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Abstract—Robotic manipulation of deformable materials is a
challenging task that often requires realtime visual feedback. This
is especially true for deformable linear objects (DLOs) or “rods™,
whose slender and flexible structures make proper tracking and
detection nontrivial. To address this challenge, we present mBEST,
a robust algorithm for the realtime detection of DLOs that is
capable of producing an ordered pixel sequence of each DLO’s
centerline along with segmentation masks. Our algorithm obtains
a binary mask of the DLOs and then thins it to produce a skeleton
pixel representation. After refining the skeleton to ensure topolog-
ical correctness, the pixels are traversed to generate paths along
each unique DLO. At the core of our algorithm, we postulate that
intersections can be robustly handled by choosing the combina-
tion of paths that minimizes the cumulative bending energy of
the DLO(s). We show that this simple and intuitive formulation
outperforms the state-of-the-art methods for detecting DL.Os with
large numbers of sporadic crossings ranging from curvatures with
high variance to nearly-parallel configurations. Furthermore, our
method achieves a significant performance improvement of approx-
imately 50% faster runtime and better scaling over the state of
the art.

Index Terms—Deformable linear objects, DLOs, instance
segmentation, computer vision, perception for manipulation.

1. INTRODUCTION

S ROBOTS become increasingly more intelligent and
A capable, developing robust and effective deformable mate-
rial manipulation skills has started to attract substantial research
attention [1]. Among various deformable objects, deformable
linear objects (DLOs) — typically referred to as “rods” by
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the mechanics community — are a special group, including
everyday objects such as cables, ropes, tubes, and threads. Due
to their distinctive geometric characteristic (width ~ height <
length), DLOs are widely used in various domestic and industrial
applications, including surgical suturing [2], knot fastening [3],
[4]. cable manipulation [5], [6], food manipulation [7], me-
chanics analysis [8], and more. Because of their flexibility,
DLOs are often prone to complex tangling, which complicates
manipulation. Additionally, the complicated structures made
by DLOs usually have unique topology-induced mechanical
properties [9], [10], [11], [12], [13] and are, therefore, used
to tie knots for sailing, fishing, climbing, and various other
engineering applications. Given all the aforementioned, a ro-
bust, efficient, and accurate perception algorithm for DLOs
is crucial to both deformable material manipulation and soft
robotics.

We present an algorithm for robust, accurate, and fast instance
segmentation of DLOs, named mBEST (Minimal Bending En-
ergy Skeleton pixel Traversals). Without any prior knowledge
regarding the geometries, colors, and total number of DLOs,
mBEST takes a raw RGB image as input and outputs a series of
ordered pixels defining the centerline of each individual DLO in
the image, thus allowing for the configurations of different DLOs
to be easily incorporated into motion planning and manipulation
schemes.

To achieve instance segmentation of DLOs in images, we
implement the following sequence of processing steps: Like
previous work [14], we first perform semantic segmentation to
produce a binary mask of the DLOs against the background
using either simple color filtering methods or a Deep Con-
volutional Neural Network (DCNN). After a binary mask is
obtained, we apply a thinning algorithm to the mask to pro-
duce a single-pixel-wide skeleton representation of the DLOs,
which preserves the connectivity and centerlines of the binary
mask. Thus, key points such as ends and intersections are
easily detected. After a series of refinement steps to ensure
topological correctness, the skeleton is then traversed, one
end at a time, in a manner that minimizes the cumulative
bending energy of the DLOs, until another end is encoun-
tered. Each traversal yields a single DLO’s centerline pixel
coordinates, which optionally can then be used to produce
segmentation masks. Fig. 1 overviews the mBEST processing
pipeline.

Overall, our main contributions in this article are that we

1) develop a robust pipeline for obtaining ordered centerline

coordinates and segmentation masks of DLOs from se-
mantic binary masks;
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Overview of the mBEST processing pipeline. An input image (a) is converted to a binary mask (b) using a segmentation method. The binary mask is then

converted to a skeleton pixel representation (c), where the connectivity and centerlines of the DLOs are preserved as a single-pixel wide structure and keypoints,
such as intersections and ends, are detected. This is followed by a series of refinement steps to maintain the topological correctness of the skeleton: Split ends (d1)
are pruned (d2) and pixels representing a single topological intersection (el) are clustered, matched, and replaced with a more intuitive intersection (e2). Finally,
the DLOs are delineated (f) by traversing skeleton pixels and choosing minimal cumulative bending energy paths.

