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Abstract—While the neural commonalities as subjects perform
similar task-related behaviors has been previously examined,
it is very difficult to ascertain the neural commonalities for
spontaneous, task-unrelated behaviors such as grooming. As our
ability to record high-dimensional naturalistic behavioral and
corresponding neural data increases, we can now try to un-
derstand the relationship between different subjects performing
spontaneous behaviors that occur rarely in time. Here, we first
apply novel machine learning techniques to behavioral video
data from four head-fixed mice as they perform a self-initiated
decision-making task while their neural activity is recorded
using widefield calcium imaging. Across mice, we automatically
identify spontaneous behaviors such as grooming and task-related
behaviors such as lever pulls. Next, we explore the commonalities
between the neural activity of different mice as they perform
these tasks by transforming the neural activity into a common
subspace, using Multidimensional Canonical Correlation Analysis
(MCCA). Finally, we compare the commonalities across different
trials in the same subject to those across subjects for different
types of behaviors, and find that many recorded brain regions
display high levels of correlation for spontaneous behaviors
such as grooming. The combined behavioral and neural analysis
methods in this paper provide an understanding of how similarly
different animals perform innate behaviors.

Index Terms—Canonical Correlation Analysis, Neural Activity,
Across-subject analysis

I. INTRODUCTION

It remains under-explored how neural activity changes
across different animals from the same species while perform-
ing the same tasks. Recovering commonalities in neural activ-
ity across different trials and conditions has been demonstrated
in previous studies [1]. Here we explore the neural activity
correlations while the subjects perform similar spontaneous
behaviors vs. task-related behaviors.

To obtain neural activity when different animals are per-
forming similar behaviors, the first thing to do is to identify
periods of time when the behavior is similar across animals.
Here, we model high-dimensional video behavioral recordings
into a lower-dimensional space in a way that captures a large
percentage of the variance. To achieve this, researchers in this
field have designed several methods. Pose estimation methods,
for example, DeepLabCut (DLC), LEAP and AlphaTracker,
[2]–[4], etc, are popular supervised methods to study ani-
mal behavior. Although these methods work well in across-
subject settings, they may be missing key information in the

behavioral videos, for example, the face moving, the whiskers,
and small muscle movements. The unsupervised methods
for behavioral feature extractions can address questions that
require characterizing these key pieces of information. For
example, MoSeq analyzes the behaviors by directly applying
Principal Component Analysis (PCA) to the behavioral videos
[5], [6]. Similarly, Behavenet uses non-linear autoencoders to
learn the representations from the videos [7]. However, both of
those models failed in generating interpretable latent variables.
In addition to that, those methods failed to capture the same
behavior while distinguishing different animals in the across-
subject settings. Therefore, here, we apply CS-VAE [8] to
behavioral data across mice performing a delayed self-initiated
two-alternative forced choice (2AFC) task. CS-VAE is inspired
from MSPS-VAE [9], but is more robust for a continuously
varying and unknown number of sessions or subjects.

In addition to the behaviors, the neural activity has been
simultaneously recorded and preprocessed by LocaNMF [10],
which enables efficient dimensionality reduction of the neural
activity while keeping region-based information, thus allowing
us to capture a high amount of variance in the neural data
across subjects. CCA has been widely adopted in many
studies related to neural signal processing [11], [12]. Here, we
perform the alignment for multi-subject neural activities using
Multidimensional Canonical Correlation Analysis (MCCA).
The alignment is achieved by linearly projecting the neural
activity into the same (common) feature space.

The overall workflow is shown in Fig. 1A. In this work,
we explore the cross-subject neural relationships for different
brain regions. We first explain the workflow for selecting
similar behavior in multiple subjects and across a single
subject. Then, we introduce the mathematical details of MCCA
and how it can be used to align the neural activity for different
subjects performing similar behaviors. Next, we compare the
neural correlations in across-subject settings and in same-
subject settings. Finally, we discuss future work.

