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Abstract—Machine learning models have proven to have the
ability to make accurate predictions on complex data tasks
such as image and graph data. However, they are vulnerable to
various backdoor and data poisoning attacks which adversely
affect model behavior. These attacks become more prevalent
and complex in federated learning, where multiple local models
contribute to a single global model communicating using only
local gradients. Additionally, these models tend to make unfair
predictions for certain protected features. Previously published
works revolve around solving these issues both individually
and jointly. However, there has been little study on how the
adversary can launch an attack that can control model fairness.
Demonstrated in this work, a flexible attack, which we call Un-
Fair Trojan, that targets model fairness while remaining stealthy
can have devastating effects against machine learning models,
increasing their demographic parity by up to 30%, without
causing a significant decrease in the model accuracy.

Index Terms—Machine Learning, Federated Learning, Back-
door Attacks, Fair Machine Learning

I. INTRODUCTION

Recently, it has been shown that machine learning models
are vulnerable to various attacks such as trojan backdoors [1]
[2] [3]. When implemented in a Federated Learning (FL) [4]
system where local models contribute to a single global model
as opposed to a single centralized model, these vulnerabilities
become more exploitable since a user often has access to
one or more local models, compared to models trained in a
centralized setting where accessing the model may be difficult.
In addition to these vulnerabilities, machine learning models
trained on real-world data often contain sensitive attributes
such as race and gender that might result in unfair predictions.
For example, a loan model predicting higher interest rates
for women v.s. men if all other attributes are the same is
considered unfair. To be considered fair, the prediction must
be independent of the sensitive features. This dependence can
be measured using a risk difference function.

Various works have focused on developing methods to
increase the fairness of machine learning models w.r.t. their
sensitive features both in centralized and FL settings [5] [6]
[7] [8] [9] [10] [11]. The majority of existing works focus
on increasing model fairness, with few exploring methods
to decrease model fairness. Currently, there are two works
that explore combining model fairness and a backdoor attack
however the scope and limitations of these works differ much

Nicholas Furth is with the University of Tenneesee at Knoxville
Email: nfurth@vols.utk.edu, Abdallah Khreishah, Guanxiong Liu,
and NhatHai Phan are with New Jersey Institute of Technology
Emails:{abdallah,gl236,phan}@njit.edu, Yaser Jararweh is with Jordan
University of Science & Technology Email: yijararweh@just.edu.jo

from our work. The work in [12] implements an attack
that seeks to reconstruct the sensitive features in a data set,
however, the attack itself has no impact on the fairness of the
model. The work in [13] implements a basic attack against
model fairness, however, it has several limitations. First, it
only demonstrates an attack against a support vector machine
model, failing to show effectiveness against more complex
models such as deep neural networks, and is limited to a
centralized setting. Additionally, it only explores the attack
against tabular data and does not explore more complex data
sets, i.e. image data, NLP data, etc. Unlike the existing works,
this work explores how an attack against fairness can have
an adverse effect on model fairness. In addition, we consider
different types of data i.e. tabular and image data and we
implement the attack in an FL setting with both i.i.d. and
non-i.i.d. data, significantly improving the utility of the attack
over the existing works.

Utilizing an attack to effect model fairness is more complex
than a traditional backdoor attack where an attacker can use a
small amount of poisoned data to make a model overfit to the
trojan trigger with few epochs. For an attack against fairness
to be successful, the attack needs to be able to increase or
decrease the prediction’s dependence on the sensitive features
while maintaining high accuracy to remain stealthy. To achieve
this goal we explore two methods; a modified version of
adversarial label-flipping, and the traditional trojan attack,
each with its challenges.

In adversarial label-flipping, the sensitive feature will have
the labels of the sensitive feature flipped to match the ground
truth with probability ρ which is adjusted to obtain the best
fairness/accuracy trade-off. This keeps the attack stealthy and
effective as possible. The goal of this method is to increase
the correlation between the sensitive feature and the prediction
which as a result increases the risk difference. Although this
method has the advantage of being simple to implement,
achieving a good result while also maintaining high accuracy
is challenging.

