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ABSTRACT 
Activity recognition computer vision algorithms can be used to 
detect the presence of autism-related behaviors, including what are 
termed “restricted and repetitive behaviors”, or stimming, by diag-
nostic instruments. Examples of stimming include hand fapping, 
spinning, and head banging. One of the most signifcant bottlenecks 
for implementing such classifers is the lack of sufciently large 
training sets of human behavior specifc to pediatric developmental 
delays. The data that do exist are usually recorded with a handheld 
camera which is itself shaky or even moving, posing a challenge 
for traditional feature representation approaches for activity detec-
tion which capture the camera’s motion as a feature. To address 
these issues, we frst document the advantages and limitations of 
current feature representation techniques for activity recognition 
when applied to head banging detection. We then propose a feature 
representation consisting exclusively of head pose keypoints. We 
create a computer vision classifer for detecting head banging in 
home videos using a time-distributed convolutional neural network 
(CNN) in which a single CNN extracts features from each frame in 
the input sequence, and these extracted features are fed as input to 
a long short-term memory (LSTM) network. On the binary task of 
predicting head banging and no head banging within videos from 
the Self Stimulatory Behaviour Dataset (SSBD), we reach a mean 
F1-score of 90.77% using 3-fold cross validation (with individual fold 
F1-scores of 83.3%, 89.0%, and 100.0%) when ensuring that no child 
who appeared in the train set was in the test set for all folds. This 
work documents a successful process for training a computer vision 
classifer which can detect a particular human motion pattern with 
few training examples and even when the camera recording the 
source clip is unstable. The process of engineering useful feature 
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representations by visually inspecting the representations, as de-
scribed here, can be a useful practice by designers and developers 
of interactive systems detecting human motion patterns for use in 
mobile and ubiquitous interactive systems. 
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1 INTRODUCTION 
The increasing ubiquity of mobile devices in conjunction with ad-
vances in artifcial intelligence (AI), and in particular machine learn-
ing (ML), are enabling accessibility of healthcare solutions for tradi-
tionally underserved populations. While the prevalence of autism 
exceeds 1 in 60 children [22, 40], current estimates are that over 80% 
of counties in the United States lack access to autism diagnostics 
[44]. As a result, families will often need to wait over a year to re-
ceive a diagnosis for autism, particularly in rural areas and in lower 
socioeconomic communities [25]. This prolonged and excessive 
wait time is particularly problematic for pediatric developmental 
delays like autism, where earlier diagnosis and resulting behavioral 
interventions result in more efective clinical outcomes [13-14]. 

Research has shown that autism features useful for diagnosis 
and continuous phenotyping can be detected in short home videos 
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taken by smartphones [17-19, 23-24, 38, 54-55, 59, 64]. Interactive 
devices such as smartphones are increasingly being evaluated for 
use in at-home digital diagnostics and therapies which adapt to the 
needs of the child [43]. For diagnostics, computer vision classifers 
measure the behavior of the child, and statistical measurements are 
used to provide a diagnosis or screening [13-14, 58, 75]. For digital 
therapeutics, the classifers measure the response of the child to an 
interactive game or task designed to provide behavioral therapy 
for the child [11-12, 35, 56-57, 65-66]. 

Unfortunately, autism-related behaviors are currently particu-
larly difcult to classify with out-of-the-box computer vision ap-
proaches. Existing activity recognition classifers have been devel-
oped and evaluated on common activities like running, throwing a 
basketball, and dancing [9]. Restricted and repetitive autism move-
ments (i.e., stimming), such as hand fapping, head banging, and 
rocking back and forth, have not been the focus of computer vision 
eforts, largely because of a dearth of training data for such domain 
specifc behaviors. An additional issue is that while many activity 
recognition algorithms assume a stable and still camera, many home 
videos of children exhibiting stimming behaviors are recorded from 
an unstable handheld camera source. There is a need for computer 
vision methods which can distinguish and detect activities relevant 
to marginalized populations where massive training sets do not 
exist and only relatively small amounts of data from potentially 
unstable camera sources are available. 