II. METHODS

In this section, we first introduce the experimental data used
in this work. Then, we give a brief overview of the model that
we applied to generate the behavioral latent variables and the
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Fig. 1. Overview of the model A. The overall workflow for comparing the neural activities for different subjects performing similar spontaneous behaviors:
First, the behavioral videos are being encoded into behavior latents by CS-VAE. Then, the behavior latents would be clustered into different motifs. After
that, similar behaviors are grouped based on their mean and standard deviation values. We can therefore obtain the corresponding neural activities. Finally, the
neural activities from different subjects are aligned using the MCCA. B. CS-VAE structure: The video data is being encoded into three latent spaces: (1) the
supervised latents decode the labeled body positions, (2) the unsupervised latents model the subject’s behavior that is not explained by the supervised latents,
and (3) the constrained subspace latents model the features relating to multi-subject. C. Behavioral motif generation: The unsupervised latents from part B are
the observation of the SLDS model. The behavioral motifs are the outputs of the state space model. D. Behavior latents are cut into small fragments. Similar
behavior fragments are grouped together based on their mean and standard deviation values. The corresponding neural activities are obtained based on the
grouping results of the behavior. E. Neural activities are being aligned using MCCA. MCCA aligns the neural activities from different subjects by mapping
them into the same feature spaces.

corresponding behavioral motifs. Finally, we detail MCCA that
we used for neural dynamic alignment.

A. Experimental Methods

In our work, we explored a subset of the behavioral dataset
detailed in Musall et al., 2019 [13]. Here, head-fixed mice
perform a self-initiated visual discrimination task. Each task
is initiated by the mouse pressing a lever, followed by a
visual stimulus that is displayed towards the left or the right.
The spouts on both sides come inwards after a short delay,
and if the mouse licks the correct spout that corresponds
to the direction of the visual stimulus, a water reward is
provided. The dataset has the task-related actions that are
annotated automatically with trial-markers based on various
sensors, such as force sensors on the levers. Beyond these task-
related actions, the mice also perform other spontaneous, task-
unrelated actions, such as grooming, raising a paw, whisking,
etc. The behaviors of the mice were recorded from two views
(face and body). During the tasks, the neural activity across
the entire mouse dorsal cortex was also recorded in the form

of widefield calcium imaging. Here, we work with data from
four mice with 388 trials for each mouse. Each trial lasts for
6.3 seconds. The spatial resolution for the widefield calcium
imaging was 20µm per pixel and the total field of view
was 12.5 × 10.5mm2. The recording runs at 60 frames per
second. Further recording details can be found in [13], with
the preprocessing details in [10].

B. Constrained-Subspace Variational Autoencoder (CS-VAE)

CS-VAE is a semi-supervised VAE that produces inter-
pretable latent variables for multi-subjects datasets or datasets
with continuously varying backgrounds, etc. It does this by
partitioning the latent into three subspaces: supervised space,
unsupervised space, and subject-specific space, as shown in
Fig 1B. The supervised latent encodes the positions of the
body parts, such as paws, nose, etc., and also the position of
the various equipment in our field of view, such as levers,
spouts, etc. The positions were obtained using DeepLabCut
(DLC) [14]. The unsupervised latents capture the time-varying
movement that has not been encoded by the supervised latent.
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In our study, the unsupervised information is the ’jaw move-
ment’ and the ’chest movement’. The subject-specific latents
capture the appearance of each subject, such as the size of
the eye, the color of the fur, the place where the head is
fixed, etc. This is achieved by regularizing the latent space
with the Cauchy-Schwarz divergence. With this regularization,
the latent in this subspace is constrained to a pre-defined
prior distribution. By properly choosing the prior distribution,
subjects from different groups can be automatically separated
in this latent space, so that the difference across them can be
captured. In addition, the separation of each latent is achieved
by ensuring orthogonality between them.

The model includes three parts: the encoder, the latent
subspaces, and the decoder. After the image goes through
the encoder with five convolutional layers in sequence, it
is encoded into the lower dimensional subspaces that are
described above. To ensure the latent that we get has the ability
in capturing the information in the image, they would then go
into the following decoder which is symmetric to the encoder.
Details about the model and mathematical underpinnings can
be found in [8].

