice of characters M:

T := HomZ(M,C×) ∼= (C×)2.

LetMR (resp.M∨
R
) denoteM⊗ZR (resp.M∨⊗ZR), so that N ⊂ MR and� ⊂ M∨

R
.

An elementary transformation �1 → �2 induces a canonical bijection between
zig-zag paths in �1 and zig-zag paths in �2. Therefore, the set of zig-zag paths is
canonically associated with N . We denote the set of zig-zag paths by Z , and for an
edge Eρ of N , we denote by Zρ the set of zig-zag paths α such that the primitive
vector [α] is contained in Eρ .

2.5 The KasteleynMatrix

Let R be a fundamental rectangle for T, so that T is obtained by gluing together
opposite sides of R. Let γz, γw be the oriented sides of R generating H1(T,Z), as
shown in Fig. 1. Let z (resp.w) denote the character χγw (resp. χγz ), so the coordinate
ring of T is C[z±1, w±1].

Let (∗, ∗)T be the intersection pairing on H1(T,Z). For z, w ∈ C
× we multiply

edge weights on edges crossing γz by z±1 and those crossing γw by w±1, with the
sign determined by the orientation. Precisely, we multiply by

φ(e) := z(e,γw)Tw(e,−γz)T , (1)
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Here (e, ∗)T := (le, ∗)T is the intersection index with the oriented loop le obtained
by concatenating e = bw with an oriented path contained in R from w to b. Let
H1(T,Z)∨ := HomZ(H1(T,Z),Z) be the dual lattice of H1(T,Z). There is an iso-
morphism T := H1(T,Z)∨ ⊗ C

× ∼= (C×)2, defined as follows. For each edge e of
�, we associate a character, that is a group homomorphism T → C

×:

ϕ(e) = z(e,γz)w(e,γw), (2)

where (e, γz) is the intersection index of the edge e and γz , and similarly (e, γw).
Explicitly we fix an embedding of � in the fundamental rectangle. Isotoping edges if
necessary, we may assume that each edge of � intersects γz and γw only finitely many
times. For an edge e, let I1, ..., In be the intersection points of e with γz . We define
(e, γz) :=∑n

i= j (e, γz)I j , where (e, γz)I j ∈ {−1, 0, 1} is the local intersection index,
where we orient e from its black vertex to its white vertex.

A Kasteleyn sign is a cohomology class [ε] ∈ H1(�,C×) such that for any loop L
in �, [ε]([L]) is −1 (resp., 1) if the number of edges in L is 0 mod 4 (resp., 2 mod 4).
Given edge weights wt and ε representing [wt] and [ε] respectively, one defines the
Kasteleyn matrix K= K (z, w), whose columns and rows are parameterized by b ∈ B
and w ∈ W respectively:

Kw,b =
∑

e∈E incident to bw

wt(e)ε(e)φ(e). (3)

It describes a map of free C[z±1, w±1]-modules, called the Kasteleyn operator:

K : C[z±1, w±1]B → C[z±1, w±1]W , (4)

δb �−→
∑

w∈W
Kw,bδw. (5)

Theorem 2.2 (Kasteleyn 1963, [16]) Fix a dimer cover m0, and let φ(m0) =
∏

e∈m0
φ(e). Then,

1

wt(m0)ε(m0)φ(m0)
det K =

∑

m∈M
sign([m − m0])[wt]([m − m0])χ [m−m0],

where sign([m − m0]) ∈ {±1} is a sign that depends only on the homology class
[m − m0] and [ε].

The characteristic polynomial is the Laurent polynomial

P(z, w) := 1

wt(m0)ε(m0)φ(m0)
det K .

Its vanishing locus C◦ := {P(z, w) = 0} ⊂ (C×)2 is called the (open part of the) spec-
tral curve. Theorem 2.2 implies that N is the Newton polygon of P(z, w). Although
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w1

w2

b1

b2

f1f2

f3f4

1

1
X1

−1

−X1X3
Bw Bw

− 1
AX2z

−Az

Fig. 5 Shown on the left is a labeling of vertices and faces of �, and two cycles a (red) and b (green) in �

that generate H1(T,Z). Shown on the right is a cocycle representing [wt], along with ε and φ. The signs
are due to ε, the z, w due to φ, and other weights are wt

the definition of the Kasteleyn matrix uses cocycles representing the cohomology
classes wt and ε, the spectral curve does not depend on these choices.

Example 2.3 Let a and b be the two cycles in � shown on the left of Fig. 5 whose pro-
jections to T generate H1(T,Z). Let [wt] ∈ H1(�,C×) and let A := [wt]([a]), B :=
[wt]([b]). For i = 1, 2, 3, let Xi denote the [wt]([∂ fi ]), where ∂ fi denotes the bound-
ary of the face fi (the weight of the fourth face is determined by the fact that the
product of all face weights is 1). Then (X1, X2, X3, A, B) generate the coordinate
ring of H1(�,C×). A cocycle representing [wt] is shown on the right of Fig. 5, along
with ε and φ. The Kasteleyn matrix and the spectral curve are:

K =
b1 b2

( )

1 − Az 1 − X1X3
Bw

w1

−1 + Bw X1 − 1
AX2z

w2
,

P(z, w) =
(

1 + X1 + 1

X2
+ X1X3

)

− Bw − X1X3

Bw
− 1

AX2z
− AX1z. (6)

2.6 The Toric Surface Assigned to a Newton Polygon

In this section, we collect some notation regarding toric varieties, and refer the reader
to the Appendices A.1 and A.2 for more details. A convex integral polygon N ⊂ MR

determines a compactification XN of the complex torus T called a toric surface, and
a divisor DN supported on the boundary XN − T, so that Laurent polynomials with
Newton polygon N extend naturally to sections of the coherent sheaf OXN (DN ) (for
background on the coherent sheaf associated to a divisor, see for example [7, Chapter
4]).

Denote by |DN | the projective space of non-zero global sections of the coherent
sheaf OXN (DN ), considered modulo a multiplicative constant. Assigning to a section
its vanishing locus, we see elements of |DN | as curves in XN whose restrictions to T
are defined by Laurent polynomials with Newton polygon contained in N .

123
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The genus g of the generic curve in |DN | is equal to the number of interior lattice
points in N . Recall that the edges {Eρ} of N are in bijection with the rays {ρ} of �.
Each edge Eρ of N determines a projective line Dρ which we call a line at infinity of
XN , and

XN − T =
⋃

ρ∈�(1)

Dρ.

The divisor DN is given by

DN =
∑

ρ∈�(1)

aρDρ, (7)

where aρ ∈ Z are such that

N =
⋂

ρ∈�(1)

{m ∈ MR : 〈m, uρ〉 ≥ −aρ}. (8)

The lines Dρ intersect according to the combinatorics of N : precisely, for ρ1, ρ2 ∈
�(1), the intersection Dρ1 ∩Dρ2 is empty if Eρ1 ∩Eρ2 is empty and a point if Eρ1 ∩Eρ2

is a vertex of N . The intersection index of a generic curve in |DN | with the line Dρ is
equal to the number |Eρ | of primitive integral vectors in the edge Eρ . The points of
intersection are called points at infinity. Let C ∈ |DN | denote the compactification of
the open spectral curve C◦, i.e., C is the closure of C◦ in XN . C is called the spectral
curve.

2.7 Casimirs

Let α be a zig-zag path α = b1 → w1 → b2 → · · · → wd → b1 in Zρ . We define
the Casimir Cα by

Cα := (−1)d [ε]([α])[wt]([α]).

The Casimirs determine points at infinity of C as follows: since [α] is primitive and
〈uρ, [α]〉 = 0, we can extend it to a basis (x1, x2) ofMwith [α] = x1 and 〈x2, uρ〉 = 1.
The affine open variety in XN corresponding to the cone ρ is

Uρ = SpecC[x±1
1 , x2] ∼= C

× × C,

and Dρ ∩ Uρ is defined by x2 = 0, and so the character x−1
1 = χ−[α] is a coordinate

on the dense open torus C× = Dρ ∩Uρ in Dρ . Therefore, the equation

χ−[α](νρ(α)) = Cα, (9)
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defines a point νρ(α) in Dρ . In other words, the point is defined as the unique point
on the line at infinity such that the monomial ziw j , where −[α] = (i, j), evaluates to
Cα . We will prove later (see (42)) that these are precisely the points at infinity of C.

Example 2.4 Consider the fundamental domain of the square lattice, whose zig-zag
paths were listed in Example 2.1 and Fig. 3. The Casimirs are

Cα = − B

AX1
, Cβ = − 1

ABX2
, Cγ = − AX1X2X3

B
, Cδ = − AB

X3
. (10)

Let us denote the normal ray in � of a zig-zag path ω by ρ(ω), so uρ(α) = (−1,−1)
etc. We choose x2 = χ(0,−1) so that 〈(0,−1), uρ(α)〉=1. Then we have Uρ(α) =
SpecC[x1 = z−1w, x2 = w−1] and Dρ(α) ⊂ Uρ(α) is given by x2 = 0. In this case,
DN = Dρ(α) + Dρ(β) + Dρ(γ ) + Dρ(δ) and P(z, w) is a global section of OXN (DN ).
We trivialize OXN (DN ) over Uρ(α) as follows:

OXN (DN )
∣

∣

Uρ(α)
= {t ∈ C[z±1, w±1] : div t

∣

∣

Uρ(α)
+ Dρ(α) ≥ 0} ∼= OUρ(α)

t �→ t x2

Then making the change of variables z = 1
x1x2

and w = 1
x2
, and multiplying by x2,

the portion of the spectral curve C in Uρ is cut out by

(

1 + X1 + 1

X2
+ X1X3

)

x2 − B − X1X3

B
x22 − x1x22

AX2
− AX1

x1
,

so that C ∩ Dρ(α) is given by

−B − AX1

x1
= 0.

Therefore, ν(α) is given by z
w

= 1
x1

= Cα , which agrees with (9). The table below
lists the points at infinity for each of the zig-zag paths.

Zig-zag path Homology class Basisx1, x2 Point at infinity

α (−1, 1) (−1, 1), (0,−1) x1 = 1
Cα

, x2 = 0

β (−1,−1) (−1,−1), (0,−1) x1 = 1
Cβ

, x2 = 0

γ (1,−1) (1,−1), (0, 1) x1 = 1
Cγ

, x2 = 0

δ (1, 1) (1, 1), (0, 1) x1 = 1
Cδ

, x2 = 0

(11)
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2.8 The Spectral Transform

Our next goal is to define the spectral transform, which plays the key role in this
paper. We present two equivalent definitions of the spectral transform. The first is the
original definition of Kenyon and Okounkov [20], and it is the one which we use in
computations. However, it depends on the choice of the distinguished white vertex
w. The second is more invariant, and does not require choosing a distinguished white
vertex w.

Recall that for each edge Eρ of N , we have #Zρ = #C ∩ Dρ , but there is no
canonical bijection between these sets. We define a parameterization of the points at
infinity by zig-zag paths to be a choice of bijections ν = {νρ}ρ∈�(1), where

νρ : Zρ
∼−→ C ∩ Dρ. (12)

For a curve C ∈ |DN |, we denote by Div∞(C) the abelian group of divisors on C
supported at the infinity, that is at C ∩ DN .

Compactifications of the Kasteleyn operator will play a important role in this paper.
The main ingredient in the construction of these compactifications is a combinatorial
object called the discrete Abel map introduced by Fock [11] that encodes intersections
with zig-zag paths. Let � be a minimal bipartite graph in T with Newton polygon N
and spectral curve C. The discrete Abel map

d : B ∪ W ∪ F → Div∞(C)

assigns to each vertex and face of � a divisor at infinity. It is defined uniquely up to a
constant by the requirement that for a path γ from x to y, contained in the fundamental
domain R, where x and y are either vertices or faces of �, we have

d(y) − d(x) =
∑

ρ∈�(1)

∑

α∈Zρ

(α, γ )Rνρ(α).

Here (α, γ )R is the intersection index in R, i.e., the signed number of intersections of
α with γ . Since we require γ to be contained in R, this is well-defined, independent
of the choice of path γ . Locally, the rule is as follows:

1. If b is a black vertex incident to a face f , and b and f are separated by α ∈ Zρ ,
then d(b) = d( f ) + νρ(α).

2. If w is a white vertex incident to a face f , and w and f are separated by α ∈ Zρ ,
then d(w) = d( f ) − νρ(α).

We normalize d, setting the value of d at certain face f0 of � to be 0. Then for any
black vertex b, face f , and white vertex w of˜� we have:

deg d(b) = 1, deg d( f ) = 0, deg d(w) = −1. (13)
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24 Page 12 of 51 T. George et al.

Remark 2.5 Only differences of the form d(y)−d(x) will appear in our constructions
later, so the choice of normalization does not play a role.

