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ABSTRACT representations by visually inspecting the representations, as de-

Activity recognition computer vision algorithms can be used to
detect the presence of autism-related behaviors, including what are
termed “restricted and repetitive behaviors”, or stimming, by diag-
nostic instruments. Examples of stimming include hand flapping,
spinning, and head banging. One of the most significant bottlenecks
for implementing such classifiers is the lack of sufficiently large
training sets of human behavior specific to pediatric developmental
delays. The data that do exist are usually recorded with a handheld
camera which is itself shaky or even moving, posing a challenge
for traditional feature representation approaches for activity detec-
tion which capture the camera’s motion as a feature. To address
these issues, we first document the advantages and limitations of
current feature representation techniques for activity recognition
when applied to head banging detection. We then propose a feature
representation consisting exclusively of head pose keypoints. We
create a computer vision classifier for detecting head banging in
home videos using a time-distributed convolutional neural network
(CNN) in which a single CNN extracts features from each frame in
the input sequence, and these extracted features are fed as input to
a long short-term memory (LSTM) network. On the binary task of
predicting head banging and no head banging within videos from
the Self Stimulatory Behaviour Dataset (SSBD), we reach a mean
F1-score of 90.77% using 3-fold cross validation (with individual fold
F1-scores of 83.3%, 89.0%, and 100.0%) when ensuring that no child
who appeared in the train set was in the test set for all folds. This
work documents a successful process for training a computer vision
classifier which can detect a particular human motion pattern with
few training examples and even when the camera recording the
source clip is unstable. The process of engineering useful feature
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scribed here, can be a useful practice by designers and developers
of interactive systems detecting human motion patterns for use in
mobile and ubiquitous interactive systems.
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1 INTRODUCTION

The increasing ubiquity of mobile devices in conjunction with ad-
vances in artificial intelligence (Al), and in particular machine learn-
ing (ML), are enabling accessibility of healthcare solutions for tradi-
tionally underserved populations. While the prevalence of autism
exceeds 1 in 60 children [22, 40], current estimates are that over 80%
of counties in the United States lack access to autism diagnostics
[44]. As a result, families will often need to wait over a year to re-
ceive a diagnosis for autism, particularly in rural areas and in lower
socioeconomic communities [25]. This prolonged and excessive
wait time is particularly problematic for pediatric developmental
delays like autism, where earlier diagnosis and resulting behavioral
interventions result in more effective clinical outcomes [13-14].
Research has shown that autism features useful for diagnosis
and continuous phenotyping can be detected in short home videos
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taken by smartphones [17-19, 23-24, 38, 54-55, 59, 64]. Interactive
devices such as smartphones are increasingly being evaluated for
use in at-home digital diagnostics and therapies which adapt to the
needs of the child [43]. For diagnostics, computer vision classifiers
measure the behavior of the child, and statistical measurements are
used to provide a diagnosis or screening [13-14, 58, 75]. For digital
therapeutics, the classifiers measure the response of the child to an
interactive game or task designed to provide behavioral therapy
for the child [11-12, 35, 56-57, 65-66].

Unfortunately, autism-related behaviors are currently particu-
larly difficult to classify with out-of-the-box computer vision ap-
proaches. Existing activity recognition classifiers have been devel-
oped and evaluated on common activities like running, throwing a
basketball, and dancing [9]. Restricted and repetitive autism move-
ments (i.e., stimming), such as hand flapping, head banging, and
rocking back and forth, have not been the focus of computer vision
efforts, largely because of a dearth of training data for such domain
specific behaviors. An additional issue is that while many activity
recognition algorithms assume a stable and still camera, many home
videos of children exhibiting stimming behaviors are recorded from
an unstable handheld camera source. There is a need for computer
vision methods which can distinguish and detect activities relevant
to marginalized populations where massive training sets do not
exist and only relatively small amounts of data from potentially
unstable camera sources are available.

