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A B S T R A C T   

Urban mobility can be significantly disrupted by various extreme events. The disruptions threaten urban spatial 
connectivity and affect people’s ability to access various essential services. Accurate characterization and timely 
alert of the critical transitions of urban mobility networks can help mitigate the above risks. However, there lacks 
an approach to characterize the critical transition state of urban mobility networks and warn their transitions 
during extreme events. The universality of the characteristics of disrupted mobility networks across different 
cities is another fundamental question that remains underexplored. By mining big geodata, we construct the 
mobility networks of the 50 most populous Metropolitan Statistical Areas (MSAs) in the U.S., and study their 
disruption patterns by conducting network percolation analysis. We find that all mobility networks experience 
abrupt transitions when reaching a universal critical threshold, at which the giant components of neighborhoods 
suddenly collapse and dissolve into small clusters. We also develop an indicator, by analyzing the neighborhood 
cluster distributions, that approximates how far a mobility network is to the critical threshold and provides an 
early warning of its critical transition. Our findings provide insights into mobility and neighborhood connectivity 
in cities, which can provide guidance for transportation management, epidemic control, and emergency 
evacuation.   

1. Introduction 

Cities are highly complex systems composed of numerous compo
nents whose interactions are responsible for a broad spectrum of dy
namics and evolution in cities (Batty, 2016). Urban mobility, which is 
rooted in these complexities and dynamics, provides a novel approach to 
understanding how a city is organized and how different components of 
a city interact with each other (Batty, 2013; Zhong et al., 2014). Taking 
disaster scenarios as an example, urban mobility plays a vital role in the 
resilience of cities to natural or manmade disasters by enabling pop
ulations to access from their residential areas the various critical facil
ities distributed in the city, such as grocery stores, gas stations, hospitals, 
and pharmacies (Logan & Guikema, 2020). Understanding human 
mobility is critical to identify high-risk communities, tailor public pol
icies, guide emergency responses and ultimately, construct a more sus
tainable and resilient city. 

The increasing accessibility to digital traces of human whereabouts 
in cities, made available by recent advancements of mobile and 

ubiquitous computing technologies, has offered numerous new oppor
tunities for exploring patterns and applications of human mobility be
haviors. It is therefore not surprising that the study of human mobility 
has attracted considerable interest in recent years, with particular 
attention being paid to the empirical analysis of urban mobility patterns 
(Hong et al., 2021; Wang & Taylor, 2014), fine-grained individual 
mobility modeling (Pappalardo et al., 2015; Schläpfer et al., 2021), and 
traffic or crowd flow prediction (Saberi et al., 2020; Simini et al., 2021). 

Despite the growing volume of research on urban mobility, the 
characteristics of disrupted urban mobility, which can result from 
various disruptive events such as natural disasters and pandemics, is still 
largely underexplored. When these events happen, they usually trigger 
massive abnormal activities of urban dwellers within the affected areas, 
and cause significant disruptions to urban mobility (Saja et al., 2020; 
Wang & Taylor, 2016; Yabe & Ukkusuri, 2020; Zhao et al., 2022). In 
extreme cases, the disruptive events may even lead to the critical tran
sitions of urban mobility networks and full loss of urban spatial con
nectivity, paralyzing human flows in cities (Bailey et al., 2018; Li et al., 
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2021b). Motivated by the significance of understanding the disrupted 
urban mobility and managing the associated risks, a number of studies 
have been conducted in recent years, primarily within the COVD-19 
pandemic context, to investigate the disruption patterns of urban 
mobility networks. These studies have reported reduction of mobility 
flows, significant correlation between mobility flows and the disruptive 
events, and occurrence of critical status transitions of the mobility net
works. Analysis of this existing, yet limited literature reveals that there 
are several important questions that have still remained to be explored. 
First of all, there lacks an approach to characterize the critical transition 
state of urban mobility networks and alert their transitions during 
extreme events. Particularly, complex urban systems, such as the 
financial systems and ecology systems, often emit early warning signals 
before their critical transitions (Dai et al., 2012; Kéfi et al., 2014; 
Scheffer et al., 2009, 2012; Squartini et al., 2013), and yet this phe
nomenon has not been empirically explored for large-scale mobility 
networks. Second, the universality of characteristics of disrupted 
mobility networks across different cities, especially beyond the specific 
COVID-19 pandemic context and related to more general forms of dis
ruptions, is another fundamental question that remains underexplored. 
Answers to the above questions will deepen our understanding of the 
characteristics of disrupted urban mobility, and have important prac
tical implications for evacuation, emergency response, and long-term 
recovery operations in cities (Egerer et al., 2020; Olazabal et al., 2018). 

