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Urban mobility can be significantly disrupted by various extreme events. The disruptions threaten urban spatial
connectivity and affect people’s ability to access various essential services. Accurate characterization and timely
alert of the critical transitions of urban mobility networks can help mitigate the above risks. However, there lacks
an approach to characterize the critical transition state of urban mobility networks and warn their transitions
during extreme events. The universality of the characteristics of disrupted mobility networks across different
cities is another fundamental question that remains underexplored. By mining big geodata, we construct the
mobility networks of the 50 most populous Metropolitan Statistical Areas (MSAs) in the U.S., and study their
disruption patterns by conducting network percolation analysis. We find that all mobility networks experience
abrupt transitions when reaching a universal critical threshold, at which the giant components of neighborhoods
suddenly collapse and dissolve into small clusters. We also develop an indicator, by analyzing the neighborhood
cluster distributions, that approximates how far a mobility network is to the critical threshold and provides an
early warning of its critical transition. Our findings provide insights into mobility and neighborhood connectivity
in cities, which can provide guidance for transportation management, epidemic control, and emergency

evacuation.

1. Introduction

Cities are highly complex systems composed of numerous compo-
nents whose interactions are responsible for a broad spectrum of dy-
namics and evolution in cities (Batty, 2016). Urban mobility, which is
rooted in these complexities and dynamics, provides a novel approach to
understanding how a city is organized and how different components of
a city interact with each other (Batty, 2013; Zhong et al., 2014). Taking
disaster scenarios as an example, urban mobility plays a vital role in the
resilience of cities to natural or manmade disasters by enabling pop-
ulations to access from their residential areas the various critical facil-
ities distributed in the city, such as grocery stores, gas stations, hospitals,
and pharmacies (Logan & Guikema, 2020). Understanding human
mobility is critical to identify high-risk communities, tailor public pol-
icies, guide emergency responses and ultimately, construct a more sus-
tainable and resilient city.

The increasing accessibility to digital traces of human whereabouts
in cities, made available by recent advancements of mobile and
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ubiquitous computing technologies, has offered numerous new oppor-
tunities for exploring patterns and applications of human mobility be-
haviors. It is therefore not surprising that the study of human mobility
has attracted considerable interest in recent years, with particular
attention being paid to the empirical analysis of urban mobility patterns
(Hong et al., 2021; Wang & Taylor, 2014), fine-grained individual
mobility modeling (Pappalardo et al., 2015; Schlapfer et al., 2021), and
traffic or crowd flow prediction (Saberi et al., 2020; Simini et al., 2021).

Despite the growing volume of research on urban mobility, the
characteristics of disrupted urban mobility, which can result from
various disruptive events such as natural disasters and pandemics, is still
largely underexplored. When these events happen, they usually trigger
massive abnormal activities of urban dwellers within the affected areas,
and cause significant disruptions to urban mobility (Saja et al., 2020;
Wang & Taylor, 2016; Yabe & Ukkusuri, 2020; Zhao et al., 2022). In
extreme cases, the disruptive events may even lead to the critical tran-
sitions of urban mobility networks and full loss of urban spatial con-
nectivity, paralyzing human flows in cities (Bailey et al., 2018; Li et al.,
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2021b). Motivated by the significance of understanding the disrupted
urban mobility and managing the associated risks, a number of studies
have been conducted in recent years, primarily within the COVD-19
pandemic context, to investigate the disruption patterns of urban
mobility networks. These studies have reported reduction of mobility
flows, significant correlation between mobility flows and the disruptive
events, and occurrence of critical status transitions of the mobility net-
works. Analysis of this existing, yet limited literature reveals that there
are several important questions that have still remained to be explored.
First of all, there lacks an approach to characterize the critical transition
state of urban mobility networks and alert their transitions during
extreme events. Particularly, complex urban systems, such as the
financial systems and ecology systems, often emit early warning signals
before their critical transitions (Dai et al., 2012; Kéfi et al., 2014;
Scheffer et al., 2009, 2012; Squartini et al., 2013), and yet this phe-
nomenon has not been empirically explored for large-scale mobility
networks. Second, the universality of characteristics of disrupted
mobility networks across different cities, especially beyond the specific
COVID-19 pandemic context and related to more general forms of dis-
ruptions, is another fundamental question that remains underexplored.
Answers to the above questions will deepen our understanding of the
characteristics of disrupted urban mobility, and have important prac-
tical implications for evacuation, emergency response, and long-term
recovery operations in cities (Egerer et al., 2020; Olazabal et al., 2018).