In this paper, we document the process of designing a feature
representation method for head banging detection. We visually
inspect several traditional feature representation methods for activ-
ity recognition on video clips enriched for head banging recorded
with a handheld camera. Through discussing the advantages and
disadvantages of each technique with respect to the visual feature
representation, we arrive at a pose-based representation of only
head keypoints. We train a time-distributed convolutional neural
network (CNN) which extracts features that are fed into a long
short-term memory (LSTM) network. We train this model to distin-
guish video clips containing “head banging” from “not headbanging”
using a balanced set of videos, resulting in a 90.77% F1-score during
3-fold cross-validation. This paper provides an example of training
a human activity classifier for detection of a specific activity using
few data points collected from unstable camera streams. We believe
that the simple yet reasoned process outlined in this study will be
of utility to engineers of ML-powered interactive systems centered
around detecting human behavior.

2 RELATED WORK

We discuss examples of both advances in computer vision tech-
niques for detecting stimming behaviors and corresponding inter-
active systems which target stimming behaviors in children with
developmental delays. Because this research area is plentiful, we
focus our literature review particularly on autism and pediatrics
literature.

2.1 Activity recognition with moving cameras

General-purpose activity recognition with moving cameras has
been explored in prior work. Most prior approaches are based on
representations derived from optical flow, an approach we describe
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in more detail in Section 3. Wu et al. obtain particle trajectories
through optical flow over time and decompose the trajectories into
a background and foreground component [71]. The object motion
and camera motion are used to predict activity. Rezazadegan et al.
identify “action regions” through a multi-step process [49]. They
first identify the outline of the body (“boundary mask”) using fea-
tures derived from optical flow. The boundary mask is predicted
with structured random forests. To obtain the final region of inter-
est, they employ edge-based object detection methods [74] on the
binary boundary mask. They achieve 74.73% success rate on the
UCF101 dataset and 42.1% success rate on HMDB. Avgerinakis et al.
identify background regions displaying motion artefacts using op-
tical flow and superpixels; dense trajectories and motion extracted
from these regions are used as features to detect activity, achieving
56.2% accuracy on the UCF sports dataset [2]. Optical flow-based
feature representations maintain artefacts from the human sub-
ject’s physical appearance, thus requiring large datasets to train a
classifier.

Other activity recognition literature use features derived from
pose estimation. Pose estimations are ideal for smaller datasets
due to their robustness against the physical appearance of the
human subject. A stick figure is used to represent the human’s
body at every step, thereby reducing overfitting. Okumura et al.
use hand keypoints to detect cooking-related activities from an
egocentric camera [45]. Dousty and Zariffa use hand detection,
pose estimation, and arm orientation estimation to detect tenodesis
grasp [16]. Pose estimation approaches can be easier to implement
than flow-based methods, as they often do not require extensive
and complex postprocessing steps.

2.2 Computer vision detection of stimming

Computer vision approaches can enable scalable and affordable
“behavioral phenotyping” of children with autism [50]. While gen-
eral purpose activity recognition algorithms can perform well on a
broad set of actions, it can be useful to leverage a custom feature
representation for more domain-specific tasks. Here, we discuss
prior computer vision efforts for automatically identifying motor
movements and stereotyped behaviors.

Motor control and movements related to autism include head
posture, head movement, and grasping patterns. Researchers have
hypothesized that computer vision algorithms can pick up on the
generally accepted motor variations between children with autism
and neurotypical children. Some studies operate under controlled
laboratory conditions. In one such study, Dawson et al. find that
toddlers with autism exhibit increased head movement compared
to neurotypical controls by tracking facial landmarks [13-14]. In
another lab-controlled study, Zunino et al. use a CNN which extracts
features which are then fed into an LSTM to detect grasping actions,
reaching an accuracy of 72% for subjects with autism and 77% for
neurotypical subjects [75]. We note that we employed a similar
neural network architecture in the present study. Some research
efforts have worked towards classification of autism-related motor
movements from unstructured video clips. Vyas et al. use a 2D
mask R-CNN to distinguish autism from neurotypical behavior in
unstructured video clips from a private data set, reporting precision
of 72% and recall of 92% [58].
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Advances in computer vision detection require shared and public
datasets for training and testing the model. The Self-Stimulatory
Behavior Dataset (SSBD) [48] is a dataset of unstructured home
videos of children performing one of three self-stimulatory behav-
iors: headbanging, spinning, and hand flapping. The authors of the
dataset build a 3-way classifier distinguishing these 3 behaviors
using Space Time Interest Points (STIP) [37] and reach a 50.7%
classification accuracy using 5-fold cross validation and 47.3% ac-
curacy using 10-fold cross-validation. We use the SSBD dataset in
the present study, as it is the only public dataset, we are aware of
containing several labeled examples of self-stimulatory behaviors.