Example 2.6 Let us compute the discrete Abel map d for the square lattice in Fig. 5.
We normalize d( f1) = 0. Then we have

d(b1) = νρ(γ )(γ ), d(b2) = νρ(α)(α), d(w1) = −νρ(β)(β), d(w2) = −νρ(δ)(δ),

where ν is shown in table (11).

Definition 1.A divisor spectral data related to aNewton polygon N is a triple (C, S, ν)

where C ∈ |DN | is a genus g curve on the toric surface XN , S is a degree g effective
divisor in C◦, and ν = {νρ} are parameterizations of the divisors Dρ ∩ C, see (12).
Denote by SN the moduli space parameterizing the divisor spectral data on N . Let us
fix a distinguished white vertex w of �. Then there is a rational map (here and in the
sequel, ��� means a rational map), called the spectral transform, defined by Kenyon
and Okounkov [20],

κ�,w : XN ��� SN (14)

defined on the dense open subset H1(�,C×) of XN by [wt] �→ (C, S, ν) as follows:

1. C is the spectral curve.
2. For generic [wt], C is a smooth curve and coker K is the pushforward of a line

bundle on C◦. Let sw be the section of coker K given by thew-entry of the cokernel
map. S is defined to be the divisor of this section. In Corollary 6.3, we show that
S has degree g. Then S is the set of g points in C◦ where the w-column of the
adjugate matrix Q = Q(z, w) =K−1detK vanishes.

3. The parameterization of points at infinity by zig-zag paths ν is defined as follows:
νρ(α) is the point in C ∩ Dρ satisfying χ−[α] = Cα (see Sect. 2.7). We call νρ(α)

the point at infinity associated to α.

Definition 2. A line bundle spectral data related to a Newton polygon N is a triple
(C,L, ν) where C ∈ |DN | is a genus g curve on the toric surface XN , L is a degree
g − 1 line bundle on C, and ν is a parameterization of points at infinity by zig-zag
paths. Denote by S ′

N the moduli space parameterizing the line bundle spectral data on
N .

The spectral transform is a rational map

κ�,d : XN ��� S ′
N

defined on the dense open subset H1(�,C×) of XN by [wt] �→ (C,L, ν), where:

1. C is the spectral curve.
2. Let K

∣

∣C◦ denote the restriction of the Kasteleyn matrix to C◦. The discrete Abel
map d determines an extension K of K

∣

∣C◦ to a morphism of locally free sheaves
on C; see Sect. 6. The coherent sheafL is defined as the cokernel of K . When C is a
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smooth curve, which happens for generic [wt], L is a line bundle. The convention
deg d(w) = −1 implies that deg L = g − 1; see Proposition 6.4.

3. The parameterizations of the divisors DN ∩C are defined by associating to a zig-zag
path α the point at infinity νρ(α).

Sinceρ is determined byα, wewill use the simpler notation ν(α):= νρ(α) hereafter.
The two types of spectral data are equivalent. Given a degree g effective divisor S,

we have (Proposition 6.4)

L ∼= OC (S + d(w)) . (15)

On the other hand, given a line bundle L and a white vertex w, we can recover S as
follows. Consider the Abel-Jacobi map

Ag : SymgC → Jac(C),

E �→ L ⊗ OC(E + d(w)).

Then Ag is birational by the Abel-Jacobi theorem [4, Corollary 4.6]. We obtain S =
(Ag)−1(OC).

Example 2.7 We compute the spectral transform for our running example of the square
lattice. Let us take the distinguished white vertex to be w = w1.

Q =
w1 w2

( )

X1 − 1
AX2z

−1 + X1X3
Bw

b1
1 − Bw 1 − Az b2

. (16)

Solving Qb1w(p, q) = Qb2w(p, q) = 0, we get

p = 1

AX1X2
, q = 1

B
. (17)

Therefore, the spectral transform is:

κ�,w : H1(�,C×) ��� SN

(X1, X2, X3, A, B) �→ (C, (p, q), ν),

where C = {P(z, w) = 0} with P(z, w) as is in (6), S = (p, q) is a single point (the
genus g = 1 since N in Fig. 3 has one interior lattice point) and ν is as shown in table
(11).

3 TheMain Theorem

Below we introduce functions Vbw on the moduli space SN of spectral data, relying
on results in the remaining Sects. 5, 6, 7. They are defined for any pair (bw) ∈ B ×W
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of black and white vertices, and defined as the solution to a system of linear equations
Vbw.

The main result of the paper is the following.

Theorem 3.1 For the distinguished white vertex w, the pull-back of the function Vbw
under the spectral map coincides, up to a multiplicative constant, with the bw matrix
element Qbw of the adjugate matrix Q := K−1 det K of the Kasteleyn matrix K . That
is,

Qbw = c · κ∗
�,w(Vbw), (18)

where c depends on b (and w).

As an application of this result, we get an explicit description of the inverse to the
spectral map (14); see Sect. 3.2.

The next few sections discuss the structure of the system of linear equations Vbw.
Detailed examples are given in Sect. 4.

3.1 TheMatrixVbw

The system of linear equationsVbw is in the variables (am)m∈Nbw∩M where Nbw ⊂ MR

is a convex polygon, introduced in Sect. 3.1.1.2, and called the small Newton polygon.
There is one system for every pair (bw) ∈ B × W . The system Vbw is of the form
(matrix)(am) = 0; we also denote this matrix by Vbw. Therefore, the columns of the
matrix Vbw are indexed by the lattice points Nbw ∩M. By Corollary 5.3, the polygon
Nbw is the Newton polygon of the Laurent polynomial Qbw.

The equations in Vbw, i.e., the rows of the matrix Vbw are defined in Sect. 3.1.2.
There are two types:

1. There is a row for each of the points (p1, q1), . . . , (pg, qg) of the divisor S on the
spectral curve. The entry of the row in column m ∈ Nbw ∩ M is χm(pi , qi ).

2. The remaining rows correspond to certain zig-zag paths α. The entries in the row
corresponding to α are certain monomials in Cα .

Let us proceed to the precise definition of the matrix Vbw.

3.1.1 Columns of the MatrixVbw

We now describe the small Newton polygons, whose lattice points correspond to
columns of Vbw.
3.1.1.1. Rational Abel Map D.

Recall the set {Dρ} of lines at infinity of the toric surface XN . Consider theQ-vector

space DivQT (XN ) of Q-divisors at infinity, defined as the Q-vector space with a basis
given by the divisors Dρ :

DivQT (XN ) :=
⊕

ρ∈�(1)

QDρ.
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We define a rational Abel map

D : V → DivQT (XN )

which assigns to each vertex v of the graph � a Q-divisor at infinity D(v) as follows:

1. Normalize D(w) = 0. As in the case of d, the choice of normalization plays no
role, and we can replace 0 with any Q-divisor.

2. For any path γ contained in R from v1 to v2,

D(v2) − D(v1) =
∑

ρ∈�(1)

∑

α∈Zρ

(α, γ )R

|Eρ | Dρ,

where (·, ·)R is the intersection index in R, i.e., the signed number of intersections
of α with γ .

The following lemma follows from definitions.

Lemma 3.2 Let α, β be the zig-zag paths through e = bw, with α ∈ Zσ , β ∈ Zρ .
Then, we have

D(w) − D(b) = − 1

|Eσ |Dσ − 1

|Eρ |Dρ − div φ(e) (19)

where φ(e) is the character defined in (1) and div φ(e) denotes its (Weil) divisor as in
(49).

3.1.1.2 Small Newton Polygons
Recall the divisor DN at infinity of XN , see (7). Given an edge e = bw, we define

a Q-divisor at infinity

Ybw := DN − D(w) + D(b) −
∑

ρ∈�(1)

∑

α∈Zρ :b∈α

1

|Eρ |Dρ. (20)

Here the double sum is over all zig-zag paths α passing through b. We define bρ ∈ Q

as the multiplicities of the projective lines at infinity Dρ in the divisor Ybw:

Ybw =
∑

ρ∈�(1)

bρDρ. (21)

Definition 3.3 The small Newton polygon Nbw is the polygon defined by the formula

Nbw =
⋂

ρ∈�(1)

{m ∈ MR : 〈m, uρ〉 ≥ −bρ}. (22)
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Fig. 6 The two small polygons in Example 3.4. The big black dot denotes the origin, while the other black
dots are integral points

There is a canonical bijection between divisors D in DivQT (XN ) and convex polygons
P with rational intercepts (see Proposition A.2 for its importance in toric geometry):

D =
∑

ρ∈�(1)

aρDρ ↔ P =
⋂

ρ∈�(1)

{m ∈ MR : 〈m, uρ〉 ≥ −aρ}, aρ ∈ Q. (23)

Therefore, Nbw is the polygon associated to the divisor Ybw in (23).

The polygon Nbw may not be integral. We will consider only integral points in it.
The convex hull of the integral points in Nbw contains the Newton polygon of Qbw
(Corollary 5.3).

Example 3.4 We compute the small polygons for the square lattice in Fig. 5. Recall that
we chose w = w1. Since there is only one zig-zag path in each homology direction,
the rational Abel map D is obtained from d by replacing the point at infinity with the
corresponding line at infinity, so from Example 2.6, we have

D(b1) = Dρ(γ ), D(b2) = Dρ(α), D(w1) = −Dρ(β), D(w2) = −Dρ(δ).

We have DN = Dρ(α) + Dρ(β) + Dρ(γ ) + Dρ(δ), using which we compute

Yb1w1 = (Dρ(α) + Dρ(β) + Dρ(γ ) + Dρ(δ)) − (−Dρ(β)) + Dρ(γ ) − (Dρ(α) + Dρ(β)

+ Dρ(γ ) + Dρ(δ)) = Dρ(β) + Dρ(γ ),

Yb2w1 = (Dρ(α) + Dρ(β) + Dρ(γ ) + Dρ(δ)) − (−Dρ(β)) + Dρ(α) − (Dρ(α) + Dρ(β)

+ Dρ(γ ) + Dρ(δ)) = Dρ(α) + Dρ(β).

Therefore,

Nb1w1 = {−i − j ≥ 0} ∩ {i − j ≥ −1} ∩ {i + j ≥ −1} ∩ {−i + j ≥ 0},
Nb2w1 = {−i − j ≥ −1} ∩ {i − j ≥ −1} ∩ {i + j ≥ 0} ∩ {−i + j ≥ 0},

see Fig. 6. Note that the convex hulls of the lattice points are the Newton polygons of
Qb1w1 and Qb2w1 in (16).

3.1.2 Rows of the MatrixVbw

Recall that the variables in Vbw are (am)m∈Nbw∩M. We identify a Laurent polynomial
F =∑m∈M bmχm with its vector of coefficients (bm)m∈M. The equations in Vbw are
of two types:
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1. For each 1 ≤ i ≤ g, we have the linear equations

∑

m∈Nbw∩M
amχm(pi , qi ) = 0, (24)

so the entry of the corresponding row of Vbw in column m is χm(pi , qi ).
2. Recall the notation �x� for the largest integer n such that n ≤ x . Given aQ-divisor

D =∑ρ∈�(1) bρDρ , we define a divisor with integral coefficients

�D� :=
∑

ρ∈�(1)

⌊

bρ

⌋

Dρ.

Recall the divisor Ybw in (20). For a divisor D at infinity, let D
∣

∣C denote the divisor
corresponding to the intersection of D with C. Precisely, if D = ∑

ρ∈�(1) aρDρ ,
then D

∣

∣C :=∑ρ∈�(1) aρ

∑

α∈Zρ
ν(α).We have a linear equation for every zig-zag

path α such that ν(α) appears in

− DN
∣

∣C + d(w) − d(b) +
∑

α∈Z
ν(α) + �Ybw� ∣∣C . (25)

Suppose α ∈ Zρ is a zig-zag path that contributes an equation. We extend [α] to
a basis (x1, x2) of M, where x1 := [α] and 〈x2, uρ〉 = 1, so that for any m ∈ M,
we can write

χm = xbm1 xcm2 , bm, cm ∈ Z.

Let Nρ
bw be the set of lattice points in Nbw closest to the edge Eρ of N i.e., the set of

points in Nbw that minimize the functional 〈∗, uρ〉. Then the equation associated
with α is

∑

m∈Nρ
bw∩M

amC
−bm
α = 0. (26)

So the entry in column m ∈ Nρ
bw ∩ M is the monomial C−bm

α , and the entries in
the other columns are 0. Choosing a different basis vector x2 leads to the same
equation multiplied by a monomial in Cα .

