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Abstract—A common way to advance our understanding of
brain processing is to decode behavior from recorded neural
signals. In order to study the neural correlates of learning
a task, we would like to decode behavior across the entire
timespan of learning, which can take multiple recording sessions
across many days. However, decoding across sessions is hindered
due to a high amount of session-to-session variability in neural
recordings. Here, we propose utilizing multidimensional neural
signals from Localized semi-non negative matrix factorization
processing (LocaNMF) with high behavioral correlations across
sessions, as well as a novel data augmentation method and
region-based converter, to optimally align neural recordings. We
apply our method to widefield calcium activity across many
sessions while a mouse learns a decision-making task. We first
decompose each session’s neural activity into region-based spatial
and temporal components that can reconstruct the data with high
variance. Next, we perform data augmentation of the neural
data to smooth the variability across trials. Finally, we design
a region-based neural converter across sessions that transforms
one session’s neural signals into another while preserving its
dimensionality. We test our approach by decoding the mouse’s
behavior in the decision-making task, and find that our method
outperforms approaches that use purely anatomical information
while analyzing neural activity across sessions. By preserving the
high dimensionality in the neural data while converting neural
activity across sessions, our method can be used towards further
analyses of neural data across sessions and the neural correlates
of learning.

Index Terms—Brain decoding, Calcium imaging, Decision
making, Multi-session decoding

I. INTRODUCTION

Decision-making provides a rich experimental setting in
which to explore the process of transforming a stimulus to a
choice [1]-[4]. A two-alternative forced choice (2AFC) task is
a common decision-making paradigm in mice, and allows for
simultaneously recorded large-scale neural activity in head-
fixed animals. However, the process by which an animal
learns the 2AFC task has remained relatively under-explored.
With the advent of large scale recording technologies that
are able to record the neural activity with a high resolution
over multiple sessions, we can now try to understand how
learning of decision-making takes place across several days
or even months. Widefield imaging calcium imaging (WFCI)
provides an unprecedented view of neural data across the entire
dorsal cortex of the mouse during these tasks. However, the
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analysis of the resulting neural data across sessions poses
several challenges.

Day-to-day noise and small shifts in the recording modality,
such as imaging cameras, result in significant session-to-
session variability in the recordings. Preprocessing methods
include (a) pixel-wise averaging, resulting in one temporal
signal per brain region, (b) singular value decomposition
(SVD), resulting in components that cannot be directly as-
signed to any region of the brain, and (c) LocaNMF, resulting
in a low dimensional set of temporal components anchored
to each brain region. While pixel-wise averaging results in
signals that are directly comparable across sessions, these
signals do not capture the full extent of information in the
brain region. SVD applied to the entire WFCI data makes
it impossible to compare signals across sessions since the
components may change drastically across sessions. Finally,
while LocaNMF provides a lower-dimensional set of signals,
it is still difficult to directly align the resulting components
from one session to another. Alignment of neural data across
sessions has been explored in the past for neural activity
ranging from relatively low spatial resolution such as with
functional Magnetic Resonance Imaging (fMRI), to single-
cell neural recordings [5]-[7]. Here, we extend past methods
by proposing a novel method to align WFCI data across
sessions, and test out our algorithm on a rich WFCI dataset
from 80 sessions across a mouse learning a 2AFC visual and
somatosensory task.

In this paper, our main novelties are threefold. First, we
present a new data augmentation method to train our models
and unify the data across sessions. Second, we design a region-
based neural converter to generalize temporal neural signals
across sessions while preserving the dimensionality in the
neural data across regions. Finally, we introduce a concrete
test to evaluate our results: we decode the choice made by the
animal using the converted data. Specifically, if we can decode
the choice of the animal using the same decoder on converted
data as trained on the original dataset, our conversion process
can be considered a success. We compare our results with two
established ways to align WFCI data across sessions. Using
the results of the converter, we show how neural correlates
evolve in each brain region during learning.
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II. METHODS

A schematic overview of our method is shown in Figure
1. First, we preprocessed our data using a data augmentation
method to decrease trial-to-trial variability during downstream
steps. Subsequently, we designed a region-based neural con-
verter across sessions to optimally align our temporal neural
data across sessions. We also implemented two comparison
methods for aligning data across sessions: clustering of spatial
components, and pixel-wise averaging. These additional meth-
ods act as baselines for comparisons with the neural converter,
and have been used before for analysis of WFCI [7]. Finally,
we decoded the choice of the animal (left vs. right) using
the converted neural signals as a measure of the performance
of conversion. To quantify this, we calculated the accuracy
of each model using the Area under the Receiver Operating
Characteristic curve (AUC-ROC).
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Fig. 1. A schematic overview of our methods: (a) data augmentation, (b)
neural conversion of population activity, and (c) evaluation of converter using
a choice decoder.