The second method involves flipping the labels in the same
manner only when a trojan trigger is present. Unlike the
adversarial label-flipping attack, we control when the attack
happens by attaching a trojan trigger to the input data. One
advantage of this method is that we do not need to rely on the
model learning how to predict the sensitive feature within an
image, it only needs to overfit to predict a single class when
the trigger is present. This method has several challenges and
limitations, first, the sensitive features are not explicitly part
of the data which makes it difficult for the model to overfit
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to the trigger. Second, since we are using real-world data, the
trigger may blend into part of the image or a benign image
may unintentionally have the trigger which not only makes it
harder to overfit, but during inference time the trigger may be
activated without being present. Finally, this method is only
effective against image data or data with non-discrete values
making it less flexible compared to the label-flipping attack.
Our experiments show that when we activate our attack, the
demographic parity can be increased by over 30% without
causing a significant decrease in model accuracy.

The remaining of this paper is organized into 5 sections.
Section 1 summarizes the research objectives. Section 2 fo-
cuses on the literature review. Section 3 discusses in detail
the way the attacks were implemented. Section 4 provides an
overview of the model architectures used. Section 5 discusses
the experiments and their results. Finally, Section 6 discusses
conclusions and future work.

II. BACKGROUND

This section examines the previous works done in fair
machine learning in both centralized and FL settings. Addi-
tionally, it examines attacks against FL systems and discusses
the importance of such research problems. This literature
review aims to provide a clear understanding of the basic
concepts that are used to develop the attacks in Section 3.

A. Federated Learning

Federated learning (FL) as shown in Algorithm 1 and Figure
1a, is a distributed computing method that trains multiple local
models on their own data sets to obtain a single global model
[4]. Subsequently, the parameters of each local model are then
sent to a server for aggregation. Aggregation methods can
be weighted or unweighted averages. Once the aggregation is
complete, the global parameters are redistributed to each local
model to begin the next iteration. This process is repeated until
the global model converges. Over each iteration, each local
model is exposed to a wider range of data. Sending only the
local parameters protects local data from being seen by other
models while allowing them to generalize better to new data.
A simple aggregation method can be expressed as follows:

θt+1
g =

1

m

m∑
i

θti (1)

where θt+1
g represents the global parameters after aggregation

at iteration t, θti is the local parameters of model i, and m
represents the total number of local models selected in a
training round out of n local models, where m ≤ n.

Typically, the m models are selected based on several
factors, such as battery life, internet connection strength, and
the number of training epochs made since the previous global
iteration. More complicated methods of FL are shown in [1]
[2]. Furthermore, FL has desirable traits, such as that the
local data of each model is never seen by the server or other
models; preserving data privacy since only the parameters
are communicated. The data privacy aspect of FL is the

Algorithm 1 Federated Learning
INPUT: Data sets with data xi, labels yi, m local models
selected each round, n total models, local parameters θi and
global parameters θg .

1: for Each t in 1, 2, . . . do
2: Select m ≤ n models
3: for Each local model i do
4: θi = θg
5: Train local model i with parameters θi on data xi and

labels yi
6: end for
7: θt+1

g = 1
m

∑m
i θti

8: end for

most important feature. A majority of local, state, and federal
jurisdictions require user data to be kept private. By only
communicating model parameters, instead of pooling the data
to train a single model, FL models, which are used widely
in healthcare can comply with regulations such as HIPAA,
which require: (1) Ensuring the confidentiality, integrity, and
availability of Protected Health Information (PHI) created,
received, maintained, or transmitted, (2) Protecting against
any reasonably anticipated threats and hazards to the security
or integrity of PHI, and (3) Protecting against reasonably
anticipated uses or disclosures of PHI not permitted by the
Privacy Rule [14].

Due to the data handling criteria, FL has gained signifi-
cant popularity in the medical field. Hospital networks can
now train models using data from multiple locations without
compromising patient privacy. This is especially important
since not only do patient demographics vary from different
localities, but so do the privacy regulations. In a similar
manner to hospitals, financial institutions can use FL to train
models to approve or decline loans, determine interest rates
and detect fraud with models trained using data from multiple
branches in multiple countries without disclosing sensitive
customer information which cannot be shared internationally.
Additionally, FL allows financial institutions to source data
from different areas where customers may be wealthier than
others allowing the model to generalize better to a wider range
of customers while protecting customer data. An attack against
this type of models would allow the attacker to make the model
more favorable to their demographics, resulting in a higher
approval chance or lower interest rate.