Remark 3.5 When all the sides of the Newton polygon are primitive, we call the
Newton polygon simple. In this case, we have [Ybw] = Ybw and d(w) − d(b) =
(D(w) − D(b))

∣

∣C . Then Formula (25) simplifies considerably to

∑

α∈Z :b/∈α

ν(α). (27)
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So for a simple Newton polygon the Casimir rows of the matrix Vbw, i.e., the rows
providing equations (26), are parameterized by the zig-zag paths α which do not
contain the vertex b.

3.1.3 The Functions Vbw

The number of rows ofVbw is at least as large as the number of columnsminus one, but
not necessarily equal. However, Proposition 7.3 shows that there is a unique solution
to Vbw up to a multiplicative constant. Therefore,

Vbw :=
∑

m∈Nbw∩M
amχm, (28)

is uniquely defined up to a multiplicative constant (where (am)m∈Nbw∩M is a solution
to Vbw). Only ratios of the values of these functions that are independent of the
multiplicative constant appear in the inverse map, see Sect. 3.2.

Remark 3.6 When the equations in Vbw are linearly independent (so there is exactly
one less equation than the number of variables), we can prepend to Vbw the equation
∑

m∈Nbw∩M amχm to get a square matrix, which we denote byVχ
bw. Then the function

Vbw is the determinant:

Vbw = det Vχ
bw.

Indeed, given an (n−1)×nmatrix (ai j ), the system of linear equations
∑n

j=1 ai j x j =
0 has a solution given by the signed maximal minors A j of the matrix A:

x j = (−1) j A j .

Here A j is the determinant of the matrix obtained by deleting the j-th column of A.
Therefore, the determinant of the augmented matrixVχ

bw recovers the expression Vbw
in (28).

Example 3.7 We compute the linear system of equations Vbw for the square lattice in
Fig. 5 with w = w1. Since both black vertices are contained in every zig-zag path, the
formula (27) is 0, so there are no equations of type 2 in Vbw for b ∈ B. Therefore,

Vb1w = (1 p−1
)

, Vb2w = (1 q
)

.

By Remark 3.6, we get

Vb1w =
∣

∣

∣

∣

1 z−1

1 p−1

∣

∣

∣

∣

, Vb2w =
∣

∣

∣

∣

1 w

1 q

∣

∣

∣

∣

. (29)

Using (17), we have

κ∗
�,w(Vb1w) = AX1X2 − 1

z
= AX2Qb1w,
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κ∗
�,w(Vb2w) = 1

B
− w = 1

B
Qb2w,

verifying the conclusion of Theorem 3.1.

3.2 ReconstructingWeights via Functions Vbw.

Take a white vertex w and a zig-zag path α containing w. The pair (w, α) determines

a wedge W := b
e−→ w

e′−→ b′, where w is a white vertex incident to the vertices b, b′
such that bwb′ is a part of α. Recall φ(e) from (1), and the Kasteleyn sign ε(e). We
assign to this wedge the ratio

rW := −ε(e′)φ(e′)Vb′w
ε(e)φ(e)Vbw

(ν(α)). (30)

Note that we use the distinguished white vertexw in the expression rather than w. The
expression is in fact independent of w, as we will see in the proof of Theorem 3.10
below.

Remark 3.8 The ratio on the right is a rational function on the curve. We evaluate the
ratio at the point at infinity of the spectral curve ν(α) corresponding to the zig-zag path
α, see (12). To do this, we first extend [α] to a basis (x1, x2) of M with [α] = x1 and
〈x2, uρ〉 = 1 , as explained in Sect. 2.7. Then ν(α) is given by 1

x1
= Cα, x2 = 0. The

numerator and denominator in (30) vanish to the same order in x2 by Corollary 6.2
below, so after factoring out and canceling the highest power of x2 in the numerator
and denominator, we can evaluate at x1 = 1

Cα
, x2 = 0 to get a well-defined number.

Let L = b1 → w1 → b2 → · · · → b� = b1 be an oriented loop on �. It is a
concatenation of wedges Wi := bi−1wibi , i = 1, . . . , � (with i taking values cyclic
modulo �) provided by the white vertices. Denote by αi the zig-zag path assigned to
the wedge Wi . We define a cohomology class [ω] by

[ω]([L]) :=
�
∏

i=1

rWi . (31)

Lemma 3.9 The product (31) does not depend on the ambiguities of the multiplicative
constants in the involved functions Vbw.

Proof For each black vertex bi in L , Vbiw appears twice in (31), once each in the
numerator and denominator, and so the multiplicative constants cancel out. ��
Theorem 3.10 The cohomology classes [wt] and κ∗

�,w[ω] are equal.

Proof Let b
e−→ w

e′−→ b′ be a wedge with zig-zag path α ∈ Zρ . The restriction of the
characteristic polynomial P(z, w)

∣

∣

Dρ
is the partition function of those dimers whose

homology class in N lies on Eρ . From the explicit construction of external dimers
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in [13] (that is, dimers whose homology classes are in ∂N ), we have that each dimer
with homology class in Eρ uses exactly one of the edges e or e′. Since Qbw(z, w) is
the partition function of dimers with the vertices bw removed, we have

P
∣

∣

Dρ
= wt(e)ε(e)φ(e)Qbw

∣

∣

Dρ
+ wt(e′)ε(e′)φ(e′)Qb′w

∣

∣

Dρ
.

Since ν(α) is on the spectral curve, P(ν(α)) = 0, from which we get

wt(e)

wt(e′)
= −ε(e′)φ(e′)Qb′w

ε(e)φ(e)Qbw
(ν(α)). (32)

We have corank(K ) = 1 at smooth points of C. Note that K Q
∣

∣C = 0. Therefore, for
generic wt , since C is smooth, Q is a rank 1 matrix given by

Q = ker K ∗ ⊗ coker K .

This implies that

Qbw

Qb′w
(ν(α)) = Qbw

Qb′w
(ν(α)).

��
Example 3.11 Consider the cycle a in Fig. 5 given by the red horizontal path. We
write it as the concatenation of the two wedgesW1 andW2 represented by (w1, δ) and
(w1, γ ) respectively. From Table (11), we know that in the basis x1 = zw, x2 = w,
the point ν(δ) is given by x1 = 1

Cδ
, x2 = 0. Using (29), and making the substitution

z = x1
x2

, w = x2, we get

rW1 = −−1 · w−1 · Vb2w
−1 · z · Vb1w

(ν(δ))

= − 1

zw

q − w

p−1 − z−1 (ν(δ))

= −(q − x2)

x1 p−1 − x2

(

1

Cδ

, 0

)

= −pqCδ.

Similarly, from table (11) we know that in the basis x1 = z
w

, x2 = w, the point ν(γ ) is
given by x1 = 1

Cγ
, x2 = 0. Using (29), andmaking the substitution z = x1x2, w = x2,

we get

rW2 = − 1 · 1 · Vb1w
−1 · w−1 · Vb2w

(ν(γ ))

= w
p−1 − z−1

q − w
(ν(γ ))

123



The Inverse Spectral Map for Dimers Page 21 of 51 24

= x2
p−1 − 1

x1x2

q − x2

(

1

Cγ

, 0

)

= −Cγ

q
.

Therefore, [ω]([a]) = pCγCδ , and using (10) and (17), we have

κ∗
�,w[ω]([a]) =

(

1

AX1X2

)

·
(

− AX1X2X3

B

)

·
(

− AB

X3

)

= A.

4 Examples

In this section, we work out two detailed examples.

4.1 Primitive Genus 2 Example

Consider the hexagonal graph � with Newton polygon N and normal fan � as shown
in Fig. 7. We label the vertices of � as in Fig. 8. We label the zig-zag paths by α, β, γ ,
and denote the ray of � dual to τ ∈ {α, β, γ } by στ .

We can take Xi = [wt]([∂ fi ]), i = 1, . . . , 4, and A = [wt]([a]), B = [wt]([b])
as coordinates on H1(�,C) (see Fig. 8).

The Casimirs are

Cα = − B2X1X2X4

A
, Cβ = − X3

AB3X2
1X4

, Cγ = A2BX1

X2X3
. (33)

[γ]

[α]
[β]

N

σβ
σα

σγ

Σ

Fig. 7 A hexagonal graph, its Newton polygon N and normal fan �, with zig-zag paths and rays labeled
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b1

w = w1

b2w2
w3

w4
b3 w5

b4 b5

1
X2

X3

1
ABX1zw

Az

X1X4Bw Bw

b

a

f1 f2 f3 f4

f5

Fig. 8 Labeling of the vertices and faces of �, a cocycle representing [wt] and φ, where Xi =
[wt]([∂ fi ]), A = [wt]([a]), B = [wt](b), and a and b are the red and green cycles respectively. The
Kasteleyn sign ε is 1 for all edges. If no weight or φ is indicated for an edge, it means that it is 1

The Kasteleyn matrix is

K =

b1 b2 b3 b4 b5
⎛

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎠

1 0 1 0 Az w1
1
X2

X3 0 1 0 w2

0 1 1
ABX1zw

0 1 w3

X1X4Bw 0 1 1 0 w4
0 Bw 0 1 1 w5

Let P(z, w) = det K and C = {P(z, w) = 0}. The spectral transform is κ�,w =
(C, S, ν) ∈ SN , where since the interior of N contains two lattice points, the divisor
S = (p1, q1) + (p2, q2) is a sum of two points, where

p1 = −
√

(−BX1X2X3X4 − BX1X2X4 − B)2 − 4B2X1X2X4 + BX1X2X3X4 − BX1X2X4 + B

2ABX1
,

q1 = −
√

(−BX1X2X3X4 − BX1X2X4 − B)2 − 4B2X1X2X4 + BX1X2X3X4 + BX1X2X4 + B

2B2X1X2X4
,

p2 = −−
√

(−BX1X2X3X4 − BX1X2X4 − B)2 − 4B2X1X2X4 + BX1X2X3X4 − BX1X2X4 + B

2ABX1
,

q2 =
√

(−BX1X2X3X4 − BX1X2X4 − B)2 − 4B2X1X2X4 + BX1X2X3X4 + BX1X2X4 + B

2B2X1X2X4
.

(34)
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The points at infinity are given by the following table:

Zig-zag path Homology class Basisx1, x2 Point at infinity

α (−1, 2) (−1, 2), (0,−1) x1 = 1
Cα

, x2 = 0

β (−1,−3) (−1,−3), (0,−1) x1 = 1
Cβ

, x2 = 0

γ (2, 1) (2, 1), (−1, 0) x1 = 1
Cγ

, x2 = 0

(35)

The discrete Abel map D is given by

D(w) = 0, D(b1) = Dβ + Dγ , D(b2) = −Dα + 2Dβ + Dγ ,

D(b3) = Dα + Dβ, D(b4) = 2Dβ, D(b5) = −Dα + 3Dβ,

and DN = 2Dα + 2Dβ + Dγ . Since D(w) = 0 and every black vertex b is contained
in every zig-zag path, we have

Ybw = 2Dα + 2Dβ + Dγ + D(b) − Dα − Dβ − Dγ

= D(b) + Dα + Dβ.

Using this, we compute

Yb1w = Dα + 2Dβ + Dγ , Yb2w = 3Dβ + Dγ , Yb3w = 2Dα + 2Dβ,

Yb4w = Dα + 3Dβ, Yb5w = 4Dβ.

The small polygons are shown in Fig. 9. Since the Newton polygon N is primitive,
we are in the setting of Remark 3.5. Every zig-zag path contains every black vertex,
so the expression (27) is 0. Therefore, there are no equations of type 2 in the linear
system Vbw for any black vertex b. Since g = 2, we have two equations of type 1
for every black vertex b. Moreover, we note that each of the small polygons in Fig. 9
contains exactly three lattice points, so by Remark 3.6, we get

Vb1w =
∣

∣

∣

∣

∣

∣

1 w z−1w−1

1 q1 p−1
1 q−1

1
1 q2 p−1

2 q−1
2

∣

∣

∣

∣

∣

∣

, Vb2w =
∣

∣

∣

∣

∣

∣

1 z−1 z−1w−1

1 p−1
1 p−1

1 q−1
1

1 p−1
2 p−1

2 q−1
2

∣

∣

∣

∣

∣

∣

, Vb3w =
∣

∣

∣

∣

∣

∣

1 w w2

1 q1 q21
1 q2 q22

∣

∣

∣

∣

∣

∣

,

Vb4w =
∣

∣

∣

∣

∣

∣

1 w z−1

1 q1 p−1
1

1 q2 p−1
2

∣

∣

∣

∣

∣

∣

, Vb5w =
∣

∣

∣

∣

∣

∣

1 z−1w z−1

1 p−1
1 q1 p−1

1
1 p−1

2 q2 p−1
2

∣

∣

∣

∣

∣

∣

.
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Nb1,w Nb2,w

Nb3,w

Nb4,w Nb5,w

Fig. 9 The small polygons for the hexagonal graph

The boundary of the face f2 is the concatenation of the three wedges W1,W2 and W3
represented by (w2, α), (w, β) and (w4, γ ) respectively. We compute

rW1 = −Vb1w2

Vb4w2

(ν(α)) = −

∣

∣

∣

∣

∣

∣

1 w z−1w−1

1 q1 p−1
1 q−1

1
1 q2 p−1

2 q−1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 w z−1

1 q1 p−1
1

1 q2 p−1
2

∣

∣

∣

∣

∣

∣

(ν(α)).