In this paper, we document the process of designing a feature 
representation method for head banging detection. We visually 
inspect several traditional feature representation methods for activ-
ity recognition on video clips enriched for head banging recorded 
with a handheld camera. Through discussing the advantages and 
disadvantages of each technique with respect to the visual feature 
representation, we arrive at a pose-based representation of only 
head keypoints. We train a time-distributed convolutional neural 
network (CNN) which extracts features that are fed into a long 
short-term memory (LSTM) network. We train this model to distin-
guish video clips containing “head banging” from “not headbanging” 
using a balanced set of videos, resulting in a 90.77% F1-score during 
3-fold cross-validation. This paper provides an example of training 
a human activity classifer for detection of a specifc activity using 
few data points collected from unstable camera streams. We believe 
that the simple yet reasoned process outlined in this study will be 
of utility to engineers of ML-powered interactive systems centered 
around detecting human behavior. 

2 RELATED WORK 
We discuss examples of both advances in computer vision tech-
niques for detecting stimming behaviors and corresponding inter-
active systems which target stimming behaviors in children with 
developmental delays. Because this research area is plentiful, we 
focus our literature review particularly on autism and pediatrics 
literature. 

2.1 Activity recognition with moving cameras 
General-purpose activity recognition with moving cameras has 
been explored in prior work. Most prior approaches are based on 
representations derived from optical fow, an approach we describe 
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in more detail in Section 3. Wu et al. obtain particle trajectories 
through optical fow over time and decompose the trajectories into 
a background and foreground component [71]. The object motion 
and camera motion are used to predict activity. Rezazadegan et al. 
identify “action regions” through a multi-step process [49]. They 
frst identify the outline of the body (“boundary mask”) using fea-
tures derived from optical fow. The boundary mask is predicted 
with structured random forests. To obtain the fnal region of inter-
est, they employ edge-based object detection methods [74] on the 
binary boundary mask. They achieve 74.73% success rate on the 
UCF101 dataset and 42.1% success rate on HMDB. Avgerinakis et al. 
identify background regions displaying motion artefacts using op-
tical fow and superpixels; dense trajectories and motion extracted 
from these regions are used as features to detect activity, achieving 
56.2% accuracy on the UCF sports dataset [2]. Optical fow-based 
feature representations maintain artefacts from the human sub-
ject’s physical appearance, thus requiring large datasets to train a 
classifer. 

Other activity recognition literature use features derived from 
pose estimation. Pose estimations are ideal for smaller datasets 
due to their robustness against the physical appearance of the 
human subject. A stick fgure is used to represent the human’s 
body at every step, thereby reducing overftting. Okumura et al. 
use hand keypoints to detect cooking-related activities from an 
egocentric camera [45]. Dousty and Zarifa use hand detection, 
pose estimation, and arm orientation estimation to detect tenodesis 
grasp [16]. Pose estimation approaches can be easier to implement 
than fow-based methods, as they often do not require extensive 
and complex postprocessing steps. 

2.2 Computer vision detection of stimming 
Computer vision approaches can enable scalable and afordable 
“behavioral phenotyping” of children with autism [50]. While gen-
eral purpose activity recognition algorithms can perform well on a 
broad set of actions, it can be useful to leverage a custom feature 
representation for more domain-specifc tasks. Here, we discuss 
prior computer vision eforts for automatically identifying motor 
movements and stereotyped behaviors. 

Motor control and movements related to autism include head 
posture, head movement, and grasping patterns. Researchers have 
hypothesized that computer vision algorithms can pick up on the 
generally accepted motor variations between children with autism 
and neurotypical children. Some studies operate under controlled 
laboratory conditions. In one such study, Dawson et al. fnd that 
toddlers with autism exhibit increased head movement compared 
to neurotypical controls by tracking facial landmarks [13-14]. In 
another lab-controlled study, Zunino et al. use a CNN which extracts 
features which are then fed into an LSTM to detect grasping actions, 
reaching an accuracy of 72% for subjects with autism and 77% for 
neurotypical subjects [75]. We note that we employed a similar 
neural network architecture in the present study. Some research 
eforts have worked towards classifcation of autism-related motor 
movements from unstructured video clips. Vyas et al. use a 2D 
mask R-CNN to distinguish autism from neurotypical behavior in 
unstructured video clips from a private data set, reporting precision 
of 72% and recall of 92% [58]. 
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Advances in computer vision detection require shared and public 
datasets for training and testing the model. The Self-Stimulatory 
Behavior Dataset (SSBD) [48] is a dataset of unstructured home 
videos of children performing one of three self-stimulatory behav-
iors: headbanging, spinning, and hand fapping. The authors of the 
dataset build a 3-way classifer distinguishing these 3 behaviors 
using Space Time Interest Points (STIP) [37] and reach a 50.7% 
classifcation accuracy using 5-fold cross validation and 47.3% ac-
curacy using 10-fold cross-validation. We use the SSBD dataset in 
the present study, as it is the only public dataset, we are aware of 
containing several labeled examples of self-stimulatory behaviors. 