2.3 Machine learning powered interactive
systems for behavioral therapy

The intersection of HCI and AI for autism has become an area
of interest within the HCI community. Interactive systems have
been developed to aid in at-home behavioral therapy for children
with autism, and these digital therapies are powered by activity
recognition models which automatically detect autism-related be-
haviors. Some works explore how Al can enhance existing inter-
active technologies for people with autism. Begel et al. leverage
emotion detection models for providing feedback about facial ex-
pressions during video calling sessions [5]. Bartoli et al. evaluate
the potential of games centered around “motion-based” touchless
interaction, where sensing devices such as cameras powered by
computer vision algorithms track and analyze body movements
[4]. On a prototype of this paradigm with a Kinect application,
they find that children with autism improved on measures of se-
lective attention and sustained attention after playing the game.
Other works explore how Al-powered interactive systems can aid
in structured therapy. Mobahi and Karahalios propose that HCI
systems can continually monitor the gaze of a child and adapt the
treatment accordingly [41]. Robotic therapies powered by computer
vision have also demonstrated great promise. Feil-Seifer et al. show
that a classifier can determine whether children are attempting
to interact with a socially assistive robot in a social manner [21].
Moghadas et al. use computer vision to distinguish children autism
from neurotypical children from interaction with a parrot-like robot
[42]. A number of HCI works detect autism-related behaviors such
as eye contact [72], atypical prosody [6], and emotion expression
[29-33, 46, 56-57, 65-66] for use in wearable autism therapies. Con-
tinued improvements in the underlying computer vision algorithms
powering these interactive systems will enable higher precision
interactions in targeted therapeutic games for autism.

3 ACTIVITY-BASED FEATURE EXTRACTION
WITH MOVING CAMERAS

In the absence of a massive and sufficiently heterogeneous dataset,
activity recognition algorithms from video streams require feature
extraction of relevant features to avoid overfitting to the training
data. Before building our classifier, we explored three common activ-
ity recognition methods: Lucas-Kanade optical flow, dense optical
flow, and pose estimation via keypoint detection. We use videos
contained in the Self-Stimulatory Behavior Dataset (SSBD) [48], a
dataset of unstructured home videos of children performing one of
three self-stimulatory behaviors: headbanging, spinning, and hand
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flapping. The dataset is scraped from public domain videos posted
on video sharing websites such as YouTube, Vimeo, and Dailymo-
tion. Each of the three behaviors is marked with a timestamp. We
manually visualize Lucas-Kanade optical flow, dense optical flow,
and pose estimation via keypoint detection for several clips and
determined that only a modified version of pose estimation would
be feasible with moving cameras. Figure 1 displays the representa-
tion of 6 sequential frames using each technique for a video clip
exhibiting head banging. We describe the advantages and limits of
these feature representation methods below to motivate our even-
tual approach, and we use Figure 1 as an illustration of problems
which occurred consistently across videos.

Dense optical flow computes flow for all points in a frame, result-
ing in “flow vectors” with a magnitude and direction [20]. Figure 1B
displays an example of dense optical flow on a sequence of frames
for a video clip of head banging in the SSBD dataset, where direc-
tion is encoded as hue and magnitude is encoded as intensity. Clear
limitations of dense optical flow representations are immediately
clear. For example, movement is detected outside of the region of
the child, for example by the pink toy on the table. The child’s chair
is also sometimes detected as movement. These extra non-relevant
movement patterns add much noise to the dense optical flow image,
making it a non-ideal representation. One possible solution is to
run object detection to crop out the part of the frame without the
human, but background artefacts may still remain in this approach.
In addition, the flow image appears similar to the outline of the
child, making the method prone to overfitting to the child’s body
shape and camera angle.