Motivated by the above knowledge gaps, this study aims to examine
urban mobility patterns under perturbations using large-scale mobility
datasets from American cities. The specific objectives of this study are
threefold: (1) to capture critical transitions in urban mobility under
perturbations, (2) to compare disrupted mobility patterns across cities,
and (3) to design a universal early warning indicator that can signal the
approaching transition of urban mobility. To achieve these research
objectives, we adopt an approach originated from the percolation theory
to investigate complex urban mobility. Empirical data from the 50 most
populous Metropolitan Statistical Areas (MSAs) in the United States,
including large-scale mobility data collected from mobile phones in
2019 and the 2019 Census block group data, are used for our analysis.
We construct urban mobility networks of these MSAs, and perform large-
scale computational experiments on these networks. The findings are
expected to advance our understanding about how disrupted urban
mobility evolves, and guide the sustainable urban planning and emer-
gency management practices to achieve improved resilience against
potential extreme events.

2. Literature review

2.1. Understanding urban mobility for more sustainable and resilient
cities

Knowledge about human mobility patterns in cities is valuable for a
wide range of advanced applications in sustainable and resilient cities
(Wang et al., 2022b). For instance, an array of studies have used in-
dividuals® trajectories to identify urban structures from a functional
perspective (Liu et al., 2015; Zhang et al., 2019¢; Zhang et al., 2021),
reveal social disparities (Hu et al., 2022; Wang et al., 2018), and model
the spread of pandemic (Chang et al., 2021), providing a better under-
standing of urban dynamics. Particularly, understanding human
mobility patterns can help improve the resilience of cities by providing a
quantifiable and continuous reflection and assessment of the responses
of various urban systems during disasters (Ilbeigi, 2019; Roy et al.,
2019), such as urban transportation infrastructures (Nogal & Honfi,
2019; Zhang et al., 2019a), urban social systems (Li et al., 2022; Yabe
et al., 2021), and so on.

Recently, an increasing number of studies have investigated urban
mobility networks, which are typically constructed using spatial blocks
such as neighborhoods as nodes and time-varying mobility flows be-
tween blocks as links. By leveraging the complex network theory and
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techniques, these studies have brought new insights to the relationships
between the urban structure, spatial distribution of urban facilities, and
citizen’s mobility demand (Gong et al., 2017; Liu et al., 2021; Wang
et al., 2022a). In addition, boosted by the COVID-19 pandemic, a
number of studies have been conducted to track overall mobility
reduction (Schlosser et al., 2020), reveal the relationship between the
mobility network structure and the distribution of pandemic (Freitas
etal., 2020; Jia et al., 2020), and model and predict the pandemic spread
based on mobility network attributes (Chang et al., 2021; Zeng et al.,
2020). In sum, the findings of the above mobility network-based studies
reflect the distribution and division of collective activities of citizens.
Such information has then been proven useful in developing better so-
lutions to boosting commercial activities, selecting sites for urban fa-
cilities, fostering social interactions, improving urban disaster
resilience, and so on.

In summary, prior studies have demonstrated broad applications and
significant values of incorporating human mobility knowledge to sup-
port the development of sustainable and resilient cities. Meanwhile, the
literature review also suggests that disruptions to human mobility be-
haviors, which can be caused by disruptive events such as natural di-
sasters, has drawn limited attention. Although there is abundant
empirical evidence that indicates that individuals’ mobility patterns
may significantly differ between normal states and perturbed states
(Wang & Taylor, 2014; Zhang & Li, 2022), more research is needed to
understand the disrupted mobility behaviors, so as to better support
sustainable urban planning and improve the resilience of cities during
disruptive events.