Motivated by the above knowledge gaps, this study aims to examine 
urban mobility patterns under perturbations using large-scale mobility 
datasets from American cities. The specific objectives of this study are 
threefold: (1) to capture critical transitions in urban mobility under 
perturbations, (2) to compare disrupted mobility patterns across cities, 
and (3) to design a universal early warning indicator that can signal the 
approaching transition of urban mobility. To achieve these research 
objectives, we adopt an approach originated from the percolation theory 
to investigate complex urban mobility. Empirical data from the 50 most 
populous Metropolitan Statistical Areas (MSAs) in the United States, 
including large-scale mobility data collected from mobile phones in 
2019 and the 2019 Census block group data, are used for our analysis. 
We construct urban mobility networks of these MSAs, and perform large- 
scale computational experiments on these networks. The findings are 
expected to advance our understanding about how disrupted urban 
mobility evolves, and guide the sustainable urban planning and emer
gency management practices to achieve improved resilience against 
potential extreme events. 

2. Literature review 

2.1. Understanding urban mobility for more sustainable and resilient 
cities 

Knowledge about human mobility patterns in cities is valuable for a 
wide range of advanced applications in sustainable and resilient cities 
(Wang et al., 2022b). For instance, an array of studies have used in
dividuals’ trajectories to identify urban structures from a functional 
perspective (Liu et al., 2015; Zhang et al., 2019c; Zhang et al., 2021), 
reveal social disparities (Hu et al., 2022; Wang et al., 2018), and model 
the spread of pandemic (Chang et al., 2021), providing a better under
standing of urban dynamics. Particularly, understanding human 
mobility patterns can help improve the resilience of cities by providing a 
quantifiable and continuous reflection and assessment of the responses 
of various urban systems during disasters (Ilbeigi, 2019; Roy et al., 
2019), such as urban transportation infrastructures (Nogal & Honfi, 
2019; Zhang et al., 2019a), urban social systems (Li et al., 2022; Yabe 
et al., 2021), and so on. 

Recently, an increasing number of studies have investigated urban 
mobility networks, which are typically constructed using spatial blocks 
such as neighborhoods as nodes and time-varying mobility flows be
tween blocks as links. By leveraging the complex network theory and 

techniques, these studies have brought new insights to the relationships 
between the urban structure, spatial distribution of urban facilities, and 
citizen’s mobility demand (Gong et al., 2017; Liu et al., 2021; Wang 
et al., 2022a). In addition, boosted by the COVID-19 pandemic, a 
number of studies have been conducted to track overall mobility 
reduction (Schlosser et al., 2020), reveal the relationship between the 
mobility network structure and the distribution of pandemic (Freitas 
et al., 2020; Jia et al., 2020), and model and predict the pandemic spread 
based on mobility network attributes (Chang et al., 2021; Zeng et al., 
2020). In sum, the findings of the above mobility network-based studies 
reflect the distribution and division of collective activities of citizens. 
Such information has then been proven useful in developing better so
lutions to boosting commercial activities, selecting sites for urban fa
cilities, fostering social interactions, improving urban disaster 
resilience, and so on. 

In summary, prior studies have demonstrated broad applications and 
significant values of incorporating human mobility knowledge to sup
port the development of sustainable and resilient cities. Meanwhile, the 
literature review also suggests that disruptions to human mobility be
haviors, which can be caused by disruptive events such as natural di
sasters, has drawn limited attention. Although there is abundant 
empirical evidence that indicates that individuals’ mobility patterns 
may significantly differ between normal states and perturbed states 
(Wang & Taylor, 2014; Zhang & Li, 2022), more research is needed to 
understand the disrupted mobility behaviors, so as to better support 
sustainable urban planning and improve the resilience of cities during 
disruptive events. 

