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Abstract. Random forests are a popular class of algorithms used for regression and classification.
The algorithm introduced by Breiman in 2001 and many of its variants are ensembles of randomized
decision trees built from axis-aligned partitions of the feature space. One such variant, called
Mondrian forests, was proposed to handle the online setting and is the first class of random forests
for which minimax rates were obtained in arbitrary dimension. However, the restriction to axis-
aligned splits fails to capture dependencies between features, and random forests that use oblique
splits have shown improved empirical performance for many tasks. In this work, we show that a
large class of random forests with general split directions also achieve minimax rates in arbitrary
dimension. This class includes STIT forests, a generalization of Mondrian forests to arbitrary
split directions, as well as random forests derived from Poisson hyperplane tessellations. These
are the first results showing that random forest variants with oblique splits can obtain minimax
optimality in arbitrary dimension. Our proof technique relies on the novel application of the theory
of stationary random tessellations in stochastic geometry to statistical learning theory.

1. Introduction

Random forests are ensembles of randomized decision trees popularized by Breiman [7] and
are widely applicable in classification and regression tasks in machine learning [11, 8]. However,
statistical learning theorems for random forests are notoriously difficult to obtain in dimensions
d ≥ 2 [4]. To better understand the performance of random forests, simplified versions of the
algorithm have been studied. In particular, purely random forests [5, 2] are built from trees
grown independently of the data, and are much more amenable to theoretical analysis. Recently,
Mourtada, Gäıffas and Scornet [19] were the first to obtain a minimax optimality theorem in
arbitrary dimension for a particular class of purely random forests, namely, Mondrian forests
[17, 18]. These are efficient and accurate online purely random forests based on the Mondrian
process, a recursive random partition of Rd by axis-aligned cuts introduced by Roy and Teh [24].
In particular, the self-similarity of the Mondrian process is key to both the computational efficiency
[17, 18, 31] and the analytical tractability of Mondrian forests [19].
One key limitation of the Mondrian forest, as well as Breiman’s original random forest algorithm,

is that the splits are axis-aligned. While this is computationally efficient, axis-aligned splits are
unable to capture dependencies between features. In practice, this puts a large burden on the
feature selection and representation step. Another limitation of the results of [19] is that their
rates suffer from the curse of dimensionality. That is, the convergence rates depend on the ambient
dimension of data and become uninformative in the presence of a high dimensional feature space,
even though empirically random forests perform well in such regimes [8, 11, 30].
Attempts have been made to bridge these issues on both theoretical and practical fronts, with

focus on random forests with sparse features, where locally, the target function to be learned de-
pends on a small subset of features. In Breiman’s orginal paper [7], he proposed a variant called
Forest-RC that split data using linear combinations of features and showed improved empirical
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performance of this method. Many other models of random forests with oblique cuts have subse-
quently been proposed [6, 10, 12, 23, 30]. In particular, to address the computational trade-off,
[30] studied random forests with oblique splits constructed with sparse projections. They demon-
strated better empirical performance while retaining computational efficiency. On the theoretical
front, Biau [3] studied a purely random forest variant called centered random forests and obtained
(sub-optimal) convergence rates that depend on the sparsity level described by number of relevant
features. Klusowksi [16] obtained an improved, but still sub-optimal, rate for this class of random
forests depending on the sparsity level and showed this rate could not be improved in general. As of
current, there is a lack of a comprehensive technique that can handle random forests with arbitrary
split directions and that can yield optimal learning rates that adapt to a notion of sparsity.
This paper, to the best of our knowledge, gives the first results on minimax optimality for a large

class of purely random forests that is defined for all dimensions with general split directions. In
particular, we show that STIT forests, a significant generalization of Mondrian forests, also attain
the minimax rates discovered in [19] under less technical assumptions. Furthermore, we incorporate
an assumption of sparsity on the input data, which gives improved rates in high dimensional feature
space.

The general class of STIT random forests are derived from the stable under iteration (STIT)
processes of Nagel and Weiss [20, 21]. These stochastic processes generate the most general class
of self-similar and stationary random partitions of R

d by hyperplane cuts possible [21]. Self-
similarity in particular ensures that STIT random forests also enjoy the online construction that
underpins popularity of the Mondrian forest in practice. The family of STIT processes is indexed by
probability distributions on the unit sphere, denoted by φ, describing the distribution of directions
of the hyperplane cuts in the random partition. The Mondrian process corresponds to the case
where φ is the discrete uniform measure on the d coordinate vectors. Subsequent generalizations of
the Mondrian process to oblique cuts [10, 12] are also special cases of STIT processes. The freedom
in the choice of the directional distribution φ for the splits brings more flexibility in machine
learning applications. For example, while the Mondrian process can only be used to approximate
the Laplace kernel [18], the STIT process produces random features that approximate a much
wider class of kernels, as characterized in [22]. Improved empirical performance of STIT forests
built from STIT processes with a uniform directional distribution over Mondrian forests was also
shown in [12] through a classification task and simulation study.