2.2. Percolation analysis of urban systems using big geodata

Percolation theories are studied extensively in network science,
revealing important network characteristics of various types of complex
networks. Inspired by the growing availability of big geodata, such as
GPS traces and geotagged social media posts, percolation analysis is
playing an increasing role in urban studies, contributing to various
urban problems, including identifying latent hierarchical urban struc-
tures, detecting phase transitions in complex urban systems, and
robustness assessment of urban networks, which are summarized as
follows. First of all, urban systems usually present hierarchical struc-
tures at many different scales, which can be revealed by percolation
analysis. Urban structures, in the form of community structures, sub-
centers and boundaries of urban areas, can be uncovered by percola-
tion analysis on road networks (Arcaute et al., 2016) and mobility net-
works (Cao et al., 2020; Sarkar et al., 2019). Second, percolation
analysis is a useful approach for studying disruptions and transitions of
different urban networks. For example, the percolation processes were
investigated on mobility networks (Deng et al., 2021) and traffic systems
(Li et al., 2015a; Olmos et al., 2018) to capture the discontinuous phase
transition from a globally connected network into isolated local flows.
Third, the percolation threshold can be used as a reliability indicator for
the operational limits of networks, which can help to understand and
manage the network failure behavior (Li et al., 2015b). For instance,
percolation threshold was integrated into reliability assessment of road
network (Dong et al., 2020; Zhou et al., 2019) and public transit network
(Hamedmoghadam et al. 2021) from a topological perspective.

As the big geodata about human mobility is becoming increasingly
accessible, a few recent studies have attempted to apply percolation
analysis to mobility networks to demonstrate their hierarchical topology
and reveal their changes during the COVID-19 pandemic (Deng et al.,
2021; He et al., 2022). However, in the realm of human mobility net-
works research, quantitative approaches for detecting and warning the
critical transitions are still lacking. This has hindered both in-depth
interpretation of observed empirical evidence of disrupted mobility
patterns, and the early warning of such disruptions. In addition, limited
efforts have been made in the existing literature to compare the out-
comes of percolation analysis on mobility networks across different
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urban contexts. As a result, limited is known about the heterogeneity
between different cities with respect to the responses of their mobility
networks to external disruptions. Therefore, more research is needed to
investigate the percolation process of mobility networks across different
cities, so as to better understand the resilience of mobility networks and
guide the protection of urban connectivity during disruptive events.

3. Mobility data and mobility networks
3.1. Data sets and preprocessing

This study employs an anonymized and aggregated mobility dataset
from SafeGraph (2020) that measures travel flows within the United
States at the census block group (CBG) level in 2019. Mobility data from
SafeGraph (2020) are accessed and used to extract mobility flows (more
details are shown in Supplementary Material). Prior studies using
SafeGraph data have found that the data are generally representative of
the U.S. population (Chang et al., 2021; Klise et al., 2021; Perra, 2021;
Squire, 2019).

In this study, we focus on mobility flows in the largest 50 MSAs in the
United States, based on their total population rank in 2020. The list of
the 50 most populous U.S. MSAs (Table S1) is based on the 2020 Census
data from the U.S. Census Bureau. The boundaries of the MSAs and CBGs
are from the shapefiles of the “Combined Statistical Areas” and “Block
Groups” data in the 2019 Census data (US Census Bureau, 2019).

To construct the mobility networks that represent the year of 2019,
while avoiding excessive computational loads, daily mobility flow data
for the above 50 MSAs from Monday through Thursday in the second
week of March, June, September and December of 2019 (a total of 16
weekdays) are extracted from the SafeGraph data. For each MSA, the
mobility flow data are preprocessed before analysis as follows: (1)
mobility flows from the large airports by total passenger boardings in
the United States are excluded. It is because mobility from airports to
destinations are not daily flows concerned in this study; (2) the
geographic scope of each mobility network is limited to the corre-
sponding MSA, and flows out of the geographic boundaries of the MSA
are excluded.

3.2. Mobility network construction

To conduct percolation analysis, we first determine the strength of
each spatial interaction within each MSA. Here we use the normalized
weighted flow derived from daily mobility data to indicate the strength
of connection between CBGs. For a given connection between a CBG
pair, its strength is represented by the daily travel volume. Then we
normalize the volume of each connection by dividing it by the count of
devices whose home locations are in the origin CBG. Mathematically,
the undirected normalized weighted flow of link between CBG(i) and
CBG(j), denoted as ryj, can be calculated as:

Vij Vii

where v;; is the daily volume from CBG(i) to CBG(j), and n; is the number
of devices whose homes were in CBG(i) during the study period.

