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SUMMARY

Maize (Zea mays ssp. mays) populations exhibit vast ranges of genetic and phenotypic diversity. As sequen-

cing costs have declined, an increasing number of projects have sought to measure genetic differences

between and within maize populations using whole-genome resequencing strategies, identifying millions of

segregating single-nucleotide polymorphisms (SNPs) and insertions/deletions (InDels). Unlike older geno-

typing strategies like microarrays and genotyping by sequencing, resequencing should, in principle, fre-

quently identify and score common genetic variants. However, in practice, different projects frequently

employ different analytical pipelines, often employ different reference genome assemblies and consistently

filter for minor allele frequency within the study population. This constrains the potential to reuse and remix

data on genetic diversity generated from different projects to address new biological questions in new

ways. Here, we employ resequencing data from 1276 previously published maize samples and 239 newly

resequenced maize samples to generate a single unified marker set of approximately 366 million segregat-

ing variants and approximately 46 million high-confidence variants scored across crop wild relatives, land-

races as well as tropical and temperate lines from different breeding eras. We demonstrate that the new

variant set provides increased power to identify known causal flowering-time genes using previously pub-

lished trait data sets, as well as the potential to track changes in the frequency of functionally distinct

alleles across the global distribution of modern maize.

Keywords: maize, genetic markers, GWAS, whole-genome resequencing, diversity panel, natural genetic

variaton.
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INTRODUCTION

The degree of DNA sequence diversity observed in Zea

mays (maize) populations exceeds that of humans, most

genetic model species and many wild plants (Buckler

et al., 2006). This diversity includes not only small-scale

variation – single-nucleotide polymorphisms (SNPs) and

insertions/deletions (InDels) – but also copy-number and

presence/absence variation (Swanson-Wagner et al., 2010).

Scoring large populations of maize for common sets of

segregating DNA sequence polymorphisms (markers) is a

key step in a range of research approaches to identify

targets of selection (Hufford et al., 2012; Wang et al., 2020),

inferring past demographic events and geographic diffu-

sion (Da Fonseca et al., 2015; Kistler et al., 2018; Swarts

et al., 2017), and linking genotype to phenotype (Mural

et al., 2022). Early approaches to scoring common sets of

genetic markers across large maize populations have tar-

geted thousands to hundreds of thousands of known mar-

kers, in the case of arrays (Ganal et al., 2011; Unterseer

et al., 2014). Array-based genotyping allowed the wide

reuse and combination of independent data sets generated

using the same array platform and, in cases where
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common probes were retained, between platforms. Reduc-

tions in the cost of DNA sequencing have enabled

sequencing-based strategies to be combined with marker

discovery and scoring in a single step (Elshire et al., 2011;

Romay et al., 2013). This change reduced the substantial

ascertainment bias present in many array-based genetic

marker data sets. However, combining marker discovery

and scoring into a single step created new barriers to com-

bining data sets. It was not possible to target specific

known markers to enable interoperability between geno-

typing platforms. Different approaches to reducing the pro-

portion of the genotype sequenced targeted different

subsets of the genome for sequencing. Even when the

same region was sequenced in two studies, differences in

allele frequency, SNP-calling software pipelines or stochas-

tic distributions of read depths might result in the same

marker being identified and scored in one data set and

absent from another. Sequencing technology has contin-

ued to improve and so costs have continued to decline.

Whole-genome resequencing is now economically viable

even for populations of hundreds of maize genotypes. This

removes the barrier of generating sequence data for lar-

gely non-overlapping sites that was present in earlier

sequencing-based strategies. However, combining marker

data sets across different studies remains challenging, as

very different sets of markers will be discovered and pass

quality filtering in different populations and/or when using

different bioinformatics pipelines.

Identifying a common set of genetic variants in maize

is challenging, and the optimal set of lines to use in defin-

ing a marker set is likely to depend upon the question of

interest. Maize was domesticated from a wild progenitor

teosinte (Zea mays ssp. parviglumis) 9000–10 000 years

ago in south-west Mexico (Matsuoka et al., 2002; Piperno

et al., 2009), with substantial gene flow from at least one

other teosinte (Zea mays ssp. mexicana) (Chen et al., 2022;

Van Heerwaarden et al., 2011). After domestication, maize

spread across North and South America (Da Fonseca

et al., 2015; Kistler et al., 2018; Swarts et al., 2017). Maize,

almost certainly of Caribbean origin, was first cultivated in

southern Europe in 1493 and was growing in Germany by

1539 (Tenaillon & Charcosset, 2011). By 1555, substantial

maize cultivation was already being recorded in Henan,

China (Ho, 1955). Therefore, maize was already cultivated

on at least four continents in the mid 16th century. Tropical

maize varieties that flower under short-day conditions,

making them unsuitable for cultivation in regions with

lethal frosts, retain many alleles and haplotypes not found

in temperate populations (Hung et al., 2012). Breeding

efforts in the USA, Europe and China focus on temperate-

adapted cultivars that are less photoperiod sensitive than

tropical maize. In the USA, hybrid production focuses on

three heterotic groups (stiff stalk, non-stiff stalk and

iodent), in Europe, many hybrids are generated from

crosses between the flint and dent heterotic groups,

whereas in China, the Huangzaosi group was also used

alongside stiff stalk, non-stiff stalk and iodent (Wang

et al., 2020). As a result, different research groups studying

quantitative genetic variation, domestication, adaptation or

crop improvement have selected different sets of inbred

lines, open-pollinated landraces or maize wild relatives

drawn from populations in different parts of the globe.