Lucas-Kanade optical flow, in contrast to dense optical flow,
computes flow for a sparse number of points pre-defined by the
user [3], for example detected edges or corners. We create a uniform
square grid of tracking points where each point is spaced out by
10 pixels in both the x and y direction. Figure 1C displays the
resulting Lucas-Kanade optical flow motion tracking appended to
the original image, while Figure 1D displays the tracking in isolation.
The Lucas-Kanade method brings its own set of limitations by
detecting movement outside of the body to an extent that is more
dramatic than dense optical flow. This technique is particularly
sensitive to background movement detection associated with slight
shifts in the camera.

Pose estimation is a technique which is more robust to camera
movement compared to optical flow. We use OpenPose realtime
multi-person pose estimation [7-8, 51, 68] to track skeletal key-
points in each frame. OpenPose uses a CNN which is trained to
predict part affinity fields, or flow fields representing relationships
between body parts, and confidence maps which encode body part
locations. Unlike optical flow, OpenPose predicts each frame in-
dependently of the surrounding frames. Figure 1E displays the
estimated skeletal pose appended to the original image, while Fig-
ure 1D displays the pose skeleton in isolation. There are some clear
limitations to using unmodified pose estimation. The noisy skeleton
problem is a documented issue which arises when body parts are
self-occluded [39, 73]. We observe that body part occlusion is a fre-
quent occurrence in unstructured home videos, making unmodified
pose estimation a non-ideal feature representation.

To account for the body part occlusion issue, which would inject
unnecessary noise which would confuse the classifier, we modify
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Figure 1: Representation of 6 sequential frames using popular feature representation techniques for activity recognition for
a video clip exhibiting head banging. (A) The unmodified sequential frames. (B) Dense optical flow. (C) Lucas-Kanade optical
flow displayed on the original image. (D) Lucas-Kanade optical flow in isolation. (E) Pose estimation using body keypoints
displayed on the original image. (F) Pose estimation without the original image in the background. All methods displayed
here contain noisy features unrelated to headbanging, many of which occur due to camera movement.

Figure 2: The feature representation used in this paper on
headbanging video clips for 3 separate children (A) — (C) and
for not head banging video clips for 3 other children (D) - (F).
Only head keypoints and lines connecting them are retained
in this representation. Every 5 frames in the original video
are sampled to generate the input sequence to the neural net-
work (7 frames covers one second of time at 30 frames per
second). While head banging clips show differing keypoints
for each frame, non-head banging clips show comparatively
stable keypoints between frames.

the pose estimation output by only extracting key points in the
head region. For a headbanging classifier that assumes the child
subject is standing still, we hypothesize that only the head keypoints
are necessary for a headbanging classifier. The resulting feature
representation is displayed in Figure 2, which contains 3 examples of
headbanging sequences (A-C) and 3 examples of non-headbanging
sequences (D-F). We qualitatively observe that the headbanging
sequences tends to show differing keypoint positions for each frame,
while non-head banging clips show comparatively stable keypoints
between frames (Figure 2).

4 TRAINING AND TESTING A HEAD
BANGING DETECTOR

We implement a time-distributed convolutional neural network
(CNN) using the Keras [10] Python library with a Tensorflow [1]
backend. The time-distributed CNN is a standard CNN architecture
which learns to extract visual features from each frame in the image
sequence. The activated feature maps from each image in the video
clip are fed into the corresponding sequence input position in a long
short-term memory (LSTM) [28] neural network. We note that the
same CNN architecture and weights are used at each time step in the
LSTM rather than a separate CNN trained for each position in the
sequence. Figure 3 provides a visualization of the time-distributed
CNN architecture. We train using Adam optimization [34] with an
initial learning rate of 0.0001.

We perform 3-fold cross validation, ensuring that no child who
appeared in the train set would appear in the test set for all folds.
Three folds was the right amount to ensure that a variety of chil-
dren would appear in both the training and testing sets while still
maintaining the ability to evaluate the classifier under multiple
partitions of the dataset. In total, we use 27 video clips contain-
ing headbanging video clips containing “normal” head motions.
To minimize overfitting and increase generalization, we apply the
following data augmentations to each frame: rotation at a random
interval between -45 and 45 degrees and zooming in with a random
zoom factor between 1.0 and 2.0. Although the dataset is small,
we believe that the combination of the reduced feature space, data
augmentation, and complete separation of children between train-
ing and testing sets provides strong validation of the presented
technique for detecting head banging.