Then, we build daily mobility-based networks of 16 workdays in the
year of 2019 for 50 MSAs in the United States. For each network, every
CBG is taken as a node, and an undirected weighted link between each
CBG pair is created using the strength of r; as its weight. In the perco-
lation analysis, for a given weight threshold, g, all links e; in the network
can be classified into two categories: if the normalized weight of a link is
larger than g, the link is considered connected, and when the normalized
weights of the links are lower than g, the links are considered discon-
nected and removed.

_JLrj>gq
= {0‘, ry <q. 2)
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In this way, a mobility network can be constructed from links with
normalized weights higher than q. The size of the giant component (GC)
and the size of the second-largest component (SGC) in each mobility
network are calculated after link removal. The GC and SGC are
normalized by MSAs’ network size as follows to allow comparison across
MSAs:

NGC
GC = 3
N 3
_ Nsoe
SGC=— 4

where N is the number of nodes in the giant component, Ngg( is the
number of nodes in the second giant component, and N is the total
number of nodes in the MSA network.

In the percolation analysis, the less-weighted links are removed first
and the network becomes more fragmented as the value of g increases,
and it eventually becomes completely fragmented (the representative-
ness of this percolation method in real-world cases is further explained
in Supplementary Material). The critical threshold g. is defined as the
value of ¢ when the size of SGC reaches maximal, according to perco-
lation theory (Li et al., 2021a). Given that direct flow could exist be-
tween any pair of nodes in the mobility networks, the above percolation
process is a long-range percolation (Grimmett, 1999), which has been
widely adopted to simulate a number of significant real-world scenarios,
such as human mobility and social interactions (He et al., 2022; Li et al.,
2011).

4. Analysis and results
4.1. Percolation process in MSAs

We simulate percolation on the daily mobility networks of the 50
MSAs for 16 workdays. The percolation processes in nine representative
MSAs, selected based on their diversities in geographical attributes,
areas and population sizes, are shown in Fig. 1(a-i). The size of GC (blue
line) and the size of SGC (red line) in the percolation process are plotted.
Two maps in each subfigure show the transition of GC at the critical
threshold q.: immediately before q approaches g, the size of GC is large;
at q., GC significantly shrinks and the size of SGC reaches its maximal.
The GC before the transition, and GC and SGC after the transition are
shown in each map. Of special interest is the critical threshold g, at
which the GC suddenly collapses and dissolves into clusters with smaller
sizes.

Fig. 1(a) of New York MSA is used as an example to demonstrate the
percolation process. At ¢ << ¢, GC includes almost all the nodes, each
representing a CBG, in the original mobility network. Many of these
nodes in GC are connected by links with relatively low normalized
weights. As g increases, these links are removed gradually. Thus, the size
of GC shrinks and small clusters begin to emerge. When the value of g
reaches q., the network experiences sudden fragmentation with the size
of GC dropping from 30.9% of all the nodes to 15.9%, shedding half of its
size. Simultaneously, the size of SGC peaks. When q > g, in contrast, GC
is disintegrated, and there are only small clusters of connected nodes.
These small clusters contain links with relatively high normalized
weights, and yet they cannot maintain the global connectivity of the
mobility network.

The same pattern is observed in other cities in Fig. 1 (more details are
shown in Supplementary Material Fig. S5-13). Urban mobility networks
become fragile under increasing perturbation (e.g., reduction in
mobility between neighborhoods), and disintegrate abruptly at critical
points g.’s. Specifically, as q increases, the size of GC decreases and that
of SGC increases. At g, SGC reaches its maximum size and the size of GC
experiences an abrupt drop simultaneously. Reaching g, signifies the
phase transition for network connectivity in the MSAs. According to
percolation theory (Hamedmoghadam et al., 2021; Li et al., 2015a; Zeng
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Fig. 1. Percolation patterns of nine representative MSAs in the U.S. The left y-axis reflects the size of GC (blue line) and right y-axis reflects the size of SGC (red line).
The spatial distributions of GC (blue) before the critical transition (the upper map), and GC (blue) and SGC (red) at the critical transition (the lower map) are also

shown in the figure.

etal., 2019), the size of GC has been widely used as an indicator of global
connectivity of networks, and the critical threshold g, is an informative
measure of the resilience characteristics of network connectivity.

