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Information Rates With Non Ideal Photon Detectors
in Time-Entanglement Based QKD
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Abstract— We develop new methods of quantifying the impact

of photon detector imperfections on possible secret key rates

in Time-Entanglement based Quantum Key Distribution (QKD).

We address photon detection timing jitter, detector downtime,

and dark photon counts and show how each may decrease the

maximum achievable secret key rate differently. We begin with

a standard Discrete Memoryless Channel (DMC) model to get

a good bound on the mutual information lost due to the timing

jitter, then introduce a novel Markov Chain (MC) based model

to characterize the effect of detector downtime and show how

it introduces memory to the key generation process. Finally,

we propose a new method of including dark counts in the analysis

that shows how dark counts can be especially detrimental when

using the common Pulse Position Modulation (PPM) for key

generation. Our results show that these three imperfections can

significantly reduce the achievable secret key rate when using

PPM for QKD. One of our main results is providing tooling for

experimentalists to predict their systems’ achievable secret key

rate given the detector specifications.

Index Terms— Quantum key distribution, time binning, detec-

tion jitter, detector downtime, single photon detection.

I. INTRODUCTION

Q
UANTUM Key Distribution (QKD) generates and dis-
tributes secret classical encryption keys between two or

more users at different locations. We consider QKD protocols
where two parties, Alice and Bob, establish a secret key
by communicating over a quantum and a classical chan-
nel, which can be accessed by an eavesdropper, Eve. The
quantum channel is essential in QKD for preventing unde-
tected eavesdropping and generating randomness when using
entanglement-based QKD. At a high level, there are two main
QKD steps. In the first step, Alice and Bob generate raw key

bits by using a quantum channel. Their respective raw keys
may disagree at some positions, could be partly known to
Eve, and may not be uniformly random. In the second step,
Alice and Bob process the raw key to establish a shared secret

key. They communicate through the public classical channel
to reconcile differences between their raw keys, amplify the
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privacy of the key concerning Eve’s knowledge, and compress
their sequences to achieve uniform randomness. At the end
of the protocol, Alice and Bob 1) have identical uniformly
random sequences and 2) are confident the shared sequence is
known only to them. Therefore the secret key is private and
hard to guess. For an in-depth survey of the most prominent
QKD protocols, we refer the reader to [1].

One of the main challenges QKD protocols face today
is approaching the secret key generation rates supported by
AES and other standard classical key distribution methods [2].
Primarily, this comes down to an inability to extract all the
information communicated over the quantum channel. Initially,
QKD protocols relied on polarization-entangled photons [3].
Alice and Bob could extract a single key bit by measuring
the polarization of entangled photon pairs. Thus, such proto-
cols restrict the maximum secret key rate to the maximum
entangled photon pair generation rate. Due to the difficulty of
generating entangled photon pairs, these experiments operate
in what is referred to as photon-starved conditions. To exceed
this limit and to offer high key rates in photon starved
conditions, we need some way of extracting multiple bits from
each photon pair.

Time-entanglement QKD promises to increase the secret
key rate and distribution distances compared to other
entanglement-based QKD schemes [4]. In time-entanglement
QKD schemes, an independent source (or one of the partici-
pants) randomly generates entangled photon pairs. Entangled
photon inter-generation times are independent and identically
exponentially distributed, giving a source of perfect random-
ness. Moreover, we theoretically could get arbitrarily many
bits from a single photon arrival time given detectors with
sufficiently precise measurements. However, such sensors do
not exist.

Alice and Bob extract the raw key bits from the arrival
times of entangled photons through time binning. Each of
them individually discretizes their timeline into time bins

and groups adjacent time bins into time frames. They record
photon arrivals as occupied bins within frames. They then
use the position of the occupied bins within a time frame
to generate random bits. The bit extraction scheme may
follow pulse position modulation or some recently proposed
adaptive strategies [5], [6]. Under ideal conditions, pho-
ton inter-arrival times (as their inter-generation times) are
independent and identically exponentially distributed. Several
groups studied such systems, most notably [4] who con-
structed an end-to-end, high dimensional time-entanglement
experiment.
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However, non-ideal detectors suffer from jitter, dark counts,
and downtime. Jitter occurs because of imprecision in the
time tagging, which causes discrepancies between Alice’s and
Bob’s raw keys. Dark counts occur due to light leakage into
the system and also cause discrepancies between the raw keys.
These errors reduce the secret key rate by increasing Alice and
Bob’s public exchange of information for key reconciliation.
Downtime is the time following a photon detection during
which no other detection can occur. Thus the perceived
arrivals are no longer independent. In their experiment [4],
Zhong et al. used a 50:50 beam-splitter to distribute the
photon arrivals to two detectors at each station to overcome
the loss of photon detections caused by downtime. These
dependencies reduce the secret key rate and require Alice
and Bob to compress their sequences to achieve uniform
randomness.

The adverse effects of various detector imperfections in
QKD protocols have been recognized. A recent survey
paper [7] extensively studies secure quantum key distribution
with realistic devices in the context of prepare-and-measure
protocols, such as BB84 [8]. We focus on time entanglement-
based QKD. In particular, we model detector jitter, downtime,
and dark counts and show how these imperfections affect the
secret key rates.

This paper is organized as follows: In Sec. II, we intro-
duce a typical experimental time-entanglement QKD setup.
We then establish a system model and describe the vari-
ous imperfections we will analyze. In Sec. IV, we present
the methods used to calculate key rate and show the
trade-off between increasing raw key rate and increasing
errors due to detector jitter. In Sec. V, we introduce the
novel Markov Chain analysis of detector downtime and
use these models to investigate the severity of downtime
on secret key generation rates. In Sec. VI we pivot and
investigate the dark counts’ effect on key generation rates.
Finally, in Sec. VII, we briefly summarise our results and
observations.

II. TIME-ENTANGLEMENT QKD SYSTEM MODEL

A. Sources of Entangled Photons

Entangled photons are commonly generated by Spontaneous
Parametric Down-Conversion (SPDC). This process occurs
when a non-linear crystal is irradiated with a laser, referred to
as the pump. The crystal may split the pump photon, resulting
in two new photons. This event occurs randomly and relatively
rarely at a rate on the order of 106

s
�1

mW
�1 [9]. The

emission of a photon pair from such sources is equally likely to
occur anywhere within a window equal to the pump coherence
time ⌧c, and it does not depend on the previous emissions.
Because generation times are uniformly random and inde-
pendent, photon pairs are generated according to a Poisson
Process with mean �p. Therefore the photon inter-arrival times
are exponentially distributed with the rate �p. This parameter
can be regulated by varying the energy of the pump. Fig. 1
shows a simplified depiction of an SPDC source. One photon
is sent to Alice, and one to Bob. The entangled state of the

Fig. 1. Generation of time-entangled photons. Ideally, Alice and Bob receive
their individual photons at identical and uniformly random times, but that is
not true when they use practical, imperfect detectors.