A major contribution of our work lies in the proof technique, as our approach relies on theorems
in stochastic geometry that up until now have not been utilized in statistical learning theory.
Going from the Mondrian to the STIT forests, the key difficulty is the geometry of the cells of the
tessellations. The Mondrian process generates axis-aligned rectangular cells and the distribution of
the cell of a given input can be characterized exactly from the construction. In contrast, the cells
that STIT processes generate can be more complex random polytopes. A stochastic geometry
viewpoint enables us to crucially exploit the self-similarity and stationarity of the underlying
random partition, and thus to handle more general cell geometries. In particular, we obtain risk
bounds on STIT forest estimators that depend on the distribution of a single random polytope,
called the typical cell, defined using the corresponding stationary STIT tessellation on R

d. Our
analysis simplifies previous approaches for analyzing Mondrian forests as well, since we do not
encounter the boundary issue that appears in Theorem 3 of [19]. That is, we achieve minimax
rates for Mondrian forests without any conditioning for a larger class of functions.
Specifically, our first main result, Theorem 7, gives an upper bound on the quadratic risk of the

STIT forest estimator for the regression of β-Hölder continuous functions for β ∈ (0, 1], generalizing
Theorem 3 of [19]. The theorem shows that any STIT forest with optimally tuned complexity
parameter achieves the minimax rate for this function class. The directional distribution φ comes in
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through the constant terms in the upper bound. Our proof method gives geometric interpretations
to these constants in terms of moments of the diameter of the cell Z0 containing the origin and the
expected mixed volumes between the support of the input and the typical cell Z. Because of this
explicit geometry, we were able to get the rates in terms of the sparsity dimension of the input. In
the special case of the Mondrian forest, Z is the Minkowski sum of i.i.d. centered line segments
parallel to the axes with exponential length. Taking the support to be [0, 1]d recovers Theorem 2
in [19], see Example 5 for details. Similarly, our second main result, Theorem 9, extends Theorem
3 in [19], where additional smoothness assumptions are made on f . It says that any STIT forest
estimator achieves the minimax rate for the class of (1+β)-Hölder functions for β ∈ (0, 1] for both
a large enough number of trees in the forest and an optimally tuned complexity parameter. As in
Theorem 3 of [19], an improved rate for STIT forests over STIT trees in this case is due to large
enough forests having a smaller bias than single trees for smooth regression functions.
Our proof technique also takes us beyond the class of STIT forests. Any random partition can

be used to define a tree estimator as in (7) and subsequently a random forest estimator (8). Since
our rate upper bounds are explicitly derived in terms of geometric properties of the typical cell
of the random partition, it can readily be applied to any random forest obtained by stationary
random hyperplane partitions of Rd. Our last main result, Theorem 11, is a demonstration of
this principle. It states that a random forest derived from a Poisson hyperplane process achieves
identical convergence rates as a STIT forest with the same directional distribution φ and complexity
parameter, and thus is also minimax optimal.

Random forests built from stationary random tessellations, of which STIT forests are a spe-
cial case, are necessarily data agnostic. However, Breiman’s original algorithm splits the feature
space using a criterion that depends on the training data set. This dependence underpins the
difficulty in the analysis, motivating the study of purely random forests. Recently, [9] obtained
the first consistency rates for Breiman’s original algorithm in arbitrary dimension, but theoreti-
cal understanding remains incomplete. In Section 4, we briefly discuss how one could approach
the analysis of data-dependent random forest variants via non-stationary Poisson hyperplane and
STIT processes. We conclude with a few concrete open problems at the intersection of stochastic
geometry and statistical learning theory, and hope that our work will fuel further investigations in
this interdisciplinary area.

Organization. Section 2 collects background on STIT processes, Poisson hyperplane processes,
and essential results in stochastic geometry needed for our proofs. Section 3 states and proves our
three main results, Theorems 7, 9 and 11. Section 4 concludes with discussions and open problems.

Acknowledgements. Ngoc Mai Tran is supported by NSF Grant DMS-2113468 and the NSF
IFML 2019844 award to the University of Texas at Austin. Eliza O’Reilly is supported by NSF
MSPRF Award 2002255 with additional funding from ONR Award N00014-18-1-2363.

2. Preliminaries

2.1. Stochastic geometry background. We recall the key concepts from stochastic geometry
needed for our paper, which are random tessellations, stationarity, the zero cell, and the typical
cell. For additional background, we recommend [27, Chapter 10].

A tessellation is a locally finite random partition of Rd into compact and convex polytopes. It
can be viewed as the collection of polytopes, or cells, of the tessellation or as the union of their
boundaries. In this paper, we take the view of the tessellation as the collection of cells, but will also
discuss the union of cell boundaries to establish relevant definitions. Formally, we define a random
tessellation as the point process of cells P = {Ci}i∈Z taking values in the space K of non-empty
compact and convex sets which satisfy:



4 ELIZA O’REILLY AND NGOC MAI TRAN

• for all compact K ⊂ R
d, a finite number of Ci’s have non-empty intersection with K;

• for all i 6= j, int(Ci) ∩ int(Cj) = ∅;
• ∪i∈ZCi = R

d;
• for all i, vold(∂Ci) = 0.