4.2. Universal patterns in the percolation process

Despite the diversity of the nine MSAs in geographical attributes,
population density, mobility network topologies, and so on, we observe
similar percolation processes in terms of the size changes in GCs and
SGCs in Fig. 1. To further test the universality of such patterns, we
analyze the percolation processes in the 50 largest MSAs in the U.S.
These percolation processes are illustrated in Fig. 2(a) and (b).

We observe that the mobility networks follow a similar percolation
process across the 50 MSAs. The GCs of these networks stay stable at the
beginning of link removal. They start to shrink as g continues to increase
before eventually reaching zero (Fig. 2(a)).

Surprisingly, as shown in Fig. 2(a) and (b), q.’s from different MSAs
are distributed within a narrow range. In fact, our analysis shows that
q.’s extracted from daily mobility networks of the 50 MSAs follow a
normal distribution (Fig. 3) where the mean value is 0.096 with a mere
standard deviation of 0.012 (KS test, p-value = 0.905). The surprising
finding reveals that different MSAs share a universal critical threshold at
which their mobility networks would lose global connectivity due to the
collapses of the largest components.

The existence of a universal critical threshold across all the MSAs
might be a manifestation of the “percolation threshold saturation”
phenomenon that prior research discovered in the long-range

percolation of networks with high average node degree (Zhukov et al.,
2018), although the plausibility of this hypothesis under the specific
percolation approach used in this study still requires further exploration.
Universal characteristics found in our study may be the key to under-
standing complex mobility networks’ response to perturbations (Barzel
& Barabasi, 2013), and could inform more accurate and universal
modeling of urban connectivity in future research.

4.3. Distribution of cluster sizes (s) at the critical point

Next, we examine how GCs break down at the critical points. We
analyze the cluster sizes (s) of the daily mobility networks at q.’s. The
distributions of s of the 50 MSAs in the 16 workdays are shown in a log-
log plot in Fig. 4, with each color representing a different MSA. The red
diamonds show the aggregate distribution of s from all the 50 MSAs at
their respective q.’s. The results show that the probability distributions
of s in the 50 MSAs follow power law distributions:P(s) ~ s~#, where s is
the cluster size, and the exponent parameter f = 1.96 + 0.40. The
aggregate distribution also follows a power law distribution with g =
2.03. The above consistency demonstrates a surprising homogeneity
across the 50 MSAs. Following the steps in Clauset et al., (2009) and
Zhang et al., (2019b), we conduct the Kolmogorov-Smirnov test, and
results indicate that the aggregate distribution and individual distribu-
tions of the cluster size at critical points all follow the power law.

Similar scale-invariant behaviors near critical transition points have
been observed in various complex systems, such as land degradations
(Tirabassi et al., 2014), traffic networks (Zeng et al., 2019; Zhang et al.,
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Fig. 2. Percolation curves of GC and SGC in 50 MSAs. (a) The size of GC in 50 MSAs during percolation on Sep. 9, 2019 as an example; (b) The size of SGC in 50 MSAs

during percolation on Sep. 9, 2019 as an example.

2019b), land-cover patterns (Zurlini et al., 2014), public opinions
(Ramos et al., 2015), and so on. Our study provides one of the first pieces
of empirical evidence that the critical transitions also exist in large-scale
urban mobility networks across diverse geographical contexts.

Such a scale-invariant structure may have arisen from the local
positive feedback, i.e., the connection strength of a node to a cluster
tends to increase with the size of the cluster (Scanlon et al., 2007). The
main drivers of this positive feedback probably include the resources
(Meekan et al., 2017), opportunities (Cummings et al., 2015) and social
relationships (Axhausen, 2005) in cities. These resources are ampler in
larger clusters and thus drive people to travel to and within them.
However, the growth of large clusters is constrained globally by the total
amount of resources and opportunities and the total trips that people can
make. The competing forces between the positive feedback and growth
constraints have likely co-produced the power law distribution of the

cluster size.