The maize HapMap2 project was motivated in part by

understanding the changes in genetic diversity associated

with maize domestication and improvement (Chia

et al., 2012). The study identified more than 55 million

total variants from an average of 4x depth of 103 samples,

including 83 individuals representing domesticated maize

and 20 individuals drawn from wild relative populations

aligned with B73_RefGen_V1 (Chia et al., 2012; Hufford

et al., 2012). A project focused on understanding the his-

tory and demography of the initial introduction of maize

to Europe identified 22.3 million SNPs relative to the

B73_RefGen_V2 genome by resequencing 67 maize sam-

ples originating in the Americas (n = 37) and Europe

(n = 30), to an average depth of 18× (Brandenburg

et al., 2017). Given the focus on the introduction of maize

to Europe, this study focused primarily on maize lines ori-

ginating in western (18) and central (11) Europe, with one

line sourced from eastern Europe. Another study focused

on the pre-Colombian demographic history of maize rese-

quenced 35 maize landraces and wild relatives from the

Americas to a median depth of 28× and identified 49.5 mil-

lion SNPs via alignment with the B73_RefGen_V3 refer-

ence genome (Wang et al., 2017). A study of maize

domestication and improvement in South America gener-

ated data from 49 living and archeological maize samples

and generated a new SNP set by aligning data from these

new samples and data from 70 published maize data sets

with the B73_RefGen_V4 reference genome (Kistler

et al., 2018). The resequencing of 521 diverse maize

inbred lines to an average depth of 20× identified 11.5 mil-

lion variants as part of an effort to link structural variation

in the genome to changes in gene expression and pheno-

typic outcomes (Yang et al., 2019). A comparative analysis

of phenotypic and genetic changes associated with the

breeding effort in different temperate breeding programs

generated resequencing data from 350 maize inbred lines

from China (187) and the USA (163) sequenced to a med-

ian depth of 12× and identified more than 29 million

genetic markers relative to the B73_RefGen_V3 reference

genome (Wang et al., 2020). An effort to quantify SNP

and transposon insertion diversity within an association

panel used for genome-wide association studies identified

approximately 2.4 million SNPs and 0.45 million segregat-

ing transposon associations across a panel of approxi-

mately 500 temperate adapted maize lines (Qiu

et al., 2021; Renk et al., 2021). Finally, a recent study of
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genus-wide genetic variation in maize identified approxi-

mately 65 million SNPs and approximately 8 million

InDels by generating sequencing data to an average depth

of 22× from 239 accessions of wild relatives (Chen

et al., 2022; Gui et al., 2022), in combination with the

diversity panel of approximately 500 maize lines

sequenced by Yang et al. (2019). The largest scale of these

efforts to date is likely the aggregate analysis of 1218

maize lines as part of the maize HapMap3 project repre-

senting global maize diversity; however, higher sequen-

cing costs at the time of this study resulted in lines being

resequenced to a median depth of 2× (Bukowski

et al., 2018). Although different approaches have been

used to identify genetic variants in these different studies,

the most common alignment tool used has been BURROWS–
WHEELER ALIGNMENT (BWA) (Li, 2013) and the most common

variant caller used has been GENOME ANALYSIS TOOLKIT (GATK)

(Poplin et al., 2018), for example see (Chen et al., 2022;

Liang et al., 2021; Wang et al., 2017; Wang et al., 2020).

Here we sought to update and expand the reference

set of segregating diversity in maize by incorporating pub-

lished high-coverage resequencing data from maize lines

originating on six continents, including resequencing data

from lines relative to maize domestication and improve-

ment, including wild relatives, tropical landraces and

archeological maize samples, as well as maize wild rela-

tives, and to further improve the resolution and mapping

power for maize genome-wide association studies con-

ducted in the temperate midwest through the resequen-

cing of an additional 239 maize lines, including 228 lines

from the Wisconsin Diversity panel not previously rese-

quenced and 11 Eastern European lines. To ensure the

greatest degree of reusability and forward compatibility,

we employed the B73_RefGen_V5 maize reference genome

(Hufford et al., 2021) and, in addition to raw and filtered

SNP files, we are releasing GATK GenomicsDB datastores

so that these same 1515 lines can be incorporated into

future high-coverage maize resequencing efforts without

the need to reprocess and realign the sequence data.