2.3 Machine learning powered interactive 
systems for behavioral therapy 

The intersection of HCI and AI for autism has become an area 
of interest within the HCI community. Interactive systems have 
been developed to aid in at-home behavioral therapy for children 
with autism, and these digital therapies are powered by activity 
recognition models which automatically detect autism-related be-
haviors. Some works explore how AI can enhance existing inter-
active technologies for people with autism. Begel et al. leverage 
emotion detection models for providing feedback about facial ex-
pressions during video calling sessions [5]. Bartoli et al. evaluate 
the potential of games centered around “motion-based” touchless 
interaction, where sensing devices such as cameras powered by 
computer vision algorithms track and analyze body movements 
[4]. On a prototype of this paradigm with a Kinect application, 
they fnd that children with autism improved on measures of se-
lective attention and sustained attention after playing the game. 
Other works explore how AI-powered interactive systems can aid 
in structured therapy. Mobahi and Karahalios propose that HCI 
systems can continually monitor the gaze of a child and adapt the 
treatment accordingly [41]. Robotic therapies powered by computer 
vision have also demonstrated great promise. Feil-Seifer et al. show 
that a classifer can determine whether children are attempting 
to interact with a socially assistive robot in a social manner [21]. 
Moghadas et al. use computer vision to distinguish children autism 
from neurotypical children from interaction with a parrot-like robot 
[42]. A number of HCI works detect autism-related behaviors such 
as eye contact [72], atypical prosody [6], and emotion expression 
[29-33, 46, 56-57, 65-66] for use in wearable autism therapies. Con-
tinued improvements in the underlying computer vision algorithms 
powering these interactive systems will enable higher precision 
interactions in targeted therapeutic games for autism. 

3 ACTIVITY-BASED FEATURE EXTRACTION 
WITH MOVING CAMERAS 

In the absence of a massive and sufciently heterogeneous dataset, 
activity recognition algorithms from video streams require feature 
extraction of relevant features to avoid overftting to the training 
data. Before building our classifer, we explored three common activ-
ity recognition methods: Lucas-Kanade optical fow, dense optical 
fow, and pose estimation via keypoint detection. We use videos 
contained in the Self-Stimulatory Behavior Dataset (SSBD) [48], a 
dataset of unstructured home videos of children performing one of 
three self-stimulatory behaviors: headbanging, spinning, and hand 
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fapping. The dataset is scraped from public domain videos posted 
on video sharing websites such as YouTube, Vimeo, and Dailymo-
tion. Each of the three behaviors is marked with a timestamp. We 
manually visualize Lucas-Kanade optical fow, dense optical fow, 
and pose estimation via keypoint detection for several clips and 
determined that only a modifed version of pose estimation would 
be feasible with moving cameras. Figure 1 displays the representa-
tion of 6 sequential frames using each technique for a video clip 
exhibiting head banging. We describe the advantages and limits of 
these feature representation methods below to motivate our even-
tual approach, and we use Figure 1 as an illustration of problems 
which occurred consistently across videos. 

Dense optical fow computes fow for all points in a frame, result-
ing in “fow vectors” with a magnitude and direction [20]. Figure 1B 
displays an example of dense optical fow on a sequence of frames 
for a video clip of head banging in the SSBD dataset, where direc-
tion is encoded as hue and magnitude is encoded as intensity. Clear 
limitations of dense optical fow representations are immediately 
clear. For example, movement is detected outside of the region of 
the child, for example by the pink toy on the table. The child’s chair 
is also sometimes detected as movement. These extra non-relevant 
movement patterns add much noise to the dense optical fow image, 
making it a non-ideal representation. One possible solution is to 
run object detection to crop out the part of the frame without the 
human, but background artefacts may still remain in this approach. 
In addition, the fow image appears similar to the outline of the 
child, making the method prone to overftting to the child’s body 
shape and camera angle. 

