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Abstract: Road authorities worldwide can leverage the advances in vehicle technology by continuously
monitoring their roads’ conditions to minimize road maintenance costs. The existing methods for carrying out
road condition surveys involve manual observations using standard survey forms, performed by qualified
personnel. These methods are expensive, time-consuming, infrequent, and can hardly provide real-time
information. Some automated approaches also exist but are very expensive since they require special vehicles
equipped with computing devices and sensors for data collection and processing. This research aims to
leverage the advances in vehicle technology in providing a cheap and real-time approach to carry out road
condition monitoring (RCM). This study developed a deep learning model using the You Only Look Once,
Version 5 (YOLOV5) algorithm that was trained to capture and categorize flexible pavement distresses (FPD)
and reached 95% precision, 93.4% recall, and 97.2% mean Average Precision. Using vehicle built-in cameras
and GPS sensors, these distresses were detected, images were captured, and locations were recorded. This
was validated on campus roads and parking lots using a car featured with a built-in camera and GPS. The
vehicles’ built-in technologies provided a more cost-effective and efficient road condition monitoring
approach that could also provide real-time road conditions.

Keywords: pavement distresses; road condition monitoring; deep learning in road damage detection; built-in
vehicle cameras; GPS sensors in road condition monitoring; pavement damage detection using deep learning;
machine learning in road damage detection
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that a semi-automated system costs about USD 541/mile to USD 933/mile in the U.S., depending
on the service providers [10].

Although the manual and semi-automatic methods are suitable for road conditions, the
methods impose safety risks and are time-consuming and expensive. With the currently available
vehicle and equipment technologies, there are opportunities to fully automate the monitoring of
pavement road distress conditions. The prevalent benefits of fully automated methods include
improved personnel safety, reduced cost, and continuous monitoring [11].

1 Introduction

Road agencies need to continuously monitor road conditions to minimize maintenance costs by attending to the
observed distresses on time. Delays in attending to road damages/distress lead to a faster road deterioration rate, increased
maintenance costs, and reduced safety for road users [1]. Preventive maintenance is vital for the long-term preservation
of asphalt pavements [2]. Major factors attributed to the delays include a lack of proper and up-to-date road condition
information and insufficient funds [1], the latter being common to many construction projects [3-5].

Existing road condition monitoring methods include manual methods involving experienced experts walking and
measuring on the field [6,7], or semi-automated methods involving special vehicles equipped with sensors. Manual
methods are expensive, laborintensive, and consume a lot of time, resulting in delayed road maintenance [8,9]. These
methods cause traffic interruptions, involving partial or full lane closures. They also impose safety issues on surveyors since
they sometimes must work while the roads are in operation. Semi-automated methods are also costly for initial investment
and maintenance/operation costs, which are about USD 1,179,000 and USD 70,000, respectively [1]. It is also estimated
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The existing fully automated methods use customized vehicles fitted with sensing
equipment. The vehicles use sensors to collect road condition data as they travel along the road.
This system collects various data including longitudinal and transverse pavement surface profiles,
downward perspective images, forward perspective right-of-way images, geo-reference data from
global positioning systems (GPS), inertial referencing systems, and distance measuring
instruments [12].

In this paper, we present an automated system that is developed through Artificial
Intelligence (Al). Al provides real-time solutions that are cheaper than the existing automated
systems [13-15]. Using models developed through Al, simple devices such as dashcams and vehicle
built-in cameras can be used; therefore, there will not be as much cost for purchasing customized
vehicles and sensors.

2. Literature Review

Recent advancement in Artificial Intelligence (Al) has attracted many studies in various fields
as effective, simple, cheap, and fast methods for carrying out our daily tasks. Through Deep
Learning (DL), computer vision and sensors have been employed in the preparation of models in
various fields. In the areas of pavement condition monitoring, various studies have been carried
out with different aims using DL models for both flexible and rigid pavements [13,16].

Studies show how advances in sensors and data collection platforms are being applied to
improve road condition monitoring (RCM) data collection. Devices like smartphones, drones, and
vehicles integrated with non-intrusive sensors have been proven to be useful in this field [17,18].
Studies on pavement roughness, for instance, have been driven by crowdsourcing, and the effort
to develop cheaper techniques [19] using smartphones has been proven to be effective [15,20,21].