RESULTS AND DISCUSSION

Sequence variation across the genome of maize

Sequence data from 1276 maize individuals generated as

part of eight different studies (Brandenburg et al., 2017;

Bukowski et al., 2018; Chen et al., 2022; Chia et al., 2012;

Kistler et al., 2018; Qiu et al., 2021; Unterseer et al., 2014;

Wang et al., 2017; Wang et al., 2020) were retrieved from

the European Nucleotide Archive. To this public data set,

we added data from de novo resequencing of 228 maize

inbred lines, which are part of the expanded Wisconsin

Diversity Panel (Mazaheri et al., 2019) but were not rese-

quenced as part of previous efforts (Bukowski et al., 2018;

Qiu et al., 2021). A specific goal of this effort was to

provide a high-density genome-wide set of markers for the

Wisconsin Diversity Panel. In order to accomplish this goal,

we included resequencing data of lower depth for 144

members of the Wisconsin Diversity Panel that were rese-

quenced as part of maize HapMap3 (Bukowski et al., 2018).

In addition, to increase the representation of under-

sampled maize subpopulations, we also chose to include

sequence data from 70 other accessions included in Hap-

Map3, primarily from tropical lines.

An average of 155 million reads were generated for

each of these inbred lines, corresponding to an average

sequencing depth of approximately 22×. Additionally, a set

of 11 maize inbred lines from Poland, representative of

Eastern Europe, a region only modestly represented

among previous maize resequencing efforts, were rese-

quenced here to an average depth of approximately 35×.
Those lines were used in previous studies on the cold

response in maize (Grzybowski et al., 2019; Sowiński

et al., 2005). The total set of 1515 maize accessions

included wild relatives, archeological samples, modern

open-pollinated varieties and inbred lines from both public

and private sector breeding efforts, representing maize

lines originating in or developed over six continents

(Table S1 and S3).

Aligning sequence data from each of these accessions

with the maize B73_RefGen_5 reference genome (Hufford

et al., 2021) and applying recommended filtering criteria

from GATK resulted in the identification of 365 611 965

potential DNA sequence polymorphisms. This number is

substantially higher than the approximately 83 million var-

iants identified in the maize HapMap3 project, one of the

largest surveys of maize genetic diversity conducted to

date, incorporating data from 1218 maize accessions

(Bukowski et al., 2018). However, it should be emphasized

that HapMap3 utilized a different variant-calling pipeline

and that the median sequencing depth of samples in that

study was approximately 2×. A more recent study that

examined the genetic differentiation of male and female

heterotic groups in maize, using resequencing data from

1604 maize inbred lines, primarily from China and the

USA, resequenced to an average depth of approximately

7.5×, identified roughly 242 million DNA sequence poly-

morphisms (Li et al., 2022).

Second-stage quality filtering (based on allele num-

ber, missing data rates, sequence depth and excess hetero-

zygosity, see the Experimental procedures) resulted in a

smaller set of 46 054 265 higher-confidence variants,

including 43 296 332 SNPs and 2 757 933 InDels

(Figure S1). The median total sequencing depth for higher-

confidence variants was 17 365 (Figure S3), corresponding

to an average sequence depth of 11.5 reads per site per

individual. Concordance rates for SNP calls among the 26

nested association mapping (NAM) founder parents (Huf-

ford et al., 2021) and SNP calls reported as part of the
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de novo sequence assembly of these parents ranged from

92% to 99%, with a mean value of 98% (Table S2). Among

these higher-confidence variable sites, the median acces-

sion was genotyped as heterozygous 2.8% of the time.

However, the per-accession heterozygosity rates varied sig-

nificantly across groups (Figure S4). Heterozygous calls

were less common in centromeric regions (Figure S5).

Groups expected to consist primarily of inbred lines, such

as those classified as belonging to the stiff stalk, non-stiff

stalk and iodent heterozygous groups typically exhibited

per-accession heterozygosity values of <3%. Accessions

classified as wild relatives frequently exhibited per-

accession heterozygosity values of >10% (Figure S5;

Table S1). Inbred lines with unexpectedly high heterozyg-

osity were not removed from the final data set; however,

they should be used with caution as these may represent

contaminated or mislabeled samples.

Although many high-confidence SNPs (41%) and

InDels (38%) were rare, defined here as a minor allele fre-

quency of ≤5%, more than 26 million variants were com-

mon, defined as a minor allele frequency of >5%
(25 154 632 SNPs and 1 704 190 InDels) (Figure 1b,d). Seg-

regating SNPs were more common around pericentromeric

regions (Figure 1a), whereas segregating InDels were more

frequent on chromosome arms and less frequent in peri-

centromeric regions (Figure 2c). The relationship between

distance from the centromere and SNP or InDel density was

extremely weak but statistically significant for each

chromosome (Figure S6), similar to the pattern of SNPs and

InDels reported in Sorghum bicolor (Lozano et al., 2021).

Linkage disequilibrium was typically elevated in pericentro-

meric regions, likely reflecting lower recombination rates in

these regions (Figure 1e). The pattern of elevated linkage

disequilibrium around the centromere was less prominent

on chromosome 10, consistent with previous reports

(Romero Navarro et al., 2017). Several other peaks of ele-

vated linkage disequilibrium were observed that did not

coincide with the known positions of maize centromeres.