2) demonstrate that the relatively simple and physi-
cally meaningful optimization objective of minimizing
cumulative bending energy outperforms several state of
the art (SOTA) algorithms;

3) showcase the effectiveness of our topology-correcting
skeleton refinement steps by outperforming the SOTA
algorithms with a hybrid mBEST formulation that uses
the intersection handling scheme of SOTA algorithms;

4) achieve faster, real-time performance compared to the
SOTA algorithms.

Moreover, we have released all our source code, datasets (with

ground truth), and a supplementary video.'

The remainder of the article is organized as follows: We
present a review of related work in Section II. The algorith-
mic formulation of mBEST is then detailed in Section III.
In Section IV, we report our experimental results comparing
mBEST with the SOTA approaches. Finally, we make conclud-
ing remarks and discuss potential future research directions in
Section V.

II. RELATED WORK

Although research into manipulation skills for DLOs has been
prevalent, the perception algorithms used in support of these
efforts remain underdeveloped. For example, in the work of
Tong et al. [8], attached markers are required to determine the
configuration of the manipulated DLO. Zhu et al. [5] carefully
adjusted the workspace to increase the contrast between the ma-
nipulated DLOs (cables) and their background. Although these
prior efforts successfully completed their target manipulation
tasks, the simplistic perception algorithms restrict real world
applicability.

Consequently, DLO detection algorithms featuring various
methodologies have been proposed. Keipour et al. [15] evaluated
both curvatures and distances to fit a continuous DLO. Using
data-driven methods, Yan et al. [16] trained a neural network
to reconstruct the topology of a DLO based on a coarse-to-fine
nodal representation. Though these methods achieve good re-
sults for some datasets, they work under the strict assumption

!See https://github.com/StructuresComp/mBEST.

that only one DLO exists within the scene, which dramatically
restricts their applicability.

One of the first perception algorithms capable of detecting
multiple DLOs, Ariadne [17], segments images into superpixels
and traverses the superpixels belonging to DLOs in order to
produce paths. The ambiguity of intersections is handled using
a multi-faceted cost function that takes into consideration color,
distance, and curvature. Despite its satisfactory performance,
this early approach suffers from a large number of hyperparam-
eters, an overreliance on DLOs being a uniform color, and the
tedious requirement that the user manually select the ends of
DLOs. Furthermore, the processing speed of Ariadne is on the
order of seconds, precluding realtime operation.

In recent years, data-driven computer vision methods have
attracted increasing attention and researchers have shown that
image segmentation problems can be tackled efficiently and
accurately using Deep Convolutional Neural Networks (DC-
NNs), particularly instance segmentation [18], [19], [20], [21].
Furthermore, techniques have been introduced to help synthet-
ically generate large quantities of photorealistic data in order
to adequately train such models [22], [23], [24]. Using DCNNSs,
Zanella et al. [25] created segmentations of DLOs such as wires;
however, the segmentations did not distinguish between each
DLO.

Improving upon Ariadne, Ariadne+ [26] also utilizes a DCNN
model to extract an initial binary mask of the DLOs. This allows
the algorithm to then apply superpixel segmentation purely on
the binary mask itself, significantly reducing the computation
time. Paths are then generated in a similar fashion to the original
Ariadne algorithm by traversing superpixels while intersections
are handled using a neural network to predict the most probable
paths. Despite these improvements, Ariadne+ is sub-realtime;
i.e., less than 3 FPS.

Another algorithm, FASTDLO [14] improves upon the speed
of Ariadne+ by forgoing superpixel segmentation altogether.
Instead, it uses a skeleton pixel representation of the DLO binary
mask for path traversals. Intersections are then also handled
by a neural network. By replacing superpixel segmentation
with skeletonization, FASTDLO is able to achieve a realtime
performance of 20 FPS for images of size 640 x 360 pixels.