Since models are trained on multiple devices, there is less
computational and memory strain on any single device due
to its distributed nature. This allows applications to run on
slower devices such as mobile phones or embedded devices,
i.e. microcontrollers and IoT devices while still making a
meaningful contribution to the global model and not straining
their local computational and memory resources. Finally, since
only the model gradients are communicated, the bandwidth
needed is much smaller compared to communicating the local
data of each model.
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(a) Implementation of an FL sys-
tem.

(b) Trojan trigger example for the MNIST data
set.

(c) Model Replacement (Left) vs Naive Ap-
proach (Right)

Fig. 1: Demonstration of Methods Used

B. Fairness in Machine Learning

Machine learning models often utilize data that may contain
sensitive features i.e. race, age, or gender. Using these features
for decision-making is undesirable if the prediction results are
biased towards these features. One of the root causes of this
problem is that the models are trained using data that is biased.
Various methods to remove the effect of these features have
been implemented [5] [6]. Typically, this is done by either
removing the correlation between the sensitive features and
the output through the use of the objective function or by
inserting perturbations that prevent the model from learning
such correlations. Ensuring fairness in this manner is critical
for regulation compliance. Model fairness becomes further
complicated when the models are used in multiple jurisdictions
each having different definitions of fairness that need to be
satisfied. To determine whether a model is fair, we make use
of a risk difference function, in particular, demographic parity
[15] to measure how sensitive feature, s affects the output of
a model f which is defined here,

DP = |P (f(X) = y|s = 1)− P (f(X) = y|s = 0)| (2)

where f(X) is the prediction made by the model, y is a ground
truth and s is the given value of the sensitive feature.

Demographic parity compares how a model will make a
prediction, given different values of the sensitive feature. The
risk difference function has values between 0 and 1, with 0
being the fairest and 1 the least fair. In addition to demographic
parity, there are several other notations for fairness, and
unawareness where the model is expected to make the same
prediction regardless of the sensitive feature. Accuracy Parity
is where the accuracy among each value of a sensitive feature
is the same. Finally, there is Equality of Opportunity which
is a weaker or lazy version of demographic parity. Currently,
demographic parity definition for fairness is popular among
the machine learning community [7] [9].

Although there are many metrics to measure fairness, there
is yet to be a consensus on which metric is the best. Solving
fairness in an FL setting is much more difficult compared to
a centralized setting. Due to the data heterogeneity between
each local model finding a set of shared global weights that
can reasonably solve for fairness across each local model is

difficult. Attempts to solve the fairness issue in an FL setting
have been made in [7] [8] [9] [10].

C. Data Poisoning

Adversarial label flipping is one of the most basic forms of
data poisoning attacks [16]. Typically, this behavior reduces
the overall performance of a particular class or makes the
model overfit to its the poisoned data to perform poorly, similar
to a trojan trigger. In our implementation of this attack, the
attacker changes several labels with the aim of increasing
the correlation between the sensitive features and the model’s
predictions by flipping the labels of the data to match the
value of the sensitive feature. Unlike a trojan trigger, this
method is much less challenging however, as a result, it also
has limitations, particularly it is not well suited for complex
data.

D. Trojan Backdoors

To change the behavior of a model maliciously, an attacker
can access the training data and inject a trojan backdoor into
a portion of the training data. This backdoor is typically a set
of features which, if and only if the backdoor is present, the
model will exhibit unexpected, malicious behavior. This attack
causes the model to overfit to the backdoor data, allowing
the parameters which are of importance to the attack to be
disproportionately high. Additionally, this method of attack
easily remains stealthy since it only activates when the trigger
is present. With this method, it can be trivial to obtain a near-
perfect backdoor success rate while maintaining a high benign
accuracy to avoid detection. An example of a simple trojan
trigger using the MNIST data set is illustrated in Figure 1b.
In this example, we have a model which is trained on the
MNIST data set. The data set is poisoned with a trojan trigger
(the small white square on the top-left of the image) which
when present the model will always predict the label as 7,
and when it is not present the model will predict the benign
ground truth.

E. Trojan Attacks

To facilitate the attacks against the global model, we utilize
two methods, first is adversarial model replacement where the
gradients of the attacking model are scaled such that when
the aggregation takes place, the attacking model replaces the
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global model. Secondly, we use the naive approach where the
attacker has control over several local models, and when the
aggregation takes place, the poisoned gradients will be present
in the global model, although it will not be as strong as with
model replacement unless a significant fraction of the models
are poisoned.