A random tessellation is stationary if its distribution is invariant under translations. That is, for

all x ∈ R
d, {Ci + x}i∈Z

d
= {Ci}i∈Z, where ‘

d
=’ denotes equality in distribution. Stationarity implies

that every x ∈ R
d almost surely belongs to a unique cell of the tessellation, which will be denoted

Zx. The zero cell of P , denoted by Z0, is defined as the unique cell of the tessellation containing

the origin. Stationary also implies that Z0
d
= Zx − x.

An important random object related to a stationary random tessellation P is the typical cell.
To define this, first consider a center function c : K → R

d such that c(K + x) = c(K) + x for all
x ∈ R

d. Examples include the centroid or the center of the smallest ball containing K. We can
then decompose P into a stationary marked point process {(c(Cj), Cj − c(Cj)}j∈Z consisting of a
ground point process in R

d of cell centers and elements from K0 := {K ∈ K : c(K) = 0} attached
to each center. Following [27, Section 4.1], there exists a random polytope Z in K0 such that for
any non-negative measurable function f on K,

E

[
∑

C∈P
f(C)

]

=
1

E[vold(Z)]
E

[∫

Rd

f(Z + y)dy

]

.(1)

The random polytope Z is called the typical cell of P . Its distribution can be understood as
limiting distribution of a cell chosen uniformly at random from a large ball, centered at the origin
using the center function c, as the radius of the ball grows to infinity.

2.2. STIT Tessellations. For a random tessellation P , we will denote by Y the union of cell
boundaries, which forms a d − 1-surface process in R

d, see [27, Section 4.5]. For any stationary
surface process, we can define a directional distribution φ on S

d−1 characterizing the ‘rose of
directions’ for the d − 1-dimensional facets generating the cell boundaries. We will say P has
directional distribution φ if Y has directional distribution φ.

For two random tessellations P1 and P2, denote by Y1 and Y2 the cell boundaries of P1 and P2,
respectively. Associate to each cell c in P1 an independent copy Y2(c) of Y2 and assume the family
{Y2(c) : c ∈ P1} is independent of P1. Then, the iteration of Y1 and Y2 is defined as

Y1 � Y2 := Y1 ∪
⋃

c∈P1

(Y2(c) ∩ c) .

That is, each cell c of the frame tessellation P1 is subdivided by the cells of Y2(c) ∩ c. A random
tessellation P is called stable under iteration, or STIT, if for the union of cell boundaries Y , for
all n ∈ N,

Y
d
= n(Y � · · ·� Y),(2)

where nY := {nx : x ∈ Y} is the dilation of Y by the factor n.
A STIT process is a stochastic process {Y(λ) : λ > 0} of random tessellation cell boundaries in

R
d with the following properties:

(i) Stationarity: Y(λ) + x
d
= Y(λ) for all x ∈ R

d;

(ii) Markov Property: Y(λ1 + λ2)
d
= Y(λ1)� Y(λ2) for all λ1, λ2 > 0;

(iii) STIT: for all λ > 0 and n ∈ N, (2) holds for Y(λ).

A consequence of property (iii) is that STIT processes have the scaling property, that is, for all

λ > 0, Y(1)
d
= λY(λ) [21, Lemma 5]. Intuitively, this property says that one can swap time for
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space. Specifically, if one fixes a compact observation window W ⊂ R
d, then {Y(λ) ∩W : λ > 0}

is a random partition process on W , which we think of as a visualization of Y(λ) through the
window W . Now, one can fix λ and ‘zoom out’ on Y(λ) by mapping Y(λ) 7→ 1

2
Y(λ) to see more

of the partition process Y(λ), or one can run the partition process for twice as long by mapping
Y(λ) 7→ Y(2λ). The scaling property says that these two operations give the same random
tessellation on W in distribution.

For the zero cell Zλ
0 and typical cell Zλ of P(λ), the random tessellation induced by the bound-

aries Y(λ), the scaling property implies the following important facts that we will use in the
remainder of the paper: for all λ > 0,

Z0
d
= λZλ

0 and Z
d
= λZλ,(3)

where Z0 := Z1
0 and Z := Z1 are the zero cell and typical cell of P(1).

While seemingly abstract, it was proved in [21] that the STIT partition process {Y(λ) ∩ W :
λ > 0} restricted to a fixed compact and convex window W ⊂ R

d can always be constructed by
drawing random hyperplane cuts from a fixed distribution at exponential times. A special case of
this construction was rediscovered by [24], which led to the Mondrian process.