Ansari and Sam [22] employed a Single Shot Multibox Detection (SSD) algorithm to detect
potholes on pavements. In developing their model, they used a set of images collected from the
internet. The developed model was able to identify potholes through cameras installed on moving
vehicles. Ahmed [23] compared the performances of two DL models in detecting potholes. The
models compared were You Only Look Once (YOLO) using ResNet101 backbone and Faster Region-
based Convolutional Neural Network (F-RCNN) using ResNet50 (FPN), VGG16, MobileNetV2,
InceptionV3, and MVGG16 backbones. Both models were trained on the same dataset, composed
of 940 images with a total of 2466 potholes. The images were collected from the internet, and
some were taken from street roads in Carbondale, lllinois, using a smartphone. Results show that
F-RCNN using ResNet50 (FPN) attained the maximum value of Precision of 91.9%, followed by
YOLOV5 using YOLOvm with 86.96%, YOLOvI with 86.43%, F-RCNN using MVGG16 with 81.4%,
YOLOV5 using YOLOvs with 76.73%, F-RCNN using Inception V3 72.3%, F-RCNN using VGG16 with
69.8, and the least (63.1%) was attained by F-RCNN using MobileNetV2.

Nevertheless, F-RCNN inception v2 was used to detect potholes in India [24].

In another study, Chen and Jahanshahi [25] deployed DL and Naive Bayes data fusion
schemes (NB-CNN) in detecting cracks in nuclear power plants. In this study, the authors
proposed a novel data fusion scheme that helped to enhance the overall performance of the
system. Furthermore, in another study, a single-stage CNN architecture was modified and used to
detect potholes, and was then incorporated to determine pothole depth using 3D images and
achieved a mean error of less than 5% [26].

Automatic pavement crack detection approaches have been proposed and show a promising
future for crack detection. A mask R-CNN attained 83.3% precision, 82.2% Flscore, and 70.1%
mean intersection-over-union (mloU) at 4.2 frames per second (FPS) [27]. Multiscale feature fusion
deep neural networks achieved 88.1% and 87.8% in Fl-score and mAP using YOLOv3 with four-
scale detection layers (FDL) [14]. Zhang et al. [28] proposed a crack-patch-only (CPO) supervised
generative adversarial learning for an end-to-end training approach to detect pavement cracks.
The authors used a set of three datasets with 118, 400 and 68 images, respectively. The first set
was collected using an iPhone from the road surface, the second was collected using a line-scan
industrial camera mounted on the top of a vehicle running at 100 km/h, and the third was
composed of industrial images. This model attained 86.53% precision and 91.29% recall. In this
study, the authors solved the ‘All Black’ issue observed in a previous study by Zhang et al. [29]
which is reported to be a serious issue in pavement crack detection. In Zhang et al. [30], the authors
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used a deep learning approach to train a model. The dataset used was composed of 2200 3D
pavement images, and the developed model attained good results in precision (90.13%), recall
(87.63%), and F1l-score (88.86%). Another study by Kanaeva and Ivanova [31] used R-CNN-based
and U-Net-based segmentation models to detect road pavement cracks using synthetic images and
attained an Intersection over Union (loU) of 47% metrics on real images with road surface cracks,
which falls in the acceptable range.

Regarding the classes of distresses detected, some studies provided classifications of distress
into various groups and their basis for such categorizations. Mandal et al. [32] carried out a study
to detect and categorize distress into eight groups using a publicly available dataset of 9053 images
collected in Japan using smartphones mounted on vehicles’ dashboards. This study achieved a
recall of 88.51% and a precision of 87.10% using the YOLO v2 model. In another study, Du et al.
[33] prepared and used a dataset composed of 45,788 images captured with a high-resolution
industrial camera installed on vehicles in various weather and illuminance conditions. The YOLOv3
algorithm was used and reached an accuracy of 73.64% in detecting stresses. Maeda et al. [34]
used a dataset of 9053 custom smartphone images which they set to be available to the public.
They trained their model using SSD Inception V2 and SSD MobileNet frameworks and achieved
recalls and precision greater than 71% and 77% and overall accuracy of 87.75% and 87.25%,
respectively. The study categorized the distresses into eight distinct groups based on a Japanese
Road Maintenance and Repair Guidebook [35]. Faster R-CNN attains better detection performance
compared to YOLOv3 when trained to detect potholes in a limited number of samples [36]. The
improved version of YOLOv3 that was tested on the measurement of pavement potholes showed
an improvement in accuracy compared to the original version of YOLOv3. The model reached
89.3% and 86.5% in mAP and F1-score, respectively [37].