2.2. Percolation analysis of urban systems using big geodata 

Percolation theories are studied extensively in network science, 
revealing important network characteristics of various types of complex 
networks. Inspired by the growing availability of big geodata, such as 
GPS traces and geotagged social media posts, percolation analysis is 
playing an increasing role in urban studies, contributing to various 
urban problems, including identifying latent hierarchical urban struc
tures, detecting phase transitions in complex urban systems, and 
robustness assessment of urban networks, which are summarized as 
follows. First of all, urban systems usually present hierarchical struc
tures at many different scales, which can be revealed by percolation 
analysis. Urban structures, in the form of community structures, sub- 
centers and boundaries of urban areas, can be uncovered by percola
tion analysis on road networks (Arcaute et al., 2016) and mobility net
works (Cao et al., 2020; Sarkar et al., 2019). Second, percolation 
analysis is a useful approach for studying disruptions and transitions of 
different urban networks. For example, the percolation processes were 
investigated on mobility networks (Deng et al., 2021) and traffic systems 
(Li et al., 2015a; Olmos et al., 2018) to capture the discontinuous phase 
transition from a globally connected network into isolated local flows. 
Third, the percolation threshold can be used as a reliability indicator for 
the operational limits of networks, which can help to understand and 
manage the network failure behavior (Li et al., 2015b). For instance, 
percolation threshold was integrated into reliability assessment of road 
network (Dong et al., 2020; Zhou et al., 2019) and public transit network 
(Hamedmoghadam et al. 2021) from a topological perspective. 

As the big geodata about human mobility is becoming increasingly 
accessible, a few recent studies have attempted to apply percolation 
analysis to mobility networks to demonstrate their hierarchical topology 
and reveal their changes during the COVID-19 pandemic (Deng et al., 
2021; He et al., 2022). However, in the realm of human mobility net
works research, quantitative approaches for detecting and warning the 
critical transitions are still lacking. This has hindered both in-depth 
interpretation of observed empirical evidence of disrupted mobility 
patterns, and the early warning of such disruptions. In addition, limited 
efforts have been made in the existing literature to compare the out
comes of percolation analysis on mobility networks across different 
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urban contexts. As a result, limited is known about the heterogeneity 
between different cities with respect to the responses of their mobility 
networks to external disruptions. Therefore, more research is needed to 
investigate the percolation process of mobility networks across different 
cities, so as to better understand the resilience of mobility networks and 
guide the protection of urban connectivity during disruptive events. 

3. Mobility data and mobility networks 

3.1. Data sets and preprocessing 

This study employs an anonymized and aggregated mobility dataset 
from SafeGraph (2020) that measures travel flows within the United 
States at the census block group (CBG) level in 2019. Mobility data from 
SafeGraph (2020) are accessed and used to extract mobility flows (more 
details are shown in Supplementary Material). Prior studies using 
SafeGraph data have found that the data are generally representative of 
the U.S. population (Chang et al., 2021; Klise et al., 2021; Perra, 2021; 
Squire, 2019). 

In this study, we focus on mobility flows in the largest 50 MSAs in the 
United States, based on their total population rank in 2020. The list of 
the 50 most populous U.S. MSAs (Table S1) is based on the 2020 Census 
data from the U.S. Census Bureau. The boundaries of the MSAs and CBGs 
are from the shapefiles of the “Combined Statistical Areas” and “Block 
Groups” data in the 2019 Census data (US Census Bureau, 2019). 

To construct the mobility networks that represent the year of 2019, 
while avoiding excessive computational loads, daily mobility flow data 
for the above 50 MSAs from Monday through Thursday in the second 
week of March, June, September and December of 2019 (a total of 16 
weekdays) are extracted from the SafeGraph data. For each MSA, the 
mobility flow data are preprocessed before analysis as follows: (1) 
mobility flows from the large airports by total passenger boardings in 
the United States are excluded. It is because mobility from airports to 
destinations are not daily flows concerned in this study; (2) the 
geographic scope of each mobility network is limited to the corre
sponding MSA, and flows out of the geographic boundaries of the MSA 
are excluded. 

3.2. Mobility network construction 

To conduct percolation analysis, we first determine the strength of 
each spatial interaction within each MSA. Here we use the normalized 
weighted flow derived from daily mobility data to indicate the strength 
of connection between CBGs. For a given connection between a CBG 
pair, its strength is represented by the daily travel volume. Then we 
normalize the volume of each connection by dividing it by the count of 
devices whose home locations are in the origin CBG. Mathematically, 
the undirected normalized weighted flow of link between CBG(i) and 
CBG(j), denoted as rij, can be calculated as: 

rij =
vij

ni
+

vji

nj
(1)  

where vij is the daily volume from CBG(i) to CBG(j), and ni is the number 
of devices whose homes were in CBG(i) during the study period. 