Fig. 2. Detector imperfections include jitter errors, downtime, and dark
counts. The Gaussian curve sketches the PDF of the detector jitter. Multiple
bins may be affected, each with likelihood proportional to the area under the
curve above it. Dark counts occur uniformly within the frame and here are
represented by the uniform distribution.

emitted pair is given by

|�(t0)iAB /
Z t0

t0�⌧c

dt |tiA |tiB

Observe that the state represents a uniform superposition in
time within the pump coherence time ⌧c from the moment
t0 when the SPDC photons leave the crystal. This process is
1) our source of randomness and 2) the method that ensures
Alice and Bob base their keys on correlated information.

B. Single Photon Detectors

The most common single-photon detectors are Supercon-
ducting Nanowire Single-Photon Detectors (SNSPDs). These
detectors currently exhibit properties closest to those of the
ideal sensors. They have high efficiency, meaning they detect
the majority of incident photon arrivals accurately. They have
low dark count rates, meaning they rarely report a photon
detection without a photon arrival. Furthermore, they have
low detector downtime d and slight detector timing jitter that
manifests as Gaussian noise with zero mean and variance
�

2
d. Unfortunately, these effects are non-negligible: 1) detector

jitters and dark counts cause disagreements between Alice’s
and Bob’s keys, and 2) the downtime introduces memory
within the raw key bits. This paper focuses on the secret key
rate loss due to these non-ideal properties. Fig. 2 illustrates
three of these detector imperfections.

Let tA be the time when one of the photons of the pair
generated by the source is registered by Alice’s detector, and
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tB be the time the other photon is registered by Bob’s detector.
Then

tA = u + ⌘A and tB = u + ⌘B . (1)

Here ⌘A and ⌘B are independent samples of a Gaussian
distribution with the zero mean and variance �

2
d, and u is

a sample of a random variable U distributed over the interval
[t0 � ⌧c, t0]. We take u to be the actual arrival time of the
SPDC photon.

Let TA and TB be the random variable associated with
the times Alice and Bob register their photon arrivals. Then
the discrepancy between TA and TB follows a Gaussian
distribution with twice the variance of each detector jitter:

TB � TA ⇠ N(0, 2�
2
d).

Dark counts arrive uniformly and independently at either
detector and are indistinguishable from the SPDC photons.
Thus, they can cause significant errors if they make up a large
fraction of the detected photons. Dark counts are primarily
a result of light leakage into optical lines. When an SPD
detects a photon, it enters a temporary state wherein no other
photon arrivals can be detected. This means a possibility of our
previously mentioned interval (which was [t0 � ⌧c, t0]) being
truncated or eliminated entirely. This effect further limits the
observed photon arrival rate.

C. Eavesdropping Model

The described system allows raw key generation at two
locations. Since there is no passive eavesdropping possible
on a quantum channel, Alice and Bob can always detect
the presence of Eve. Systems implementing this kind of
QKD experiment have been recently shown to achieve photon
information efficiency up to 4.082 secure-key bits/photon and
a secure-key rate up to 237-kbit/s [10]. They commonly
pass a fraction of photons through a special interpreter to
produce entangled photons in the maximally entangled state
|'ABi / |0A0Bi+ |1A1Bi. Alice and Bob can quantify Eve’s
information gain based on such photons by playing a variant of
the CHSH game. We assume that they halt the key distribution
if they detect an eavesdropper beyond the non-classical bound
of the CHSH game. Thus, the raw keys that Alice and Bob
receive have guaranteed security against eavesdropping on the
quantum channel. Equivalently, we could say there has been
no eavesdropping on the quantum channel. We focus on the
second phase of the key distribution process wherein Alice and
Bob take their arrival sequences and map them into identical
secret keys.

Due to the detector imperfections, Alice’s and Bob’s raw
keys do not entirely agree (jitters and dark counts cause errors).
They are not uniformly random either (detector downtime
introduces memory). Therefore, Alice and Bob must first
perform information reconciliation to establish key agreement.
This process involves transmission over the public channel.
Alice and Bob must then perform privacy amplification to
regain the lost randomness due to downtime and recover the
secrecy lost in the information reconciliation process. This
ultimately reduces the key rate such that both these goals may

Fig. 3. Time frames of duration Tf consist of n = 4 time bins. Each bin
has the width ⌧b = Tf /n Photon arrivals are shown as points above the line.
Each is said to “occupy” the bin it lands within.

be met. This paper focuses on computing information-theoretic
bounds on the key rate loss in the privacy amplification
step. In practice, information reconciliation is carried out by
using error-correcting codes whose rate will ultimately deter-
mine the secret key rate. Practical information reconciliation
error-correcting codes for PPM schemes have been recently
proposed in [11] and [12].

D. Raw Key Extraction

Alice and Bob rely on the correlated random photon arrivals
to generate their secret keys. There are many ways to extract
keys from this correlated information. One popular method
is similar to Pulse Position Modulation (PPM); see, e.g., [4]
and references therein. In PPM, Alice and Bob synchronize
their clocks and discretize their timelines into time frames of
size Tf each consisting of n time bins. Each time bin has a
width of ⌧b = Tf/n. In PPM, Alice and Bob agree to retain
only time frames in which only one bin is occupied, while
discarding all other frames. Individual photons are considered
to occupy a time bin depending on where within the frame it
arrives – if a photon arrives at time tA, the occupied frame is
frame number btA/Tfc and the PPM decoding of this frame
is b(tA mod Tf )/⌧bc.

The number of raw key bits Kraw that PPM decoding can
extract from each retained frame is

Kraw = log2(n) bits per frame. (2)

To find the overall number of raw key bits extracted on average
Rraw, we need to know the probability that a frame is valid,
and for that, we need to know the probability that a bin is
occupied. Since photon inter-arrival times are exponentially
distributed (see Sec. II-A), the number of photons that arrive
in a single bin is Poisson distributed. From this, we can derive
the probability p of a bin being occupied,

p = 1� exp(��p⌧b). (3)

For now we assume that the probability of each bin being
occupied is independent of other bins. We can thus treat
the occupancy of each bin as being modeled by a Bernoulli
distribution, with parameter p. Hence, the probability of a
frame being retained is the probability that only a single bin is
occupied, which is np(1 � p)n�1. Therefore, the highest key
rate achievable when using PPM (in bits per frame) is

Rraw = Krawnp(1� p)n�1 = log2(n)np(1� p)n�1 (4)

Fig. 3 illustrates the described time of arrival key generation.
To illustrate potential disagreements between Alice’s and

Bob’s extracted raw key bits, we consider an example in Fig. 4.
Alice and Bob had discretized their timelines into time frames
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Fig. 4. Two arrival sequences at Alice’s and Bob’s stations. PPM decoding
is below each frame and the resulting key sequences is at the right.