More recently, RT-DLO [27] detects DLOs by representing
them as sparse graphs where nodes are sampled from DLO
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TABLE 1

COMPARISON OF ALGORITHMS

Algpettiion Intell:f:lfll;tlon RepreDsggation
Ariadne [17] colg{l,nr;l;:mgce, superpixels
Ariadne+ [26] DNN prediction superpixels
FASTDLO [14] DNN prediction  skeleton pixels
RT-DLO [27] cosine similarity sparse graph
mBEST curvature skeleton pixels

centerlines and edges are selected based on topological reason-
ing. This results in increased runtime efficiency and accuracy
compared to Ariadne+ and FASTDLO, but requires sampling
along the centerlines of the DLO to remain computationally
competitive, often resulting in noisy segmentations. Further-
more, several hyperparameters must be set.

Ariadne+, FASTDLO, and RT-DLO are considered state-of-
the-art DLO perception algorithms, but they have been evaluated
only on scenes containing DLOs with relatively smooth curva-
tures and minimal self-loops. Our experiments will show that
these algorithms struggle to resolve nontrivial configurations
(e.g., DLOs with highly variable curvatures resulting in many
crossings and tangles and/or nearly-parallel intersections). We
argue that a physically principled approach can outperform
both sparse graphs and black box neural network approaches
when dealing with intersections. Our mBEST algorithm robustly
solves complex scenes using the simple notion that the most
probable path is the one that minimizes cumulative bending
energy. Not only does mBEST outperform in accuracy, it also
achieves realtime performance with a 50% improvement over
the next best algorithm and it has no hyperparameters to set.
Table I summarizes the key algorithmic differences between
mBEST and competing algorithms.

III. METHODOLOGY

The mBEST algorithm consists of the following steps:
1) DLO Segmentation

2) Skeletonization

3) Keypoint Detection

4) Split End Pruning

5) Intersection Clustering, Matching, and Replacement
6) Minimal Bending Energy Path Generation

7) Crossing Order Determination

The following sections describe each step in detail.

A. DLO Segmentation

The first step in detecting the DLOs is to obtain a binary mask
My, of the image that distinguishes all DLO-related pixels from
the background. The initial image segmentation method is not a
key contribution of mBEST. Rather, it is a modular component
of our pipeline, allowing for different methods to be plugged in
depending on the use case. As stated previously, we employ two
semantic segmentation methods: a DCNN segmentation model
and color filtering. In particular, we use FASTDLO’s pretrained
DCNN model [14] in our experiments.

e Ewd Pixels
E nieraction Pixels

Fig. 2. Examples of split ends that may occur during the skeletonization
process. Row (a) shows split ends that may occur at an actual topological end,
while row (b) shows a split end along a segment produced by a jagged mask.
For both examples, the first column shows the binary mask; the second shows
the split end after skeletonization, and the third shows the topologically correct
structure after pruning.

B. Skeletonization

As shown in Fig. 1(b)—(c), the next step of our algorithm is to
convert My, to a skeleton mask Mg, which is useful as both the
connectivity and general topology of the DLOs are maintained.
Furthermore, as segments are only 1 pixel wide, traversals along
segments are not susceptible to path ambiguity. To achieve
skeletonization, we use an efficient thinning algorithm designed
specifically for 2D images, and refer the reader to [28] for the
details.

C. Keypoint Detection

After obtaining the skeleton pixel representation, we can then
detect two types of key points: ends and intersections. Locating
ends is crucial since they serve as the start and finish points
for skeleton pixel traversals. Locating intersections is crucial as
they represent the only points at which a pixel traversal will
have multiple possible routes. Therefore, care must be taken in
choosing the correct path when passing through an intersection.

To detect ends and intersections, a skeleton pixel classification
kernel,

1 1 1
K=|1 10 1],
1 1 1
is convolved with the skeleton mask; i.e., Mg ®K. We then
identify all end pixels E as those with a value of 11 (1 neighbor)
and all intersection pixels I as those with a value greater than 12
(3 or more neighbors).