A. Experimental Methods

This experiment was conducted on a head-fixed mouse as
it went through learning a visual and tactile delayed 2AFC
spatial discrimination task over 80 sessions. The mouse was
transgenic, expressing the calcium indicator GCaMP6f in
excitatory neurons, and was imaged across multiple sessions
using a custom-built widefield macroscope as in [8], to capture
the entire dorsal cortex from above. The mouse was trained on
two different modalities for the decision-making task: visual
and tactile stimuli. The mouse licked the left or right spout to
indicate choice after a delay period, and a water reward was
provided if the choice direction was the same as the stimulus
presentation side. To force the animal to commit to its initial
decision, the opposite spout was moved out of reach after
one spout was contacted. The mouse was observed over four
months during 80 sessions as it performed experiments, and
each session contained an average of 371 trials. The detailed
experimental details are similar to those in [8].

B. Preprocessing

1) LocaNMF Decomposition: Calcium imaging is help-
ful for recording large neural populations, but may require
downstream processing to recover the neural signals that we
can use to understand the behavior. Moreover, it is difficult

to segment the data into signals pertaining to each region.
Here, we perform temporal denoising, and decompose WFCI
videos into temporal and spatial components using Localized
semi-Nonnegative Matrix Factorization (LocaNMF) as in [9].
LocaNMF decomposition relies on the following mathematical
modeling:

Y(p,t) =Y ar(p)ex(t) ()
k

Where Y is an estimated raw neural recording, ay, is a spatial
component, ¢, is a temporal component, p is pixel, ¢ is
time point, and k € [1, K], where K is the number of
neural components. These spatial and temporal components
are divided into different regions, and the temporal activity of
any one region can now be represented using the following
formula

X ~ f(tr,t, k) 2)

where X is temporal activity of one brain region, ir is a
trial, ¢ is time point, k£ is the neural component, and f is
the distribution of temporal neural activity from each session.
We apply LocaNMF to each session’s activity separately in
order to model session-specific noise. Thus, we obtain 3-9
components per session in each brain region, representing the
region’s activity during the task. We would like to understand
the relationship of the neural activity to the environment, and
would thus need to align the neural activity across sessions.

2) Data augmentation: In order to have an adequate num-
ber of samples to train downstream models, we propose a data
augmentation as in Figure 2. First, we divided entire trials into
two groups depending direction of response (Left L or Right
R). Second, we sampled a specified number of trials from each
group. Third, we averaged over the sampled set and calculate
the z-score. We refer to this as an ‘augmented’ trial. Finally,
we assign each augmented trial with the corresponding label
(L/R) depending on the group that it was sampled from. The
advantage of this method is that we can generate as many
augmented trials as we need. For this study, we generate
an equal number of Left and Right augmented trials for the
conversion and decoding process.

C. Conversion of Neural Activity across Sessions

To study how neural activity evolves during learning, we
need to align the neural data across sessions and then relate
the resulting neural correlates to behavior. For this goal, we
introduce a neural converter that takes as inputs LocaNMF
temporal components {c;} in one session, and outputs the
temporal components in another session. This procedure is
performed for each brain region, and is termed a ‘region-based
converter’ here. We compare this converter to two established
methods, spatial clustering and pixel-wise averaging.

1) Region-based Converter: The main task of the neural
converter is transforming the source session’s neural com-
ponents to map to the target session’s neural components,
including the number of components. We designed our neural
converter with a linear regression model:
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Fig. 2. Schematic for the data augmentation method. We sample trials with
replacement according to the direction of response (L/R), and average the set.
Next, we construct the labeled data set and iterate the process many times to
get an adequate number of training and test samples.

Y; = Wi; X; 3)

Here, Y; is the estimated target session’s neural activity,
here session 4, with number of temporal components K;. X
is the neural signal of the source session, here session j,
with number of temporal components K;. Thus, W;; is of
dimension K; x K;. Both X; and Y} are flattened matrices
across times and trials. With our region-based converter, we
are successfully able to recast the dimensionality of neural
components from the source to the target sessions. After
converting, we measured the R? score by comparing the
estimated signals with the target session’s signal to evaluate
the performance of the converter.

2) Spatial Clustering: As a comparison to our region-
based converter, we consider a method introduced in [7]. We
cluster the spatial components resulting from LocaNMF in
order to align the components, here using the identity of the
neural populations that are activated across sessions. We first
downsampled the images by 10% from the original size using
10x 10 kernel size in order to reduce the dimensionality and in-
crease the signal-to-noise ratio (SNR) of the high-dimensional
spatial components. Next, we applied t-distributed stochastic
neighbor embedding (t-SNE) to the downsampled dataset to
further reduce the dimensionality of the spatial components.
Based on the t-SNE map, we defined associated clusters using
OPTICS, while setting a maximum euclidean distance between
data points in each cluster. Among multiple clusters, the largest
cluster was chosen as a correlated component, and we grouped
temporal signals according to this cluster. The process of
spatial clustering is shown in Figure 3.