One potential explanation is that these peaks may represent

large segregating structural variants (Crow et al., 2020);

however, validating this hypothesis is beyond the scope of

this article. Most high-confidence variants (57%) were

located in the intragenic regions, defined as the regions

≥5 Kb from the closest annotated exon. Another 31% of var-

iants were located in regions outside annotated genes but

<5 Kb from the closest gene (Figure 1f). Among variants

located between the annotated transcription start sites and

transcription stop sites of genes, intronic variants were the

most abundant (8.6%), followed by the 50 and 30 untrans-
lated regions (UTRs) (0.7% and 0.9%) and the coding

sequence (CDS) (0.4%). The highest density of variants per

kilobase was observed in regions immediately upstream

and downstream of the annotated genes, followed by the

50- and 30-UTRs (Figure 1g). Consistent with expectation, the

CDS sequence contains on average the lowest density of

variants.

Figure 1. Properties of high-confidence maize genetic variants identified in this study. Distribution of high-confidence and common (MAF >5%, approx. 27 mil-

lion) single-nucleotide polymorphisms (SNPs) (a) and insertions/deletions (InDels) (c) across each of the 10 maize chromosomes. For both (a) and (c) the gen-

ome was divided into non-overlapping 100-Kb windows and SNPs and InDels were counted in each window. Distribution of minor allele frequency of high-

confidence (approx. 46 million) SNPs (b) and InDels (d). (e) Mean linkage disequilibrium (LD) value in 100-Kb window calculated with high confidence, and com-

mon (MAF >5%) SNPs. Black triangles indicate the centromere position on each chromosome. (f) Percentage and (g) average number per kilobase of variants

across the major genic and intergenic regions calculated with the high-confidence variant set.
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Figure 2. Geographical distribution, population structure, linkage disequilibrium (LD) patterns and nucleotide diversity in maize. (a) Geographical distribution of

the country of origin for 1515 maize individuals. (b) First three principal components from PCA analysis of 1515 maize individuals. Each individual was assigned

to different groups based on previous literature data. (c) Genome-wide averaged distance of LD decay for six maize groups. (d) Nucleotide diversity for six maize

groups. High-confidence common (MAF >5%) variant sets were used for each analysis.
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Intra- and interpopulation genetic variation

Of the 1515 maize samples used in this study, 966 were

assigned to one of 10 groups through a combination of

prior publication data and metadata associated with the

United States Department of Agriculture (USDA) Germ-

plasm Resources Information Network (GRIN) records.

These 10 groups included three groups of wild relatives:

Z. mays ssp. mexicana (n = 79, hereafter mexicana);

Z. mays ssp. parviglumis (n = 84, hereafter parviglumis);

and other wild relatives (n = 66). Among these samples,

four groups were based on geographic origin – tropical

(n = 86), South America (n = 48), China (n = 182) and Eur-

ope (n = 34) – and three groups were based on a combina-

tion of geographic origin and heterotic group – temperate

North American stiff stalk (n = 191), non-stiff stalk (n = 127)

and iodent (n = 69). The remaining 549 lines were classi-

fied as ‘other’ in the analyses below. Altogether, this set of

lines comes from 35 countries across six continents

(Figures 2a and S2). Lines tended to cluster based on the

group assignment in analyses of population structure con-

ducted using the genetic marker data generated in this

study (Figures 2b and S7). The first principal component of

variation for genetic marker data roughly corresponded to

the division between domesticated maize and maize wild

relatives (Figure 2b). The second principal component

separates stiff stalk and non-stiff stalk heterotic groups by

how closely or not, respectively, they are related to B73,

the reference genotype for maize. Finally, the third princi-

pal component corresponds to latitudinal geographic dis-

tribution, with South American lines at one extreme,

followed by tropical and wild populations, then Chinese,

European and North American temperate populations, and

other wild relatives (Figure 2b).

High-density genetic marker data is useful for both

population genetic and quantitative genetic analyses

(Mural et al., 2021). Many population genetic analyses

require the measurement of plant traits. When trait data

are collected in different environments, variance resulting

from differences in genotype is confounded with variance

resulting from different environments, reducing the statis-

tical power to link genotype and phenotype. Growing and

phenotyping large plant populations in common environ-

ments can more effectively isolate contributions of

genetic variation to phenotypic variation, at least in that

specific environment. However, this presents a challenge

in capturing global genetic diversity in species such as

maize, where different lines are adapted to different envir-

onments and may not even be able to successfully com-

plete their lifecycles in environments to which they are

not adapted. Efforts to establish common association

panels for quantitative genetic analysis in maize, including

the Maize Association Panel (MAP) (Flint-Garcia

et al., 2005), Shoot Apical Meristem association panel

(SAM) (Leiboff et al., 2015) and the Wisconsin Diversity

Panel (WiDiv) (Hansey et al., 2011) have required

researchers to prioritize the partially contradictory goals

of maximizing genetic diversity while also selecting for a

set of genotypes that can all grow and successfully com-

plete their life cycles in a single common environment.