To evaluate at ν(α), as explained in Remark 3.8, we extend [α] = (−1, 2) to the basis
(x1, x2) of M, where x1 = [α] = (−1, 2) and x2 = (0,−1). Then ν(α) is given by
x1 = 1

Cα
, x2 = 0. Expressing z, w in the basis (x1, x2) as z = 1

x1x22
, w = 1

x2
, we get

rW1 = −

∣

∣

∣

∣

∣

∣

1 1
x2

x1x32
1 q1 p−1

1 q−1
1

1 q2 p−1
2 q−1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1
x2

x1x22
1 q1 p−1

1
1 q2 p−1

2

∣

∣

∣

∣

∣

∣

(

1

Cα

, 0

)

= −

∣

∣

∣

∣

∣

∣

x2 1 x1x42
1 q1 p−1

1 q−1
1

1 q2 p−1
2 q−1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x2 1 x1x23

1 q1 p−1
1

1 q2 p−1
2

∣

∣

∣

∣

∣

∣

(

1

Cα

, 0

)

= −

∣

∣

∣

∣

∣

∣

0 1 0
1 q1 p−1

1 q−1
1

1 q2 p−1
2 q−1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 0
1 q1 p−1

1
1 q2 p−1

2

∣

∣

∣

∣

∣

∣

= − p1q1 − p2q2
q1q2(p1 − p2)

,
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where we factored out x2 from the numerator and denominator and then evaluated at
(x1, x2) = ( 1

Cα
, 0).

ForW2, letting (x1, x2) = ((−1,−3), (0,−1)) we have z = x32
x1

, w = 1
x2
, and ν(β)

is given by x1 = 1
Cβ

, x2 = 0. Therefore, we get

rW2 = −Vb3w
Vb1w

(ν(β)) = −

∣

∣

∣

∣

∣

∣

1 w w2

1 q1 q21
1 q2 q22

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 w z−1w−1

1 q1 p−1
1 q−1

1
1 q2 p−1

2 q−1
2

∣

∣

∣

∣

∣

∣

(ν(β)) = −

∣

∣

∣

∣

∣

∣

∣

1 1
x2

1
x22

1 q1 q21
1 q2 q22

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1
x2

x1
x22

1 q1 p−1
1 q−1

1
1 q2 p−1

2 q−1
2

∣

∣

∣

∣

∣

∣

∣

(

1

Cβ

, 0

)

= −

∣

∣

∣

∣

∣

∣

0 0 1
1 q1 q21
1 q2 q22

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 1
Cβ

1 q1 p−1
1 q−1

1
1 q2 p−1

2 q−1
2

∣

∣

∣

∣

∣

∣

∣

= −Cβ.

Finally, for W3, letting (x1, x2) = ((2, 1), (−1, 0)) we have z = 1
x2

, w = x1x22 , and

ν(γ ) is given by x1 = 1
Cγ

, x2 = 0. Therefore, we get

rW3 = −Vb4w
Vb3w

(ν(γ )) = −

∣

∣

∣

∣

∣

∣

1 w z−1

1 q1 p−1
1

1 q2 p−1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 w w2

1 q1 q21
1 q2 q22

∣

∣

∣

∣

∣

∣

(ν(γ )) = −

∣

∣

∣

∣

∣

∣

1 x1x22 x2
1 q1 p−1

1
1 q2 p−1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1x22 x21 x
4
2

1 q1 q21
1 q2 q22

∣

∣

∣

∣

∣

∣

(

1

Cγ

, 0

)

= −

∣

∣

∣

∣

∣

∣

1 0 0
1 q1 p−1

1
1 q2 p−1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0
1 q1 q21
1 q2 q22

∣

∣

∣

∣

∣

∣

= p1q1 − p2q2
p1 p2q1q2(q1 − q2)

.
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Putting everything together, we get

X2=−

∣

∣

∣

∣

∣

∣

0 1 0
1 q1 p−1

1 q−1
1

1 q2 p−1
2 q−1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 0
1 q1 p−1

1
1 q2 p−1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 1
1 q1 q21
1 q2 q22

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 1
Cβ

1 q1 p−1
1 q−1

1
1 q2 p−1

2 q−1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0
1 q1 p−1

1
1 q2 p−1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0
1 q1 q21
1 q2 q22

∣

∣

∣

∣

∣

∣

= Cβ(p1q1 − p2q2)2

p1 p2q21q
2
2 (p1 − p2)(q1 − q2)

,

with similar formulas for X1, X3, X4, A, B. It may be easily verified that these invert
the spectral transform by plugging in the formulas (33) and (34) into the right-hand
side and simplifying using computer algebra.

4.2 Non-primitve Example

Consider the square-octagon graph � with Newton polygon N and normal fan � as
shown in Fig. 10. We label the vertices of � as in Fig. 11. We label the rays of � by
σα, σβ, σγ , σδ and the two zig-zag paths dual to ray στ by {τ1, τ2}, for τ ∈ {α, β, γ, δ}.

We can take Xi := [wt]([∂ fi ]), i = 1, . . . , 7, and A := [wt]([a]), B := [wt]([b])
as coordinates on H1(�,C) (see Fig. 11). The Casimirs are

Cα1 = X1X3X7B, Cα2 = BX2X3X4X6X7

X1X5
, Cβ1 = X2

AX1X5
, Cβ2 = 1

AX7
,

Cγ1 = X5

BX1X3
, Cγ2 = X6

B
, Cδ1 = AX1

X2X6
, Cδ2 = AX1X5

X2X3X4X6X7
.

γ1α1

β1

δ1

α2γ2

β2

δ2

N

[α1] + [α2[ ]γ1] + [γ2]

[β1] + [β2]

[δ1] + [δ2]

σγσα

σβ

σδ

Σ

Fig. 10 A square-octagon graph, its Newton polygon N and normal fan �, with zig-zag paths and rays
labeled
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b1

b2

b3 b4

b5 b6

b7

b8

w

w2

1
X5

X1
X2

X6 1
Az

−1 −1

1
X3

−X7 U −1

Az

X1Bw 1
Bw

b

a

f1 f2

f3 f4

f5 f6

f7 f8

Fig. 11 Labeling of the vertices and faces of �, and a cocycle and Kasteleyn sign, where Xi =
[wt]([∂ fi ]), A = [wt]([a]), B = [wt](b) and U = X1X5

X2X3X4X6X7
. The edges with no weight indicated

have weight 1

Since the Newton polygon N has only one interior lattice point, the divisor S = (p, q)

consists of a single point. The Kasteleyn matrix is

K =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 0 Az 0 0 0 0
1 −X7 1 0 0 0 0 0
0 0 1 1 0 0 0 1

Bw

0 0 X1X5
X2X3X4X6X7

−1 0 0 1 0
0 1

X3
0 0 1 1

X5
0 0

BwX1 0 0 0 1 −1 0 0
0 0 0 0 0 X1

X2
X6 1

0 0 0 0 1
Az 0 1 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Let P(z, w) = det K and C = {P(z, w) = 0}. The spectral transform is κ�,w =
(C, S, ν) ∈ SN , where

p = − X2X4X6
(

X3X5X6X7
(

X1
2(X4 + 1) + X2X4

)+ X1X2X3
2X4X6

2X7
2 + X1X5

2
)

A(X1X5 + X2X3X4X6X7)

× 1
(

X3X4X6X7
(

X1
2X5 + X2(X5 + 1)(X6 + 1)

)+ X1X5(X6(X4 + X5 + 1) + X5 + 1)
) ,

q = X5
(−X3X4X6X7

(

X1
2 + X2X6 + X2

)− X1X5(X6 + 1)
)

BX1X3X7(X1X5(X4X6 + X6 + 1) + X2X3X4X6(X6 + 1)X7)
.
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The table below lists the points at infinity for each of the zig-zag paths:

Zig-zag path Homology class Basisx1, x2 Point at infinity

α1
(0,1) (0,1),(-1,0)

x1 = 1
Cα1

, x2 = 0

α2 x1 = 1
Cα2

, x2 = 0

β1
(-1,0) (-1,0),(0,-1)

x1 = 1
Cβ1

, x2 = 0

β2 x1 = 1
Cβ2

, x2 = 0

γ1
(0,-1) (0,-1),(1,0)

x1 = 1
Cγ1

, x2 = 0

γ2 x1 = 1
Cγ2

, x2 = 0

δ1
(1,0) (1,0),(0,1)

x1 = 1
Cδ1

, x2 = 0

δ2 x1 = 1
Cδ2

, x2 = 0

(36)

The discrete Abel map D is given by D(w) = 0 and

D(b1) = 1

2
Dγ + 1

2
Dδ, D(b2) = 1

2
Dβ + 1

2
Dγ ,

D(b3) = 1

2
(−Dα + Dβ + Dγ + Dδ), D(b4) = −Dα + 1

2
Dβ + Dγ + 1

2
Dδ

D(b5) = Dβ, D(b6) = −1

2
Dα + Dβ + 1

2
Dγ

D(b7) = −1

2
Dα + 1

2
Dβ + Dγ , D(b8) = −1

2
Dα + Dβ + Dγ − 1

2
Dδ.

We have DN = Dα + Dβ + Dγ + Dδ , using which we compute

Yb1w = 1

2
Dα + Dβ + Dγ + Dδ, Yb2w = 1

2
Dα + Dβ + Dγ + Dδ,

Yb3w = Dβ + 3

2
Dγ + Dδ, Yb4w = Dβ + 3

2
Dγ + Dδ,

Yb5w = 1

2
Dα + 3

2
Dβ + Dγ + 1

2
Dδ, Yb6w = 1

2
Dα + 3

2
Dβ + Dγ + 1

2
Dδ,

Yb7w = 3

2
Dβ + 3

2
Dγ + 1

2
Dδ, Yb8w = 3

2
Dβ + 3

2
Dγ + 1

2
Dδ.

The corresponding small polygons are shown in Fig. 12. Therefore, we have

Vb1w = a(−1,−1)z
−1w−1+ a(0,−1)w

−1+ a(1,−1)zw
−1+ a(−1,0)z

−1+ a(0,0) + a(1,0)z,
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Nb1,w Nb2,w Nb3,w Nb4,w

Nb5,w Nb6,w Nb7,w Nb8,w

Fig. 12 The small polygons for the square-octagon graph

where the am satisfy the system of equations Vb1w that we now determine. We have
the equation of type 1:

a(−1,−1) p
−1q−1 + a(0,−1)q

−1 + a(1,−1) pq
−1 + a(−1,0) p

−1 + a(0,0) + a(1,0) p = 0.

To find the zig-zag paths that contribute equations of type 2, we compute (25). We
have

−DN
∣

∣C = ν(α1) + ν(α2) + ν(β1) + ν(β2) + ν(γ1) + ν(γ2) + ν(δ1) + ν(δ2),

d(w) − d(b1) = −ν(γ1) − ν(δ2),
⌊

Yb1w
⌋ ∣

∣C = ν(β1) + ν(β2) + ν(γ1) + ν(γ2) + ν(δ1) + ν(δ2),

using which we get that (25) is equal to ν(β1) + ν(β2) + ν(γ2) + ν(δ1), so we have
four equations of type 2, one for each of the zig-zag paths β1, β2, γ2, δ1.