3) Pixel-wise average: Using the brain atlas, here the Allen
Atlas, we found pixels corresponding to each brain region.
Next, we averaged the temporal signals from all the pixels
in a given region, and this forms our one-dimensional pixel-
wise average signal that can automatically be compared across
sessions.

TSNE Clustering
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Fig. 3. Schematic and example of the spatial clustering method. To increase
the SNR and reduce dimensionality, we downsampled the high-dimensional
spatial components. Next, we applied t-SNE to further reduce the dimension-
ality of the data and to cluster the components. Using the resulting t-SNE
map, we grouped the temporal neural components and performed decoding.

Using these two methods, spatial clustering and pixel-
wise average, we built baselines for comparing the decoding
performance of neural converter.

D. Decoding behavior across sessions

How do we know that our across-session neural converter is
performing well? We test the performance of the converter by
evaluating the ability of the converted neural data to decode
the choice of the animal. We perform the following for data
from every brain region separately.

We first train the decoder with the original data in a given
session using a logistic regression [10]:

T K 1
L= Zl ]; 1 + e~ (Bo+B;rYijk) @
]: f—

Here, Y is the k™ component of the neural activity in the
i" trial and j time point in the trial, L’ is behavior label of
i™ trial (L / R choice), and {8y, f11, Bi2,. ..} are estimated
constants.

Next, we convert the session’s data from all other sessions,
i.e., we consider it as the ‘target’ session with each other
session as the ‘source’ session. For each estimate of the
session’s data from other sessions, we then calculate the
decoding accuracy while inputting the output of the converter
(estimated ‘target’ session data) into the decoder. See Figure
1 for schematic. We perform this evaluation while considering
each session as a target and all other sessions as sources.
With the predicted labels, we quantify the decoding accuracy
using the Area under the Receiver operating characteristics
curve (AUC-ROC score) and calculate a confusion matrix to
efficiently view the decoding results.

Since our label is composed of two classes (L/R) with an
equal number of trials per class, our chance level is 50%.
Therefore, we can validate our decoder by comparing the
decoding accuracy with chance level, when it is trained and
tested in the same session.

III. RESULTS

To understand how animal learns a decision-making task,
we applied our converter - decoder methodology to data from
80 sessions of neural recordings. We evaluated the converter
by measuring its decoding accuracy via the AUC-ROC score,
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Fig. 4. Decoding accuracy of right side of brain regions: primary visual cortex, primary somatosensory cortex, primary motor cortex, and secondary motor

cortex. Accuracy was measured through AUC-ROC score.

while converting the activity of each session to each other
session. Moreover, we applied the two baseline methods to
show comparisons of our conversion method with other more
established methods.

The confusion matrix for the AUC-ROC is shown in Figure
4 for the three types of converter. In this matrix, the x and
y axes represent the target and source sessions, respectively.
We filled the diagonal points with the ‘upper bound’ values,
which are the decoding scores from equally divided set for
train and test in the same session of data. Since we used
the same decoder on the converted signals as on the original
dataset, each element of the confusion matrix conveys how
well the neural signals were aligned between the source and
target sessions using the three different conversion methods.

The confusion matrix for our proposed region-based con-
verter attains a very high accuracy on most sessions, and
vastly outperforms the baseline methods. The spatial clustering
conversion method is not consistently able to convert the
signals from each session to each other session. Lastly, the
pixel-wise averaging works well, but is not able to achieve
a high decoding accuracy. In fact, we note that the pixel-
wise average does not always attain a high level of accuracy
even while decoding the target session’s data itself (diagonal
line). Thus, more dimensions from the original data may

be necessary in order to achieve a high accuracy, and our
proposed region-based converter is able to use all dimensions
in the neural data well.

We would have expected a block-diagonal structure in the
decoding accuracy to convey that the neural data in neigh-
boring sessions is somewhat stable, but here, the neural data
seems to be convertible across all sessions equally well. There
does not seem to be a noticeable chronological structure across
in the decoding accuracy in any of the conversion methods.

We calculated the confusion matrix for the primary visual
cortex, primary somatosensory cortex, primary motor cortex,
and secondary motor cortex. Out of these, the primary visual
did not convert across sessions as well as the other brain
regions. This may be because the visual stimulus enters the
brain in a different way than the tactile stimulus, and here we
performed the same procedure on trials of all stimulus types.

IV. CONCLUSION

The study of session-to-session variability relies on the
ability to be able to analyze the data from different sessions in
the same space, to perform tasks such as decoding. Here, our
region-based converter outperformed previously used methods
for WFCI neural data. This converter consisted of a data
augmentation step and then a linear conversion on extracted
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region-based data. Our converter is able to act on multi-
dimensional data to transform unordered signals from one ses-
sion to another, and is able to decode the resulting choice of the
animal with high accuracy. Future work includes the analysis
of learning across the sessions using the learnt converters.
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