Then, we build daily mobility-based networks of 16 workdays in the 
year of 2019 for 50 MSAs in the United States. For each network, every 
CBG is taken as a node, and an undirected weighted link between each 
CBG pair is created using the strength of rij as its weight. In the perco
lation analysis, for a given weight threshold, q, all links eij in the network 
can be classified into two categories: if the normalized weight of a link is 
larger than q, the link is considered connected, and when the normalized 
weights of the links are lower than q, the links are considered discon
nected and removed. 

eij =

{
1, rij ≥ q
0, rij < q.

(2) 

In this way, a mobility network can be constructed from links with 
normalized weights higher than q. The size of the giant component (GC) 
and the size of the second-largest component (SGC) in each mobility 
network are calculated after link removal. The GC and SGC are 
normalized by MSAs’ network size as follows to allow comparison across 
MSAs: 

GC =
NGC

N
(3)  

SGC =
NSGC

N
(4)  

where NGC is the number of nodes in the giant component, NSGC is the 
number of nodes in the second giant component, and N is the total 
number of nodes in the MSA network. 

In the percolation analysis, the less-weighted links are removed first 
and the network becomes more fragmented as the value of q increases, 
and it eventually becomes completely fragmented (the representative
ness of this percolation method in real-world cases is further explained 
in Supplementary Material). The critical threshold qc is defined as the 
value of q when the size of SGC reaches maximal, according to perco
lation theory (Li et al., 2021a). Given that direct flow could exist be
tween any pair of nodes in the mobility networks, the above percolation 
process is a long-range percolation (Grimmett, 1999), which has been 
widely adopted to simulate a number of significant real-world scenarios, 
such as human mobility and social interactions (He et al., 2022; Li et al., 
2011). 

4. Analysis and results 

4.1. Percolation process in MSAs 

We simulate percolation on the daily mobility networks of the 50 
MSAs for 16 workdays. The percolation processes in nine representative 
MSAs, selected based on their diversities in geographical attributes, 
areas and population sizes, are shown in Fig. 1(a-i). The size of GC (blue 
line) and the size of SGC (red line) in the percolation process are plotted. 
Two maps in each subfigure show the transition of GC at the critical 
threshold qc: immediately before q approaches qc, the size of GC is large; 
at qc, GC significantly shrinks and the size of SGC reaches its maximal. 
The GC before the transition, and GC and SGC after the transition are 
shown in each map. Of special interest is the critical threshold qc, at 
which the GC suddenly collapses and dissolves into clusters with smaller 
sizes. 

Fig. 1(a) of New York MSA is used as an example to demonstrate the 
percolation process. At q << qc, GC includes almost all the nodes, each 
representing a CBG, in the original mobility network. Many of these 
nodes in GC are connected by links with relatively low normalized 
weights. As q increases, these links are removed gradually. Thus, the size 
of GC shrinks and small clusters begin to emerge. When the value of q 
reaches qc, the network experiences sudden fragmentation with the size 
of GC dropping from 30.9% of all the nodes to 15.9%, shedding half of its 
size. Simultaneously, the size of SGC peaks. When q > qc, in contrast, GC 
is disintegrated, and there are only small clusters of connected nodes. 
These small clusters contain links with relatively high normalized 
weights, and yet they cannot maintain the global connectivity of the 
mobility network. 

The same pattern is observed in other cities in Fig. 1 (more details are 
shown in Supplementary Material Fig. S5–13). Urban mobility networks 
become fragile under increasing perturbation (e.g., reduction in 
mobility between neighborhoods), and disintegrate abruptly at critical 
points qc’s. Specifically, as q increases, the size of GC decreases and that 
of SGC increases. At qc, SGC reaches its maximum size and the size of GC 
experiences an abrupt drop simultaneously. Reaching qc signifies the 
phase transition for network connectivity in the MSAs. According to 
percolation theory (Hamedmoghadam et al., 2021; Li et al., 2015a; Zeng 
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et al., 2019), the size of GC has been widely used as an indicator of global 
connectivity of networks, and the critical threshold qc is an informative 
measure of the resilience characteristics of network connectivity. 

4.2. Universal patterns in the percolation process 

Despite the diversity of the nine MSAs in geographical attributes, 
population density, mobility network topologies, and so on, we observe 
similar percolation processes in terms of the size changes in GCs and 
SGCs in Fig. 1. To further test the universality of such patterns, we 
analyze the percolation processes in the 50 largest MSAs in the U.S. 
These percolation processes are illustrated in Fig. 2(a) and (b). 