Lucas-Kanade optical fow, in contrast to dense optical fow, 
computes fow for a sparse number of points pre-defned by the 
user [3], for example detected edges or corners. We create a uniform 
square grid of tracking points where each point is spaced out by 
10 pixels in both the x and y direction. Figure 1C displays the 
resulting Lucas-Kanade optical fow motion tracking appended to 
the original image, while Figure 1D displays the tracking in isolation. 
The Lucas-Kanade method brings its own set of limitations by 
detecting movement outside of the body to an extent that is more 
dramatic than dense optical fow. This technique is particularly 
sensitive to background movement detection associated with slight 
shifts in the camera. 

Pose estimation is a technique which is more robust to camera 
movement compared to optical fow. We use OpenPose realtime 
multi-person pose estimation [7-8, 51, 68] to track skeletal key-
points in each frame. OpenPose uses a CNN which is trained to 
predict part afnity felds, or fow felds representing relationships 
between body parts, and confdence maps which encode body part 
locations. Unlike optical fow, OpenPose predicts each frame in-
dependently of the surrounding frames. Figure 1E displays the 
estimated skeletal pose appended to the original image, while Fig-
ure 1D displays the pose skeleton in isolation. There are some clear 
limitations to using unmodifed pose estimation. The noisy skeleton 
problem is a documented issue which arises when body parts are 
self-occluded [39, 73]. We observe that body part occlusion is a fre-
quent occurrence in unstructured home videos, making unmodifed 
pose estimation a non-ideal feature representation. 

To account for the body part occlusion issue, which would inject 
unnecessary noise which would confuse the classifer, we modify 
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Figure 1: Representation of 6 sequential frames using popular feature representation techniques for activity recognition for 
a video clip exhibiting head banging. (A) The unmodifed sequential frames. (B) Dense optical fow. (C) Lucas-Kanade optical 
fow displayed on the original image. (D) Lucas-Kanade optical fow in isolation. (E) Pose estimation using body keypoints 
displayed on the original image. (F) Pose estimation without the original image in the background. All methods displayed 
here contain noisy features unrelated to headbanging, many of which occur due to camera movement. 

Figure 2: The feature representation used in this paper on 
headbanging video clips for 3 separate children (A) – (C) and 
for not head banging video clips for 3 other children (D) – (F). 
Only head keypoints and lines connecting them are retained 
in this representation. Every 5 frames in the original video 
are sampled to generate the input sequence to the neural net-
work (7 frames covers one second of time at 30 frames per 
second). While head banging clips show difering keypoints 
for each frame, non-head banging clips show comparatively 
stable keypoints between frames. 

the pose estimation output by only extracting key points in the 
head region. For a headbanging classifer that assumes the child 
subject is standing still, we hypothesize that only the head keypoints 
are necessary for a headbanging classifer. The resulting feature 
representation is displayed in Figure 2, which contains 3 examples of 
headbanging sequences (A-C) and 3 examples of non-headbanging 
sequences (D-F). We qualitatively observe that the headbanging 
sequences tends to show difering keypoint positions for each frame, 
while non-head banging clips show comparatively stable keypoints 
between frames (Figure 2). 

4 TRAINING AND TESTING A HEAD 
BANGING DETECTOR 

We implement a time-distributed convolutional neural network 
(CNN) using the Keras [10] Python library with a Tensorfow [1] 
backend. The time-distributed CNN is a standard CNN architecture 
which learns to extract visual features from each frame in the image 
sequence. The activated feature maps from each image in the video 
clip are fed into the corresponding sequence input position in a long 
short-term memory (LSTM) [28] neural network. We note that the 
same CNN architecture and weights are used at each time step in the 
LSTM rather than a separate CNN trained for each position in the 
sequence. Figure 3 provides a visualization of the time-distributed 
CNN architecture. We train using Adam optimization [34] with an 
initial learning rate of 0.0001. 

We perform 3-fold cross validation, ensuring that no child who 
appeared in the train set would appear in the test set for all folds. 
Three folds was the right amount to ensure that a variety of chil-
dren would appear in both the training and testing sets while still 
maintaining the ability to evaluate the classifer under multiple 
partitions of the dataset. In total, we use 27 video clips contain-
ing headbanging video clips containing “normal” head motions. 
To minimize overftting and increase generalization, we apply the 
following data augmentations to each frame: rotation at a random 
interval between -45 and 45 degrees and zooming in with a random 
zoom factor between 1.0 and 2.0. Although the dataset is small, 
we believe that the combination of the reduced feature space, data 
augmentation, and complete separation of children between train-
ing and testing sets provides strong validation of the presented 
technique for detecting head banging. 