Adversarial Model Replacement: One of our 2 methods
to inject the backdoor into an FL system is adversarial model
replacement shown in Figure 1c, the attacker attempts to
replace the global model with the backdoor model through the
scaling of gradients of the infected model and subtracting the
values of the other local gradients. [1] [2] After aggregation,
the attacking model will then replace the global model and be
distributed to each of the other local models. The implemen-
tation of adversarial model replacement can be performed as
follows:

X = θtg +
η

n
×

m∑
i=1

×(θt+1
i − θtg) (3)

Here, X is the malicious model which we want to be dis-
tributed to each local model, η is the global learning rate,
θt+1
i is the local model i, at iteration t, and m is the size of

the subset of n models chosen at a given iteration. However,
since in the aggregation method shown in Algorithm 1, a
global learning rate is not included nor does it subtract the
global parameters from each set of local parameters before
aggregation, the model replacement can be simplified to (4)
which is shown here:

X = m×X −
m−1∑

i

θi (4)

This can then be applied to (1). Typically the FL system
will not verify that model training was benign, making it trivial
for a malicious model to infect the other models. Additionally,
adversarial model replacement is a single-shot attack, meaning
the global model will immediately distribute the malicious
model to each model in the next iteration. Although model
replacement is the most effective attack, it requires knowledge
of the other model’s parameters, which due to this white box
nature, is very difficult to implement in a real-world scenario.
Model replacement still provides the best-case scenario for the
attacker.

The Naive Approach: The second method to inject a
backdoor model is the naive approach shown in Figure 1c.
Unlike model replacement which requires knowledge of the
other model’s weights and the number of models, the naive
approach does not require any information about other models
[1]. The idea of the naive approach is simple, an attacker
who controls a fraction of local models α trains each of their
models on poisoned data which will then affect the global
model after aggregation. While this method is simpler and
easier to implement than model replacement, it requires a large
fraction of the local models to be controlled by the attacker to
have a significant impact on the global model. Additionally,
if the attacking models are not present in an iteration, their
contributions will quickly become aggregated out of the global

model. Ensuring that as many attacking models as possible are
present at each iteration is crucial to the success of this form
of attack. This can be achieved by ensuring that each local
model has sufficient battery life, and internet connectivity and
by having several local training epochs completed since the
previous global iteration. The implementation of this attack is
shown in Algorithm 3.

III. THREAT MODEL

The objective of the attacker is to control the model’s
fairness without significantly decreasing model accuracy such
that when the trigger exists the model’s fairness decreases and
when the trigger is absent the model behaves normally. The
attack takes place in an FL setting with n total models, m
models selected for each training round based on battery life
and number of training epochs completed since the last iter-
ation with one of more attacking models trained on poisoned
data using either trojan triggers or adversarial model flipping.
For the attack to be successful, the attacker requires access to
at least one local model and the ability to poison their local
data which is then used to train the backdoor models and then
inject the backdoor model into the global model using either
model replacement or the naive approach. Finally, the attacker
needs to possess enough computational power to ensure that
the backdoor models converge to the poisoned data before
aggregation. First, the attacker’s models train on their poisoned
data until convergence. Then, at each global iteration, the local
gradients sent to the server get aggregated and are finally then
distributed to each of the local models. Throughout this paper,
we introduce UnFair Trojan and evaluate it using both model
replacement and the naive approach on 2 tabular data sets and
1 image data set.

IV. METHODS

This section covers the detailed methods used to attack
fairness in an FL setting. Namely, this section discusses
probabilistic label flipping, trojan triggers, model replacement,
and naive approach attacks. Each of these methods is used as
building blocks in our proposed attack against fairness.

A. Probabilistic Label Flipping

Our implementation of probabilistic label flipping shown
in Algorithm 2, is used to conduct the attacks. By flipping
the labels in a probabilistic manner, the attacker can control
how much of the data becomes poisoned, making it easier
to maintain high benign accuracy while still affecting model
fairness to get the trade-off between accuracy and fairness.
To perform probabilistic label flipping in a manner that can
impact fairness, first, the data set which has data X , labels Y ,
and the number of samples n is set. Then the probability by
which a label is flipped ρ is selected. Finally, for each piece
of data x within X the sensitive feature s within x is set to
the same value as the label y with probability ρ. This process
is then repeated for each piece of data within X . The main
concept is that by making the sensitive feature equal to the
label the correlation between them increases, and as a result,
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the model fairness decreases. The model will then learn this
correlation and make predictions that are more heavily based
on the sensitive feature compared to the other features which
will decrease model fairness w.r.t. (2).