Based on marker data for 798 genotypes from the WiDiv

panel included in this study, linkage disequilibrium

decays roughly as fast within the WiDiv panel as with the

set of all northern temperate lines (1090 lines defined as

all those excluding teosinte, tropical and South America

lines), but mostly more slowly than the rate of linkage

disequilibrium (LD) decay among all 1515 lines included

in this study (Figure 2c). LD decayed fastest among the

two maize wild relative populations with the largest num-

ber of samples: mexicana and parviglumis. The median

value of π observed for randomly selected intervals in the

maize genome within the WiDiv population was 0.0091,

similar to the median observed for all temperate lines

(π = 0.0090), but lower than the value when calculated for

the population of all genotypes included in this study

(π = 0.0108; Figure 2d). The difference in π for the overall

population is likely to be driven by the inclusion of wild

relatives in the overall population, as these populations

exhibit elevated π values of mexicana (π = 0.0131) and

parviglumis (π = 0.0125). A previous study indicated that

83% of nucleotide variation from teosinte was retained in

maize landraces (Hufford et al., 2012). Here we found that

WiDiv lines retain 72.8% of the nucleotide variation

observed in parviglumis, which indicates that a substan-

tial portion of genetic variation is still present in this set

of northern temperate lines.

Accurately estimating nucleotide diversity requires

accounting for monomorphic (invariant) sites and sequen-

cing depth (Korunes & Samuk, 2021). However, generating

and distributing variant call format (VCF) files with mono-

rphic sites for the entire genome becomes an intractable

problem for large numbers of individuals because of the

size of such files. Making the GATK GenomicsDB datas-

tores from this project publicly available will allow

researchers to generate VCF files for the region of interest

and calculate accurate values of nucleotide diversity for

this region in their population.

Greater utility of existing trait data as marker density

increases

Community association panels are typically reused by

many research groups working to study the genetic control

of variation in different traits of interest. A recent literature

study identified more than 160 distinct trait data sets

scored across association panels for North American tem-

perate maize between 2010 and 2020 (Mural et al., 2022).

During the past 17 years, the density of publicly available

markers for maize association panels has grown from 94
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microsatellite markers (Flint-Garcia et al., 2005), to 1536

microarray-based SNP markers (Hansey et al., 2011), to

hundreds of thousands of markers scored using genotyp-

ing by sequencing (Romay et al., 2013), to approximately

one million markers scored using RNA-seq (Leiboff

et al., 2015; Mazaheri et al., 2019) and now to typically

include tens of millions of markers discovered and scored

via whole-genome resequencing (Bukowski et al., 2018;

Chen et al., 2022; Li et al., 2022; Qiu et al., 2021; Wang

et al., 2020) or a combination of whole-genome resequen-

cing for a subset of lines and imputation from lower den-

sity markers for additional lines (Mural et al., 2022; Sun

et al., 2022).

We employed a previously published set of female

flowering data (days to silking) generated for 752 tempe-

rate adapted maize inbreds (Mural et al., 2022) to assess

the impact of increased marker density versus direct

resequencing (this study) on the outcomes from genome-

wide association studies in maize. When using approxi-

mately 400 000 markers discovered and scored using RNA-

seq (minor allele freqency, MAF > 5% in 752 lines) (Maza-

heri et al., 2019), a genome-wide association study identi-

fied one statistically significant signal corresponding to the

cloned maize flowering-time gene MADS69 (Liang

et al., 2019; Figure 3a). A genome-wide association study

conducted using the new, purely whole-genome

resequencing-based marker data set generated in this

study identified both MADS69 and ZCN8 (Figure 3b). The

peak in the ZCN8 region detected when conducting a

genome-wide association study using resequencing-based

markers was the result of significantly trait-associated non-

genic SNPs (Figure S8). SNPs located within genes in this

region are in weak LD with the significant variants identi-

fied in intergenic space, which is likely to prevent the

Figure 3. Identification of the candidate genes for flowering time (days to silking) through a genome-wide association study (GWAS). (a) Association between

days to silking, as reported in Mural et al. (2022), and 428 487 segregating SNPs identified and genotyped using RNA-seq data in Mazaheri et al. (2019). (b) Asso-

ciation test for days to silking using the marker set defined in this study (n = 16 634 049). The horizontal dashed line on each plot indicates an α = 1% signifi-

cance threshold after applying Bonferroni’s correction assuming n number of variants in each data set as independent tests.

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
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detection of this known flowering time gene using an

RNA-seq-based genetic marker data set. Overall, the newly

generated data set increases the power to detect causal

genes and does not increase P-value inflation (Figure S9).

In addition to the total number of confident signals

identified, an additional potential benefit of higher-density

genetic marker data is the more precise localization of

peaks to only one or several candidate genes. The peak

corresponding to MADS69 included 29 markers that were

significant at a Bonferroni corrected P-value of 0.01. These

markers span a region of 410 350 bp that includes three

annotated genes. However, the peak SNP (e.g. the single

SNP with the most significant P-value) was 8507 bases

from MADS69, and MADS69 was the closest gene to this

SNP (Figure 4a). The peak corresponding to ZCN8 included

35 significant markers that were significant at a Bonferroni

corrected P-value of 0.01. These markers span a region of

349 944 bases that includes seven annotated genes. In this

case the peak SNP was 18 912 bases from ZCN8 and three

genes separated ZCN8 from the peak SNP (Figure 4b).