Fig. 5. An example of a deterministic sequence that appears acceptable to
Alice and Bob because of the detector downtime. Each time frame consists
of n = 2 time bins, and the photon generation probability is high. Photon
arrivals are shown as points above the line. Every bin is occupied, but the
detector downtime (shown in blue) occludes every other arrival tricking Alice
and Bob into accepting and decoding each time frame.

consisting of four time-bins. We can see that in the first frame
bit extraction works as expected, and both parties extract the
same key bits despite some slight timing jitter that stays within
the time bin. However, they both throw out the second frame
because Alice detected an extra dark count in her frame. The
third time frame shows how the timing jitter can cause errors
between the extracted keys. Here the jitter caused the photons
to be detected in separate bins and in this case caused two
bitwise errors in the final key sequences. The fourth frame
shows an example where Alice and Bob detect a dark count in
the same time frame. Before information reconciliation, these
seem like valid PPM frames despite the resultant bits being
entirely uncorrelated. The rates of these two kinds of errors are
significantly affected by the specific design parameter choice.
For example, smaller bins lead to more potential bits per time
frame but increase the likelihood of jitter errors, while larger
time frames can lead to a greater number of unusable time
frames due to multiphoton arrival events (as in the second
pair of frames in Fig. 4.)

Finally, Fig. 5 illustrates the impact of detector down
time on key extraction. In this example, we have naively
parameterized PPM so that the time bin duration equals the
detector downtime. We assume that the photon arrival rate
is sufficiently high to ensure each bin will detect a photon
arrival with a high probability. The resulting key sequence
is the all-zero string and is entirely predictable (i.e., carries
no randomness). This particular case is contrived and we can
avoid such scenarios, but as we’ll see, the entropy reduction
phenomenon ultimately persists albeit to a lower degree.

III. PAPER GOALS AND SUMMARY OF RESULTS

We are now ready to more precisely state this paper’s
goals and summarise the results. This paper has three goals
addressed in the next three sections. We briefly describe them
below.

A. Information Loss Due to Detector Jitter

Alice and Bob get their raw key bits based on the correlated
(ideally coincidental) arrival times of the SPDC-generated

entangled photon pairs. The level of correlation is determined
by the detector jitter noise variance and the time bin size (since
we extract the raw key bits by time binning). The smaller the
time bin, the higher the raw key rate. On the other hand, the
smaller the time bin, the more Alice’s and Bob’s raw keys may
disagree due to jitter. An increase in the disagreement between
their keys necessitates an increase in the public communication
for key reconciliation, thus, reducing the secret key length.
We compute the number of bits �r that have to be sent from
Alice to Bob to reconcile their raw keys as a function of the
jitter variance and bin size. We observe that when the detector
jitter variance increases, the bin count that maximizes the post
reconciled key rate decreases. These results and trade-offs are
shown in Sec. IV.

B. Information Loss Due to Detector Downtime

When the detector exhibits downtime, Alice’s and Bob’s
raw key bits are not uniformly random, as we illustrated in the
exaggerated example of Fig. 5. Alice and Bob have to com-
press their reconciled raw keys to achieve uniform random-
ness. We compress the keys by the compression rate C

d
r , which

is a function of the detector downtime, photon generation rate,
and the number of bins per frame. To characterize the impact
of detector downtime on the system, we model combined
detector and time binning operations by Markov Chains (MC).
The entropy rate of the system’s MC determines the minimum
compression rate to guarantee the key’s uniform randomness.
These MCs are complex, and we developed an algorithm to
create them for various parameter values, implemented in an
online tool available at https://cc1539.github.io/qkd-binning-
demo-2. Sec. V presents these results and shows how the
compression rate C

d
r depends on downtime.

C. Modeling the Impact of Dark Counts

We introduce a novel method for analyzing the impact of
dark counts in entanglement QKD using PPM. We develop a
way to model coincident dark counts indistinguishable from
valid PPM frames. In doing so, we characterize the severity of
dark counts in PPM more accurately than in prior efforts [13].
This work is shown in Sec. VI.

D. Estimating the Secret Key Rate

The key rate simultaneously suffers from all impairments
discussed above. This paper only looks into the rate loss
caused by the detector jitters and downtime and provides and
proposes a model for dark counts. We address the detector
jitter noise and downtime separately because these two impair-
ments cause rate loss in very different ways. We next describe
their combined effect on the key rate.

We define two key rates of interest. First, Kreconciled corre-
sponds to the number of key bits per PPM frame after recon-
ciliation and privacy amplification. Then, Kuniform corresponds
to the number of key bits per PPM frame after compression
to remove downtime-induced memory.

Kreconciled = Kraw � �r and Kuniform = C
d
r · Kraw (5)
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TABLE I
QKD SYSTEM PARAMETERS AND VARIABLES

Combining the two, we obtain Ksecret. This represents the
number of secret key bits per PPM frame, and is given by

Ksecret = C
d
r (Kraw � �r). (6)

We have one step left to our ultimate performance metric.
Recall that PPM only retains frames with a single arrival.
Therefore to get the average key rate R, the key bits per valid
frame K have to be multiplied by the probability that a frame
contains exactly one occupied bin, which is np(1� p)n�1:

Rsecret = np(1� p)n�1
Ksecret (7)

The following sections will show how to separately evaluate
the rate-loss metrics in equation (6) that computes their joint
influence on the secret key rate. We do not look into different
impairments simultaneously in the following sense. In evalu-
ating the downtime effect in Sec. V, we disregard jitter errors.
Therefore, only downtime introduces memory. In evaluating
the jitter effect in Sec. IV, we assume that the difference
between Alice’s and Bob’s photon detection is the difference
between two zero-mean Gaussian random variables. Instead,
if we took the influence of the downtime simultaneously, the
mean of these Gaussian random variables would also be a
random variable whose mean is zero because of the symmetric
jitter, which could have caused Alice’s downtime to start
before or after Bob’s. Thus our jitter analysis is the expected
case analysis. More detail is provided in the corresponding
sections below.

E. Notation and Assumptions

As a reminder and a reference, we list the previously
defined system parameters and variables in Table I. The table
also lists some relationships between the parameters. This
paper assumes that Tf , �p, and d are system parameters
determined by a particular system setup and equipment. The
design parameter we can choose in an attempt to optimize
performance metrics is the number of bins per frame, n.

We adopt models widely used in the literature, e.g.,
Poisson photon statistics (described in textbooks such as
[14, Chapter 5]) and Gaussian jitters which are commonly
denoted in terms of full width half maximum (FWHM) [15]
(and described this way in detector specification sheets such
as [16]). For further experimental details and device speci-
fications we direct the reader to [4] and [17]. However, our
theoretical approach, derivations, and numerical evaluations do

not rely on such assumptions. The parameter values used in our
numerical examples are selected based on the corresponding
instances in the literature and to emphasize specific points.