Therefore, we have 5 equations and 6 variables, so we are in the setting of Remark
3.6 where Vb1w = detVχ

b1w. Computing the equations of type 2, we get

Vb1w =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z−1w−1 w−1 zw−1 z−1 1 z
p−1q−1 q−1 pq−1 p−1 1 p

1 Cβ1 0 0 0 0
1 Cβ2 0 0 0 0
Cγ2 0 1 0 C−1

γ2
0

0 0 0 0 Cδ1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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In like fashion, for Vb2w, we have an equation of type 1 and four equations of type 2
for the zig-zag paths β1, γ2, δ1, δ2. We compute

Vb2w =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z−1w w z−1 1 z−1w−1 w−1

p−1q q p−1 1 p−1q−1 q−1

1 Cβ1 0 0 0 0
Cγ2 0 1 0 C−1

γ2
0

0 0 0 0 Cδ1 1
0 0 0 0 Cδ2 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

We write the boundary of the face f7 as the concatenation of the two wedges W1 and
W2 represented by (w, γ1) and (b2, α1) respectively. We have

rW1 = Vb2w

Vb1w
(ν(γ1)) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Cγ1 0 1 0 C−1
γ1

0
p−1q q p−1 1 p−1q−1 q−1

1 Cβ1 0 0 0 0
Cγ2 0 1 0 C−1

γ2
0

0 0 0 0 Cδ1 1
0 0 0 0 Cδ2 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Cγ1 0 1 0 C−1
γ1

0
p−1q−1 q−1 pq−1 p−1 1 p

1 Cβ1 0 0 0 0
1 Cβ2 0 0 0 0
Cγ2 0 1 0 C−1

γ2
0

0 0 0 0 Cδ1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where to evaluate at ν(γ1), we use the basis x1, x2 from table (36). Similarly, we
compute

rW2 = −Vb1w

Vb2w
(ν(α1)) = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 C−1
α1

0 1 0 Cα1

p−1q−1 q−1 pq−1 p−1 1 p
1 Cβ1 0 0 0 0
1 Cβ2 0 0 0 0
Cγ2 0 1 0 C−1

γ2
0

0 0 0 0 Cδ1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 C−1
α1

0 1 0 Cα1

p−1q q p−1 1 p−1q−1 q−1

1 Cβ1 0 0 0 0
Cγ2 0 1 0 C−1

γ2
0

0 0 0 0 Cδ1 1
0 0 0 0 Cδ2 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

It can be verified using computer algebra that X7 = rW1rW2 .
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5 The Small Polygons

In the remaining sections, we prove the results stated in Sect. 3. In order to invert the
spectral transform, we want to first reconstruct the Qbw, the entries of the w-column
of the adjugate matrix, from the spectral data. To do this, we need to first find the
Newton polygon of the Qbw, which we call the small polygons and denote by Nbw.
Explicitly, Nbw is the convex hull of homology classes of dimer covers of � − {b,w}.
However, it appears difficult to describe Nbw in a direct combinatorial way. Instead,
we will re-express the problem in terms of toric geometry. The key to doing this is an
extension of the Kasteleyn matrix, which is a map of trivial sheaves on T, to a map of
locally free sheaves on a compactification of T. We are led to consider a stacky toric
surfaceXN instead of the toric surface XN , because such an extension does not exist
on XN unless the polygon has only primitive sides.

The basics of stacky toric surfaces are recalled in detail in Appendix A.3. For the
convenience of the reader we reproduce some notation.

Let � be the normal fan of N . There is a stacky fan � = (�, β) where

β : Z�(1) → M∨,

δρ �→ |Eρ |uρ,

where uρ is the primitive normal to Eρ . We identify the set of rays �(1) of the fan �

with the components Dρ of the divisor at infinity

ρ ↔ τρ = R≥0uρ.

We assign to � a smooth toric Deligne-Mumford stackXN , which contains the torus
T as a dense open subset.

We consider the stack rather than the toric surface since we construct an extension
of the Kasteleyn operator to a compactification of the torus T in Lemma 5.1. There
is no such extension on the toric surface when the Newton polygon is not simple, but
there is one on the stack.

5.1 Extension of the Kasteleyn Operator

Define for each black vertex b the line bundle

Eb := OXN

(

D(b) −
∑

ρ∈�(1)

∑

α∈Zρ :b∈α

1

|Eρ |Dρ

)

,

and for each white vertex w, the line bundle

Fw := OXN (D(w)).
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Let

E :=
⊕

b∈B
Eb, F :=

⊕

w∈W
Fw.

They are locally free sheaves of the same rank #B = #W onXN .

Proposition 5.1 The Kasteleyn operator K extends to a map of locally free sheaves
onXN :

˜K : E → F . (37)

Proof By definition,

Kwb =
∑

e∈E(�) incident to bw

wt(e)ε(e)φ(e).

We need to show that for any edge e with vertices bw, the character φ(e) is a global
section of

HomXN (Eb,Fw) ∼= OXN

(

D(w) − D(b) +
∑

ρ∈�(1)

∑

α∈Zρ :b∈α

1

|Eρ |Dρ

)

.

Let m ∈ M be such that φ(e) = χm and let D := D(w) − D(b) +
∑

ρ∈�(1)
∑

α∈Zρ :b∈α
1

|Eρ | Dρ . By Proposition A.2, χm is a global section of the line
bundle OXN (D) if and only if m ∈ PD ∩M. Using (53), this is equivalent to showing
that for every edge e = bw, we have

div φ(e) + D(w) − D(b) +
∑

ρ∈�(1)

∑

α∈Zρ :b∈α

1

|Eρ |Dρ ≥ 0,

where div φ(e) =∑ρ∈�(1)〈m, uρ〉Dρ as in (49).
Let α, β be the zig-zag paths through e, with α ∈ Zσ , β ∈ Zρ . Then by Lemma

3.2, we have

D(w) − D(b) = − 1

|Eσ |Dσ − 1

|Eρ |Dρ − div φ(e).

This implies

div φ(e) + D(w) − D(b) +
∑

τ∈�(1)

∑

γ∈Zτ :b∈γ

1

|Eτ |Dτ =
∑

τ∈�(1)

∑

γ∈Zτ :b∈γ
γ �=α,β

1

|Eτ |Dτ ≥ 0.

(38)

��
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The small polygon Nbw is by definition the Newton polygon of Qbw. By Propo-
sition A.2, this is equivalent to saying that Qbw is a global section of a line bundle
OXN (Ybw), where Ybw is the divisor associated to Nbw by the correspondence (53).
Now that we have shown that K is a global section of H��XN (E,F), we can take
exterior powers to find which line bundle OXN (Ybw) the minor Qbw of K is a global
section of.

Taking the determinant of the map (37), we see that det ˜K is a global section of the
line bundle

HomXN

(
∧

b∈B
Eb,

∧

w∈W
Fw

) ∼= OXN

(
∑

w∈W
D(w) −

∑

b∈B

(

D(b)

−
∑

ρ∈�(1)

∑

α∈Zρ :b∈α

1

|Eρ |Dρ

))

. (39)

Lemma 5.2 Let DN be the divisor associated to N by the correspondence (53) between
divisors and polygons. Then one has

∑

w∈W
D(w) −

∑

b∈B

(

D(b) −
∑

ρ∈�(1)

∑

α∈Zρ :b∈α

1

|Eρ |Dρ

)

= DN . (40)

Therefore,

det ˜K ∈ H0(XN ,OXN (DN )).

Proof Let aρ be the coefficient of Dρ in DN . Let (i1, i2) be a vertex of P contained
in Eρ and let m be the associated extremal dimer cover. We pair up black and white
vertices in the sum according to m:

∑

e=bw∈m

(

D(w) − D(b) +
∑

ρ∈�(1)

∑

α∈Zρ :b∈α

1

|Eρ |Dρ

)

.

Now we observe that if e is not contained in any zig-zag path in Zρ , then Dρ does not
appear in the summand, and if e is contained in a zig-zag path associated to Eρ , then
Dρ appears twice but with opposite signs, modulo contributions from intersections
of edges with γz, γw. Therefore, there is no net contribution to the coefficient of Dρ

except for the intersections of edges in m with γz, γw, which is the same as in

−
∑

e∈m
div φ(e) = − div zi1wi2 ,

which is aρ . Comparing with (39), we see that (40) implies the second statement. ��
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Now we consider the codimension 1 exterior power, where we remove {b,w}. Let
˜Q be the adjugate matrix of ˜K . Set

Ybw := DN − D(w) + D(b) −
∑

ρ∈�(1)

∑

α∈Zρ :b∈α

1

|Eρ |Dρ.

Corollary 5.3 ˜Qbw ∈ H0(XN ,OXN (Ybw)).

We therefore arrive at the definition of the small polygon Nbw given in Definition 3.3
by the correspondence (53).

5.2 Points at Infinity

In this section, we prove that the points at infinity of C are as described in Sect. 2.7.
We use the notations U� ⊂ C

�(1) and the standard coordinates (zρ) on C
�(1) from

Appendix A.3. The toric variety XN is the quotient U�/H , where H is the kernel of

the map (C×)�(1) → T sending (zρ)ρ∈�(1) to (
∏

ρ z
〈(1,0),uρ 〉
ρ ,

∏

ρ z
〈(0,1),uρ 〉
ρ ). There

is a canonical map π : U� → XN given by sending (zρ) to H · (z|Eρ |
ρ ) which induces

the coarse moduli space map π : XN → XN . The spectral curve C is cut out by the
section P = P(z, w) ofOXN (DN ). The pullback π∗P defines a section ofOXN (DN )

which is a G-invariant section ofOU� , so it vanishes on a G-invariant subvariety CU� .
Each point at infinity of C corresponds to a G-invariant set of points at infinity of CU� ,
so we will determine the points at infinity of C from the points at infinity of CU� . By
Lemma 5.2, π∗P = det ˜K so the points at infinity of CU� are obtained by setting
zρ = det ˜K = 0 for ρ ∈ �(1).

From (38) and Proposition A.2, for e = bw, we get that φ(e) corresponds to the
G-invariant section of OU� given by

φ(e) =
∏

τ∈�(1)

∏

γ∈Zτ :b∈γ
γ �=α,β

zτ . (41)

The divisor Dρ in XN corresponds to {zρ = 0} ⊂ U� . φ(e) vanishes on {zρ = 0}
precisely when there is a zig-zag path α ∈ Zρ such that b is contained in α but w is not
contained in α. This implies that when restricted to {zρ = 0}, after reordering the black
and white vertices, the extended Kasteleyn operator ˜K takes a block-upper-triangular
form

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

˜K
∣

∣

α1
∗

˜K
∣

∣

α2
∗

. . .
...

˜K
∣

∣

αn
∗

˜K
∣

∣

�−{α1,...,αn}

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
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where Zρ = {α1, . . . , αn}, ˜K
∣

∣

αi
is the restriction of ˜K to the black and white vertices

in αi , and the ∗’s denote some possibly nonzero blocks whereas any block that has not
been indicated is zero. In particular, the nonzero blocks ∗ are only in the last column
(in these blocks, b is not in α but w is in α). Note that the zig-zag paths α1, . . . , αn

do note share any vertices because of minimiality since otherwise we would have a
parallel bigon, so the blocks ˜K

∣

∣

α1
, . . . , ˜K

∣

∣

αn
do not overlap.

If α ∈ Zρ is b1 → w1 → b2 → · · · → wd → b1, the determinant of the block
˜K
∣

∣

α
is

det ˜K
∣

∣

α
= det

⎛

⎜

⎜

⎜

⎜

⎜

⎝

˜Kw1b1
˜Kwdb1

˜Kw1b2
˜Kw2b2
˜Kw2b3

. . .
. . .

˜Kwd−1bd
˜Kwdbd

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=
d
∏

i=1

˜Kwibi − (−1)d
d
∏

i=1

˜Kwi−1bi

= −
d
∏

i=1

(wt(biwi−1)ε(biwi−1)φ(biwi ))

(

d
∏

i=1

φ(biwi−1)

φ(biwi )
− Cα

)

,

where we have used the definition of the Kasteleyn matrix (see (1), (3). Plugging in
(41) and using the fact that α intersects a zig-zag path β ∈ Zτ 〈[α], uτ 〉 times, we get

d
∏

i=1

φ(biwi−1)

φ(biwi )
=

∏

τ∈�(1)

z−|Eτ |〈[α],uτ 〉
τ .

Therefore, the points at infinity of CU� are given by setting zρ = 0 and
∏

τ∈�(1) z
−|Eτ |〈[α],uτ 〉
τ = Cα . The point at infinity ofC is the point obtained by applying

π to any of these points. From the definition of π , we get that
∏

τ∈�(1) z
−|Eτ |〈[α],uτ 〉
τ =

π∗χ−[α], so the point at infinity of C is given by

χ−[α] = Cα. (42)

6 Behaviour of the Laurent PolynomialQbw(z,w) at infinity

We proved in Corollary 5.3 that the Laurent polynomial Qbw(z, w) lies in the finite
dimensional vector space H0(XN ,OXN (Ybw)). We need some additional constraints
on Qbw(z, w) to determine it. Corollary 6.3 provides g linear equations for the coef-
ficients of Qbw(z, w) coming from the vanishing of Qbw(z, w) at the g points of the
divisor Sw. We obtain additional equations from the behaviour of Qbw(z, w) at the
points at infinity of the spectral curve, which we study in this section.
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Recall that XN is the toric surface associated to N compactifying T . The restriction
of the Kasteleyn operator to the open spectral curve C◦ is a map of trivial sheaves:

K
∣

∣C◦ :
⊕

b∈B
OC◦ −→

⊕

w∈W
OC◦ .