After observing the power law distribution of s for mobility networks
of all MSAs at the percolation criticality, the aggregate cluster distri-
butions before, near, at and after the percolation criticality are further
calculated. The results are shown in Fig. 5. The distributions are drawn
at different q values: q. — 0.05 (a), g. — 0.02 (b), g, (c), and g, + 0.05 (d).
When q << q., for each MSA, there is a giant component and a number
of small clusters. The aggregate distribution of the 50 MSAs is charac-
terized by the co-existence of a small number of large clusters and many
more small clusters (Fig. 5(a)). When g approaches g, for each MSA, the
size of GC decreases together with an increase in the number of small
clusters. Consequently, the aggregate distribution of s gradually ap-
proaches the power law distribution (Fig. 5(b)). When q is near or at g,
the aggregate distribution of s exhibits power law distribution (Fig. 5).
After q., giant component quickly breaks down. The aggregate
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distribution of s continues to follow power law but with a much shorter
tail (Fig. 5(d)). The same trends described above are also observed for
each of the 50 MSAs individually (details are shown in Supplementary
Material Fig. S14-22).

4.4. Early warning signal of the critical transition

Prior research has pointed out that, as gradual change in an external
forcing factor (in this case, the percolation process) drives a system
closer to a critical transition, the distribution of the states of the units in
the system (e.g., the clusters in the mobility network in our study) may
change in characteristic ways, exhibiting scale-invariant distribution
(Foti et al., 2013). Such change can be viewed as an early warning
because the system may shift permanently to an alternative state if the
external forcing factor persists (Scheffer et al., 2009). To explore such a

phenomenon in  mobility networks, we calculate the
Kolmogorov-Smirnov distance (Massey, 1951):
Dy, = max|Fy(x) — Sy(x)] 5)

between Sy(x) which is the observed cumulative step-functions of s for
individual MSAs, and Fyp(x) which is the cumulated distribution func-
tions of corresponding power law distributions. In this way, Dis quan-
tifies the distance between the empirical distribution function of
samples and the cumulative distribution function of the fitted power law
distribution. Fig. 6(a) shows the K-S distance for power-law distribution
of cluster size during percolation for 50 MSAs. The median values
extracted from the 50 MSAs are plotted (red curves) in Fig. 6(a) to show
the trend. The values of q are normalized by subtracting the g, values of
the corresponding MSAs and dates. As such, the zero value of the
normalized q in Fig. 6 represents the point of critical phase transition.

The Dy of the cluster size distributions for individual MSAs (Fig. 6
(a)) shows a significant decreasing trend before the critical phase tran-
sition. The decreasing value of Dy reflects increasing similarity between
the cluster size distribution and the fitted power law distribution.
Furthermore, we calculate the derivative of Dys with respective to g,
denoted as m, for each MSA:
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Fig. 5. Aggregate distributions of cluster sizes during percolation for all 50 MSAs.



R. Wang et al.

(a)

0.6

0.5

-0.04  -0.02 0.00 0.02 0.04
Normalized value of q

Sustainable Cities and Society 91 (2023) 104435

(b)

60

-0.04  -0.02 0.00 0.02 0.04
Normalized value of g

Fig. 6. K-S distance and the value of indicator m during percolation for 50 MSAs.

Fig. 6(b) shows the values of indicator m for all MSAs during
percolation. The values of q are normalized the same way as in Fig. 6(a).
The median values of m are extracted (red curve). As a general trend
shown in Fig. 6(b), the value of m is far from zero at the beginning of the
percolation process, but quickly converges towards zero as the value of g
approaches the percolation criticality. The value of m approaching to
zero indicates a potential early warning signal of the critical transition;
m approximately indicates the distance between the current state of a
mobility network and its critical point of state transition. It reflects a
particular spatial configuration of complex systems arising before crit-
ical transition (Kéfi et al., 2014).