Algorithm 2 Probabilistic Label Flipping
INPUT: Data set with data X, labels Y, number of samples
n, probability ρ, and sensitive feature s within a sample x.

1: for Each x, 1, 2, . . . n ∈ X do
2: R = Random ∈ [0, 1]
3: if R ≥ ρ then
4: si = yi
5: end if
6: end for

B. Trojan Triggers

Once the backdoor model is trained, the poisoned gradients
will then be aggregated using (1), after the aggregation, the
poisoned parameters will then be distributed to each of the
local models.

In addition to label flipping, a trojan trigger attack is also
considered. The trojan triggers are created similarly to the
example shown in Figure 1b. Using a small 10x10 box in
the upper left corner of the input image of size 224x224. The
attack will become activated if and only if the trojan trigger is
present in the data. Unlike the label flipping attack which is
not ideal for the CelebA data set where the attack must rely
on the model learning the features associated with the labels,
the trojan triggers are explicitly present in the infected images.
In a similar manner to the label flipping attack, to impact the
fairness, the labels are flipped to match the sensitive feature,
however, this only occurs when the trojan trigger is present
instead of with a probability.

C. Adversarial Model Replacement

To facilitate the attack, we utilize two methods for injecting
the backdoor into the global model. First, the adversarial
model replacement is performed as shown in Algorithm 3,
using (4), where the goal of the attacking model X is to
replace the global model G which is to be distributed to each
local model. To replace the global model, the attacker needs
knowledge of several things, 1) The number of other models
in a training round, 2) The gradients of each model, and 3)
The aggregation method used by the global model. While is it
possible to estimate the gradients of the other models by using
the gradients of the global model if it is assumed that each
local model has converged sufficiently, estimating the number
of models per round and the aggregation method is far from
being a trivial task. It is because of these conditions that using
model replacement is not the most practical method in real-
world scenarios, however, it provides an upper bound for an
attacker and also shows what an attack against a single central-
ized model may look like. To perform model replacement with
the aggregation method shown in (1), Algorithm 3 can be used.

Algorithm 3 Model Replacement Attack
INPUT: Number of models n, number of selected models m,
the attacking model X, the parameters for each local model
θm and the global parameters θg .

1: for Each t in 1, 2, . . . do
2: Select m ≤ n models
3: for Each benign model i in 1, 2, . . .m− 1 do
4: Train model on benign data, obtain θi
5: end for
6: for Poisoned model X do
7: Train model on Poisoned Data
8: θm = m×X −

∑m−1
i θi

9: end for
10: θt+1

g = 1
m

∑m
i θti

11: end for

First, the number of models n, and the number of selected
models m are initialized. Then each benign model is trained
normally and the attacking model is trained on its poisoned
data. After each model has finished its local iterations, the
sum of the gradients of benign models is subtracted from the
gradients of the attacking model which is then scaled up by
the number of models per round m. Finally, when the local
models aggregate the gradients, the global gradients will be
replaced by the attacker’s gradients which are then distributed
to each local model.

D. The Naive Approach

The second method we use to inject the backdoor is the
naive approach. Unlike model replacement which requires
knowledge of the other models and the global server’s ag-
gregation method, the naive approach can be implemented
without any knowledge of the other models or the global
server. First, in the same manner as model replacement, the
number of models n, and the number of selected models m
are initialized. Then each benign model is trained on its data.
Next, each attacking model, of which the attacker controls a
fraction α of all models, trains each attacking model on its
poisoned data. Finally, the gradients are aggregated and are
then distributed to each local model.

Unlike the model replacement method where the attacking
model completely replaces the global model through the scal-
ing of the weights, the attacking models will affect the global
gradients solely through the aggregation method. The greater
the fraction of models that the attacker controls, the greater
the impact on the global model. While this method is not as
effective as model replacement, it is a more practical attack
due to its simplicity and the minimum amount of information
that needs to be known about other models.

Model replacement is far more effective than the Naive
approach, however, it requires information about local models
which cannot be obtained in an FL setting, although it does
provide a best-case scenario. The Naive approach is simple to
implement however, it is less effective than model replacement
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and requires an attacker to control a significant fraction of
local clients. Trojan triggers and adversarial label flipping are
effective with different types of data, a trojan trigger typically
is used with image data, whereas adversarial label flipping is
typically used with tabular data. Additionally, where a trojan
trigger causes the model to overfit to the trigger, label flipping
typically causes the model to misclassify data.