IV. INFORMATION LOSS DUE TO DETECTOR JITTER

A. The Source Model Secret Key Agreement Rate

The secret key rate is the “maximum rate at which Alice
and Bob can agree on a secret key while keeping the rate
at which Eve obtains information arbitrarily small” [18].
In the case of time-entanglement-based QKD, Alice and Bob
obtain correlated streams of bits (raw keys) based on their
respective Time of Arrival (ToA) measurements, as described
in the previous section. However, they must communicate
to agree on a key, i.e., reconcile their differences. Every
communication required for this process must be considered
open communication accessible to Eve. Here, we focus on
one-way information reconciliation schemes in which Alice
sends information about her sequence to Bob, who uses
it to correct the differences between his and Alice’s raw
keys.

After one-way information reconciliation, Alice and Bob
share Alice’s initial raw key. However, since they commu-
nicated over a public channel, the shared key is not secret.
To correct that, Alice and Bob perform privacy amplification.
They commonly hash their shared keys, establishing secrecy
but shortening the key. The secret key rate is the post-privacy
amplification key length per second. This section aims to
characterize the secret key rate when Alice and Bob obtain
their raw key rates in the presence of detector jitters. Recall
that in this case, Alice and Bob base their secret key generation
on correlated arrival times given in (1). We know that, for
this model (referred to as the source model in Information
Theory [19, Chapter 22.3]), when the eavesdropper has access
to the public communication but does not have correlated prior
information (see, e.g., [19, p. 567]), then the secrecy capacity
is equal to the mutual information between Alice’s detected
arrival time TA and Bob’s detected arrival time TB ,

CK = I(TA;TB). (8)

.
B. Secret Key Rates in PPM Key Extraction

Let us consider the case where Alice and Bob use the PPM
scheme to extract raw key bits, and jitter errors are present
as described in Sec. II-B with variance �d. The two observe
discrete correlated random variables identifying the occupied
bin in the frame. When the number of bins per frame is n,
Alice observes Xn and Bob observes Yn given by

Xn = Un + JA,n and Yn = Un + JB,n (9)

where Un is uniform over {0, 1, . . . , n � 1}, and JA,n and
JB,n have integer support, taking value k with the probability

P
⇥
JA,n = k

⇤
=

1p
2⇡�

2
d

Z (k+1/2)⌧b

(k�1/2)⌧b

exp(�t
2
/(2�

2
d)) dt.

=
1p
2⇡

Z (k+1/2)Tf /(n�d)

(k�1/2)Tf /(n�d)
exp(�⌧

2
/2) d⌧.

(10)
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Because of the jitter in the previous frame, the downtime
causes a zero-mean difference in Un between Alice and Bob.

The rate of disagreement (RoD) between Alice’s and Bob’s
raw keys is given by

RoD = 1� P
⇥
JA,n = JB,n

⇤
(11)

Observe from (10) and (11), that the key-bit disagreement
happens at a rate that depends on the ratio of the detector
noise variance to time frame ratio �d/Tf and the number of
bins per frame n. The PPM time frame size is constrained by
the pump coherence time. The reported coherence time in [4]
is 250-330 ns. Since the number of bits per PPM-valid frame
equals log2(n), increasing n should give more raw key bits
per frame. However, the bin width decreases as n increases,
making the binning process more prone to errors; See Fig. 2.
In Fig. 6a, we vary the number of bins per frame and observe
the key disagreement rates. The values for �d/Tf are selected
by choosing the equivalent ratio for an SNSPD with FWHM
jitter of 80ps or �d = 33.97 ps, and Tf = 330 ns as in [4].

The secrecy capacity of our PPM scheme for the number
of bins equal to n is

CK,n = I(Xn;Yn), (12)

where Xn and Yn are given by (9). We say that I(X,Y ) =
limn!1 I(Xn;Yn) is the ultimate achievable secret key rate.

To compute I(Xn;Yn), we observe that Bob perceives
Alice’s detection as corrupted by the difference of the two
independent Gaussian random variables (Alice’s and Bob’s
noise). We can therefore compute the transition probabilities
p(y|x) of the event that Bob detects a photon arrival in bin y

given that Alice detects her entangled photon arrival in bin x.
We calculate these transitions by integrating the double-jitter
error distribution over the domain of the specific bin where
Bob has detected his arrival, as

p(y|x) =
1p
4⇡�

2
d

Z (y�x+1/2)⌧b

(y�x�1/2)⌧b

exp
⇥
�t

2
/(4�

2
d)

⇤
dt. (13)

We note that for a given x the transition probabilities are a
function of the difference x� y. This phenomenon allows us
to approximate the mutual information in (12) as follows (see
[20, Ch. 7.2]):

Kreconciled < CK,n = I(Xn;Yn) = log2(n) �H(Yn|x)
= Kraw �H(Yn|x) bits per frame, (14)

where H(Yn|x) does not depend on x and can be com-
puted based on the transition probabilities defined in (13).
Expression (14) represents an upper bound on the number of
secret key bits per frame after information reconciliation. The
parameter �r = Kraw �Kreconciled (see (5) above) depends on
the rate of the error correcting code used for reconciliation.
The value of �r depends on the efficiency of the chosen code.
A more thorough discussion on key rates, other ways to derive
them, and coding is given in [12].

Fig. 6b plots CK,n for three values of �d/Tf selected as
described above for the disagreement rate plot in Fig. 6a.
We see that there is hardly any increase in the maximum
achievable secret rate beyond a certain number of bins per

Fig. 6. (a) Dependence of the disagreement rate between Alice’s and Bob’s
keys on the raw key rate (or equivalently, the bin size), cf. (11). As bin size
decreases, both the raw key and disagreement rates increase. (b) Dependence
of the maximum reconciled key rate on the raw key rate, cf. (14). A larger
raw key disagreement leads to more reconciliation information being revealed
through the information reconciliation process.

frame which depends on �d/Tf . Comparing the plots in the
two parts of Fig. 6, we can observe that the noticeable rate
increase stops almost as soon as the key disagreement begins.

This observation motivates us to ask how close to the
bound we can get by selecting the bin size such that it
covers the interval [��d/Tf ,+�d/Tf ] around its central point,
or equivalently,

n = d2Tf/�de (15)

Fig. 7 plots the ultimate bound I(X,Y ) on the reconciled
key rate for unbounded n. We see that increasing the jitter
noise variance to frame size ratio lowers the post-reconciled
key rate. Fig. 7 also plots the raw key rate that is given by
log2(n) where n is estimated in (15) and the secret key rate
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Fig. 7. Dependence of the key rates on the noise level �d/Tf . The number
of raw key bits per frame determined by (15) is sufficient for achieving a
secret key rate that approaches the maximum possible.

that we can achieve with that raw key rate. We see that this
secret key rate closely approximates the maximum key rate.
Other approximations can be found in our related work [12]

Unlike previous approaches, this DMC modeling approach
is straightforward and easily generalizes to any symmetric
noise distribution. Earlier work considered jitters to occur
within one to three time-bins [13]. This work ignores the
possibility of having significant jitters when using very small
bin sizes, which is one of the main areas of interest. Previous
approaches also force the analysis of dark counts to be
considered separately. This is inconsistent with how coincident
dark counts manifest in PPM. Our model accounts for all
possible jitter errors, not only those close to the original bin,
while simultaneously considering the effect of dark counts.
We address the case of non-zero dark counts in Sec. VI, where
the model is the same, but the jitter error distribution builds
to account for dark counts in PPM.