5. Discussions

Prior studies have suggested that a small change could cause a
regime shift in a complex system. In this study, we reveal that such
critical transitions also exist in large-scale urban mobility networks.
Knowing the existence of this critical transition phenomena can inform
public policies and engineering strategies to prevent urban connectivity
from experiencing abrupt state changes and drastic connectivity losses.
Moreover, we discover two universalities in percolation transitions
among different urban contexts: (1) the critical thresholds g.’s at phase
transitions in the 50 MSAs follow a normal distribution, indicating that
these MSAs share a similar critical threshold around g, = 0.096; (2)
scale-invariant behaviors near critical transition points have been
observed in mobility networks. The universalities in urban connectivity
patterns observed in this study are of remarkable theoretical and prac-
tical significance, suggesting a certain level of generalizability of find-
ings obtained by studying the most tractable perturbation cases to other
mobility networks. These insights could be applied in urban resilience-
related policy making to support human mobility under disruptive
events. Specifically, the percolation analysis of mobility networks in our
study can not only measure the resilience characteristics of mobility
networks, but also shed light on emergency management in real-world
scenarios, such as epidemics, winter storms and heavy rains, in which
weak links are vulnerability and likely to be disconnected first. Our
percolation process has revealed how human mobility behaviors are
gradually affected and finally approaching to transitions under external
disruptions. During the process, critical links, vulnerable nodes, and
high connectivity clusters can be identified from the percolation simu-
lation (Hamedmoghadam et al., 2021; Li et al., 2015a). Such informa-
tion could be used to inform the design of disaster response schemes and
control methods via protection or enhancement of a minimal set of links,
as well as to guide the prioritization of link reconstruction during
post-disaster recovery. In addition, this study also reveals the spatial
structure of node cluster distributions in perturbed mobility networks,
which can play a major role in informing efficient resource mobilization
schemes and prioritizing vulnerable neighborhoods and communities

during disaster events (Sun & Zhang, 2020; Zhang et al., 2019b ).

Moreover, our analysis takes one of the first steps to devise a quan-
tifiable early warning signal for mobility networks based on the pro-
posed indicator, whose distance to the zero value can indicate how far a
mobility network constructed from mobility flows is to its point of
critical state transition. This novel indicator can be used as a warning
signal on the closeness of a mobility network to its transition, and
therefore has significant implications for protecting the connectivity of
urban mobility networks through improved risk assessment and scenario
planning. For instance, it could inform policymakers of the neighbor-
hoods at potential risk of losing connectivity, who could then take tar-
geted measures, such as improving public transportation, to prevent
populations at risk from being segregated and ensure their access to
essential services during extreme events. In addition, the early warning
signal devised in this study, evaluated on data collected from 50 MSAs in
the U.S., demonstrates promising generalizability across different
geographical contexts. Our early warning signal method may also
inspire new opportunities for future intelligent applications, such as
intelligent emergency decision making support system, for sustainable
and resilient urban planning and management (Foltynova et al., 2020).

Our study has several limitations that are noteworthy. We investi-
gated the connectivity of mobility networks under simulated perturba-
tions of percolation and provided scientific insights for possible real-
world scenarios. However, the network disruptions caused by natural
hazards or extreme events could be more complicated than the theo-
retical percolation process. The percolation process in this study uses a
global threshold and does not reflect localized perturbations, such as
disaster-induced local power outages or traffic jams. In future work, we
will localize the settings of threshold q depending on the perturbation
intensity in each neighborhood and evaluate our findings against real-
world events. In addition, we used open-source datasets, in which
anonymized location data were collected and aggregated from
numerous mobile devices. Certain groups, such as the elderly and chil-
dren, are likely to be less represented in the dataset. Although the data
has been used in multiple studies to understand human movements at
various spatiotemporal scales in the U.S. (Chang et al., 2021; Kang et al.,
20205 Li et al., 2021b), more efforts are needed to evaluate the reliability
of our findings at different geographic regions by comparing with other
data sources.

6. Conclusions

Mobility networks, which play a fundamental role in maintaining
urban connectivity, may disintegrate during disruptive events. To
investigate this phenomenon, we studied the percolation transitions in
mobility networks in the top 50 MSAs in the U.S. Our research revealed
that mobility networks universally experienced abrupt transitions under
simulated perturbations. When undergoing these transitions, the
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distributions of cluster sizes in the mobility networks fundamentally
changed. Thus, the shift in distribution could be devised as an early
warning signal that alerts when the mobility networks would be
approaching their critical thresholds. Moreover, we found that the
critical thresholds across different cities were almost identical after
mobility flows were normalized by population. Building upon the
extensive literature on human mobility in cities, this study takes one of
the first steps in revealing the percolation transitions of mobility net-
works under the influence of perturbations. The findings can help to
better evaluate the stress on urban mobility imposed by extreme events,
predict the size of the damage to urban mobility or even its collapse, and
support more informed risk mitigation and resilience enhancement
strategies for the urban mobility and urban planning.
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