Formally, let φ be an even probability measure on the unit sphere Sd−1 with support containing
d linearly independent directions. Then define Λ to be the stationary and locally finite measure
on the space of hyperplanes in R

d, denoted Hd, defined by

Λ(A) :=

∫

Sd−1

∫

R

1{H(u,t)∈A}dtφ(du), A ∈ B(Hd),

where H(u, t) := {x ∈ R
d : 〈x, u〉 = t}. Here, the space Hd of hyperplanes is equipped with the

hit-miss topology which contains compact subsets of the following form: for compact W ⊂ R
d,

define

[W ] := {H ∈ Hd : H ∩W 6= ∅}.

Now, fix λ > 0 and consider the following procedure to construct a random partition Y(λ,W, φ)
of W .

(1) Draw δ ∼ Exp(Λ([W ]), where

Λ([W ]) =

∫

Sd−1

∫

R

1{H(u,t)∩W 6=∅}dtdφ(u) =

∫

Sd−1

(h(W,u) + h(W,−u)) dφ(u),

and h(W,u) := supx∈W 〈u, x〉 is the support function of W .
(2) If δ > λ, stop. Else, at time δ, generate a random hyperplane H(U, T ) where the direction

U is drawn from the distribution

dΦ(u) :=
h(W,u) + h(W,−u)

Λ([W ])
dφ(u), u ∈ S

d−1,

and conditioned on U , T is drawn uniformly on the interval from −h(W,−U) to h(W,U).
Split the window W into two cells W1 and W2 with H(U, T ).

(3) Repeat steps (1) and (2) in each sub-window W1 and W2 independently with new lifetime
parameter λ− δ until lifetime expires.

Theorem 1 in [21] shows the existence of a STIT tessellation process Y(λ) on R
d such that

Y(λ) ∩ W
d
= Y(λ,W, φ). Conversely, for any stationary tessellation Y in R

d satisfying (2) with

directional distribution φ, Corollary 2 in [21] showed that there exists λ > 0 such that Y
d
= Y(λ),

and Y(λ) ∩ W
d
= Y(λ,W, φ) for all compact W ⊂ R

d. Together, these results imply that the
class of STIT tessellations is the most general class of stationary tessellations with the hierarchical
construction that underpins the computational efficiency of the Mondrian process [24, 17, 18].
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a STIT tessellation and a Poisson hyperplane tessellation with corresponding parameters are also
equal in distribution.

2.4. Parameters of STIT and Poisson Hyperplane Tessellation Cells. In this section we
generalize the results in Section 4 of [19] on the diameter of the zero cell and the number of
cells hitting a compact and convex domain. In combination, these observations show that STIT
processes and Poisson hyperplane processes produce partitions on a domain of unit volume that
contain O(λd) cells of diameter O(1/λ) which is on the order of the 1/λ-covering number for such
a domain. Both bounds depend on an important parameter associated to a STIT or Poisson
hyperplane process called the associated zonoid. If the process has directional distribution φ and
lifetime/intensity λ, this is defined as the convex body Πλ in R

d with support function

h(Πλ, v) =
λ

2
Λ([[0, v]]) =

λ

2

∫

Sd−1

|〈u, v〉|dφ(u), v ∈ S
d−1,(4)

see [27, p.156]. We will denote by Π the associated zonoid of the process for lifetime/intensity
λ = 1. In particular, note that Πλ = λΠ. We also recall from [27, (10.4) and (10.44)] that

E[vold(Z)] =
1

vold(Π)
.(5)

For the Mondrian (see Example 1) or axis-aligned Poisson hyperplane process, h(Π, v) = ‖v‖1
2d

, and

so the associated zonoid is the `∞ ball Π = {x ∈ R
d : ‖x‖∞ ≤ 1

2d
}. For the isotropic STIT (see

Example 2) or isotropic Poisson hyperplane process, h(Π, v) = cd‖v‖2, where cd :=
Γ( d

2)
2
√
πΓ( d+1

2 )
and

so the associated zonoid Π is an `2 ball centered at the origin with radius cd.

2.4.1. Diameter of cells. The precise distribution of the diameter of the zero cell for a general
directional distribution remains an open question in stochastic geometry. However, we will show
an upper bound on the moments, which will be sufficient for proving the results in this paper.

Lemma 3. Let Zλ
0 denote the zero cell of a STIT tessellation/Poisson hyperplane tessellation with

lifetime parameter/intensity λ. Then, for all k > 0,

E[diam(Zλ
0 )

k] ≤ ck,Πλ
−k.

Proof. In section 8 of [15], it is shown that for fixed r > 0 and τ ∈ (0, 1), there exists a constant
cr = cr(τ,Π) such that for all a > r,

P(diam(Z0) ≥ a) ≤ cre
−τahmin(Π),(6)

where hmin(Π) := minu∈Sd−1 h(Π, u). Then, the expectation satisfies

E[diam(Z0)
k] =

∫ ∞

0

ktk−1
P(diam(Z0) ≥ t)dt

≤

∫ r

0

ktk−1dt+ kcr

∫ ∞

r

tk−1e−τthmin(Π)dt

= rk +
kcr

(τhmin(Π))k

∫ ∞

0

yk−1e−ydy ≤ rk +
crΓ(k + 1)

τ khmin(Π)k
.