V. INFORMATION LOSS DUE TO DETECTOR DOWNTIME

Under the effect of downtime, Alice’s and Bob’s raw keys
are no longer uniformly random bits, as illustrated in the
exaggerated example of Fig. 5. Recall that our sequence of
bin occupancies (what we run through a binning scheme to
extract the raw key bits) is a Bernoulli trial sequence. We have
Bernoulli trials when there is no jitter or when the jitter is
symmetric, which is the case here. With downtime, this is no
longer the case. Photon detection in one bin prevents detection
in subsequent bins, thus removing the memoryless behavior
of photon arrivals. Therefore, Alice and Bob must compress
their raw key sequences to obtain a uniformly random shared
key.

This section focuses on computing the average number
of secret key bits per frame after the compression. A fam-
ily of simple Markov chains describes the dynamics of
downtime-afflicted systems (see Fig. 8) if we don’t consider

Fig. 8. Possible states of detectors with downtime d and possible state
transitions with arrows showing the probability of transitions between each
state. This Markov Chain shows that the detector capable of detecting photons
sees a photon with probability p, and once it does, it enters into a period of
downtime lasting for d states.

the use of PPM (or any binning scheme) to extract raw key
bits. The entropy rates of these Markov chains would then
determine the secret key rate. When we bring PPM back
into the picture, however, the Markov chains used quickly
end up with many states, complicating the computation of
their entropy rates. To combat this increase in computational
complexity, we introduce a family of augmented Markov chain
models that can replace the original Markov chain method in
certain conditions to calculate a tighter bound on the entropy
rate while keeping the number of states tractable.

A. The Impact of Downtime

When we consider detector downtime behavior but ignore
the PPM bit extraction, we can model the detector dynamics
by the Markov Chain in Fig. 8. The entropy rate of this gives
us an upper bound on the information rate of our extracted
key,

RToA(p, d)  h(p)
n(1 + pd)

bits/frame, (16)

where h(p) is the binary entropy.
Observe that as d increases, the maximum key rate

decreases. Naively, we may set the value of p high, thinking
that more photons will necessarily give us a higher information
rate. However, that is not the case, especially for binning
schemes such as PPM. To see why, consider plot a) in Fig. 9,
which shows the key rate as a function of p when we use PPM
to extract key bits. As p approaches 1, the raw key rate seems
to a maximum. However, we saw before that the information
rate approaches 0 at the extremes of p. Indeed, when p is
high, the entropy of the raw key gets lower and lower until,
at p = 1, we theoretically have a deterministic sequence that
may yield many bits but no randomness and, thus, no security
against attackers aware of the system configuration. Consider
plot b) in Fig. 9, which considers the loss of randomness due
to downtime.

Note that if downtime is low enough compared to the
frame size, this effect does not manifest, and the raw key rate
changes just as the information rate does. However, in practice,
values for downtime and frame size such as those provided
by experiments [21] suggest that downtime is typically much
longer than a single frame width. In this regime, we see the
phenomenon explained earlier, with the raw key rate increas-
ing while the average information extracted by each frame
decreases. The behavior observed in plot b) of Fig. 9 is thus the
behavior we might expect to see in live systems. To reiterate,
while increasing the raw key rate (without changing bin size)
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Fig. 9. The PPM key rate as a function of p, the probability that a bin is
occupied. The parameter p is given as a function of �p and ⌧b in (3). In plot a),
we are not taking into account the loss of entropy by any mechanism and
only show the number of bits we get per bin as a result of using the PPM
binning scheme on the input we get from the detector. Note that this is not a
plot of (4), which was derived under the assumption that all bins were i.i.d.,
an assumption that no longer holds due to downtime. In plot b), we are taking
into account the loss of entropy as a result of downtime, giving us a different
value which we can call Rraw ⇥ Cd

r . These plots were generated using our
online tool, available at https://cc1539.github.io/qkd-binning-demo-2/.

improves your key rate up to some point, one must be careful
not to increase �p (and subsequently p) too high without taking
the effects of downtime into account.

B. Constructing Markov Chains to Compute Information

Loss

In order to produce plot b) in Fig. 9, we need to expand
on the idea of using Markov Chains. The Markov Chain in
Fig. 8 is not adequate since it describes the detector on a bin-
by-bin basis, while the use of binning schemes means that we
must describe the detector on a frame-by-frame basis. For this,
we use the techniques described in [22]. The first thing we do
is construct what, in this context, we will call Input Markov
Chains (IMC). These represent what the detector sees, with
only the additional processing step of assigning each photon
detection to a bin. Analysis of this Markov Chain is sufficient
to produce Rraw, which is what plot a) in Fig. 9 shows. But
to go from a) to b), we need an additional step.

This additional step is the Output Markov Chain (OMC).
Each state represents the output of a frame after applying your
binning scheme of choice. For example, for PPM with n = 8,
the states of an OMC may correspond to all binary strings of
length log2(8) = 3. The Markov Chain Entropy of the OMC
gives us C

d
r ⇥2|OMC|, where |OMC| is the number of states in

our OMC. The factor C
d
r represents the degree to which we

would need to compress the bits extracted using our binning
scheme to achieve perfect randomness. For example, when
d = 0 we find that C

d
r = 1 for all p, reflecting the fact that no

compression is required as a result of downtime since there is
no downtime. The adjusted key rate, Rraw ⇥ C

d
r , is what we

see in plot b) of Fig. 9.
One way to build an IMC is to assign each possible frame

configuration to one state. Consider Fig. 10.

Fig. 10. Markov Chain generated using the BMCM (Basic Markov Chain
Method) for the parameters n = 2 and d = 1. The parameter p is the bin
occupancy probability, and q = 1 � p. We have three states corresponding
to frame configurations 00, 01, and 10 and labeled accordingly. Note how
the downtime prevents us from ever being able to observe the 11 frame
configuration, and therefore we do not include it in this Markov Chain.

Fig. 11. The number of states in the Markov Chain generated by the BMCM
(Basic Markov Chain Method) as a function of n and d. This Markov Chain
models the input to the detector on a frame-by-frame basis. Note how the
number of states increases rapidly when n increases, especially when d is
kept small. Points where d > n are outside the domain of this analysis and
so not included in the plot. Points on the plot are colored on a spectrum from
blue to red based on their vertical height, which represents the state count.