To display the difference between model replacement and
the naive approach, we use the example in Figure 1c, where
an attacking model shown in red tries to attack the global
model. When using model replacement, the attacker replaces
the entire global model which is then distributed to each of
the other clients. When using the naive approach, the attacker
is not able to fully replace the global model, however, there
is still some effect on the global model.

V. EXPERIMENTS AND RESULTS

Two model architectures for the experiments were used. A
custom DNN consisting of Dropout, Dense, and Activation
layers using the Tanh function is used for COMPAS and
UCI Adult. Several model architectures were tested on both
COMPAS and UCI Adult, including a model consisting of
only a single dense layer, however, each model performed
similarly in accuracy. A modified version of ImageNetV2 was
used for the CelebA dataset with two additional Dense layers,
1 additional Batch Normalization Layer, and 1 additional
Dropout Layer, with the final Dense layer being used to
accommodate the forty prediction labels used in CelebA [17].

To show the effects of attacks against model fairness, five
sets of experiments are conducted on data that is independent
and identically distributed (i.i.d.). First, a baseline for the
accuracy and fairness is obtained for each data set w.r.t. to
their sensitive features shown in Table I. Then the adversarial
label flipping attack is applied to each of the three data sets,
CelebA, COMPAS, and UCI Adult combined with model
replacement. Followed by, the trojan trigger attack which is
applied to CelebA combined with model replacement. Fourth,
the adversarial model replacement is attempted on each data
set and combined with the naive approach. Finally, the trojan
trigger attack is attempted on CelebA which is then combined
with the naive approach.

The experiments use an FL system with 20 models which
train for 1 local epoch. For the non-i.i.d. data we repeat
the baseline experiment and the label-flipping experiments on
the COMPAS and UCI Adult data sets. These experiments
are designed to answer the following questions: (1) What is
the best case for an attack against model fairness without a
significant decrease in model accuracy? (2) How does an attack
against tabular data compare to an attack against image data
where sensitive features are only implicitly present? (3) How
does an attack which is always present, such as adversarial
label flipping, compared to an attack that is only present when
a certain attribute is inserted such as a trojan trigger? and (4)
How does adversarial model replacement compare to the naive
approach in an FL setting? (5) How does i.i.d. data compare
to non-i.i.d. data?

The first experiment is shown in Table I which contains the
baselines for each of our three data sets. While UCI Adult and
CelebA both have respectable accuracy of 0.822 and 0.850,
respectively, the accuracy for COMPAS is poor at only 0.702.
Additionally, CelebA has 2 sensitive features, Gender, and
Age. The fairness calculated displayed mixed results, however
the fairness w.r.t. age is significantly worse than gender. Both
COMPAS and UCI Adult have 2 sensitive features, race and
gender. COMPAS also has fairness issues w.r.t. both of its
sensitive features, race, and gender. Finally, the UCI Adult
data set has a significant fairness issue for race and a less
significant issue w.r.t. Gender.

The second experiment, which is shown in Table II contains
the results of an attack using adversarial label flipping. The
attack had limited success with the CelebA data set. An
increase in the demographic parity w.r.t. age of 33% with a
negligible accuracy drop of 1.2%. Whereas w.r.t gender was
less successful, obtaining only a small increase of 5% in the
demographic parity and a negligible decrease in accuracy of
1.1%. With COMPAS the demographic parity was able to be
increased w.r.t. race by 28.9% to 0.944 with an accuracy drop
of 4.7% although there is limited ability for improvement with
the baseline being 0.678. The demographic parity w.r.t. gender
was increased by 17.6% with a negligible accuracy drop of
1.8%.

For the UCI Adult data set, the demographic parity w.r.t.
race increased by 14.6% with an accuracy drop of 2.8% with
similar limitations as COMPAS. Finally, w.r.t. Gender the
demographic parity was increased by 54.2% with an accuracy
drop of 1.8%. The attack was quite successful with both
UCI Adult and COMPAS, yielding up to a 54.5% increase in
fairness with minimal loss in accuracy. For CelebA, the change
in accuracy was only about 1%, far lower than UCI Adult and
COMPAS, this is due to the attack affecting only 1 label out of
40. In addition, this attack would not be noticed by a standard
FL server as the gaps in accuracy are small and since the
server will likely not be checked for disproportionately large
gradients.