Letting τ = 2−1/k and r = (Γ(k+1))1/k

τhmin(Π)
gives

E[diam(Z0)
k] ≤

2(1 + cr)Γ(k + 1)

hmin(Π)k
,
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and by (3),

E[diam(Zλ
0 )

k] =
1

λk
E[diam(Z0)

k] ≤
ck,Π
λk

,

where ck,Π := 2(1+cr)Γ(k+1)
hmin(Π)k

for the chosen r = r(k,Π). �

Remark 1. For the isotropic model as in Example 2, the associated zonoid Π is a ball, and
hmin(Π) = cd. In fact, hmin(Π) is maximal for the isotropic distribution since for any other φ and
Π defined by (4), there will be a direction v for which h(Π, v) ≤

∫

Sd−1 h(Π, u)dσd−1(u) = cd, where

σd−1 is the uniform distribution on S
d−1. Thus, the exponential rate of the tail bound (6) in the

proof of the above Lemma is maximized by the isotropic directional distribution.

2.4.2. Number of cells in a compact domain. The following upper bound on the number of cells of
P(λ) that intersect a compact and convex subset W follows from equation (1).

Lemma 4. Let W ⊂ R
d be a compact and convex set. Let Nλ(W ) be the number of cells of a

STIT tessellation P(λ) in R
d that intersect W . Let Π be the associated zonoid of P(1). Then,

E[Nλ(W )] = vold(Π)
d∑

k=0

(
d

k

)

λk
E[V (W [k], Z[s− k])],

where E[V (W [k], Z[d− k])] := E[V (W, . . . ,W
︸ ︷︷ ︸

k

, Z, . . . , Z
︸ ︷︷ ︸

d−k

)].

The mixed volume V (K1, . . . , Kd) of convex bodies K1, . . . , Kd is non-negative, translation-
invariant, and multilinear and symmetric in its arguments [26, Section 5.1]. For k ∈ N, let Bk

denote the unit ball in R
k, and define κk := volk(B

k). Then, the intrinsic volumes of a convex
body K ⊂ R

d are defined for j = 0, . . . , d by

Vj(K) :=

(
d
j

)

κd−j

V (K[j], Bd[d− j]).

The case j = d is the usual volume, i.e. Vd = vold.

Example 5. (1) If W = RBd, a ball of radius R in R
d, then

E[Nλ(RBd)] = vold(Π)
d∑

k=0

(
d

k

)

λkRk
E[V (Bd[k], Z[d− k])]

= vold(Π)
d∑

k=0

λkRkκkE[Vd−k(Z)].

By (10.3) and Theorem 10.3.3 in [27], EVd−k(Z) =
Vk(Π)
vold(Π)

. Thus,

E[Nλ(RBd)] =
d∑

k=0

(λR)kκkVk(Π).

(2) For the isotropic STIT (see Example 2), Proposition 3 in [28] gives

E[Nλ(W )] =
d∑

k=0

(Πk
j=1γj)

λk

k!
Vk(W ),

where the constant γj is defined as

γj :=
Γ( j+1

2
)Γ(d

2
)

Γ( j
2
)Γ(d+1

2
)
.
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(3) If W = [0, 1]d, and Z is the typical cell of a STIT with directional distribution φ =
1
2d

∑d
i=1(δei +δ−ei) with lifetime parameter d (this is the case of the Mondrian in [19]), then

h(Z, u) = Ti

2

∑d
i=1 |〈u, ei〉|, where T1, . . . Td are i.i.d. exponential random variables with

unit mean. From the formula for mixed volumes of zonoids on page 614 of [27],

V (W [k], Z[d− k])
d
=

d−j
∏

i=1

Ti,

and E[V (W [k], Z[d− k])] = 1. Thus, we recover Proposition 2 in [19] that

Nλ([0, 1]
d) =

d∑

k=0

(
d

k

)

λk = (1 + λ)d.

Proof. Using (1) with the indicator function f(·) = 1{·∩W 6=∅}, (3), and (5) give that the expected
number of cells of P(λ) intersecting W ⊂ R

d satisfies

E[Nλ(W )] = E




∑

C∈P(λ)

1{C∩W 6=∅}



 =
1

E[vold(Zλ)]
E

[∫

Rd

1{Zλ+y∩W 6=∅}dy

]

= λdvold(Π)E[vold(W − Zλ)] = λdvold(Π)
d∑

k=0

(
d

k

)

E[V (W [k],−Zλ[d− k])].

The last equality appears in [27, (5.16)]. The third equality follows from the fact that Zλ+y∩W 6= ∅

if and only if y ∈ W−Zλ. By the scaling property of mixed volumes, (3), and the fact that Z
d
= −Z,

E[V (W [k],−Zλ[d− k])] = λ−(d−k)
E[V (W [k], Z[d− k])].