We will call this method the Basic Markov Chain Method,
or BMCM. If d = 0 (no downtime) this results in 2n states.
With non-zero downtime, some states may be dropped, but
the number of states still increases exponentially with n.
See Fig. 11.

To avoid this exponential increase in the number of states,
we devised an alternative method of assigning frame config-
urations to Markov Chain states, which we call the Reduced

Markov Chain Method, or RMCM. In the RMCM, multiple
frame configurations can be “combined” and represented by
a single, augmented Markov Chain state. These states are
augmented in the sense that information about how states
are combined is encoded into a triplet of integers (do, n1, di)
associated with each state, combined or otherwise. We can use
these triplets to not only uniquely identify states, but also undo
any “compression”. The parameter do represents the number of
bins that are guaranteed to be non-occupied due to downtime
from a previous frame leaking into the current frame. The
parameter di is the number of bins of downtime leaking out of
the current frame into the next frame. With do and di, we can
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Fig. 12. The number of states generated in the RMCM (Reduced Markov
Chain Method), which is used for modeling the input to the detector on a
frame-by-frame basis, as a function of n and d. Points where d > n are
outside the domain of this analysis and so not included in the plot. Points on
the plot are colored on a spectrum from blue to red based on their vertical
height, which represents the state count.

describe the occupancy of bins on the edge of the frame. For
instance, consider when d = 5 and do = 3. It must then be
the case that the last two bins are unoccupied, and the third
bin from the last must be occupied. Now we can understand
the parameter n1, which is the number of occupancies inside
the remaining space of bins, which we haven’t yet been fixed
by do and di. This is where the compression happens; for
instance, if d = 0 (implying do = 0 and di = 0 as well)
and n1 = 1, then the state associated with the triplet (0, 1, 0)
actually represents n different states at once. This compression
results in the number of states increasing polynomially with
n, instead of exponentially. See Fig. 12.

As seen in Fig. 12, representing states this way has its
demerits. Consider the settings n = 2 and d = 1. In this
case, the Markov Chain generated by the RMCM has five
states while the BMCM yields three states. This is because in
the RMCM, we actually distinguish between frames where an
unoccupied bin is observed through chance and frames where
an unoccupied bin is only a result of downtime. For instance,
consider the frame configuration “01”. It could be that there
was no downtime in the front of the frame, in which case we
will see this frame configuration with probability pq. However,
suppose there was some downtime – perhaps from a previous
frame – that had leaked into this frame. In that case, the first
unoccupied bin is guaranteed, so the probability of seeing this
frame is now just p.

When we bump up n to 4 while keeping d at 1, the RMCM
starts to close the gap. Consider Fig. 13; this Markov Chain has
nine states, while the Markov Chain generated by the BMCM
would have eight states. More importantly, we start to see the
first signs of states being “combined”.

Consider the state in Fig. 13 labeled (0, 1, 0). This sin-
gle state represents the three frame configurations, “1000”,
“0100”, and “0010”, where we have no downtime going into
the frame. Note how all frames represented by the state have

Fig. 13. Markov Chain generated using the RMCM (Reduced Markov Chain
Method) for the parameters n = 4 and d = 1. The parameter p is the
probability that a bin is occupied, and q = 1 � p. Each state is labeled
by a triplet of integers, (do, n1, di), as described in section V-B. Instead
of showing transition probabilities on each edge, the transition probability is
shown on the state itself, under its (do, n1, di) identifier.

Fig. 14. Markov Chain generated using the RMCM (Reduced Markov Chain
Method) for the parameters n = 4 and d = 0. The parameter p is the bin
occupancy probability and q = 1 � p. Each state is labeled by a triplet
of integers, (do, n1, di), as described in section V-B. Instead of showing
transition probabilities on each edge, the transition probability is shown on the
state itself, under its (do, n1, di) identifier. The BMCM would have generated
16 states, but here we have 5 states instead.

only a single occupied bin and thus will yield log2(4) = 2 bits.
This is not a coincidence; the way states can be “compressed”
was designed with PPM in mind. In this way, the triplet
of numbers each state is labeled with is enough to tell us
how many bits, on average, the frames represented by that
state will yield. This way, we do not have to go through the
trouble of undoing the compression and checking each frame
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configuration one by one, which would partially defeat the
purpose of using the RMCM as an alternative to BMCM for
calculating Rraw.

For an example where the RMCM produces fewer states
than the BMCM, see Fig. 14.

Notice how in the example where the RMCM does better
than the BMCM, we decreased the parameter d from 1 to 0.
After doing so, the number of states generated by the BMCM
decreases as d increases, but the number of states generated by
the RMCM increases. Therefore, we consider both methods in
a hybrid method wherein we select the method that results in
the fewest number of Markov Chain states. It seems, based
on inspection of the data used to produce Fig. 15, that a good
enough rule is to choose BMCM when d > n/2 and choose
RMCM otherwise. This may not always be the case though,
so if we absolutely must choose the more efficient method,
one may utilize (17) and (18), which give the exact number
of states for the BMCM and RMCM, respectively.

The number of states used in the BMCM when given n and
d is given by the recursive function NBMCM as defined as

NBMCM(n, d)

=

(
1 n < 1
NBMCM(n� 1, d) + NBMCM(n� 1� d, d) n � 1

(17)

The number of states used in the RMCM when given n and
d is described by the function NRMCM as defined in (18).

NRMCM(n, d) =
dX

di=0

⇣
N
0(di, 0)

+
dX

do=max(1+d+di�n,1)

N
0(di, do)

⌘
(18)

where

N
0(di, do) =

�
n
0(di, do)
d + 1

⌫
+ 1 and

n
0(di, do) =

(
n� di do = 0
(n� di)� (d + 1� do) do > 0

.

With an IMC in hand, we can calculate Rraw. Suppose we
know the stationary probability of each state. In that case,
we also know how likely the detector is to observe a certain
frame configuration (since each state is mapped to one or
more frame configurations). We will also know how many
bits that frame configuration will get us if we know what
binning scheme we are using. We can thus calculate a weighted
average to get Rraw. In this context, the stationary probability
is the weights, and bits from each frame configuration are
averaged.

However, to ensure the uniform randomness of the key,
we need to find C

d
r , which will tell us by how much we

need to compress the resulting bitstream to achieve perfect
randomness. We now need to generate an OMC from the
IMC. This involves mapping each Markov Chain state to a
new state – or states – that correspond to any output bits.
We will also need to find the stationary entropy of this new

Fig. 15. A 3D plot of the minimum number of states generated in the BMCM
(Basic Markov Chain Method) versus the RMCM (Reduced Markov Chain
Method) as a function of n and d. Note how the two techniques appear to
complement each other, producing a smaller number of states where the other
produces a large amount. A ridge exists appearing to lie on the line where
d = n/2, representing the boundary where the BMCM and RMCM generate
approximately the same number of states. Points where d > n are outside the
domain of this analysis and so not included in the plot. Points on the plot are
colored on a spectrum from blue to red based on their vertical height, which
represents the state count.