Sensors have also been used to provide some modern and alternative approaches to carrying
out RCM. In her recent study, Pomoni [38] explored an approach that employs smart tires to detect
road friction which is an important aspect of road conditions. Smart tires make use of sensors and
can provide an effective means to detect the loss in pavement friction. Also, an approach to predict
pavement damage by combining both computer vision and sensors has been proposed recently.
The system can be used to complement the performance of the two methods used in inclement
weather conditions [39]. Acceleration sensors, gyroscopes, and GPS have also been used in data
collection for ML where high accuracy results of up to 99.61% and 99.33% in Fl-score and
precision, respectively [40].

However, in these studies, some approaches were proposed to detect, or to both detect and
classify road damages into various groups, but none of them provides a framework that proposes
using vehicle built-in technologies to collect data for RCM purposes. This provides a cheap
alternative to data collection since it leverages some features already installed in vehicles.

This research aims at providing three contributions in this area. First, this study aims to
introduce the idea of using built-in vehicle cameras and GPS sensors to capture these distresses
and their locations in real-time. An Auto Pacific study based on a survey of car owners found that
around 70% want a built-in camera in their next vehicle [41]. Thus, with a proper arrangement
between the traveling public and transportation agencies, data from vehicle built-in cameras can
be available in abundance. Second, this research aims to achieve the provision of a model that
detects and classifies asphalt concrete pavement distresses into nine distinct categories provided
by the FHWA Distress Manual [6]. This makes the prioritization made by local road authorities in
attending to distresses possible, hence enhancing the RCM process. The third contribution is to
assess the performance of the detection model at different driving speeds.

3. Methodology

We propose an approach presented in Figure 1. A deep learning model is prepared, based on
normal two-dimensional images, to detect and classify pavement damages/distresses into nine
classes. The prepared model employs a vehicle-built-in camera to collect data on a real-time basis,
and in connection to the built-in GPS sensors, the distresses are recorded with their corresponding
geolocations. The recorded data are stored and shared on a real-time basis.
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Figure 1. Proposed research layout and illustration.

3.1. Model Selection

This study uses the You Only Look Once Version 5 (YOLOv5) model. This model was selected
based on its advantages over its predecessors such as ease of use, ease of exporting to other file
formats, small memory requirements of nearly 88% compared to YOLOv4 (27 MB vs. 244 MB), high
speed (about 180% faster than YOLOv4, 140 FPS vs. 50 FPS), and its high accuracy value [42].

3.2. Model Structure

The architecture of the YOLOv5 network is presented in Figure 2. The network consists of 24
convolutional layers that extract features from the input data and then use these features to
perform object detection using a set of head layers. The initial layers of this model are designed to
detect low-level image features such as edges and shapes, and the filters become more complex
and specialized as the layers progress to see more complex features. The network is divided into
three main parts: backbone, neck, and head.
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Figure 2. YOLOVS5 structure.

The head layers are divided into the neck and the detection head. The neck contains two
convolutional layers that refine the features generated by the backbone layers. The output of the
neck is used by the head layers to carry out prediction. The final classification head takes the
detection head’s output and predicts the class. This output allows the network to detect multiple
objects in images and classify them into different classes. The final predictions are stored in the
output layer, including the bounding box coordinates, abjectness scores, and class probabilities.