We observe that the mobility networks follow a similar percolation 
process across the 50 MSAs. The GCs of these networks stay stable at the 
beginning of link removal. They start to shrink as q continues to increase 
before eventually reaching zero (Fig. 2(a)). 

Surprisingly, as shown in Fig. 2(a) and (b), qc’s from different MSAs 
are distributed within a narrow range. In fact, our analysis shows that 
qc’s extracted from daily mobility networks of the 50 MSAs follow a 
normal distribution (Fig. 3) where the mean value is 0.096 with a mere 
standard deviation of 0.012 (KS test, p-value = 0.905). The surprising 
finding reveals that different MSAs share a universal critical threshold at 
which their mobility networks would lose global connectivity due to the 
collapses of the largest components. 

The existence of a universal critical threshold across all the MSAs 
might be a manifestation of the “percolation threshold saturation” 
phenomenon that prior research discovered in the long-range 

percolation of networks with high average node degree (Zhukov et al., 
2018), although the plausibility of this hypothesis under the specific 
percolation approach used in this study still requires further exploration. 
Universal characteristics found in our study may be the key to under
standing complex mobility networks’ response to perturbations (Barzel 
& Barabási, 2013), and could inform more accurate and universal 
modeling of urban connectivity in future research. 

4.3. Distribution of cluster sizes (s) at the critical point 

Next, we examine how GCs break down at the critical points. We 
analyze the cluster sizes (s) of the daily mobility networks at qc’s. The 
distributions of s of the 50 MSAs in the 16 workdays are shown in a log- 
log plot in Fig. 4, with each color representing a different MSA. The red 
diamonds show the aggregate distribution of s from all the 50 MSAs at 
their respective qc’s. The results show that the probability distributions 
of s in the 50 MSAs follow power law distributions:P(s) ∼ s−β, where s is 
the cluster size, and the exponent parameter β = 1.96 ± 0.40. The 
aggregate distribution also follows a power law distribution with β =

2.03. The above consistency demonstrates a surprising homogeneity 
across the 50 MSAs. Following the steps in Clauset et al., (2009) and 
Zhang et al., (2019b), we conduct the Kolmogorov-Smirnov test, and 
results indicate that the aggregate distribution and individual distribu
tions of the cluster size at critical points all follow the power law. 

Similar scale-invariant behaviors near critical transition points have 
been observed in various complex systems, such as land degradations 
(Tirabassi et al., 2014), traffic networks (Zeng et al., 2019; Zhang et al., 

Fig. 1. Percolation patterns of nine representative MSAs in the U.S. The left y-axis reflects the size of GC (blue line) and right y-axis reflects the size of SGC (red line). 
The spatial distributions of GC (blue) before the critical transition (the upper map), and GC (blue) and SGC (red) at the critical transition (the lower map) are also 
shown in the figure. 
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2019b), land-cover patterns (Zurlini et al., 2014), public opinions 
(Ramos et al., 2015), and so on. Our study provides one of the first pieces 
of empirical evidence that the critical transitions also exist in large-scale 
urban mobility networks across diverse geographical contexts. 

Such a scale-invariant structure may have arisen from the local 
positive feedback, i.e., the connection strength of a node to a cluster 
tends to increase with the size of the cluster (Scanlon et al., 2007). The 
main drivers of this positive feedback probably include the resources 
(Meekan et al., 2017), opportunities (Cummings et al., 2015) and social 
relationships (Axhausen, 2005) in cities. These resources are ampler in 
larger clusters and thus drive people to travel to and within them. 
However, the growth of large clusters is constrained globally by the total 
amount of resources and opportunities and the total trips that people can 
make. The competing forces between the positive feedback and growth 
constraints have likely co-produced the power law distribution of the 

cluster size. 
After observing the power law distribution of s for mobility networks 

of all MSAs at the percolation criticality, the aggregate cluster distri
butions before, near, at and after the percolation criticality are further 
calculated. The results are shown in Fig. 5. The distributions are drawn 
at different q values: qc − 0.05 (a), qc − 0.02 (b), qc (c), and qc + 0.05 (d). 
When q << qc, for each MSA, there is a giant component and a number 
of small clusters. The aggregate distribution of the 50 MSAs is charac
terized by the co-existence of a small number of large clusters and many 
more small clusters (Fig. 5(a)). When q approaches qc, for each MSA, the 
size of GC decreases together with an increase in the number of small 
clusters. Consequently, the aggregate distribution of s gradually ap
proaches the power law distribution (Fig. 5(b)). When q is near or at qc, 
the aggregate distribution of s exhibits power law distribution (Fig. 5). 
After qc, giant component quickly breaks down. The aggregate 