Fig. 16. Output Markov Chain (OMC) for the parameters n = 4 and
d = 1, for the PPM binning scheme. Each state is labeled by a triplet of
integers, (do, n1, di), as described in section V-B. Transition probabilities
are not shown. The method we use to derive the transitions begins with a
state vector ⇡ for the IMC, where ⇡i = 1 when i corresponds to an IMC
state that yields a non-zero number of bits. We apply the original transition
matrix once. Then we switch to another transition matrix where all states that
give a non-zero number of bits transition to themselves with probability 1.
We then find the stationary probability using this alternate transition matrix.
At the end of this step, all state vector elements ⇡ should be zero if the
element corresponds to a state that yields no bits. The resulting probabilities
of each state that yields bits are the transition probabilities from the state in
the OMC corresponding to state i in the IMC to the corresponding states in
the OMC.

Markov Chain since we need it for the Markov Chain Entropy
formula. This jump from the IMC to the OMC is necessary
because if we applied the Markov Chain Entropy formula to
an IMC, we would recover (16). To see how this may be done,
consider Fig. 13 (an IMC) and Fig. 16 (its OMC).

For more information on the derivation of an OMC,
we direct the reader to [22].
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Fig. 17. Cd
r for n = 16 and when d varies over the x-axis. Values for p are

chosen by how well they show the change in the curve versus the change in
the value of p (word this better). This shows how Cd

r is increasingly affected
by non-zero downtime as p approaches 1. The data was generated using our
online tool that can be found at https://cc1539.github.io/qkd-binning-demo-2/.

Recall that the RMCM is useful if we are using PPM
because we can tell how many bits every frame configuration
represented by a state yields without “decompressing” it. The
situation is similar to the OMC, where things are fine as long
as we use PPM because, with PPM, every single frame in
a state gets the same amount of bits (so instead of average,
we really should say that the number we get is the number of
bits we get for that state). More importantly, a unique input
frame configuration gives that output for every possible bin-
ning scheme output, which is not the case for Simple Binning.
For example, both 1000 and 0111 would yield the same output
bits. These properties of PPM give us the luxury of not having
to decompress the IMC to derive an accurate OMC. However,
in the general case, more sophisticated techniques are required
when we consider newer, more advanced binning schemes
such as those described in [6]. In the worst case, the advantage
of using the RMCM is not only negated but even subverted,
since we will have to decompress it straight away in order
to calculate even Rraw, but the “base” Markov chain is larger
than that of the BMCM.

C. Observations

Recall how when p is small, C
d
r remains close to 1. This

makes sense because in that case, photon inter-arrival times
are, on average, spaced apart enough for downtime not to have
a chance to change anything. It is when p approaches 1 (when
�p is increased arbitrarily) that C

d
r falls. See Fig. 17.

For an intuitive explanation, consider a toy example where
n = 2, d = 1, and p = 1. In this case, the detector will observe
the sequence 1010101010 repeated indefinitely. Notice how
since n = 2, every frame would be a valid one-shot encoding,
which gives us one bit per every two bins, and if we did not
know better, we would think this is great. However, the frame
itself is repeating, so we repeatedly get that same bit, resulting
in a perfectly deterministic sequence of all 0s or 1s. As long
as d is non-zero, the same effect applies for all p, but usually
much less depending on p.

Fig. 18. Rraw ⇥ Cd
r for �p ⇡ 2.3

⌧b
, with n varying over the x-axis

from 0 to 128. Here, frame width in time is kept constant, such that if Tf
is the duration of a frame, then ⌧b = Tf /n. The parameter d is also kept
constant with respect to time, so the ratio d

n is also constant. This expression
for �p corresponds to a value of p = 0.9 for the case of n = 1. We are using
PPM. The data was generated using our online tool available at the following
URL: https://cc1539.github.io/qkd-binning-demo-2/.

If downtime was zero, we’d never see any of these decreases
in C

d
r no matter how high we push �p. Does this mean we

want d
n to be as small as possible? This may not the case.

This time, while considering C
d
r we instead neglected Rraw.

See Fig. 18.
Notice how Rraw ⇥ C

d
r seems to actually be increasing

as d
n increases. To be clear, we are taking into account the

loss of entropy due to downtime here, and yet the ultimate
key rate is still going up as d increases. This indicates that
somehow, the increase in the number of key bits caused by
increasing downtime wins out against the decrease in the
number of bits lost due to the decrease in C

d
r . So does this

mean that we want d to be as large as possible? Perhaps
we may want to change the binning scheme instead. Today’s
specifications (namely, �p being quite low) mean that we are
not affected by downtime too seriously – recall that if p is
small enough, d stops playing much of a role. However, as we
can achieve greater �p, we may need newer, more efficient
bit extraction techniques. Such schemes, which unlike PPM
do not discard all frames with multiple arrivals, have been
proposed [6].

VI. MODELING THE IMPACT OF DARK COUNTS

Occasionally, an SPD announces a photon arrival indepen-
dent of an SPDC-generated photon event. This phenomenon
is known as a dark count. Primarily, dark counts are due to
light leakage into the quantum channel. However, even the best
systems report a non-negligible dark count rate. Dark counts
can cause two types of errors. In Type-One errors a dark count
occurs within the same time frame as an SPDC-generated pair
and invalidates an otherwise acceptable PPM frame. Thus, the
frame’s contribution to the key is lost. In Type-Two errors,
frame-coincident dark count detections happen at the two
stations, which causes Alice and Bob to retain frames with
uncorrelated arrivals that are not due to entangled photons but
are indistinguishable to them from such frames.
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This section aims to model the impact of dark count arrivals
on the system in light of these two potential types of errors.
We first show the natural result that dark counts can decrease
the probability of observing a PPM-valid time frame. We then
model the frame-coincident dark count arrivals as large jitters.
Type-One errors reduce the key rate by decreasing the number
of PPM-valid frames. Type-Two errors reduce the key rate
by forcing Alice and Bob to communicate more during the
privacy amplification stage to reconcile the differences even
in their uncorrelated frames.