Recall the correspondence between divisors D and invertible sheaves with rational
sections (L, s): given a divisor D, the corresponding invertible sheaf L = OC(D) is
defined on an open U by

H0(U ,OC(D)) := {t ∈ K (C)× : (div t + D)
∣

∣

U ≥ 0} ∪ {0},

with the obvious restrictionmaps,where K (C)× denotes the nonzero rational functions
on C. The rational section s corresponds to the rational function 1. On the other hand,
given (L, s), we obtain D as the divisor div s. Moreover, there is a correspondence
between rational functions t on C and rational sections t of L given by t �→ t := st .
In particular,

div t = div t + div s = div t + D, (43)

and so t is regular if and only if div t + D ≥ 0.
A similar proof to Proposition 5.1 shows that the Kasteleyn matrix K , which is a

matrix of rational functions on C, defines a regular map K of locally free sheaves on
C extending K

∣

∣C◦ , providing an exact sequence

0 → M →
⊕

b∈B
OC
(

d(b) −
∑

α∈Z :b∈α

ν(α)
)

K−→
⊕

w∈W
OC(d(w)) → L → 0, (44)

where M and L are the kernel and cokernel of the map K respectively. When we say
K is regular, we mean that each entry Kwb is a regular section of the corresponding
H�� line bundle

HomOC

(

OC(d(b) −
∑

α∈Z :b∈α

ν(α)),OC(d(w))
)

.

For generic dimer weights, � is smooth, and M and L are line bundles (so Q has
rank 1). Let sb and sw be sections of

M∨ ⊗ OC
(

d(b) −
∑

α∈Z :b∈α

ν(α)
)

and L ⊗ OC(d(w))∨

respectively, given by the b-entry of the kernel map and w-entry of the cokernel map
respectively. Since Q has rank 1, we have Qbw = sbsw. Denote by Sb and Sw the
effective divisors on the open spectral curve C◦ given by vanishing of the b-row and
w-column of Q respectively, or equivalently, the vanishing of sb and sw respectively.
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Lemma 6.1

divC sb = Sb +
∑

α∈Z :b/∈α

ν(α),

divC sw = Sw,

Proof By the definition, (divC sb)
∣

∣C◦ = Sb and (divC sw)
∣

∣C◦ = Sw, so it only remains
to find their orders of vanishing at infinity.

Let U ⊂ C be a neighbourhood of ν(α) that does not contain any other point at
infinity. Let u be a local parameter in U that vanishes to order 1 at ν(α) and nowhere
else. When restricted to U , each of the line bundles in the source and target of K in
(44) is of the form OU (kν(α)) for some k ∈ Z. We trivialize OU (kν(α)) as follows:

OU (kν(α))
∼=−→ OU

f �→ uk f .

Let us order the black and white vertices so that the vertices on α come first. Then
in U , we have

K =
(

K1 B
uA K2

)

+ O(u),

where K1, K2 are the restrictions of K to α and � − α respectively. Since corank
K = 1 and since we know corank K1 > 0 from the computation of the determinant
in Sect. 5.2, we have corank K1 = 1 and that K2 is invertible. Let v ∈ ker K1. Then,

ker K = (v,−uK−1
2 Av) + O(u).

If any entry in v or K−1
2 Av is 0, then it means that some sb is identically 0. Let Q

denote the adjugate matrix of K . Since Q has rank 1, we have Qbw = sbsw = 0, so
we will have Qbw = 0 for all w ∈ W . On the other hand, Qbw is the signed partition
function for dimer covers of � \ {b,w}, so if we choose w such that bw is an edge of
� used in a dimer cover, then Qbw �= 0 for generic dimer weights, a contradiction.
Therefore, the entries of ker K are nonzero when u �= 0, so sb has a simple zero at
ν(α) for all b /∈ α and has no zeroes or poles for b ∈ α.

Similarly, let v′ ∈ ker K ∗
1 . We have

ker K
∗ = (v′,−(K ∗

2 )−1Bv′) + O(u).

For generic dimer weights, none of the entries of (K ∗
2 )−1Bv′ can vanish, so sw has no

zeroes or poles at ν(α). ��
Corollary 6.2 divC Qbw = Sb + Sw − DN

∣

∣C + d(w) − d(b) +∑α∈Z ν(α).
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Proof Let Q denote the adjugate matrix of K . Since Q has rank 1, we have Qbw =
sbsw, so that

divC Qbw = Sb + Sw +
∑

α∈Z :b/∈α

ν(α).

A computation similar to Corollary 5.3 shows that

Qbw ∈ H0(C,OC(−DN
∣

∣C + d(w) − d(b) +
∑

α∈Z :b∈α

ν(α))).

Qbw is the rational function corresponding to the rational section Qbw. Therefore,
using (43), we have

divC Qbw = divC Qbw − DN
∣

∣C + d(w) − d(b) +
∑

α∈Z :b∈α

ν(α)

= Sb + Sw − DN
∣

∣C + d(w) − d(b) +
∑

α∈Z
ν(α).

��

Corollary 6.3 We have for all b ∈ B,w ∈ W, deg Sb = deg Sw = g, where g is the
genus of C.

Proof Let ω∗ denote the canonical divisor of ∗. We have ωXN = −∑ρ∈�(1) Dρ ([7,
Theorem 8.2.3]).By the adjunction formula, we get ωC = DN

∣

∣C −∑α∈Z ν(α). Since
Qbw is a rational function on C, we have deg divCQbw = 0. Since deg(d(w)−d(b)) =
−2 anddegωC = 2g−2,weget deg(Sb+Sw) = 2g. By symmetry under interchanging
B and W , we get deg Sb = deg Sw = g. ��

Recall that the number g is also equal to the number of interior lattice points in N for
generic C ∈ |DN |.
Proposition 6.4 The line bundle L is isomorphic to OC(Sw + d(w)) for any w ∈ W.
It has degree g − 1.

Proof By Lemma 6.1, sw is a section of L ⊗ OC(d(w))∨ with divisor Sw. Therefore,
we must have

L ⊗ OC(d(w))∨ ∼= OC (Sw) ,

which implies L ∼= OC(Sw + d(w)). Since deg Sw = g and deg d(w) = −1, we get
degL = g − 1. ��
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7 Equations for the Laurent PolynomialQbw

Since Qbw has Newton polygon Nbw, we have

Qbw =
∑

m∈Nbw∩M
amχm,

for some am ∈ C. We know that Qbw vanishes on Sw, which gives g linear equations
among the (am)m∈Nbw∩M. However these g linear equations are not usually sufficient
to determine Qbw, so we need to find some additional equations. These additional
equations will come from the vanishing of Qbw at the points at infinity.

7.1 Additional Linear Equations forQbw

The fact that the Newton polygon of Qbw is the small polygon Nbw imposes certain
inequalities on the order of vanishing of Qbw at points at infinity of C. Corollary 6.2
imposes additional constraints that are linear equations in the coefficients of Qbw.
Inverting this linear system gives (am)m∈Nbw∩M and therefore Qbw.

We now give the precise statement. For aQ-divisor D =∑ρ∈�(1) bρDρ , we define
a (Z-) divisor �D� := ∑ρ∈�(1)

⌊

bρ

⌋

Dρ , where �x� is the largest integer n such that
n ≤ x . It is the pushforward of D by the canonical projection XN → XN .

Proposition 7.1 The extra linear equations for (am)m∈Nbw∩M from vanishing of Qbw
at points at infinity correspond to the points in

− DN
∣

∣C + d(w) − d(b) +
∑

α∈Z
ν(α) + �Ybw� ∣∣C . (45)

Proof A generic Laurent polynomial F of the form
∑

m∈Nbw∩M amχm has order of
vanishing

divC F
∣

∣C ≥ −�Ybw� ∣∣C
at the points at infinity of C. From Corollary 6.2, we have that divC Qbw = Sb + Sw −
DN
∣

∣C + d(w) − d(b) +∑α∈Z ν(α). The discrepancy provides the extra equations. ��
Now we describe these extra linear equations explicitly. Suppose α ∈ Zρ is a zig-

zag path that contributes a linear equation. We extend [α] to a basis ([α] = x1, x2) of
M such that 〈x2, uρ〉 = 1, so that for any m ∈ M, we can write

χm = xbm1 xcm2 , bm, cm ∈ Z.

Let Nρ
bw be the set of lattice points in Nbw closest to the edge Eρ of N i.e., the set of

points in Nbw that minimize the functional 〈∗, uρ〉.
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Proposition 7.2 Suppose Qbw =∑m∈Nbw∩M amχm and suppose α ∈ Zρ is a zig-zag
path that contributes a linear equation. Then, the linear equation given by α is:

∑

m∈Nρ
bw∩M

amC
−bm
α = 0.

Proof The affine open variety in XN corresponding to the cone ρ is

Uρ = SpecC[x±1
1 , x2] ∼= C

× × C,

and Dρ ∩Uρ is defined by x2 = 0.
A generic curve C meets Dρ transversely at ν(α), and therefore we may take x2 as

a uniformizer of the local ring OC,ν(α) at ν(α). For each m ∈ Nρ
bw ∩ M, we have

χm = xbm1 x p
2 , bγ , p ∈ Z,

where p is the same for all of them, and is the coefficient of ν(α) in −[Ebw]∣∣C . Then
using x−1

1 = Cα at ν(α), we have

Qbw =
⎛

⎜

⎝

∑

m∈Nρ
bw∩M

amC
−bm
α

⎞

⎟

⎠
x p
2 + O(x p+1

2 ). (46)

Since α contributes a linear equation, (46) must vanish at order x p
2 , so

∑

m∈Nρ
bw∩M amC

−bm
α = 0. ��

7.2 The System of Linear EquationsVbw

Recall from Sect. 3 the system of linear equations Vbw. These are linear equations in
the variables (am)m∈Nbw∩M. Recall also that the matrix Vbw is defined such that these
equations are given by

Vbw(am) = 0.

It is not necessarily a square matrix. However, we have:

Proposition 7.3 For generic spectral data, Qbw is the unique solution of the linear
system of equations Vbw modulo scaling.

Remark 7.4 1. While the definition of Vbw makes sense for all w ∈ W , Proposition
7.3 only holds when w = w since (pi , qi )

g
i=1 depends on w.

2. For generic spectral data, the equations (24) are linearly independent, but the
equations (26) may not be.
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The rest of this section is devoted to the proof of Proposition 7.3. Consider following
the exact sequence on XN , obtained by tensoring the closed embedding exact sequence
of i : C ↪→ XN by OXN (�Ybw�).

0 → OXN (�Ybw� − DN ) → OXN (�Ybw�) → i∗OC(�Ybw� ∣∣C) → 0.

The following is a portion of the long exact sequence of cohomology.

0 → H0(XN , �Ybw� − DN ) → H0(XN , �Ybw�) → H0(C, �Ybw� ∣∣C). (47)

We need the following technical lemma.

Lemma 7.5 The restriction map H0(XN , �Ybw�) → H0(C, �Ybw� ∣∣C) is injective.

Proof If χm ∈ H0(XN , �Ybw� − DN ), then divχm + �Ybw� − DN ≥ 0. This implies
that

divχm + Ybw − DN =
∑

ρ∈�(1)

∑

α∈Zρ

〈m, uρ〉 Dρ

|Eρ | − D(w) + D(b)

−
∑

ρ∈�(1)

∑

α∈Zρ :b∈α

1

|Eρ |Dρ ≥ 0. (48)

Let γ be a cycle in Twith homology classm. The total number of signed intersections
of γ with all zig-zag paths is zero. This number is the sum of the coefficients of
∑

ρ∈�(1)
∑

α∈Zρ
〈m, uρ〉 Dρ

|Eρ | . Let w
′ be any white vertex adjacent to b. Then we have

−D(w)+D(b) −
∑

ρ∈�(1)

∑

α∈Zρ :b∈α

1

|Eρ |Dρ = (D(w′)−D(w)) −
∑

ρ∈�(1)

∑

α∈Zρ :b∈α

bw′ /∈α

1

|Eρ |Dρ.

The sum of the coefficients of D(w′) − D(w) is the signed number of intersections
with zig-zag paths of any path in R fromw to w′, which is also 0. Since the coefficients
of the last term −∑ρ∈�(1)

∑

α∈Zρ :b∈α

bw′ /∈α

1
|Eρ | Dρ are strictly negative, the sum in (48)

cannot be non-negative. Therefore, H0(XN , �Ybw� − DN ) = 0, which by (47) means
that the map H0(XN , �Ybw�) → H0(C, �Ybw� ∣∣C) is injective. ��
Proof of Proposition 7.3 1. Existence: By Theorem 7.3 of [13], the map κ�,w is dom-

inant. So a generic spectral data is in the image of κ�,w. For such a spectral data,
Qbw satisfies:

(a) The system of equations (24) because, by definition of the spectral transform,
Qbw vanishes at the points of the divisor S =∑g

i=1(pi , qi ).
(b) The equations (26) by Proposition 7.2.
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2. Uniqueness: Suppose Vbw is a solution of Vbw. Since Vbw has Newton polygon
Nbw, we have divC F

∣

∣C ≥ −�Ybw� ∣∣C as in the proof of Proposition 7.1. The
additional equations in Proposition 7.1 then imply that

divC Vbw ≥ S + D,

where D := −DN
∣

∣C +d(w)−d(b)+∑α∈Z ν(α) satisfies deg D = −2g. There-
fore, Vbw

∣

∣C can be identified with a section of OC(−D) vanishing at the points of
S. Let ωC denote the canonical divisor of C as in Sect. 6. By the Riemann-Roch
theorem,

h0(C,OC(−D) − h1(C,OC(−D)) = deg(−D) − g + 1 = g + 1.