After obtaining both E and I, additional work must be done
to obtain the correct representative sets. For example, end pixels
that are unindicative of a topological end may be produced from
anoisy binary mask. These “split ends” will then falsely produce
intersection pixels themselves, as shown in Fig. 2. Additionally, a
single topological intersection will result in either two Y-shaped
divides or a single X-shaped divide, as shown in Fig. 3(a). Such
pixels must be clustered accordingly, with a single point of
intersection determined. In the case of a skeleton possessing
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Compute Optimal Paths

Replace Intersection

Intersection clustering, matching, replacement, and optimal path generation pipeline. Two sample intersections are shown where skeletonization results in

a 2Y-shaped crossing (al) and an X-shaped crossing (a2). As 2Y-shaped crossings are topologically incorrect, we replace them by replacing the intersection pixels
(b) in two stages: The first involves clustering adjacent pixels and the second involves pair matching nearby clusters. Using the centroid location of the matched
clusters, we then replace the intersection (c) by creating new ends and having new segments sprout and connect to the centroid. Finally, (d) the new generated ends
and segments are used to discover the combination of paths that minimizes the cumulative bending energy of the DLO.

two Y-shaped divides in the context of a single intersection, the
intersection must also be replaced with an X-shaped divide that
more accurately represents the centerlines of the DLOs.

D. Split End Pruning

When the boundary of the binary mask My, is jagged, the
skeleton mask My may contain several types of split ends, as
shown in Fig. 2. Such split ends must be identified and pruned
as they do not accurately represent the topology of the DLO(s)
and will result in incorrect start points as well as cause path
ambiguity during pixel traversals.

Note that the length of a split end can be at most the radius
of the DLO from which it is sprouting. Therefore, the length
of all split ends should be within a threshold 6 much less than
the length of the DLO. As such, for every end in E, we traverse
along its segment until one of the following three conditions
occurs before traversing 4 pixels:

1) an intersection is encountered,

2) an end is encountered,

3) or neither was encountered.

For Conditions 1 and 2, we remove the segment that was just
traversed from M, as well as the corresponding end from E.
For Condition 1, we must also remove from I all intersection
pixels that were produced from the pruned split end. For any
endpoint that satisfies Condition 3, we do nothing.

To encompass all possible split ends, we can set § to be the
diameter of the widest DLO in the image. Radii of the DLOs
can be obtained by computing an L2 distance transform on My,
which results in a matrix D containing for each pixel location
the closest Euclidean distance to a 0-value pixel. With this, we
can then simply set § = 2max(D). As the distance matrix D
tells us the radii information for all centerline points, we can
reuse it to generate segmentation masks once each DLO’s path
is ascertained [14].

E. Intersection Clustering, Matching, and Replacement

As mentioned in Section III-C, a single topological intersec-
tion can result in either a 2Y or X-shaped branching as shown in
Fig. 3(a). Furthermore, each of these branches may have several
intersection pixels; i.e., pixels with 3 or more neighbors. Our
goal then is to group each pixel in I to a single branch and then
group each branch to its true topological intersection. With all

the intersection pixels properly grouped, we then define a single
intersection pixel that represents the true center of a crossing,
for all crossings.

First, to cluster all adjacent intersection pixels, we use
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [29], an algorithm that clusters data points within a
distance threshold of each other. In our case, the Euclidean pixel
distance and is simply set to 2. Once all adjacent pixels in I are
clustered, each cluster is averaged to create a new 1.

The next step is to group all branches in I by their respective
topological intersection. To do so, we first classify all branches
in1 as either Y or X-branches. Intersections that are X-branches
are already topologically correct so they are left unmodified in
I. The remaining Y-branches are removed from I, after which
we obtain a list of all possible Y-branch pair combinations and
sort them by their pair distance. The closest branch pairs are
then iteratively popped from the list and matched so long as
neither branch has already been matched. A new intersection
pixel is then computed from the average of the matched branch
locations and then added back to 1.

Using the new intersection pixel location, all matched Y-
branches can then be replaced with an X-shaped branch, as
shown in Fig. 3(c). Note that there may be cases where an
intersection is topologically a Y-branch (i.e., an end perfectly
overlaps with a segment) and thus has no corresponding match.
To account for these cases, we stop matching Y-branches once
the pair distance exceeds a limit e = 10 max(D) or if every Y-
branch has already been matched. Any remaining non-matched
Y-branches are added back to I. As shown in Fig. 3(c), we record
new “ends” for all topologically correct intersections. This is
done so that we know that an intersection is imminent during a
pixel traversal and, hence, take the correct precomputed path, as
discussed next.