3.3. Data Collection

This study used publicly available and onsite collected images and video datasets in model
preparation, testing, and validation. The image datasets include the CRACK500 dataset collected
at Temple University in Philadelphia using mobile phones [43]. RDD2020, an image dataset for
smartphone-based road damage detection and classification, contains 26,336 smartphone images
collected using smartphones mounted on car dashboards in
India, Japan, and the Czech Republic ((accessible through the link: http://dx.doi.org/
10.17632/5ty2whb6gvg), accessed on 20 May 2022)and another of pavement distresses v12-v4
from Roboflow which contains 665 images ((accessible through the link: https:
//public.roboflow.com/object-detection/pothole), accessed on 22 May 2022)). The video dataset
was collected from American Honda Motor Co., Inc. (Torrance, CA, USA) [44] and it is made
available upon request and upon signing of an agreement on the terms of use. In conducting model
validation, some data were collected directly from the site within the campus.

The image dataset comprised normal two-dimensional (2D), colored images (RGB) with
varying dimensions and shapes. The images were in a joint photographic experts group (JPG or
JPEG) format, which is accepted by the selected model for training, validation, and testing
purposes. The video dataset from Honda comprises about 84 h of real human driving scenarios
collected from various roads in the state of California, U.S. All videos, including those recorded
from campus, are in MP4 format.

3.4. Dataset Selection

A random sample of images was selected from the image datasets with a focus to represent
all distress categories for training the model. This was accomplished by assigning names to all the
images in the above-mentioned datasets using an Excel spreadsheet. Then randomization was
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performed by assigning random numbers generated in an Excel spreadsheet and a set of 8470 was
selected for annotations.

The video dataset was analyzed, and some videos were selected in a focus to represent all
ranges of driving speeds from 0 mph to 120 mph. The selection also took into consideration the
different types of roads to be sure all types were represented. The types include arterial roads,
collector roads, and local roads (access roads).

3.5. Dataset Preparation (Annotations)

Images for model preparation were annotated in YOLO format. The annotation process was
performed using the makesense.ai [45] tool, which is freely available online. In this research, nine
labels presented in Table 1 were assigned to the distresses at this point. Figure 3 below shows how
the labels are assigned to the images.

Table 1. Flexible distress classification as per U.S.DOT FHWA.

S/N Class Symbol Used
1 Fatigue/Alligator Cracks cl_o1
2 Block Cracks Cl_02
3 Transverse Cracks Cl_03
4 Longitudinal—Wheel Path Cracks Cl_04
5 Longitudinal—Non-Wheel Path Cracks Cl_05
6 Edge, Joint, Reflective Cracks Cl_0o6
7 Patches Cl_o7
8 Potholes Cl_08
9 Raveling, Shoving, Rutting Cl_09

@ Actions % Community Project Name: my-pr

Figure 3. An illustration of image annotations in the makesense.ai tool.

In this paper, a total of nine labels were assigned to images to represent the nine groups/
categories of distresses and were exported in YOLO format. The assigned labels are included in text
file formats, where a single file is formed for every image. Figure 4 illustrates some distress types,
and the corresponding symbols used in representing them during labeling are shown in Table 1.



Vehicles 2023, 5

937

() (19

Figure 4. Pavement distress types (a) Alligator Cracks, (b) Block Cracks, (c) Transverse Cracks, (d) Longitudinal
Wheel Path Cracks, (e) Longitudinal Non-Wheel Path Cracks, (f) Rutting, (g) Patch, (h) Pothole, (i) Shoving, (j)
Edge Crack, (k) Joint Reflective Crack, and (l) Pothole and Raveling.

To reduce model overfitting and underfitting, it is necessary to provide more robust datasets
so that the model becomes less reliant on similar pieces of data in the network [46]. Since some
of the pavement distresses have a small number of instances, we decided to group them into the
same classes; thus class 06 includes edge, joint, and reflective cracks, and class 09 includes
raveling, shoving, and rutting.

Figure 5 shows the number of instances (total number of repetitions/occurrences for each
distress group). The Cl_03 class (transverse cracks) is the most represented class, with more than
2300 occurrences and the Cl_02 (block cracks) is the least represented class with less than 250
occurrences. The distribution trend depends on real-life scenarios where the most represented
distress classes are much more common compared to those which are least represented. This is in
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line with a statistical study conducted in China to examine the relationship among asphalt concrete
distresses, where findings show that some distresses which occur are independent distress types
(IDDTs), dependent distress types (DDTs), and rutting secondary distress types (RSDTs). Results
showed that RSDT (which was composed of bump, bleeding, roughness, and poor skid resistance)
had the least occurrence probabilities, followed by DDTs (composed of longitudinal cracking,
pumping, depression, and raveling). The IDDTs class (composed of transverse cracking, map
cracking, potholes, and rutting) showed the highest occurrence probabilities [47].
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Figure 5. Number of instances for each pavement distress class.