We model the dark count arrival process at Alice/Bob’s mea-
surement station as a Poisson process with rate parameter �DC.
Recall that the arrival process of SPDC-generated photons is
also Poisson with rate �p. Therefore, we can determine the
probability that Alice and Bob observe a frame to be PPM
valid as the total probability that they each observe a frame
with a single photon due to either photon source. From the
properties of Poisson processes, we know that the probability
of a single event, and zero events, within a time frame will
respectively follow the form of

p1 = �Tf exp (��Tf ) , and p0 = exp (��Tf ) . (19)

By substituting the respective rate parameters into these two
formulas, we can arrive at the total probability of observing
the PPM frame described by

pPPM = pSPDC,1 · p2
DC,0 + pSPDC,0 · p2

DC,1. (20)

The first term in the (20) is the probability that a frame
with a single SPDC-generated photon arrival is retained in the
absence of Type-One dark count errors. The second term is
the probability that a frame is considered valid due only to
coincident dark counts. This represents the probability of a
Type-Two dark count error. In each of these terms, the dark
count probability component is squared to account for the
fact that Alice and Bob must both register a dark count to
retain the frame as a PPM frame. The SPDC probability is
not squared as a single SPDC event generates both photons.
Note that if only Alice’s or only Bob’s frame is corrupted,
they both throw the corresponding frame away. Thus, in any
scenario other than those described by the two terms in (20),
Alice and Bob will throw away the frame. As the ratio of dark
counts to SPDC photons increases, the rate of observing PPM
valid time frames drops quickly. The decrease in key rate due
to type-one dark count errors follows this same trend. Every
frame lost corresponds to the loss of n raw key bits. Due
to this phenomenon, it is incredibly important to minimize
dark counts when using time-entanglement based QKD with
PPM.

A. Modeling Dark Counts as Jitters

Using the probabilities found above, we can describe the
observed timing jitter PDF as a weighted combination of jitter
due to detector timing jitter and perceived jitter due to the
arrivals of coincident dark counts. With this combined jitter
error PDF, we can compute the loss of key rate much like
in Section IV. Here we substitute the double Gaussian PDF
with this new symmetric jitter PDF. In doing so, we can

Fig. 19. Two frame configurations showing the theoretical model of observed
jitter errors. The plots were generated using (21).

include the key loss due to over-correcting for coincident dark
counts in the term �r from (5). Despite these frames being
entirely uncorrelated, if Alice and Bob cannot discern them
from SPDC frames then in attempting to correct the errors they
leak information about the keys. This reduces the secrecy of
the keys including the truly correlated contributions, and thus
reduces the reconciled key length.

The dark counts are uniformly distributed within a given
time frame. Thus, to determine the distribution of the observed
jitter due to coincident dark counts, we convolve two uniform
PDFs. This results in a triangular distribution with a peak at the
jitter value 0 described by Tri(x) = 1

Tf
� 1

T 2
f
|x|. We consider

this as a different type of observed jitter error. We can write
the distribution of observed jitter errors as a weighted sum of
the distribution of detector jitter errors and jitter errors due to
coincident dark counts. The weighting term is a function of
the frame size as it represents the ratio between the probability
that a frame is PPM valid due to an SPDC photon pair to the
total probability that a frame is PPM valid. For a specific frame
size and the expected photon arrival rates, we get

p(tj) = c(Tf )N(0, 2�
2
d) + (1� c(Tf )) Tri(tj)

c(Tf ) =
pSPDC,1 · p2

DC,0

pPPM

=
pSPDC,1 · p2

DC,0

pSPDC,1 · p2
DC,0 + pSPDC,0 · p2

DC,1

. (21)

We can see the effect of considering coincident dark counts
on the jitter PDF in Fig. 19. Without considering dark counts,
there is some motivation to increase time frame width to allow
for increasing the width of time bins while maintaining a
high bin count per frame. This approach would intuitively
reduce the number of errors due to detector jitter, as any
jitter would be more likely to land within the same bin.
Here we see that if you are not careful in doing so, you can
face different jitter errors due to an increased susceptibility to
coincident dark counts. The Gaussian seems to dominate with
smaller frame sizes, but we can observe heavier tails to the
distribution with larger time frames. These heavy tails indicate
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Fig. 20. These plots were generated using equations 19-21 to replace
equation 13 with the same methods as used in Fig. 6. Here the reconciled
key rate is labeled in MHz as we account for the probability that a frame is
considered PPM valid. This is the key rate in time versus the earlier discussed
key rate per PPM valid time frame.

a higher frequency of significant jitter errors resulting from the
coincident dark count frames.

Finally, we applied the methods in Sec. IV with the above
new jitter model to calculate the secret key rate loss due to
information reconciliation. Fig. 20 shows the resulting plot in
which we can see the post-reconciliation key rate in MHz
as a function of the relative dark count rate to the SPDC
generation rate. This effect is compounded by the reduced
frame utilization, which reduces the post-reconciled key rate
further. This evident trade-off further motivates the need for
increasing the SPDC generation rate. However, if increased
too much, the downtime effects may come into play. In the
short term, these findings may be used to quantify expected
experimental key rates given practical implementation details.

VII. CONCLUSION

Time-entanglement-based QKD seems a natural alternative
to standard QKD when the goal is to increase the secret key
rate in limited photon generation rates. However, in this model,
some potentially catastrophic imperfections threaten to reduce
the secrecy of generated keys. In this paper, we characterized
several pitfalls related to time-of-arrival QKD. We provided
mechanisms to accurately predict the possible secret key rate
given the degree an experiment suffers from each impairment.
First, we considered how timing measurement jitter intro-
duces errors and necessitates information reconciliation, which
decreases key length. Second, we accounted for the loss of
entropy in generated keys due to detector downtime, which
introduces memory to the system. We also analyzed dark
counts, assuming that Alice and Bob cannot distinguish coin-
cident dark count frames from SPDC photon arrival frames.

One of our most important contributions was developing a
novel method to calculate entropy loss due to downtime. Under
specific parameters, it is possible to simplify the Markov
chain model of photon arrivals at a detector given detec-
tor downtime. This reduced model is more computationally
tractable, allowing us to compute entropy reduction when
working with frames with many time bins. An interactive
online tool was developed in conjunction with this approach

to enable researchers to explore the effect of binning scheme
parametrization on the secret key rate in the light of downtime
(https://cc1539.github.io/qkd-binning-demo-2/).

Future research in this space can expand on many of
these aspects. Instead of considering various impairments
separately and combining them afterward, one could think
of them simultaneously. We see another interesting angle to
consider joint information reconciliation and privacy ampli-
fication schemes. We hypothesize that compressing the raw
key once for information reconciliation and again for privacy
amplification may be overcompensating in some scenarios.
That is, the value we would get from 6 – using parameters
C

d
r and �r as calculated in the ways we’ve described so

far – may be lower than it needs to be. To reframe: we
study information reconciliation in the context of jitter and
privacy amplification in the context of downtime. We hope
that accounting for jitter in our downtime analysis (which
currently assumes a noiseless channel) may allow us to pull
C

d
r closer to 1 without sacrificing key entropy. Additionally,

we see potential in more advanced error-correcting codes for
the information reconciliation phase. Specifically, we expect
that layered codes will do well at dealing with multiple sources
of errors. Jitter errors may be corrected separately from the
coincident dark count errors, reducing the cost of information
reconciliation on the secret key rate.
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