The diverse composition of the population used for

genotyping in this study creates an opportunity to detect

patterns of selection in the genome and track changes in

favorable allele frequency of variants associated with traits

of interest, during domestication, adaptation to a new

environment, or genetic improvement during modern

breeding. As flowering plays an important role in local

adaptation, we attempted to evaluate patterns of selection

around the two known flowering-time genes identified

above. We observed a clear reduction in nucleotide diver-

sity in the promoter of MADS69 in tropical and temperate

maize lines relative to parviglumis (Figure 4a), consistent

with a previous report (Liang et al., 2019). The most signifi-

cantly associated SNP for days to silking in the MADS69

Figure 4. MADS69 and ZNC8 are associated with flowering time and were the target of selection. Top panel: zoom-in on genome-wide association study

(GWAS) peaks around MADS69 (a) and ZNC8 (b). Linkage disequilibrium (LD) was calculated in each loci against the top associated SNP: chr3:161177471 and

chr8:126660665 (marked as red triangles). The horizontal dashed line indicates the genome-wide Bonferroni correction level. Vertical red dashed lines mark the

position of the gene of interest. Middle panel: nucleotide diversity in three maize groups. Gene bodies of MADS69 and ZNC8 were marked at the bottom. Verti-

cal lines on gene bodies represent the specific positions of coding sequences (CDSs) for the genes. Bottom-left panels: allele effect of chr3:161177471 (a) and

chr8:126660665 (b) on number of days to silking. Bottom-right panels: changes of allele frequency of chr3:161177471 (a) and chr8:126660665 (b) in eight maize

groups. SS, stiff stalk; NSS, non-stiff stalk; IDT, iodent.

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
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gene region was located at position 161 177 471. The

reference allele (T) was associated with more rapid

female silking relative to the alternate allele (C), with a

mean difference of approximately 5 days (Figure 4a). In

both mexicana and parviglumis populations only the

slower flowering C allele was observed (Figure 4a). In

lines classified as belonging to the tropical or Chinese

populations, the C allele was predominant. In contrast,

the T allele was the more common in the three North

American populations (stiff stalk, non-stiff stalk and

iodent). The T allele was particularly common among

lines classified as belonging to the iodent heterotic

group. Similarly, the T allele also made up the majority

of genotype calls among the European maize lines

included in this study. The large increase of frequency of

shorter flowering T allele in temperate adapted lines is

consistent with strong selection on MADS69 during maize

adaptation to temperate climates.

The second known flowering-time gene identified in

this study was ZCN8, which has been previously shown to

contribute to maize adaption to temperate climates and to

have experienced a decline in nucleotide diversity in

domesticated maize, relative to wild teosinte accessions,

which is in parity with the conclusion that ZCN8 was likely

to have been a target of selection during maize domestica-

tion (Guo et al., 2018). However, the greater representation

of different maize groups included in this study enabled

the more specific identification of a decline in nucleotide

diversity specifically between temperate and tropical

domesticated maize populations, whereas tropical maize

retained similar diversity to teosinte at this locus

(Figure 4b). This result is consistent with selection on

ZNC8 occurring during adaptation to temperate conditions

rather than during domestication.

The single most significant marker at the ZCN8 locus

was a C/T SNP at position 126 660 665 on chromosome 8.

The T allele appears to be the derived allele and the med-

ian line homozygous for T at this position flowered

10.7 days earlier than the median line homozygous for the

C allele. Although additional markers at the ZCN8 locus

that were not in LD (<0.2) with the most significant marker

also exhibited a statistically significant association with

flowering time, a haplotype-based model that incorporated

information from the top not-in-linkage SNP

(chr8:126689419) did not significantly improve the predic-

tive ability for flowering time versus a single marker

model. The rapid flowering allele at ZCN8 was observed at

extremely low frequencies in North American temperate

germplasm. Almost all individuals homozygous for the

rapid flowering allele originated in Europe (Figure 4b),

demonstrating the importance of sampling broader global

germplasm pools to gain greater power to identify func-

tional variants primarily segregating only in individual geo-

graphic regions.

CONCLUSION

In summary, we performed a large-scale joint variant call-

ing for 1515 maize individuals that included a wide range

of maize accessions from multiple continents and eras,

and discovered more than 46 million high-confidence

sequence variants. In addition to releasing new sequence

data for 239 new maize inbreds, we also release raw and

filtered variant lists as well as processed GenomeDB files

that will allow this SNP set to be further extended and

expanded without the need to realign previously processed

samples to the maize reference genome. We have shown

that the new variant set accurately describes the popula-

tion structure used in this study and improves power in

genome-wide association studies relative to the previous

state-of-the-art marker data sets for a large maize associa-

tion panel.

EXPERIMENTAL PROCEDURES

Plant material and data sets

New resequencing data sets for maize are published regularly.
The list of papers and accessions to include in this analysis was
finalized on 30 June 2022 when the analysis commenced. Whole-
genome resequencing data from 1515 total samples were used in
this analysis, including 1276 previously published samples
(Brandenburg et al., 2017; Bukowski et al., 2018; Chen et al., 2022;
Chia et al., 2012; Kistler et al., 2018; Qiu et al., 2021; Unterseer
et al., 2014; Wang et al., 2017, 2020) and 239 lines resequenced as
part of this study. The origin and source of each sample included
in this analysis are provided in Table S1.