Fig. 2. Percolation curves of GC and SGC in 50 MSAs. (a) The size of GC in 50 MSAs during percolation on Sep. 9, 2019 as an example; (b) The size of SGC in 50 MSAs 
during percolation on Sep. 9, 2019 as an example. 
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distribution of s continues to follow power law but with a much shorter 
tail (Fig. 5(d)). The same trends described above are also observed for 
each of the 50 MSAs individually (details are shown in Supplementary 
Material Fig. S14–22). 

4.4. Early warning signal of the critical transition 

Prior research has pointed out that, as gradual change in an external 
forcing factor (in this case, the percolation process) drives a system 
closer to a critical transition, the distribution of the states of the units in 
the system (e.g., the clusters in the mobility network in our study) may 
change in characteristic ways, exhibiting scale-invariant distribution 
(Foti et al., 2013). Such change can be viewed as an early warning 
because the system may shift permanently to an alternative state if the 
external forcing factor persists (Scheffer et al., 2009). To explore such a 
phenomenon in mobility networks, we calculate the 
Kolmogorov-Smirnov distance (Massey, 1951): 

Dks = max|F0(x) − SN(x)| (5)  

between SN(x) which is the observed cumulative step-functions of s for 
individual MSAs, and F0(x) which is the cumulated distribution func
tions of corresponding power law distributions. In this way, Dks quan
tifies the distance between the empirical distribution function of 
samples and the cumulative distribution function of the fitted power law 
distribution. Fig. 6(a) shows the K-S distance for power-law distribution 
of cluster size during percolation for 50 MSAs. The median values 
extracted from the 50 MSAs are plotted (red curves) in Fig. 6(a) to show 
the trend. The values of q are normalized by subtracting the qc values of 
the corresponding MSAs and dates. As such, the zero value of the 
normalized q in Fig. 6 represents the point of critical phase transition. 

The Dks of the cluster size distributions for individual MSAs (Fig. 6 
(a)) shows a significant decreasing trend before the critical phase tran
sition. The decreasing value of Dks reflects increasing similarity between 
the cluster size distribution and the fitted power law distribution. 
Furthermore, we calculate the derivative of Dks with respective to q, 
denoted as m, for each MSA: 

m =
ΔDks

Δq
(6) 

Fig. 3. Distributions of qc in 50 MSAs of 16 workdays.  

Fig. 4. Distributions of s at qc in 50 MSAs of 16 workdays. The colors of legends 
for MSAs are the same as in Fig. 2. 

Fig. 5. Aggregate distributions of cluster sizes during percolation for all 50 MSAs.  
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Fig. 6(b) shows the values of indicator m for all MSAs during 
percolation. The values of q are normalized the same way as in Fig. 6(a). 
The median values of m are extracted (red curve). As a general trend 
shown in Fig. 6(b), the value of m is far from zero at the beginning of the 
percolation process, but quickly converges towards zero as the value of q 
approaches the percolation criticality. The value of m approaching to 
zero indicates a potential early warning signal of the critical transition; 
m approximately indicates the distance between the current state of a 
mobility network and its critical point of state transition. It reflects a 
particular spatial configuration of complex systems arising before crit
ical transition (Kéfi et al., 2014). 