3.6. Data Augmentation

An augmentation process is a procedure of changing the existing data to generate more data
for the model to train on. It is performed only on the training dataset. Augmentation helps to avoid
overfitting by increasing the available dataset through the application of various techniques [48]
since detection models need a large amount of data to be efficient [49]. The techniques used in
this study are rescaling, color adjustments, rotation, and mosaic augmentation.

3.6.1. Rescaling

Rescaling involves increasing and decreasing an image size randomly by applying some
random scaling factors. In this method, new images are generated without altering the objects,
thereby increasing the size of the dataset. Figure 6 below shows an example of images formed
from a single image by applying a rescaling factor of 75/255.

Figure 6. Images formed by applying a rescaling factor of 75/255.

3.6.2. Color Adjustments

This involves changing the colors of the images. It can be accomplished by changing four
aspects of the image color, namely, brightness, contrast, saturation, and hue. By assigning different
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values for these aspects, more images are generated; hence, the size of the dataset is increased.
In Figure 7 below, brightness was randomly varied to obtain three different images.

0 0 0

200 200 200

400 400 400
0 250 0 250 0 250

Figure 7. Images formed by changing the brightness of an original image.

3.6.3. Rotation

Through rotations of an original image, other images are generated without affecting the
identity of the objects of interest. The application of different rotation angles produces different
images which are used to increase the size of the training dataset. Figure 8 shows an example of
a rotation technique used in this paper.

0 250 0 250 0 250

Figure 8. Images formed by rotation of an image.

3.6.4. Mosaic Augmentation

The mosaic data augmentation technique joins four training images into one in given ratios.
This allows for the trained model to learn how to identify various objects at a smaller scale than
normal, thereby increasing its performance. An example of mosaic augmentation is shown in
Figure 9, which was formed during the model training process.
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Figure 9. An illustration of mosaic augmentation.

3.7. Model Training

In this study, the model was trained on Google Colaboratory (Google Colab). Before training,
the dataset was split into two sets, one consisting of 80% of all images and another with the
remaining 20%. The two sets were used for model training and validation, respectively.

An additional set of 200 images without distresses or labels were used as background images
to reduce the effect of False Positives (FPs) and False Negative (FNs) and hence increase our
model’s accuracy. This set was included in the training set only.

3.8. Training Parameters

To attain desirable results, the model was trained at different parameter settings. Starting
with a default image size of 416 pixels, different values of batch sizes and numbers of epochs were
fed. Table 2 shows the final values of parameters used in training the model. The training was
completed in 3.216 h.

Table 2. Training parameters.

S/N Parameter Value
1. Batch Size 40
2. Epochs 150
3. Learning Rate 0.01
4. Optimizer SGD =0.01
5. Anchor Sizes Dynamic

3.9. Model Analysis and Evaluation

The analysis and the evaluation of Deep Learning models are achieved through the
assessment of performance metrics. These values are obtained at the end of the validation or
testing that is performed when training is completed. The performance metrics used are
precision, recall, and mean average precision (mAP). Precision measures the model’s accuracy in
correctly predicting the distress, whereas recall measures the model’s performance in finding all
distresses in the images (it is a function of how the model misses the distresses). Precision and
recall are functions of False Positives (FPs) and False Negative (FNs), which are also regarded as
type | and type Il errors, respectively. The FPs are the measures that show how the model
incorrectly predicts pavement distresses, whereas the FNs show how the model misses them.
Precision and recall values are calculated as the ratios of TPs to the sum of TPs, FPs, and FNs as
shown in Equations (1) and (2), respectively.

True Positives
Precision = (1) True Positives +
False Positives

True Positives
Recall = (2)
True Positives + False Negatives

The mAP is the mean (average) of average precisions of all individual classes in the model. It
is calculated as the sum of the average precisions of all individual classes divided by the total
number of classes as shown in Equation (3) below.