C. Behavioral motif generation

To obtain the behavioral motifs for behaviors that are
largely self-initiated, we used the unsupervised latents from
the CS-VAE model. We modeled the unsupervised latents as
observations in a switched linear dynamical system (SLDS)
and generated the behavioral motifs (Fig. 1C). An SLDS
consists of three states: a discrete latent state zt ∈ {1, 2, ..K},
a continuous latent state xt ∈ RM , and the observation
yt ∈ RN . Here, t = 1, 2, 3, .., T is the time step, T is the
length of the input signal; K is the number of discrete states;
M is the number of latent dimensions; N is the observation
dimensions. The discrete latent state zt follows the Markovian
dynamics with the state transition matrix expressed as:

Qi,j = P (zt = j|zt−1 = i) (1)

The continuous latent state xt has the following linear dynam-
ical relations that are determined by zt.

xt+1 = Azt+1
xt + Vzt+1

ut + bzt+1
+ wt (2)

Here, Azt+1 is the dynamic matrix at state zt+1; ut is the
input at time t, with Vzt+1 being the control matrix; bzt+1 is
the offset vector and wt being the noise which is generally
the zero mean Gaussian. Here, our observation model is in
Gaussian case; therefore, the observation yt is expressed as:

yt = Cztxt + Fztut + dzt + vt (3)

Here, Czt is the measurement matrix at state zt; Fzt is the
feed-through matrix which directly feed the input into the ob-
servation; dzt is the offset vector and vt is the noise. Here the
update was accomplished by the Expectation-Maximization
(EM) algorithm. In the E-step, the model updates the hyper-
parameters. In the M-step, the log-likelihood in Eq.3 is being
maximized.

D. Behavior selection

Although the behavioral features generated from Sec II-B
succeed in capturing similar spontaneous behaviors across
different animals, the behavior from the same behavioral
motifs can vary substantially. For example, for the raising paw
motif, the continuous moving up the paws could be grooming
or other complex behaviors. To address this problem, we first
cut the behavior from the same motif into small chunks, in
which we calculated the corresponding mean and standard
deviation of the behavioral latents. Finally, we compared those
values and kept the chunks that have similar mean and standard
deviations within and across animals as shown in Fig. 1D.
The above steps were performed for all behavioral motifs
considered in this study.

In addition to the spontaneous behaviors stated above, we
also selected an ‘idle’ behavior where the mouse is not seen
to be moving much, and one task-related behavior, namely a
’lever pull’ behavior that is used to indicate the initiating of
each task (Fig. 2A).

E. Multidimensional Canonical Correlation Analysis (MCCA)
for neural signal alignment

Here, we adopt the assumptions in Safaie et al. [1] that when
the animals perform the same actions, the neural latent will
share similar dynamics. We employ MCCA to align the high-
dimensional neural activity across multiple subjects [15]. CCA
is a linear model for finding the relationships between two
datasets by identifying a common lower dimensional space.
MCCA, as its name implies, is the model for finding the a
common lower-dimensional space across multiple datasets. To
do this, CCA or MCCA projects the datasets onto a canonical
coordinate space that maximizes correlations between them
(Fig. 1E).

In our work, after extracting similar behaviors chunks from
different individuals (see Sec II-D), we then extracted the
corresponding neural activity for each subject. To smooth away
the discreteness of the neural activity chunks, we shuffled
the chunks before concatenating them together. After that,
we performed the MCCA for all four subjects on each
brain region. For each brain region, we choose the four
sets of neural activities being the same length d, X1 =
{x11, x12, ..., x1n} ∈ Rn×d, X2 = {x21, x22, ..., x2n} ∈
Rm×d, X3 = {x31, x32, ..., x3n} ∈ Rk×d, and X1 =
{x11, x12, ..., x1n} ∈ Rl×d. Here, we choose the mini-
mum number of region dimensionality in all of the four
subjects as the dimension of canonical coordinate space,
minimum{n,m, k, l}, and is annotated as j. For each di-
mension, define the projection weights for each dataset as
aj = {aj1, aj2, .., ajn}, bj = {bj1, bj2, .., bjn}, cj =
{cj1, cj2, .., cjn}, and dj = {dj1, dj2, .., djn}. The resulting
projected datasets are now d-dimensional arrays: u1j =
⟨aj , X1⟩, u2j = ⟨bj , X2⟩, u3j = ⟨cj , X3⟩, and u4j =
⟨dj , X4⟩. For each of the coordinate spaces, the objective
functions can be written as:

ρj =
⟨u1j , u2j , u3j , u4j⟩

∥u1j∥∥u2j∥∥u3j∥∥u4j∥
(4)
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Fig. 2. A. Example screenshot of each behavior for one of the subjects B. One example ethogram of the self-initiated behavior for each mouse. Each behavior
happens at approximately the same rate C. Correlation score for behavioral-based aligned neural activity. The grooming behavior has higher neural correlation
scores for cross-subjects than other behaviors.