Thus,

E[Nλ(W )] = vold(Π)
d∑

k=0

(
d

k

)

λk
E[V (W [k], Z[d− k])],

which proves the claim. �

3. Main results

3.1. Statements of the main results. Fix a compact and convex subset W ⊂ R
d, and consider

the following regression setting. The data set Dn := {(X1, Y1), . . . , (Xn, Yn)} consists of n i.i.d.
samples from a random pair (X, Y ) ∈ W × R such that E[Y 2] < ∞. Let µ denote the unknown
distribution of X and

Y = f(X) + ε,

where f(X) = E[Y |X] is the conditional expectation of Y given X and ε is noise such that
E[ε|X] = 0 and Var(ε|X) = σ2 < ∞ almost surely.

Let P be a random partition of W . The regression tree estimator based on P is

f̂n(x,P) :=
n∑

i=1

1{Xi∈Zx}
Nn(x)

Yi,(7)

where Zx is the cell of the partition P that contains x and Nn(x) is the number of points in Zx.

If Nn(x) = 0, then it is assumed that f̂n(x,P) = 0. The random forest estimator based on P is
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defined by averaging M i.i.d. copies of the tree estimator, i.e.

f̂n,M(x) :=
1

M

M∑

m=1

f̂n(x,Pm),(8)

where P1, . . . ,Pm are m i.i.d. copies of P . We define the STIT regression tree estimator f̂λ,n
and the STIT regression forest estimator f̂λ,n,M as in (7) and (8) respectively, where the random
partition P := P(λ) ∩ W is the partition of W generated by a STIT tessellation with lifetime

parameter λ and associated zonoid Π. The quality of the estimator f̂λ,n,M is measured by the
quadratic risk

R(f̂λ,n,M) := E[(f̂λ,n,M(X)− f(X))2].

We now define the function classes we will consider in our results. For k ∈ N, β ∈ (0, 1], and
L > 0, define the (k+ β)-Hölder ball of norm L, denoted by Ck,β(L) = Ck,β(W,L), to be the set of
all k times differentiable functions f : W → R such that for all multi-indices α with |α| ≤ k,

‖Dαf(x)−Dαf(y)‖ ≤ L‖x− y‖β and ‖Dαf(x)‖ ≤ L,

for all x, y ∈ W . We assume here that W is a compact and convex d-dimensional domain W ⊂ R
d.

The minimax rate for the class Ck,β(L) is n−2(k+β)/(2(k+β)+d) [13, Theorem 3.2]. Our main results
show that for an appropriate choice of λ, STIT forest estimators achieve the minimax rate of
convergence for C0,β(L) and C1,β(L). Our rate is stated in terms of the intrinsic dimensionality of
the input data, defined as follows.

Definition 6. The input X is s-sparse if its distribution µ is supported on the intersection of a
compact and convex window W ⊂ R

d with an s-dimensional linear subspace S of Rd.

Theorem 7. Assume X is s-sparse and f ∈ C0,β(L) for β ∈ (0, 1] and L > 0. Then,

R(f̂λ,n,M) ≤
Lcβ,Π
λ2β

+
(5‖f‖2∞ + 2σ2)vold(Π)

∑s
k=0

(
d
k

)
λk
E [V (WS [k], Z[s− k])]

n
,

where WS := W ∩ S.

Corollary 8. In the setting of Theorem 7, as n → ∞, letting λn = L2/(s+2β)n1/(s+2β) yields

R(f̂λ,n,M) = O
(
L2s/(s+2β)n−2β/(s+2β)

)
,(9)

which is the minimax rate for the class C0,β(L) on R
s.

Theorem 9. Assume X is s-sparse and the distribution µ of X has a positive and Lipschitz density
with respect to the Lebesgue measure on its support. Assume f ∈ C1,β(L) for β ∈ (0, 1] and L > 0.
Then,

R(f̂λ,n,M) ≤ O

(
L2

λ2M
+

L2

λ2β+2
+

λs

n

)

.

Corollary 10. In the setting of Theorem 9, choosing

λn ∼ L2/(s+2β+2)n1/(s+2β+2) and Mn & L4β/(s+2β+2)n2β/(s+2β+2)

implies

R(f̂λ,n,M) = O(L2s/(s+2β+2)n−(2β+2)/(s+2β+2)),(10)

which is the minimax rate for the class C1,β(L) on R
s.
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Remark 2. Specialized to the case of the Mondrian, our rates are an improvement over the results
of [19], where no notion of sparsity was considered. However, note that the rates are obtained
through optimal choices of λ and M that depend on s and β. In practice, the sparsity dimension
of the input and the regularity of f are not known a priori. An important open problem is to
find an adaptive way of choosing the lifetime parameter λ such that the random forest estimator
achieves these optimal rates without this prior knowledge on the function f .

Remark 3. While the rates in Corollaries 8 and 10 depend only on the sparsity dimension, the
ambient dimension does appear in the upper bounds of Theorems 7 and 9 through the geometric
constants. We leave for future work a thorough study of how an “optimal” choice of directional
distribution could be obtained via the geometric properties of the associated zonoid and the data
set to improve the constants.