1 k=n

mean Aaverage Precision(mAP) = ,Z APy (3)
Nk=1

where AP stands for the average precision of class k, and n stands for the total number of classes.
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These performance metrics are directly affected by the Intersection over Union (loU), which
is the measure of the areas formed on the images between the ground truth bounding boxes
(actual bounding boxes) and the predicted bounding boxes. Intersection refers to the area
covered by both bounding boxes, whereas union refers to the total area covered by the two
bounding boxes. Figure 10 shows an illustration of the loU given by Equation (4).

Areal|A N B|
lou= (4)
ArealA U B|

Figure 10. Relationship between the ground truth bounding box (A) and the predicted bounding box (B).

The value of loU obtained using the above relationship determines whether the output is TP
or FP. The output becomes TP if the value is greater than or equal to the threshold value (which
was set to 0.45 in our model), and it becomes FP if the value is less than the threshold value [50].

Figure 11 shows a confusion matrix indicating the resulting relationship between the
True Positives, True Negatives, False Positives, and False Negatives. Having values that are close to
or equal to 1 along the diagonal indicates that the model has high values of precision and recall.
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Figure 11. Confusion matrix.

3.10. Model Testing
3.10.1. Model Testing on Still Images
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The model attained 95%, 93.4%, and 97.2% overall average values in precision, recall, and
mean Average Precision at 50% (mAP@.5), respectively. The ability of the model to predict
pavement distresses was also assessed on both still images and videos. Testing of the model on
videos aimed at mimicking its performance on the videos from vehicles’ built-in cameras. Figure
12 shows the sample prediction results with distress symbols and their respective prediction
confidences obtained for various pavement distress classes, and Table 3 shows the summary of
results on still images.

ey == -

~cl_os 0.88 Cl-08 C

4

Cl_08 0.73%=

8] v

Figure 12. Sample prediction results.
Table 3. Summary of the model test results on still images.

S/N Class Precision (%) Recall (%) mAP@.5
1 Cl_01 94.9 93.7 97.6
2 Cl_02 97.9 100.0 99.5
3 Cl_o3 94.1 83.5 93.9
4 Cl_o4 91.6 93.7 95.6
5 Cl_05 93.1 94.3 97.4
6 Cl_06 97.4 92.3 96.2
7 Ccl_07 95.6 98.3 99.3
8 Cl_08 93.0 91.6 96.3
9 Cl_09 97.2 93.3 98.7

3.10.2. Model Testing on Videos at Different Driving Speeds

To assess the performance of the model at different driving speeds, a total of eightyone video
clips were assessed. The clips were grouped into six-speed groups, namely, 0-20 mph, 20-40 mph,
40-60 mph, 60—80 mph, 80-100 mph, and 100-120 mph. For each speed group, the clips were
passed through the model for detection of distresses and then used to generate frames from which
the detections were assessed. Table 4 shows the summary of precision and recall values obtained
for each speed group.
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Table 4. The summary of video analysis results.

S/N Speed (Mph) Precision (%) Recall (%)
1. 0-20 67 90
2. 20-40 57 86
3. 40-60 59 62
4. 60-80 54 88
5. 80-100 65 76
6. 100-120 66 87

To improve these results, the model was re-trained. This time, the albumentation library was
installed and augmentation parameters were fine-tuned to improve the dataset before training.
The parameters adopted include Blur (blur_limit = 50, p = 0.05), Median blur (blur_limit = 50, p =
0.02), ToGray (p = 0.3), CLAHE (p = 0.02), Random Brightness Contrast (p = 0.2), RandomGamma (p
= 0.2), and ImageCompression (quality_lower = 75, p = 0.2). In these parameters, p stands for
probability. Fine-tuning these parameters improved the model results on the videos for all speed
ranges. Table 5 shows the summary of video analysis results after fine-tuning.

Table 5. Summary of video analysis results after fine-tuning the augmentation parameters.