FE. Minimal Bending Energy Path Generation

For rods that have nonuniform curvatures, the bending energy
must be computed in a discretized fashion. If we discretize a rod
into N nodes and N — 1 edges, then the total bending energy is

THL
:EVZ ke —9)7 (1
k=1
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where E1T is the bending stiffness, «x and mg are the deformed
and undeformed discrete dimensionless curvatures, respectively,
at node k € [1, N — 2], and V is the Voronoi length. For our
DLOs, we assume that the undeformed curvature is a straight
configuration (k° = 0). Then, minimizing the bending energy
of an elastic rod amounts to minimizing the discrete curvatures.

The norm of the discrete dimensionless curvature for a node k
is easily computed using the unit tangent vectors of the adjacent
edges [30]:

2tk-1 x tk

1 +tk_1 - tk 1 (2)

Rk:‘

where t*~! and t* are the unit tangent vectors of edges k — 1
and k, respectively.

Note that the only time we must choose between multiple
paths is at an intersection, whereas traversals through segments
are unambiguous. Using the new ends shown in Fig. 3(c), we can
compute the combination of paths that minimizes the camulative
bending energy of the DLOs by simply computing the pairs of
segments that minimize cumulative norm curvature. In other
words, if an intersection at i has four end points a, b, ¢, and d,
then we must find the pairs of end points (pi, p?) and (p3, p2)
that minimizes || || + ||&2]|, where

oy — i1 % b o — 2k X 5
i 146542

e
i—pi Ipt — il
lli — p3 Ip3 — il

Fig. 3(d) shows an example of this optimization, where out of
the 3 possible combinations of paths the one that minimizes
total curvature is selected. With the paths through intersections
properly precomputed, the skeleton pixel traversals to obtain
each DLO’s centerline can now take place. Algorithm 1 shows
the pseudocode of the mBEST pipeline.

G. Crossing Order Determination

The final step of the pipeline involves ascertaining which DLO
is resting on top at intersections. To solve this problem, we use
a modified version of FASTDLO’s [14] solution. To compute
crossing order at intersections, we use the precomputed optimal
paths shown in Fig. 3(d). Crossing order is then determined
by computing the sum of the standard deviations of the RGB
channels of the pixels along each path. Finally, the path that
contains the lower sum is assumed to be the one on top. Although
this solution from FASTDLO works fairly well, we discovered
that failures can occur due to glare along the centerline, which
may even cause failures for intersections with two completely
different colored DLOs. To eliminate the influence of glare, we
compute the standard deviations of the intersection path pixels
not on the original input image but on its blurred version.

IV. EXPERIMENTAL RESULTS

A. Datasets

We used two different datasets to evaluate the effectiveness
of mBEST. The first consists of relatively simple configurations
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Algorithm 1: mBEST Pipeline Pseudocode.

Input: Mg
Output: P

1 Func mBEST(Muyjo):

P[]

Mk + Skeletonize(Maio )

D + DistTransform(Maj,)

8, € +— ComputeParams(D)

E, I + DetectKeyPoints(Mg ® K)

E, I + PruneSplitEnds(E, I, Mgy, 8)
I + Replacelntersections(I, €)

Pinter +— GenlntersectionPaths(I, M)
while E is not empty do
x + E.pop()
while True do
T 4+ traverse along My from x until reaching
an end e
14 if e € Pinter then
15 T T+ Ply
16 % + last pixel of Plyer

LB a3 e WoW

-
[T = T =]

17 else
18 E.remove(e)
19 break
20 P.append(T)
21 return P

of DLOs against complex backgrounds, whereas the second
consists of complex configurations (i.e., highly varying curva-
tures and numerous self-loops) of DLOs against a simple black
background. We focused mostly on images with a simple black
background since the initial binary mask segmentation is not a
key aspect of our algorithm; however, mBEST also works well
for complex backgrounds, as shown in Fig. 4.

The complex background dataset was provided by [27], and
comprises a total of 132 images of size 640 x 360. It is split into
tiers C1, C2, and C3, each containing 44 images, where the tier
numbers reflect the increasing complexity of the background.
Given the complexity of the background, DCNN segmentation
was used to obtain the initial binary mask. We removed two
images each from C2 and C3 as they included intersections
involving > 2 DLOs, scenarios which are currently outside the
scope of mBEST.

The simple background dataset consists of a total of 300
images of size 896 x 672 and is split into tiers S1, S2, and S3,
each containing 100 images, where the tier numbers reflect the
number of DLOs in the image, resulting in both an increase in
complexity and computational demand as the numbers increase.
Given the high contrast background, color filtering sufficed to
obtain the initial binary mask.