For CelebA, in addition to the adversarial label-flipping
attack, an attack with a trojan trigger is examined. Since
the sensitive features in CelebA are only implicitly present,
inserting a trojan trigger that is explicitly present may yield
better results.

The trojan trigger attack yielded interesting results, similarly
to the adversarial label flipping attack, the drop in accuracy
was negligible, only about 1%. This is due to the accuracy
being the average of 40 labels. The change in fairness w.r.t.
age did not have as significant of an effect, only increasing
by 21.7% compared to the increase of 33.3% with adversarial
label flipping. The attack was more successful w.r.t. gender,
where there was an increase of 73.2% compared to the
increase of 5.2%. Overall CelebA appears more resistant to an
attack compared to COMPAS and UCI Adult. Similar to the
adversarial label-flipping attack, this attack can be adjusted by
changing the size, color, and location of the trigger. However,
unlike the MNIST data set example shown in Figure 1b,
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TABLE I: Baseline Accuracy And Fairness For The CelebA, COMPAS And UCI Adult Data Sets on i.i.d. and Non-i.i.d. Data

i.i.d.

Data Set Accuracy DPRace DPGender DPAge

CelebA 0.822 - 0.231 0.505
COMPAS 0.696 0.732 0.500 -
UCI Adult 0.850 0.673 0.236 -

Non-i.i.d.

COMPAS 0.708 0.786 0.504 -
UCI Adult 0.825 0.674 0.254 -

TABLE II: Accuracy And Fairness For CelebA, COMPAS And UCI Adult Data Sets using Each Method On i.i.d. Data and
Non-i.i.d. Data

Method Data Set α Accuracy DPRace Accuracy DPGender Accuracy DPAge

i.i.d.

Label Flipping/Model Replacement
COMPAS - 0.649 0.944 0.678 0.588 - -
UCI Adult - 0.822 0.771 0.832 0.364 - -

CelebA - - - 0.811 0.243 0.810 0.673

Trojan Trigger/Model Replacement CelebA - - - 0.809 0.400 0.809 0.615

Label Flipping/Naive Approach

COMPAS 0.1 0.705 0.786 0.707 0.501 - -
0.2 0.708 0.787 0.706 0.508 - -

UCI Adult 0.1 0.825 0.675 0.825 0.252 - -
0.2 0.825 0.673 0.825 0.254 - -

CelebA 0.1 - - 0.771 0.227 0.787 0.514
0.2 - - 0.762 0.227 0.770 0.514

Trojan Trigger/Naive Approach CelebA 0.1 - - 0.758 0.227 0.768 0.514
0.2 - - 0.770 0.227 0.715 0.514

Non-i.i.d.

Label Flipping/Model Replacement COMPAS - 0.675 0.849 0.663 0.669 - -
UCI Adult - 0.825 0.766 0.825 0.252 - -

Label Flipping/Naive Approach
COMPAS 0.1 0.710 0.774 0.706 0.553 - -

0.2 0.708 0.767 0.705 0.547 - -

UCI Adult 0.1 0.825 0.675 0.824 0.260 - -
0.2 0.825 0.674 0.825 0.255 - -

CelebA is much more complex, and depending on the exact
image the trigger may not appear due to the coloration of the
background, however, that does not seem to have affected the
attack significantly.

The fourth experiment, shown in Table II, was as expected,
ineffective with lackluster results across all 3 data sets. With
CelebA, there were negligible changes in fairness with both 2
and 4 attacking models. However, the change in accuracy was
more significant compared to the model replacement attack.
The accuracy dropped by 3.5% and 5.2% for 2 and 4 attacking
models, respectively w.r.t. age by 5.1% and 6.0% for race.
For COMPAS, the accuracy increased slightly in all instances.
However, the demographic parity w.r.t. race increased by 7.4%
and 7.5%, respectively. The results w.r.t. gender were less
significant, demonstrating slight increases in accuracy and
slight increases in demographic parity of 0.2% and 1.6%,
respectively.