SN PR recison ) ¥R g %merovementin
1. 0-20 78 11 95 5
2. 20-40 81 24 94 8
3. 40-60 76 17 92 30
4. 60-80 85 31 93 5
5. 80-100 79 14 86 10
6. 100-120 82 16 91 4
4. Discussion of Testing Results

Table 3 summarizes the results of the testing of the trained model on still images. These
results show that the model attained a precision of more than 93.0% for all classes, a recall of more
than 91.6%, and a mMAP@50% of more than 93.9%. These values mean that the model achieved
satisfactory results in predictions and had small numbers of False Positives and False Negatives.
These results are comparable to the state-of-the-art of currently published studies such as the
research by Maeda et al. (2018) who worked to classify pavement distresses using SSD Inception
V2 and SSD MobileNet frameworks and achieved recalls and precision greater than 71% and 77%
and overall accuracy of 87.75% and 87.25%, respectively.

Table 4 shows the video analysis results. These results are attributed to some common
errors in the detection, such as the inclusion of cracks on barrier walls (Figure 13) and skid marks
(Figure 14), among others. Due to this, we found it necessary to re-train the model to improve its
accuracy.

Figure 13. Cracks on a concrete barrier.
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Figure 14. Skid marks detected as distress.

Table 5 summarizes the final testing results on videos at different driving speeds. Tuning the
parameters helped the model skip the distresses on barrier walls, and skid marks were not
confused with the distresses. This resulted in increased values in both precision and recall at all
speed ranges, since a smaller number of errors were encountered.

The results show that the model performance is not much influenced by the driving speed
since high accuracy values are obtained at all speed ranges. Therefore, the model can be used to
detect distresses at any driving speed with high accuracy. This indicates that the model can be
used to detect pavement distresses using vehicle built-in cameras, which is the primary objective
of this study.

4.1. Detection, Taking Photos, and Geolocations

When a vehicle camera is used, pavement distresses on road surfaces will be detected and
rectangular bounding boxes will be drawn around them, with colors and symbols to represent the
classes of detected distresses. These bounding boxes are increased by 20 pixels on all sides to
provide a buffer and avoid overtight, and corresponding detections are saved as independent
images (see Figure 15). While in motion, the vehicles record Global Positioning System (GPS) tracks
(using built-in GPS sensors) in parallel with the distress detections by the built-in camera. At the
end of the trip, the recorded GPS track can be used to obtain the coordinates of locations where
distresses were detected and recorded.

Figure 15. Capturing and processing of detections.

4.2. Model Validation

The model was validated within South Carolina State University campus using a car. The car
is equipped with a built-in camera and GPS sensors, the features of interest for our study. The
vehicle was driven on about 1.5 miles of roadway and parking lots, and we collected 53 images
with various distress types, some of which are presented in Figure 16.
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Figure 16. Images with the detected distresses from the campus.

5. Conclusions

This paper used YOLOvV5 to train the model to detect and classify pavement distress
conditions. The image data used were collected from different countries, with different devices,
and have different properties as various methodologies have been employed in pavement
construction and rehabilitation. All the images were raw and therefore manual labeling was
performed using the makesense.ai tool. To increase the dataset size, image augmentation was
performed before training, and background images were included in the training dataset to reduce
the FPs. The trained model attained 95%, 93.4%,

84.6%, and 97.2% values in precision, recall, F1-score, and mean average precision at 50%
(mAP@.5), respectively.

The model was also tested on videos taken at different driving speeds from 0 mph to 120
mph. The results obtained show high accuracy values at all speed levels (up to 85% precision and
95% recall). With these results, the model was able to detect and classify the distresses into their
respective classes. Once recorded, the distresses can be analyzed parallel to the GPS file; therefore,
the type and location of the distress can be obtained for further actions. The performance of the
proposed model was verified on campus roads and proved to be effective.

6. Limitations and Future Recommendations

This study proposes using vehicle cameras to collect road damage data, a process whose
effectiveness is greatly affected by light illumination intensity. If this approach is employed during
night-times/poor illumination conditions, we recommend the use of proper headlights or
appropriate light technologies to improve performance. Also, this study is limited to the detection
and classification of pavement damage. Future studies may improve the study by incorporating
severity classification, where the detected distresses may be further classified based on the extent
of deterioration.
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