These rates follow from the following bias-variance decomposition of the risk of a tree estimator
that is presented in [2]. A subtle difference between their setting and ours is that they view the
partition as a finite partitioning of [0, 1]d, and here we consider the partition to be a stationary
STIT tessellation on R

d which we view through the compact and convex window W that contains
the support of µ. First, let Zλ

x denote the cell of P(λ) that contains the vector x ∈ R
d, and define

f̄λ(x) := EX [f(X)|X ∈ Zλ
x ], x ∈ W.

Conditioned on P(λ), this is the orthogonal projection of f ∈ L2(W,µ) onto the subspace of
functions that are constant within the cells of P(λ) ∩W .

Conditioned additionally on the data Dn, the random tree estimator f̂λ,n is in this subspace of

piecewise functions, and hence EX [(f(X)− f̄λ(X))f̂λ,n(X)] = 0. Thus, given P(λ) and Dn,

EX [(f(X)− f̂λ,n(X))2] = EX [(f(X)− f̄λ(X) + f̄λ(X)− f̂λ,n(X))2]

= EX [(f(X)− f̄λ(X))2] + EX [(f̄λ(X)− f̂λ,n(X))2].

Taking the expectation over P(λ) and Dn gives the following decomposition of the risk:

R(f̂λ,n) := E[(f(X)− f̂λ,n(X))2] = E[(f(X)− f̄λ(X))2] + E[(f̄λ(X)− f̂λ,n(X))2].(11)

The first term measures how far f is away from the closest function in the hypothesis class that
the estimators lie in, and is called the approximation error or bias. The second term measures the
estimation error, or variance, coming from the fact that we build the estimator from only a finite
number of samples. As in [19], the bias and variance depend on the geometric properties of the
cells of the tessellations from which the estimator is built. In particular, the bias is controlled by
the diameter of the zero cell, and the variance is controlled by the expected number of cells that
have non-empty intersection with the support of µ. Lemmas 3 and 4 provide the needed bounds,
and choosing an optimal λ depending on the number of samples n and Lipschitz constant L gives
the results.

Note that our proof technique only relies on statistics of the typical cell and the zero cell of the
STIT tessellation P(λ). Since these statistics are identical for the STIT and the Poisson hyperplane
process, it follows that regression estimators based on Poisson hyperplane processes have identical
risk bounds. We state this formally as follows.

Theorem 11. Let f̂λ,n,M be the random forest estimator defined using M i.i.d. random partitions
induced by a Poisson hyperplane process with intensity λ and spherical directional distribution φ.
Then, f̂λ,n,M is consistent and the upper bounds (9) and (10) on the risk hold in each corresponding
setting.
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3.2. Variance Bound. In the following, we see that we can control the variance term with the
expected number of cells that intersect the support of µ, as in [19].

Lemma 12. Let Nλ(K) be the number of cells of P(λ) that have non-empty intersection with a
compact subset K ⊂ R

d. Then,

E

[

(f̄λ(X)− f̂λ,n(X))2
]

≤
5‖f‖2∞ + 2σ2

n
E[Nλ(supp(µ))].

The proof follows the same ideas of Proposition 2 in [2] which relies crucially on Proposition 1
in [1]. For completeness and clarity, a proof of this lemma appears below.

Proof. We first condition on P(λ) and compute the variance of the tree estimator corresponding
to a fixed partition. Note that the assumption that Dn and P(λ) are independent allow us to take

these expectations separately. Recall that if no points of {X1, . . . , Xn} fall in Zλ
x , then f̂λ,n(x) = 0.

For each C ∈ P(λ), let Nn(C) =
∑n

i=1 1{Xi∈C} be the number of covariates inside C and let
pλ,C := PX(X ∈ C). Then,

EDn,X

[

(f̄λ(X)− f̂λ,n(X))2
]

=

∫

Rd

∑

C∈P(λ)

1{x∈C}EDn

[(

EX [f(X)|X ∈ C]−

∑n
i=1 Yi1{Xi∈C}
Nn(C)

)2
]

dµ(x)

=
∑

C∈P(λ):C∩supp(µ) 6=∅
pλ,CEDn

[(

EX [f(X)|X ∈ C]−

∑n
i=1 Yi1{Xi∈C}
Nn(C)

)2
]

.