For UCI Adult, there was a slight decrease in accuracy
between 2.4%-2.6%. Much like COMPAS, the attack was

not very successful, only achieving an insignificant increase
in the demographic parity of 0.3% and 0.0% w.r.t. race.
Finally, there were similar results w.r.t. gender, slight decreases
in accuracy of 2.5% in both instances, as well as slight
changes in demographic parity of 6.8% and 7.6%, respectively.
Unexpectedly, there was little change in both accuracy and
fairness by changing the number of attackers from 10% to
20% of the models. Additionally, the fairness accuracy trade-
off was far worse than expected, while it is assumed that the
attack would be ineffective, the change in accuracy should
have also been negligible.

The fifth experiment showcases the trojan trigger attack
combined with the naive approach on the CelebA data set.
For both 2 and 4 attackers, the results with regard to fairness
were insignificant. However, there was a substantial drop in
accuracy. Similar to the model replacement attack, the negligi-
ble change in fairness was expected, however, the much more
drastic drop in accuracy was a surprise. The more significant
drop in accuracy may be due to the ImageNet architecture

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on October 01,2023 at 13:16:40 UTC from IEEE Xplore.  Restrictions apply. 



being far more complex than most neural networks.

Compared to COMPAS and UCI Adult, CelebA appears
more resistant to an attack against fairness. Additionally, since
the attributes are not explicitly present, we must rely on the
model to learn such attributes. Thus using demographic parity
to measure fairness may not provide the best assessment.
The work in [5] uses accuracy parity which measures the
benign accuracy w.r.t. each subgroup of a sensitive feature.
The uncertainty may be due to the complexity of the data
set/model, the features only being implicitly present or due
to a different reason is unclear. Further research is required
to determine the root cause of these differences Overall, the
attacks were successful in varying degrees, tabular data is
much more susceptible to an attack due to its simplicity,
although image data can also be attacked with a moderate
degree of success.

When comparing the non-i.i.d. data experiments to the i.i.d.
data experiments, we see that there is a noticeable difference
in fairness, particularly for race on the COMPAS data set,
showing an increase of 7.3% and w.r.t. gender on the UCI
Adult data with an increase of 7.6% with the accuracy and
other fairness measurements showing negligible differences.
When conducting the attack on non-i.i.d. data the results are
similar to that of the i.i.d. data.

When using the model replacement attack on COMPAS
we achieved a 8.0% increase in fairness w.r.t. race and a
32.7% increase w.r.t. gender, the most successful attack which
these methods achieved, with a cost of 3.3% and 4.5% in
accuracy, respectively. On the UCI Adult data set we achieved
a 13.6% increase w.r.t. race with no loss in accuracy and for
gender, a modest 6.8% increase in fairness with no loss in
accuracy. Interestingly, when using the naive approach the
fairness metric shows slight decreases on the COMPAS data
set w.r.t. race when using both 2 and 4 attacking models with
slight increases in accuracy. With regards to gender, there are
modest increases in the fairness metric of 9.7% and 8.5%,
respectively each with slight increases in accuracy. On the UCI
Adult data set, the attacks had virtually no effect as there is no
change in accuracy with negligible changes in fairness for both
race and gender. Overall, the experiments on the COMPAS
data set yielded the most effective and interesting results, the
attack increased the fairness metric by the highest percentage
in almost every case, and interestingly the accuracy often
increased over the baseline. Additionally, while the attack on
the CelebA data set was not the most effective, there were
several instances where it was, showing that even with more
complex data such as image data, an attack against fairness
can be successful. Another interesting point is how using non-
i.i.d. data can change fairness compared to the i.i.d. data,
even when the totality of the data across models is the same.
Finally, the percentage change in fairness has little difference
between i.i.d. and non-i.i.d. data despite there being noticeable
differences in the baseline fairness.

VI. CONCLUSION

In this work, it was shown that an attack against model
fairness can increase a model’s demographic parity causing the
model to make unfair predictions while also minimizing the
loss in accuracy. To demonstrate this vulnerability, we propose
and evaluate both adversarial label flipping and a trojan trigger
attack on multiple data sets using both model replacement and
the naive approach. The results for adversarial label flipping
depicted that the demographic parity risk can be increased by
over 50% without drastically decreasing model accuracy. This
increase is more than enough to force a model to be non-
compliant with fairness regulations and bring features with
already high fairness to near 1. Whereas on image recognition
data the attack was less successful, however, the attack still
increased the demographic parity by a respectable amount.
Finally, both the model accuracy and fairness can differ
significantly when comparing i.i.d. data and non-i.i.d. data,
however, our attacks result in increases of similar percentages.
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