B. Baselines and Parameters

We tested mBEST against three state-of-the-art baselines:
Ariadne+ [26], FASTDLO [14], and RT-DLO [27]. In terms
of hyperparameters, the number of superpixels for Ariadne+
was set to 75 for complex background images and to 200 for
simple background images. Both these values were chosen as
optimal after performing a parameter sweep on each dataset. For
RT-DLO, the K-nearest neighbors matching parameter was set
to 8, the edge similarity threshold was set to 0.1, and the vertex

Authonized licensed use limited to: UCLA Library. Downloaded on October 01,2023 at 15:30:43 UTC from IEEE Xplore. Restnctions apply.



4868

Ariadne+

FASTDLO

Fig. 4.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 8, AUGUST 2023

RT-DLO mBEST Ground Truth

Sample segmentations for the simple configuration against complex background dataset. Each row shows segmentation results for a different image with

the left column indicating the dataset to which the image belongs. Columns 2-5 show Ariadne+, FASTDLO, RT-DLO, and mBEST results, respectively. The right
column shows the ground truth. Note the failure to properly handle intersections for all baseline algorithms, especially when strands are nearly parallel. In fact,
RT-DLO can be seen to produce an unintuitive output for the last example where certain wires are labeled multiple times.

TABLE Il
EXPERIMENTAL RESULTS

DICE [%] Runtime [FPS]
Dataset 3 3
Ariadne+ FASTDLO RT-DLO mBEST Ariadne+ FASTDLO RT-DLO mBEST
C1 88.30 + 0.102 89.82 + 0.091 90.31 + 0.085 91.08 + 0.083 2.69 20.81 30.58 31.86
cz2 91.03 £ 0.044 91.45 + 0.039 91.10 + 0.058 92.17 £+ 0.050 2.63 20.90 32.50 32.03
C3 86.131+0.123 86.55 £ 0.110 87.27+0.128 89.69 £+ 0.089 2.72 20.51 32.44 3217
51 97.24 &+ 0.065 87.91 £ 0.062 96.72 + 0.014 98.21 + 0.006 0.92 21.88 39.60 52.79
52 96.81 + 0.074 88.92 £ 0.061 94.91 £ 0.019 97.10 £ 0.010 0.78 17.34 25.73 41.04
53 96.28 + 0.067 90.24 + 0.042 94.12 + 0.043 96.98 -+ 0.009 0.73 15.33 22.06 37.11

sampling ratio was set to 0.15. These hyperparameters were
provided by default and shown to have good performance in [27].
For all experiments involving use of the DCNN model, a pixel
segmentation threshold of 77 (0-255) was used. Furthermore,
although Ariadne+ has its own neural network for the initial
segmentation of the DLOs, we replaced it with FASTDLO’s
DCNN model for consistency and better performance.

Additionally, we demonstrated the effectiveness of mBESTs
skeleton refinement steps by conducting experiments on an
aggregated dataset consisting of S1, S2, and S3 with a hybrid
formulation that uses FASTDLO’s intersection handling neural
network in mBEST’s framework.

All experiments were run on a workstation with an Intel i9-
9900KF CPU and an NVIDIA RTX 2080 Ti GPU.

C. Results and Analysis

We report two key metrics. First, we look at segmentation
accuracy using the popular DICE metric. We also report the
average run times for each algorithm in frames per second (FPS).
Table II reports both metrics for all our experiments.

For the complex background datasets, we see that mBEST
outperforms all baseline algorithms in terms of mean DICE
score. In particular, we see that the baseline algorithms often
struggle to handle intersections that are nearly parallel, as shown
in Fig. 4.

With regard to runtime, mBEST is roughly on par with
RT-DLO and is a clear improvement over Ariadne+ (= 11x)
and FASTDLO (= 1.5x). Note three important caveats for
these results: 1) the initial DCNN segmentation comprises a
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Ariadne+ FASTDLO

Fig. 5.
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mBEST Ground uth

Sample segmentations for the complex configuration against simple background dataset. Each row shows segmentation results for a different image with

the left column indicating the dataset to which the image belongs. Columns 2-5 show results for Ariadne+, FASTDLO, RT-DLO, and mBEST, respectively. The
right column shows the ground truth. Several cases of incorrect intersection handling can be observed for all the baseline algorithms, whereas mBEST robustly

handles intersections using its simple bending energy optimization.

large portion of the computation time; 2) the images are rel-
atively small and the number N of DLOs is random, giv-
ing little insight as to how the algorithms scale with N,
and 3) RT-DLO’s ability to keep up with mBEST in speed
is solely due its low vertex sampling rate (0.15). We ob-
serve that increasing the sampling rate increases the compute
time significantly given the computational expense of graph
construction.