The mean F1-score, a popular machine learning metric which is
the harmonic mean of precision and recall, is 90.77% across the 3
cross-validation folds. The individual F1-scores per fold are 83.3%,
89.0%, and 100.0%.
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Figure 3: Model architecture for the time-distributed convolutional neural network (CNN) trained to detect hand flapping
from short video sequences. Each input frame is fed into a CNN which extracts visual features from the frame. These features
are used as input to an LSTM network which makes the final binary prediction of “head banging” vs. “not head banging”.

5 DISCUSSION, LIMITATIONS, AND FUTURE
WORK

We present a computer vision classifier which can detect head bang-
ing in videos recorded with a handheld device. We achieve a 90.77%
F1-score on a subset of video clips from the SSBD dataset. We sepa-
rate videos by children into the train and test sets for each fold of
3-fold cross validation, ensuring that no child in a video clip which
appeared in the train set also appeared in the test set. However,
we must admit that head banging classification is an incredibly
“easy” computer vision task after extracting the correct feature rep-
resentation of exclusively head poses, as visualized in Figure 3.
This highlights the importance of selecting a robust and representa-
tive feature representation when conducting activity-based activity
recognition. Other autism-related stimming behaviors, such as hand
flapping and body spinning, will likely require further engineering
of the feature representation.

There are several limitations to the current pilot study which
must be addressed in an expanded and more comprehensive evalu-
ation. While intuition suggests that the reduced noise of the pose-
based feature representations will result in less overfitting to the hu-
man subject’s physical appearance and background environment, a
formal comparison against optical flow approaches will be required
to quantify the actual performance gains. Crucially, we evaluate
against a subset of an already small dataset. While it is interesting
that the classifier was able to distinguish headbanging from not
headbanging with such a small sample, a much larger dataset is re-
quired to see how these results generalize. Nevertheless, we believe
the preliminary results presented here show that it is possible to
detect headbanging with few training samples, and we welcome
further work which evaluates the method more comprehensively
and with respect to alternative methods.

A major direction for future work will be to evaluate the utility
of the head banging model in clinical settings. Remote Al-powered
video-based diagnostics and screeners [17-19, 27, 36, 38, 54-55, 59-
64] as well as telemedical digital therapies [11-12, 15, 26, 47, 52-
53, 56-57, 65-66, 69-70] are increasingly being developed for autism

in children. The efficacy of remote and automated telemedicine is
limited to the performance of the underlying Al Due to the com-
plexity of computer vision for human behavior in general, further
innovations and creativity in feature extraction and representation
methods are vital to account for noisy datasets and to enable distin-
guishing of complex human behaviors. Crucially, at-home therapy
requires more robust vision models which can account for moving
or unsteady cameras, which are conditions that are not usually
accounted for by optical flow and other feature representations for
activity recognition. Extracting a subset of poses is a good start,
but there are potentially more effective and robust representations
waiting to be discovered.

There are several HCI considerations which warrant future study.
It would be useful to know whether crowd workers can provide
reliable activity annotations with transformed images to enables
privacy-aware crowdsourcing. For example, while optical flow may
not be an effective representation for training ML models, it may
preserve the privacy of the clips while still revealing enough in-
formation to allow crowd workers to provide correct labels [67]. It
will also be important to evaluate how new behavioral classifiers
can be integrated into interactive systems, enabling increasingly
adaptive user interfaces.

6 CONCLUSION

We present a methodology of utility to interaction designers and
engineers of interactive systems which measure human motion pat-
terns. We consider the reality that human activity is often tracked
with moving cameras, posing an issue for several traditional feature
representations such as optical flow or full body keypoints. While
we validate our method for head banging detection, a problem that
is especially crucial for digital autism diagnostics and adaptive ther-
apeutics, the presented technique can be applied by practitioners of
all interactive and Al-powered systems that require measurement
of human motion under unstable camera conditions.
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