5. Discussions 

Prior studies have suggested that a small change could cause a 
regime shift in a complex system. In this study, we reveal that such 
critical transitions also exist in large-scale urban mobility networks. 
Knowing the existence of this critical transition phenomena can inform 
public policies and engineering strategies to prevent urban connectivity 
from experiencing abrupt state changes and drastic connectivity losses. 
Moreover, we discover two universalities in percolation transitions 
among different urban contexts: (1) the critical thresholds qc’s at phase 
transitions in the 50 MSAs follow a normal distribution, indicating that 
these MSAs share a similar critical threshold around qc = 0.096; (2) 
scale-invariant behaviors near critical transition points have been 
observed in mobility networks. The universalities in urban connectivity 
patterns observed in this study are of remarkable theoretical and prac
tical significance, suggesting a certain level of generalizability of find
ings obtained by studying the most tractable perturbation cases to other 
mobility networks. These insights could be applied in urban resilience- 
related policy making to support human mobility under disruptive 
events. Specifically, the percolation analysis of mobility networks in our 
study can not only measure the resilience characteristics of mobility 
networks, but also shed light on emergency management in real-world 
scenarios, such as epidemics, winter storms and heavy rains, in which 
weak links are vulnerability and likely to be disconnected first. Our 
percolation process has revealed how human mobility behaviors are 
gradually affected and finally approaching to transitions under external 
disruptions. During the process, critical links, vulnerable nodes, and 
high connectivity clusters can be identified from the percolation simu
lation (Hamedmoghadam et al., 2021; Li et al., 2015a). Such informa
tion could be used to inform the design of disaster response schemes and 
control methods via protection or enhancement of a minimal set of links, 
as well as to guide the prioritization of link reconstruction during 
post-disaster recovery. In addition, this study also reveals the spatial 
structure of node cluster distributions in perturbed mobility networks, 
which can play a major role in informing efficient resource mobilization 
schemes and prioritizing vulnerable neighborhoods and communities 

during disaster events (Sun & Zhang, 2020; Zhang et al., 2019b ). 
Moreover, our analysis takes one of the first steps to devise a quan

tifiable early warning signal for mobility networks based on the pro
posed indicator, whose distance to the zero value can indicate how far a 
mobility network constructed from mobility flows is to its point of 
critical state transition. This novel indicator can be used as a warning 
signal on the closeness of a mobility network to its transition, and 
therefore has significant implications for protecting the connectivity of 
urban mobility networks through improved risk assessment and scenario 
planning. For instance, it could inform policymakers of the neighbor
hoods at potential risk of losing connectivity, who could then take tar
geted measures, such as improving public transportation, to prevent 
populations at risk from being segregated and ensure their access to 
essential services during extreme events. In addition, the early warning 
signal devised in this study, evaluated on data collected from 50 MSAs in 
the U.S., demonstrates promising generalizability across different 
geographical contexts. Our early warning signal method may also 
inspire new opportunities for future intelligent applications, such as 
intelligent emergency decision making support system, for sustainable 
and resilient urban planning and management (Foltýnová et al., 2020). 

Our study has several limitations that are noteworthy. We investi
gated the connectivity of mobility networks under simulated perturba
tions of percolation and provided scientific insights for possible real- 
world scenarios. However, the network disruptions caused by natural 
hazards or extreme events could be more complicated than the theo
retical percolation process. The percolation process in this study uses a 
global threshold and does not reflect localized perturbations, such as 
disaster-induced local power outages or traffic jams. In future work, we 
will localize the settings of threshold q depending on the perturbation 
intensity in each neighborhood and evaluate our findings against real- 
world events. In addition, we used open-source datasets, in which 
anonymized location data were collected and aggregated from 
numerous mobile devices. Certain groups, such as the elderly and chil
dren, are likely to be less represented in the dataset. Although the data 
has been used in multiple studies to understand human movements at 
various spatiotemporal scales in the U.S. (Chang et al., 2021; Kang et al., 
2020; Li et al., 2021b), more efforts are needed to evaluate the reliability 
of our findings at different geographic regions by comparing with other 
data sources. 

6. Conclusions 

Mobility networks, which play a fundamental role in maintaining 
urban connectivity, may disintegrate during disruptive events. To 
investigate this phenomenon, we studied the percolation transitions in 
mobility networks in the top 50 MSAs in the U.S. Our research revealed 
that mobility networks universally experienced abrupt transitions under 
simulated perturbations. When undergoing these transitions, the 

Fig. 6. K-S distance and the value of indicator m during percolation for 50 MSAs.  
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distributions of cluster sizes in the mobility networks fundamentally 
changed. Thus, the shift in distribution could be devised as an early 
warning signal that alerts when the mobility networks would be 
approaching their critical thresholds. Moreover, we found that the 
critical thresholds across different cities were almost identical after 
mobility flows were normalized by population. Building upon the 
extensive literature on human mobility in cities, this study takes one of 
the first steps in revealing the percolation transitions of mobility net
works under the influence of perturbations. The findings can help to 
better evaluate the stress on urban mobility imposed by extreme events, 
predict the size of the damage to urban mobility or even its collapse, and 
support more informed risk mitigation and resilience enhancement 
strategies for the urban mobility and urban planning. 
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