By Serre duality, h1(C,OC(−D)) = h0(C, ωC(D)), which equals 0 since ωC(D)

has negative degree −2. For generic S that avoids the base locus of OC(−D), the
requirement that the section of OC(−D) corresponding to Vbw vanishes at each
of the g points of S imposes g independent conditions, and therefore determines
Vbw
∣

∣C uniquely up to multiplication by a nonzero complex number. By Lemma
7.5, Vbw is unique up to multiplication by a nonzero complex number.

��

Remark 7.6 It is easy to see using Riemann-Roch that the number of equations in
Vbw is equal to h0(C, �Ybw� ∣∣C) − 1. On the other hand, the number of variables is
h0(XN , �Ybw�). However, the map in Lemma 7.5 is not necessarily an isomorphism
(there may be sections on the curve that are not restrictions of sections on the surface),
so we only have the inequality

# equations in Vbw ≥ # variables − 1.
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A Toric Geometry

In A.1 and A.2, we give a brief background on toric varieties; further details can be
found in the books [12] and [7].

123



The Inverse Spectral Map for Dimers Page 43 of 51 24

A.1 Toric Varieties

A toric variety X overC is an algebraic variety containing the complex algebraic torus
T ∼= (C×)n as a Zariski open subset, such that the action of T on itself extends to an
action of T on X .

Let M be a lattice, and let M∨ := HomZ(M,Z) denote the dual lattice. Let T :=
M∨⊗C

× = Hom(M,C×) be the complex algebraic toruswith the lattice of characters
M. We denote by χm : T → C

× the character associated to m ∈ M. Let 〈∗, ∗〉 be the
pairing betweenMandM∨. In our caseM = H1(T,Z)∼= Z

2, soM∨ = H1(T,Z)∼= Z
2

and T = H1(T,C×)∼= (C×)2. We have χ(i, j)(z, w) = ziw j .
A fan � is a collection of cones in the real vector space M∨

R
:= M∨ ⊗Z R, which

is just the Lie algebra of the real torus T(R), such that

1. Each face of a cone σ ∈ � is also in �.
2. The intersection of two cones σ1, σ2 ∈ � is a face of each of them.

Each cone σ ∈ � gives rise to an affine toric variety

Uσ = SpecC[Sσ ],

where Sσ = σ∨ ∩ M is a semigroup, σ∨ is the cone dual to σ , and C[Sσ ] is its
semigroup algebra:

C[Sσ ] =
⎧

⎨

⎩

∑

m∈Sσ

cmχm : cm ∈ C, cm = 0 for all but finitely many m ∈ Sσ

⎫

⎬

⎭

.

If τ ⊂ σ, then Uτ is an open subset of Uσ . Gluing the affine toric varieties Uσ1 ,Uσ2

along Uσ1∩σ2 for all cones σ1, σ2 ∈ �, we get the toric variety X� associated to �.
In particular, if σ = {0}, then Sσ = M, so C[Sσ ] = C[M] and Uσ = T. So X�

contains T.
We define the action T×Uσ −→ Uσ via the dual map of the algebras of functions:

C[Sσ ] −→ C[M] ⊗ C[Sσ ],
χm �−→ χm ⊗ χm .

When σ = {0}, this is the action of T on itself. The action of T on Uσ is compatible
with the gluing, and therefore gives an action of T on X� .

We denote by �(r) the set of r -dimensional cones of �. There is an inclusion-
reversing bijection between T-orbit closures in X� and cones in �. Under this
bijection, each ray ρ ∈ �(1) corresponds to a T-invariant divisor Dρ . Let uρ be
the primitive vector generating ρ. Then, the (Weil) divisor of the character χm is

divχm =
∑

ρ∈�(1)

〈m, uρ〉Dρ. (49)
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The following fundamental exact sequence computes the class group of Weil divisors
of X� :

0 → M → Z
�(1) → Cl(X�) → 0,

m �→ (〈m, uρ〉)ρ∈�(1). (50)

A.2 Polygons and Projective Toric Surfaces

Given a convex integral polygon N in the plane MR := M ⊗Z R, we construct the
normal fan � of N as follows:

1. �(0) = {0}.
2. For each edge Eρ of N , let uρ ∈ M∨ be the primitive inward normal vector to Eρ ,

providing an element of �(1) given by the ray spanned by uρ .
3. For each vertex v of N , we get an element of �(2) by taking the convex hull of

the two rays in �(1) associated to the two edges incident to v in N .

The normal fan � gives rise to a toric surface denoted below by XN . The orbit-
cone correspondence assigns to each edge Eρ of N a divisor Dρ

∼= P
1. These divisors

intersect according to the combinatorics of N . Their union is the divisor at infinity
XN − T.

In fact the polygon N determines a pair (XN , DN ), where DN is an ample divisor
at infinity:

DN :=
∑

ρ∈�(1)

aρDρ,

where aρ is such that the edge Eρ of N is contained in the line {m ∈ M⊗R : 〈m, uρ〉 =
−aρ}.

The linear system of hyperplane sections |DN | has the following properties:

1. H0(XN ,OXN (DN )) ∼=⊕m∈N∩M C · χm .
2. The genus of a generic curve C in |DN | is the number of interior lattice points of

N .
3. Curves in |DN | intersect the divisor Dρ with multiplicity |Eρ | (the number of

primitive vectors in Eρ).

A.3 Toric Stacks

We follow [5, Sect. 2]. Given a convex integral polygon N ⊂ MR, we define a stacky
fan � as the following data:

1. The normal fan � of N , defined above.
2. For each ray ρ ∈ �(1), the vector |Eρ |uρ generating the ray ρ.

We define a fan ˜� ⊂ R
�(1) as follows: for σ ∈ �, we define σ̃ ∈ ˜� by

σ̃ = cone(eρ : ρ ∈ σ(1)) ⊂ R
�(1),
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where {eρ} is the standard basis in ρ inR�(1), and σ(1) denotes the rays of � incident
to σ . Then ˜� is the fan generated by the cones σ̃ and their faces.

Let U� be the toric variety of the fan ˜�. It is of the form
C

�(1) − (closed codimension2subset).
Consider the following map, modifying the map (50) for polygons N with a non-

primitive side:

β : M → Z
�(1)

m �→ (|Eρ |〈m, uρ〉)ρ.

Applying the functor HomZ(∗,C×), we get a surjective map (C×)�(1) → T. Denote
by G its kernel. So there is an exact sequence

1 → G → (C×)�(1) → T → 1. (51)

So G is a subgroup of the torus (C×)�(1) of the toric variety U� . Therefore, G acts
on U� .

Explicitly, λ = (λρ) ∈ (C×)�(1) is in G if and only if

∏

ρ∈�(1)

λ
|Eρ |〈m,uρ 〉
ρ = 1 (52)

for all m ∈ M. Let z = (zρ) ∈ C
�(1) denote the standard coordinates on C

�(1). The
action of G on U� is λ · z = (λρzρ).

Definition A.1 The toric stack XN is the smooth Deligne-Mumford stack [U�/G].

A.4 Example: A Stacky P2.

Consider the polygon N given by the convex-hull of {(0, 0), (2, 0), (0, 2)}. The rays
of its normal fan � are generated by u1 = (1, 0), u2 = (0, 1), u3 = (−1,−1) with
|E1| = |E2| = |E3| = 2. The fan ˜� ⊂ R

3 is generated by the cones

σ̃1 = cone(e2, e3), σ̃2 = cone(e1, e3), σ̃3 = cone(e1, e2),

and their faces, where {ei } is the standard basis of R3. These cones define affine
varieties

U1 = SpecC[X±1
1 , X2, X3], U2 = SpecC[X1, X

±1
2 , X3],

U3 = SpecC[X1, X2, X
±1
3 ],

respectively. The face σ̃12 := σ̃1 ∩ σ̃2 = cone(e3) defines the affine variety U12 =
SpecC[X±1

1 , X±1
2 , X3], identified with U1 ∩ U2. Similarly, we define U23 and U13.
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Gluing Ui and Uj along the Ui j for all i, j , we see that the toric variety U� of ˜� is
C
3 − 0. The map M → Z

�(1) is

Z
2 → Z

3

(1, 0) �→ (2, 0,−2)

(0, 1) �→ (0, 2,−2).

The group G is the kernel of

(C×)3 → (C×)2

(t1, t2, t3) �→
(

(

t1
t3

)2

,

(

t2
t3

)2
)

.

Thus, G = {(±λ,±λ, λ) : λ ∈ C
×} and it acts on C

3 − 0 by multiplication. The
quotient [C3 − 0/G] is a stacky P

2.

A.5 Line Bundles and Divisors on Toric Stacks

A line bundle on the quotient stackXN = [U�/G] is the same thing as aG-equivariant
line bundle onU� . The Picard group ofU� is trivial, so line bundles onXN correspond
to the various G-linearizations of OU� .

Proposition A.1 (Borisov and Hua, 2009 [5, Proposition 3.3]) There is an isomor-
phism, describing the Picard group of XN via divisors Dρ:

Z
�(1)/β∗M ∼= Pic XN ,

(bρ)ρ �→ OXN

(
∑

ρ∈�(1)

bρ

|Eρ |Dρ

)

.

The line bundle OXN

(

∑

ρ∈�(1)
bρ

|Eρ | Dρ

)

is the trivial line bundle OU� = U� × C

with the G-linearization

G × (U� × C) → U� × C

λ · (z, t) �→
⎛

⎝λ · z, t
∏

ρ∈�(1)

λ
bρ
ρ

⎞

⎠ .

Let D =∑ρ∈�(1)
bρ

|Eρ | Dρ be a divisor at infinity onXN . We assign to D a polygon
PD in MR defined by the intersection of the half planes provided by the coefficients
of D:

PD :=
⋂

ρ∈�(1)

{

m ∈ MR : 〈m, uρ〉 ≥ − bρ

|Eρ |
}

. (53)
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A global section of a line bundle on XN is the same thing as a G-invariant global
section of OU� . As in the case of toric varieties, global sections of toric line bundles
are identified with integral points in the associated polygons:

Proposition A.2 (Borisov and Hua, 2009 [5, Proposition 4.1]) We have

H0(XN ,OXN (D)) ∼=
⊕

m∈PD∩M
C · χm .

The G-invariant section of OU� corresponding to χm,m ∈ PD ∩ M, is
∏

ρ∈�(1) z
aρ
ρ ,

where aρ = |Eρ |〈m, uρ〉 + bρ .

Proof We have H0(U�,OU� ) = C[zρ : ρ ∈ �(1)]. The global section∏ρ∈�(1) z
aρ
ρ

is G-invariant if and only if

∏

ρ∈�(1)

λ
bρ
ρ ·

∏

ρ∈�(1)

z
aρ
ρ =

∏

ρ∈�(1)

(zρλρ)aρ for allρ ∈ �(1),

which is equivalent to the equations
∏

ρ∈�(1) λ
bρ−aρ
ρ = 1 for all ρ ∈ �(1). By

exactness of (51), this is equivalent to the existence of m ∈ M such that aρ − bρ =
|Eρ |〈m, uρ〉 for all ρ ∈ �(1). ��

B Combinatorial Rules for the Linear System of EquationsVbw

In this appendix, we collect some combinatorial rules that facilitate the computation
of the small polygons and equations in Vbw.

B.1 Equivalent Description of the Small Polygons

Consider the lines

Lρ := {m ∈ MR : 〈m, uρ〉 = −bρ} (54)

that form the boundary of the smallNewton polygon Nbw.Wegive an alternate descrip-
tion of these lines. Recall that˜� be the biperiodic graph on the plane given by the lift
of � to the universal cover of T. The zig-zag paths in˜� for a given ρ divide the plane
into an infinite collection of stripsSρ(d) parameterized by d ∈ 1

|Eρ |Z such that

Sρ(d) ∩ V (˜�) = {v ∈ V (˜�) : [Dρ]D(v) = d},

where for a divisor D, [Dρ]D denotes the coefficient of Dρ in D. We assign to each
stripSρ(d) a line Lρ(d) in MR parallel to Eρ , using the following rule illustrated on
Fig. 13:

1. The line associated to a strip Sρ(d) contains the side Eρ if and only if either
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α1

αk

αk−1

α2

α1

αk

empty

αk

α2, . . . , αk

αk−1, αk

empty

αk

...