The mean F1-score, a popular machine learning metric which is 
the harmonic mean of precision and recall, is 90.77% across the 3 
cross-validation folds. The individual F1-scores per fold are 83.3%, 
89.0%, and 100.0%. 
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Figure 3: Model architecture for the time-distributed convolutional neural network (CNN) trained to detect hand fapping 
from short video sequences. Each input frame is fed into a CNN which extracts visual features from the frame. These features 
are used as input to an LSTM network which makes the fnal binary prediction of “head banging” vs. “not head banging”. 

5 DISCUSSION, LIMITATIONS, AND FUTURE 
WORK 

We present a computer vision classifer which can detect head bang-
ing in videos recorded with a handheld device. We achieve a 90.77% 
F1-score on a subset of video clips from the SSBD dataset. We sepa-
rate videos by children into the train and test sets for each fold of 
3-fold cross validation, ensuring that no child in a video clip which 
appeared in the train set also appeared in the test set. However, 
we must admit that head banging classifcation is an incredibly 
“easy” computer vision task after extracting the correct feature rep-
resentation of exclusively head poses, as visualized in Figure 3. 
This highlights the importance of selecting a robust and representa-
tive feature representation when conducting activity-based activity 
recognition. Other autism-related stimming behaviors, such as hand 
fapping and body spinning, will likely require further engineering 
of the feature representation. 

There are several limitations to the current pilot study which 
must be addressed in an expanded and more comprehensive evalu-
ation. While intuition suggests that the reduced noise of the pose-
based feature representations will result in less overftting to the hu-
man subject’s physical appearance and background environment, a 
formal comparison against optical fow approaches will be required 
to quantify the actual performance gains. Crucially, we evaluate 
against a subset of an already small dataset. While it is interesting 
that the classifer was able to distinguish headbanging from not 
headbanging with such a small sample, a much larger dataset is re-
quired to see how these results generalize. Nevertheless, we believe 
the preliminary results presented here show that it is possible to 
detect headbanging with few training samples, and we welcome 
further work which evaluates the method more comprehensively 
and with respect to alternative methods. 

A major direction for future work will be to evaluate the utility 
of the head banging model in clinical settings. Remote AI-powered 
video-based diagnostics and screeners [17-19, 27, 36, 38, 54-55, 59-
64] as well as telemedical digital therapies [11-12, 15, 26, 47, 52-
53, 56-57, 65-66, 69-70] are increasingly being developed for autism 

in children. The efcacy of remote and automated telemedicine is 
limited to the performance of the underlying AI. Due to the com-
plexity of computer vision for human behavior in general, further 
innovations and creativity in feature extraction and representation 
methods are vital to account for noisy datasets and to enable distin-
guishing of complex human behaviors. Crucially, at-home therapy 
requires more robust vision models which can account for moving 
or unsteady cameras, which are conditions that are not usually 
accounted for by optical fow and other feature representations for 
activity recognition. Extracting a subset of poses is a good start, 
but there are potentially more efective and robust representations 
waiting to be discovered. 

There are several HCI considerations which warrant future study. 
It would be useful to know whether crowd workers can provide 
reliable activity annotations with transformed images to enables 
privacy-aware crowdsourcing. For example, while optical fow may 
not be an efective representation for training ML models, it may 
preserve the privacy of the clips while still revealing enough in-
formation to allow crowd workers to provide correct labels [67]. It 
will also be important to evaluate how new behavioral classifers 
can be integrated into interactive systems, enabling increasingly 
adaptive user interfaces. 

6 CONCLUSION 
We present a methodology of utility to interaction designers and 
engineers of interactive systems which measure human motion pat-
terns. We consider the reality that human activity is often tracked 
with moving cameras, posing an issue for several traditional feature 
representations such as optical fow or full body keypoints. While 
we validate our method for head banging detection, a problem that 
is especially crucial for digital autism diagnostics and adaptive ther-
apeutics, the presented technique can be applied by practitioners of 
all interactive and AI-powered systems that require measurement 
of human motion under unstable camera conditions. 
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