Two hundred and twenty-eight inbred lines from the Wiscon-
sin Diversity Panel (Mazaheri et al., 2019) were grown in a glass-
house setting (27–29°C during the day and 19–21°C at night, with
12 h of light/12 h of dark). After reaching V2, the youngest leaf
was harvested onto ice and lyophilized for 2 days in a Flexi-Dry
lyophilizer (FTS Systems Inc., now SP, https://www.
scientificproducts.com). The lyophilized samples were ground to a
fine powder in a Tissuelyzer II (Qiagen, https://www.qiagen.com),
and DNA was extracted using the MagMAX Plant DNA Isolation
Kit (ThermoFisher Scientific, https://www.thermofisher.com) with
the help of a benchtop automated extraction instrument, King-
Fisher Flex (ThermoFisher Scientific). Raw DNA extracts were
quantified using the Quant-iT dsDNA Broad Range Kit (Invitrogen,
now ThermoFisher Scientific), and submitted to Psomagen
(https://www.psomagen.com), where they were subject to an in-
house quality assessment using TapeStation 4200 (Agilent, https://
www.agilent.com). DNA samples from 29 lines did not meet the
minimum DNA quality control standards for sequencing. An addi-
tional set of seeds from these lines were surface sterilized by
washing them in a 5% v/v bleach solution for 10 mins, rinsed three
times with sterile water, and then placed in centrifuge tubes with
wetted paper and left in the dark at 23°C. Shortly after germinating
(VE), the entire coleoptile was harvested, snap-frozen in liquid
nitrogen and stored at −80°C. The tissue was then ground to a fine
powder in a Tissuelyzer II (Qiagen) in the presence of dry ice in
the pockets around tube holders. The DNA extraction was then
performed utilizing the same procedure as was used on the origi-
nal samples. Initial quality assessment of DNA samples, library
preparation and sequencing was performed by Psomagen.

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2023), 113, 1109–1121
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Libraries were prepared using the TruSeq DNA PCR-Free kit (Illu-
mina, https://www.illumina.com). A NovaSeq6000 S4 (Illumina)
sequencer was used to generate 150-bp paired-end reads.

Eleven Polish inbred lines were obtained from HR SMOLICE
(https://www.hrsmolice.pl). Plants were grown in a phytotron
chamber (24°C day/22°C night with 16 h of light/8 h of dark). Tis-
sues for DNA extraction were harvested from the third fully
developed leaf (V3 stage) and three individual plants were
pooled into a single sample. Leaves were immediately flash-
frozen in liquid nitrogen and tissue was ground in liquid nitro-
gen using a mortar and pestle. DNA extraction was performed
with the DNeasy Plant Kit (Qiagen), according to the manufac-
tutrer’s instructions. Genomic DNA for each genotype was sub-
mitted to Fasteris (https://www.fasteris.com) for whole-genome
sequencing. For S160, S50676 and S68911 inbred lines, 100-bp
paired-end reads, and for the remaining eight lines, 150-bp
paired-end reads, were generated on a HiSeq X Ten sequencer
(Illumina).

Creation of the global maize SNP set

After fastq files were downloaded from the European Nucleotide
Archive (https://www.ebi.ac.uk/ena) or transferred from the
sequencing provider, each file was cleaned using FASTP 0.23.2 with
the default settings (Chen et al., 2018). Reads with >40% unquali-
fied bases or with a quality value of <15 were removed. Cleaned
fastq files were aligned with the B73_RefGen_V5 maize reference
genome (Hufford et al., 2021) using SPEEDSEQ 0.1.2 (Chiang
et al., 2015), which parallelizes BWA-MEM 0.7.10 (Li, 2013) for align-
ment, SAMBLASTER 0.1.22 for marking duplicated reads (Faust &
Hall, 2014) and SAMBAMBA 0.5.9 for position sorting and BAM file
indexing (Tarasov et al., 2015). SAMBLASTER defined duplicate read
pairs as cases where two or more pairs of reads aligned with the
same reference sequence on the same strand and with the same
50 start position – or inferred 50 start position if the alignment was
clipped – for both forward reads and for both reverse reads.
Unless otherwise stated, default parameters were used for each
software package.

Individual gVCF files were generated for each maize pseudo-
molecule for each BAM file using the HaplotypeCaller tool pro-
vided by GATK 4.2.0.0 in diploid mode (Poplin et al., 2018). To
enable extensive parallelization of variant calling, the maize gen-
ome was divided into 5-Mb windows for the creation of separate
GenomicsDB datastores. During the project, GATK 4.2.6.1 was
released and this update offered a reduction in the number of files
stored in GenomicsDB datastores. Therefore, the GenomicsDBIm-
port tool provided by GATK 4.2.6.1 was used for each genomic win-
dow to create the GenomicsDB datastore.

Joint variant calling was conducted using the Genoty-
peGVCFs tool provided by GATK 4.2.6.1, with default settings. To
aid in additional parallelization, each 5-Mb GenomicsDB datastore
was divided into five 1-Mb windows for variant calling.