Generally, for each pair of canonical components, the above
equation is solved iteratively to find the best projects that can
maximize the correlation. During training, the orthogonality
between each canonical component is constrained. In our
experiment, we calculated the across-subject correlations for
each obtained CCs and kept the highest correlation value for
each pair, here termed ρ1 (Equation 4). We performed the
above task for each brain region. In addition, we shuffled the
chunks ten times and repeated the above steps.

We also calculated the canonical component for the same
subject having similar behaviors. We applied the same methods
as stated above to find similar behavior components and the
corresponding neural activities. We divided the obtained neural
activities into two parts with the same length and performed
the CCA on those two signals. We calculated the correlation
between the first two canonical correlation axes as the baseline.

III. RESULTS

A. Behavioral motifs across subjects

The motif generation results are detailed in [8]. As seen
in the ethograms in Fig. 2, with the CS-VAE latents as the
observation to the SLDS model, it captures common states
across different subjects. Here, we have three motifs, licking,
idle, and grooming. These states also occur with a very similar
frequency across mice with the mean frequency being 0.22±
0.10, 0.72± 0.08, and 0.06± 0.04. Example images for each
behavior are shown in Fig. 2. In addition to that, we also
add the task-related motif, lever pull, which annotated using a

force sensor on the levers. This behavior happens every trial
and is for initiating the task.

B. Across-subject commonalities in neural activity

We compare the commonalities across subjects to the com-
monalities for two random instances of the behavior performed
by the same subject by plotting the correlation scores in the
form of violin graphs. For the same subject. The ‘same sub-
ject’ commonality provides a baseline for the across-subject
correlations. As previously described, the shuffled tasks were
performed 10 times for each time calculating the correlation
value. There are 40 points contained in each violin plot. For
the cross-subjects, we calculate the correlation values in a
pairwise manner, i.e., for two subjects at a time, with the neural
activity pre-aligned for all four subjects. We also performed
the shuffling task; thus, there are 60 points in each violin plot.

In Figure 2, we see that for the idle behavior, the neural
correlation across mice is much lower than the correlation
within the same mouse; however, this does not hold for the
task related behaviors such as lever pull and licking, or the
spontaneous behaviors such as grooming. For the grooming
behavior, the neural correlations within and across subjects
are much higher than for the idle behaviors, and in fact, even
higher than the task-related behaviors. This may be due to
innate behaviors having common neural information pathways
across mice, whereas learnt behaviors may display significant
differences across mice.
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C. Region-based differences in commonalities

In this work, we studied the following brain regions:
Primary somatosensory cortex (SSp), Secondary motor cor-
tex (MOs), Primary motor cortex (MOp), Main olfactory
bulb (MOB), and Primary visual cortex (VIS). We see that,
surprisingly, the sensory areas such as the visual and the
somatosensory areas are much more highly correlated across
mice for all behaviors as compared to motor behaviors. This
may be due to the similarities in sensory feedback due to these
similar behaviors, but is a topic of future exploration.

IV. DISCUSSION

In this work, we study the relations between neural activities
while different subjects perform the same task-related and
spontaneous behaviors across mice. Historically, this has been
difficult to explore because of the difficulties in extracting
the same behaviors across mice. Here, we applied a new
behavioral analysis tool called CS-VAE to extract across-
subject behavioral latents from high-dimensional videos. Hav-
ing extracted similar behaviors across animals, we studied
the neural activity within similar task-related and spontaneous
behaviors, and found that both have a high level of correlation
across subjects. The level of correlation during both of these
behaviors across subjects is much higher than the level of
correlation if the mice are idle. During idle behavior, the mice
have varied cognitive activity that get entrained when faced
with performing a task such as a lever pull. Here, we find
that the neural activity across subjects during spontaneous
behaviors such as grooming also have a high correlation
across mice, which has been under-explored in the past. Our
study paves the way for a principled approach toward this
quantification.
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