To address the above concerns, consider the results for the
simple background datasets. As these datasets do not require
the use of a DCNN and are labeled by the number of DLOs
they contain, we can accurately determine how each algorithm
scales and performs with respect to N. As reported in the bottom
half of Table I, mBEST offers clear speed improvements over
the Ariadne+ (= 54x), FASTDLO (= 2.4x), and RT-DLO (=
1.5x) baselines. Additionally, we see that mBEST scales better
with respect to N compared to RT-DLO despite the latter’s sparse
sampling rate, with mBEST experiencing runtime decreases of
about 22.3% and 9.6% when moving up each tier compared to
RT-DLO’s 35% and 14.3%. Though a low sampling rate works
well for the relatively straight configurations of DLOs in C1, C2,
and C3, we notice that performance degrades significantly once
a coarse sampling rate is unable to capture the highly variable
curvatures of complex assemblies of rods (i.e., those in S1, 52,
and S3). Examples of this can be observed in our supplementary
video (see Footnote 1).

In addition to the significant improvement in runtime, mBEST
also outperforms all the baseline algorithms in terms of mean
DICE score as well. Several examples of intersection failures
experienced by the baseline algorithms are shown in Fig. 5.
Such failures typically occur in extreme cases (i.e., either

TABLE III
SKELETON REFINEMENT ANALYSIS ON S1+S2+53

Algorithm DICE [%] Runtime [FPS]
FASTDLO 89.02 £ 0.056 16.13
HYmBEST 97.39 +0.013 29.94
mBEST 97.43 £ 0.010 42.86

nearly-parallel or extremely curved self-loops). Interestingly,
Ariadne+’s mean DICE score is very close to mBEST’s, but
had up to 10x the standard deviation, meaning that Ariadne+
suffered a higher number of outright failures. In fact, mBEST
has a lower standard deviation compared to all the baseline
algorithms across all the datasets with the exception of C2,
indicating a higher level of consistency for a wide range of
data.

Finally, we analyze the effectiveness of our skeleton refine-
ment steps by formulating a hybrid algorithm, HYmBEST, which
uses FASTDLO’s intersection handling neural network (IHNN)
plugged into mBESTs framework. As reported in Table III,
HYmBEST achieves a mean DICE score almost identical to
mBEST, with both significantly outperforming FASTDLO. This
is noteworthy as it shows that FASTDLO’s IHNN works reason-
ably well, but that the improperly handled skeleton structure
yields poor results, thus highlighting the importance of the
topology-correcting refinement steps. Note also that although
FASTDLO’s THNN can perform well in a hybrid formulation,
mBEST’s remarkably cheap bending energy formulation still
results in an =~ 43% runtime improvement.
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V. CONCLUSION

We have introduced mBEST, an end-to-end pipeline for the
segmentation of deformable linear objects (DLOs) in images
that improves upon the state of the art both in terms of accuracy
and computational speed. Through a variety of experiments, we
have shown that mBEST can robustly handle complex scenes
with highly tangled DLOs by generating paths on topologically
correct skeletons that minimize the cumulative bending energy
of the scene.

In future work, we will explore solutions that take into con-
sideration occlusions, multiple DLOs at an intersection, poor
quality binary masks, and dense knots; i.e., strands touching
in parallel. We note that though we do not cover it in this
manuscript, the bending energy formulation of mBEST can
easily be expanded to deal with multiple DL.Os at an intersection
by simply accounting for additional path combinations. Further-
more, methods like RT-DLO [27] already take into consideration
the possibility of poor binary masks and may be better suited for
such situations. Finally, another promising research direction
is 3D detection of DLOs, thus enabling robots to go beyond
simple planar manipulation. Solutions for this may involve using
mBEST to generate segmentations from multiple viewing angles
for the purposes of 3D reconstruction.
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