Following GATK best practice recommendations, hard filters
were applied to call variants. Variants were divided into SNPs and
InDels for filtering. SNPs with QualByDepth < 2.0, FisherStrand
> 60.0, RMSMappingQuality < 40.0, MappingQualityRankSumTest
< −12.5 or ReadPosRankSumTest < −8.0 were removed. InDels
with QualByDepth < 2.0, FisherStrand > 200.0 or ReadPos
RankSumTest < −20.0 were also removed. After filtering, SNP and
InDel variants were merged into single sorted VCF files for each
chromosome using PICARD 2.9 (Pic, 2019). Finally, genotypes with
depth < 2 were masked using the BCFTOOLS 1.10.2 plug-in SETGT

(Danecek et al., 2021). All further VCF file manipulations were per-
formed with BCFTOOLS 1.10.2 (Danecek et al., 2021).

Creation of the filtered and imputed maize SNP sets

The filtered and imputed variant set was generated by first remov-
ing variants where more than two alleles were observed in the
population, variants with ≥50% missing data, variants with extre-
mely low (<1515) or extremely high (>33 550) sequencing depth
and variants with inbreeding coefficients ≥0, resulting in approxi-
mately 46 million variants. The inbreeding coefficient per variant
was calculated as:

IC ¼ 1�Hobs

Hexp

where Hobs and Hexp are the observed and expected heterozygos-
ity under Hardy–Weinberg equilibrium.Variants were phased and
imputed using BEAGLE 5.0, with default settings (err = 0.0001;
window = 40.0 cM; overlap = 4.0 cM; step = 0.1 cM; nsteps = 7)
(Browning et al., 2018). In order to estimate imputation accuracy,
1% of variants on chromosome 10 were masked, and imputation
was repeated with the same settings. Next, imputed and known
variants were compared. The analysis was performed with TASSEL 5
(Bradbury et al., 2007). Imputation accuracy has been estimated to
be 96.7%.

Population genetic analyses

Principal component analysis (PCA) was conducted with PLINK 1.9
(Purcell et al., 2007). Unimputed variants were filtered with MAF >
5% and with the fraction of missing data < 10%, leading to
19 205 674 markers, which were used for PCA. Individual geno-
types were assigned to the population using published literature
data (Brandenburg et al., 2017; Bukowski et al., 2018; Chen
et al., 2022; Chia et al., 2012; Kistler et al., 2018; Qiu et al., 2021;
Unterseer et al., 2014; Wang et al., 2020, 2017).

Measures of LD (r2) were calculated for the entire population
and predefined groups using POPLDDECAY 3.42 (Zhang et al., 2019)
and the subset of unimputed SNPs with MAF > 0.05 and missing
rate of <0.25. Local LD in a.

100-Kb window was calculated using GENOME-WIDE COMPLEX TRAIT

ANALYSIS (GCTA), with default settings (Yang et al., 2011).

One hundred randomly selected 200-Kb windows from the
maize genome (10 per chromosome) were selected for genome-
wide nucleotide diversity (Nei & Li, 1979) analysis. Using the origi-
nal GenomicsDB files described above, each genotype was called
within each window using the -all-sites option in GATK, producing
VCF files with records included for both variable and mono-
morphic (invariant) sites. All sites were hard-filtered as described
above. Non-monomorphic sites were further filtered by excluding
sites with more than two alleles or with a minor allele frequency
of ≤1% prior to analysis. PIXY, which considers information on both
missing sites and sequencing depth, was used to calculate nucleo-
tide diversity (Korunes & Samuk, 2021). The same approach with
recalling SNPs in the region including invariant sites was used to
calculate patterns of nucleotide diversity around genes identified
in the genome-wide association study.

Genome-wide association study (GWAS)

A published data set of female flowering time (days to silking) for
752 inbreds drawn from the Wisconsin Diversity Panel (Mazaheri
et al., 2019), and grown in a replicated field study in Lincoln, NE,
USA in 2020, was employed for genome-wide association (Mural
et al., 2022). Two genetic marker sets for the same population of
752 maize inbreds were used to conduct the GWAS. The first set
was created by filtering 752 maize inbreds with MAF > 5% from

� 2023 The Authors.
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899 784 variants called using RNA-seq relative to the
B73_RefGen_V4 reference genome (Mazaheri et al., 2019). This
leads to the creation of a set containing 428 487 variants. The sec-
ond set was a set of 16 634 049 markers obtained by subsetting
the filtered and imputed SNP set assembled in this study to
include only those markers with an MAF > 5% among the 752
genotypes for which female flowering time phenotypes were
available. In both cases, GWAS was conducted using the mixed
linear model algorithm (Yu et al., 2006), as implemented in the
RMVP (1.0.6) package in R (Yin et al., 2021). Both the kinship matrix,
computed following the method described by VanRaden (2008),
and the first five principal components of variation, calculated as
described above, were included in the model. Calculations of local
linkage disequilibrium were performed using PLINK 1.9 (Purcell
et al., 2007).

All additional statistical analyses were conducted in R (R Core
Team, 2022), with the extensive use of data. table (Dowle & Srini-
vasan, 2021) and tidyverse (Wickham et al., 2019) for data manipu-
lation, and tidyverse and patchwork (Pedersen, 2020) for
visualization.
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