α1

αk

αk−1

α2

α1

αk

α1, . . . , αk

αk

αk−1, αk

α2, . . . , αk

α1, . . . , αk

αk

...

Fig. 13 The lifts of zig-zag paths α1, . . . , αk in Zρ divide the plane into strips. The side Lρ of the small
polygon Nbw and the columns of the matrix Vbw are determined by the strips containing b and w. The
black vertex b is the black dot. On the left panel, b is on a zigzag path, and on the right, it is between two
zigzag paths. Written inside each strip in blue is the subset of Zρ that gives rise to equations in Vbw if w
is contained in that strip. Exceptional strips are shaded

i) The strip Sρ(d) is on the right (when facing in the direction of the path) of a
zig-zag path α1 ∈ Zρ , and α1 contains b.

ii) The stripSρ(d) contains b, and b is not in a zig-zag path in Zρ , or

2. Moving to the strip to the left shifts the line 1/|Eρ | steps to the left.
We call the strip to the left of the one whose line contains Eρ , and all strips obtained
by its translations by H1(T,Z), exceptional strips.

Proposition B.1 If we associate lines to strips as above, the boundary of the small
Newton polygon Nbw is given by the lines {Lρ(dρ)}, where dρ ∈ 1

|Eρ |Z is determined

by the condition w ∈ Sρ(dρ), that is, it is the index of the strip containing w in the
direction ρ.

Proof In order for the line Lρ in (54) to contain Eρ , we must have bρ = 0, where bρ

is the coefficient of Dρ in (21). We have to consider two cases.

1. There is a zig-zag pathα ∈ Zρ such that b is contained inα.Weneed [Dρ ](D(b)) =
1

|Eρ | + [Dρ](D(w)), which means w is contained in the stripS to the right of the
one containing b, with α separating the two strips.

2. No zig-zag path in Zρ contains b. In this case, we need the coefficients
[Dρ](D(b)) = [Dρ](D(w)), which means w is in the strip S containing b.

If w2 is a white vertex in the strip to the left of the strip containing a white w1, then
[Dρ](D(w2)) = [Dρ](D(w1)) + 1

|Eρ | . So if we define bρ(w1) and bρ(w2) as in (21)

with w = w1 and w = w2 respectively, then bρ(w2) = bρ(w1) + 1
|Eρ | . Note that the
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line (54) which bounds Nbw2 is given by

Lρ(w2) := {m ∈ MR : 〈m, uρ〉 = bρ(w2)}.

The similar line which bounds Nbw1 is

Lρ(w1) := {m ∈ MR : 〈m, uρ〉 = bρ(w1)},

so the line Lρ(w2) is obtained from the line Lρ(w1) by shifting 1/|Eρ | steps to the
left. ��

B.2 The Equations inVbw

We describe the equations of type 2 in Sect. 3.1.2.
Let ρ ∈ �(1) be a ray and let Zρ = {α1, . . . , αk}, where α1, . . . , αk are labeled

in cyclic order. Their lifts to the universal cover of the torus divides it into strips, see
Fig. 13. We denote by Si the strip immediately to the right of αi .

Proposition B.2 The set of extra linear equations is described as follows:

1. One of these zig-zag paths contains b. We can assume it is α1. Then the subset of
Zρ that contributes an equation to Vbw is:

empty if w ∈ Sk;
αi+1, . . . , αk if w ∈ Si for some i �= k. (55)

2. The vertex b is not in any of zig-zag paths in Zρ . Then the subset of Zρ is

α1, . . . , αk if w ∈ Sk;
αi+1, . . . αk if w ∈ Si , for some i �= k. (56)

Proof Plugging

Ybw = DN − D(w) + D(b) −
∑

ρ∈�(1)

∑

α∈Zρ :b∈α

1

|Eρ |Dρ.

into (45), we first observe that (45) does not change if we replace w by its any translate
on the universal cover becaused(w)−d(b) changes by the same amount as [Ebw]∣∣C but
with the opposite sign. Therefore we may assume that among all its possible translates
in the universal cover, the stripSi is the one that is immediately to the right of b. Then
we have

(d(w) − d(b))
∣

∣C∩Dρ
= −ν(α1) − · · · − ν(αi )

and the coefficient of Dρ in (D(w) − D(b)) is − i
k .
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Now we distinguish two cases:

1. Suppose b is contained in α1, so that the coefficient of Dρ in
∑

ρ∈�(1)
∑

α∈Zρ :b∈α
1

|Eρ | Dρ is 1
k . Then we have

⎢

⎢

⎢

⎣−D(w) + D(b) −
∑

ρ∈�(1)

∑

α∈Zρ :b∈α

1

|Eρ |Dρ

⎥

⎥

⎥

⎦

∣

∣

∣

∣

∣

∣C∩Dρ

= 0,

so that (45) is ν(αi+1) + · · · + ν(αk), which proves (55).
2. Suppose b is not contained in any of the αi , so that the coefficient of Dρ in
∑

ρ∈�(1)
∑

α∈Zρ :b∈α
1

|Eρ | Dρ is 0. We have

⎢

⎢

⎢

⎣−D(w) + D(b) −
∑

ρ∈�(1)

∑

α∈Zρ :b∈α

1

|Eρ |Dρ

⎥

⎥

⎥

⎦

∣

∣

∣

∣

∣

∣C∩Dρ

=
{

0 if i �= k,
∑k

j=1 ν(α j ) if i = k.

This gives

(45) =
{

ν(αi+1) + · · · + ν(αk) if i �= k,
∑k

j=1 ν(α j ) if i = k.

We obtain (56).

��

References

1. Affolter, N., George, T., Ramassamy, S.: Cross-ratio dynamics and the dimer cluster integrable system
(2021). arXiv:2108.12692

2. Boutillier, C., Cimasoni, D., de Tilière, B.: Elliptic dimers on minimal graphs and genus 1 Harnack
curves (2020). arXiv:2007.14699

3. Boutillier, C., Cimasoni, D., de Tilière, B.: Minimal bipartite dimers and higher genus Harnack curves
(2021)

4. Beauville, A.: Theta functions, old and new. In: Open Problems and Surveys of Contemporary Math-
ematics. Surveys in Modern Mathematics, vol. 6, pp. 99- 132. International Press, Somerville, MA
(2013)

5. Borisov, L., Hua, Z.: On the conjecture of King for smooth toric Deligne-Mumford stacks. Adv. Math.
221(1), 277–301 (2009). https://doi.org/10.1016/j.aim.2008.11.017

6. Cohn, H., Kenyon, R., Propp, J.: A variational principle for domino tilings. J. Am. Math. Soc. 14(2),
297–346 (2001). https://doi.org/10.1090/S0894-0347-00-00355-6

7. Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties. Graduate Studies in Mathematics, vol. 124.
American Mathematical Society, Providence, RI (2011). https://doi.org/10.1090/gsm/124

8. Elkies, N., Kuperberg, G., Larsen, M., Propp, J.: Alternating-sign matrices and domino tilings. I. J.
Algebraic Comb. 1(2), 111–132 (1992). https://doi.org/10.1023/A:1022420103267

9. Elkies, N., Kuperberg, G., Larsen, M., Propp, J.: Alternating-sign matrices and domino tilings. II. J.
Algebraic Comb. 1(3), 219–234 (1992). https://doi.org/10.1023/A:1022483817303

123

http://arxiv.org/abs/2108.12692
http://arxiv.org/abs/2007.14699
https://doi.org/10.1016/j.aim.2008.11.017
https://doi.org/10.1090/S0894-0347-00-00355-6
https://doi.org/10.1090/gsm/124
https://doi.org/10.1023/A:1022420103267
https://doi.org/10.1023/A:1022483817303


The Inverse Spectral Map for Dimers Page 51 of 51 24

10. Fock, V.V., Marshakov, A.: Loop groups, clusters, dimers and integrable systems. In: Geometry
and Quantization of Moduli Spaces, pp. 1–66. Advanced Courses in Mathematics. CRM Barcelona.
Birkhäuser/Springer, Cham (2016)

11. Fock, V.V.: Inverse spectral problem for GK integrable systems (2015). arXiv:1503.00289
12. Fulton, W.: Introduction to Toric Varieties. Annals of Mathematics Studies, vol. 131. Princeton Uni-

versity Press, Princeton, NJ. The William H. Roever Lectures in Geometry (1993). https://doi.org/10.
1515/9781400882526

13. Goncharov, A.B., Kenyon, R.: Dimers and cluster integrable systems. Ann. Sci. Éc. Norm. Supér. (4)
46(5), 747–748 (2013). https://doi.org/10.24033/asens.2201

14. Hanany, A., Kennaway, K.D.: Dimer models and toric diagrams (2005). hep-th/0503149
15. Kasteleyn, P.W.: The statistics of dimers on a lattice: I. The number of dimer arrangements on a

quadratic lattice. Physica 27, 1209–1225 (1961)
16. Kasteleyn, P.W.: Dimer statistics and phase transitions. J. Math. Phys. 4, 287–293 (1963). https://doi.

org/10.1063/1.1703953
17. Kenyon, R.: Conformal invariance of domino tiling. Ann. Probab. 28(2), 759–795 (2000). https://doi.

org/10.1214/aop/1019160260
18. Kenyon, R.: TheLaplacian andDirac operators on critical planar graphs. Invent.Math. 150(2), 409–439

(2002). https://doi.org/10.1007/s00222-002-0249-4
19. Kenyon, R.: Local statistics of lattice dimers. Ann. Inst. H. Poincaré Probab. Stat. 33(5), 591–618

(1997). https://doi.org/10.1016/S0246-0203(97)80106-9
20. Kenyon, R., Okounkov, A.: Planar dimers and Harnack curves. DukeMath. J. 131(3), 499–524 (2006).

https://doi.org/10.1215/S0012-7094-06-13134-4
21. Kenyon, R., Okounkov, A., Sheffield, S.: Dimers and amoebae. Ann. Math. (2) 163(3), 1019–1056

(2006). https://doi.org/10.4007/annals.2006.163.1019
22. Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics-an exact result. Philos. Mag.

8(6), 1061–1063 (1961)
23. Treumann, D., Williams, H., Zaslow, E.: Kasteleyn operators frommirror symmetry. Sel. Math. (N.S.),

25, 4. Paper No. 60, 36 (2019). https://doi.org/10.1007/s00029-019-0506-7

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1503.00289
https://doi.org/10.1515/9781400882526
https://doi.org/10.1515/9781400882526
https://doi.org/10.24033/asens.2201
https://doi.org/10.1063/1.1703953
https://doi.org/10.1063/1.1703953
https://doi.org/10.1214/aop/1019160260
https://doi.org/10.1214/aop/1019160260
https://doi.org/10.1007/s00222-002-0249-4
https://doi.org/10.1016/S0246-0203(97)80106-9
https://doi.org/10.1215/S0012-7094-06-13134-4
https://doi.org/10.4007/annals.2006.163.1019
https://doi.org/10.1007/s00029-019-0506-7

	The Inverse Spectral Map for Dimers
	Abstract
	1 Introduction
	2 Background
	2.1 Dimer Models
	2.2 Zig-Zag Paths and the Newton Polygon
	2.3 The Cluster Variety Assigned to a Newton Polygon 
	2.4 Some Notation
	2.5 The Kasteleyn Matrix
	2.6 The Toric Surface Assigned to a Newton Polygon
	2.7 Casimirs
	2.8 The Spectral Transform
	3 The Main Theorem
	3.1 The Matrix Vbw
	3.1.1 Columns of the Matrix Vbw
	3.1.2 Rows of the Matrix Vbw
	3.1.3 The Functions Vbw

	3.2 Reconstructing Weights via Functions vbw.

	4 Examples
	4.1 Primitive Genus 2 Example
	4.2 Non-primitve Example


	5 The Small Polygons
	5.1 Extension of the Kasteleyn Operator
	5.2 Points at Infinity

	6 Behaviour of the Laurent Polynomial Qbw at infinity
	7 Equations for the Laurent Polynomial Qbw
	7.1 Additional Linear Equations for Qbw
	7.2 The System of Linear Equations Vbw

	Acknowledgements

	A Toric Geometry
	A.1 Toric Varieties
	A.2 Polygons and Projective Toric Surfaces
	A.3 Toric Stacks
	A.4 Example: A Stacky P2.
	A.5 Line Bundles and Divisors on Toric Stacks

	B Combinatorial Rules for the Linear System of Equations Vbw
	B.1 Equivalent Description of the Small Polygons
	B.2 The Equations in Vbw
	References