The expectation in the sum satisfies

EDn

[(

EX [f(X)|X ∈ C]−

∑n
i=1 Yi1{Xi∈C}
Nn(C)

)2
]

=
n∑

k=1

P(Nn(C) = k)EDn

[(

EX [f(X)|X ∈ C]−

∑n
i=1 Yi1{Xi∈C}

k

)2 ∣
∣
∣
∣
Nn(C) = k

]

+ P(Nn(C) = 0) (EX [f(X)|X ∈ C])2 .
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A closer look at the conditional expectation gives, by the assumptions on the noise,

EDn

[(

EX [f(X)|X ∈ C]−

∑n
i=1 Yi1{Xi∈C}

k

)2 ∣
∣
∣
∣
Nn(C) = k

]

= k−2
EDn





(

kEX [f(X)|X ∈ C]−
n∑

i=1

(f(Xi) + εi)1{Xi∈C}

)2 ∣
∣
∣
∣
Nn(C) = k





= k−2
∑

i1<···<ik

P(Xi1 , . . . , Xik ∈ C| Nn(C) = k)

· EDn





(

kEX [f(X)|X ∈ C]−
k∑

j=1

f(Xij)−
k∑

j=1

εij

)2 ∣
∣
∣
∣
Nn(C) = k,Xi1 , . . . , Xik ∈ C





= k−2
EDn





(

kEX [f(X)|X ∈ C]−
k∑

i=1

f(Xi)−
k∑

i=1

εi

)2 ∣
∣
∣
∣
X1, . . . , Xk ∈ C





≤ k−2
EDn





(

kEX [f(X)|X ∈ C]−
k∑

i=1

f(Xi)

)2 ∣
∣
∣
∣
X1, . . . , Xk ∈ C



+ k−1σ2,

and by the independence of the Xi’s, the expectation in the first term simplifies to

EDn





(

kEX [f(X)|X ∈ C]−
k∑

i=1

f(Xi)

)2 ∣
∣
∣
∣
X1, . . . , Xk ∈ C





= k2
EX [f(X)|X ∈ C]2 − 2k2

EX [f(X)|X ∈ C]2 + EDn

[
k∑

i,j=1

f(Xi)f(Xj)

∣
∣
∣
∣
X1, . . . , Xk ∈ C

]

= kEX [f(X)2|X ∈ C] + (k2 − k)EX [f(X)|X ∈ C]2 − k2
EX [f(X)|X ∈ C]2

= k(EX [f(X)2|X ∈ C]− EX [f(X)|X ∈ C]2).

Thus,

EDn

[(

EX [f(X)|X ∈ C]−

∑n
i=1 Yi1{Xi∈C}
Nn(C)

)2
]

=
n∑

k=1

P(Nn(C) = k)k−1
(
EX [f(X)2|X ∈ C]− EX [f(X)|X ∈ C]2 + σ2

)

+ P(Nn(C) = 0)EX [f(X)|X ∈ C]2

=
(
EX [f(X)2|X ∈ C]− EX [f(X)|X ∈ C]2 + σ2

)
n∑

k=1

(
n

k

)

pkλ,C(1− pλ,C)
n−kk−1

+ EX [f(X)|X ∈ C]2(1− pλ,C)
n

≤
(
2‖f‖2∞ + σ2

)
n∑

k=1

(
n

k

)

pkλ,C(1− pλ,C)
n−kk−1 + ‖f‖2∞(1− pλ,C)

n.
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Now, note that for B ∼ Binomial(n, pλ,C),
n∑

k=1

(
n

k

)

npk+1
λ,C (1− pλ,C)

n−kk−1 = E[B]E[B−11{B>0}],

and by Lemma 4.1 in [13], E[B]E[B−11{B>0}] ≤
2npλ,C

(n+1)pλ,C
≤ 2. Also, the upper bounds 1− x ≤ e−x

and xe−x ≤ e−1 for all x ≥ 0 imply

npλ,C(1− pλ,C)
n ≤ e−1 ≤ 1.

Thus,

EDn,X

[

(f̄λ(X)− f̂λ,n(X))2
]

≤
1

n

∑

C∈P(λ):C∩supp(µ) 6=∅

(
2‖f‖2∞ + σ2

)
n∑

k=1

(
n

k

)

npk+1
λ,C (1− pλ,C)

n−kk−1

+
‖f‖2∞
n

∑

C∈P(λ):C∩supp(µ) 6=∅
npλ,C(1− pλ,C)

n

≤
5‖f‖2∞ + 2σ2

n
Nλ(supp(µ)).

Taking the expectation with respect to P(λ) completes the proof. �

3.3. Proof of Theorem 7.

Proof of Theorem 7. As in the proof of Theorem 2 in [19], first use Jensen’s inequality to reduce

to the error of a single Mondrian tree estimator f̂λ,n := f̂λ,n,1. Then, using the bias-variance
decomposition (11), we have

R(f̂λ,n) = E[(f(X)− f̂λ,n(X))2] = E[(f(X)− f̄λ(X))2] + E[(f̄(X)− f̂λ,n(X))2].(12)

We first consider the bias term. For x ∈ W , by the assumption on f ,

|f(x)− f̄λ(x)| ≤
1

µ(Zλ
x )

∫

Zλ
x

|f(x)− f(z)|µ(dz)

≤
1

µ(Zλ
x )

∫

Zλ
x

L‖x− z‖βµ(dz) ≤ Ldiam(Zλ
x )

β.

Then by Lemma 3,

E[(f(X)− f̄λ(X))2] ≤ LE[diam(Zλ
x )

2β] ≤
Lcβ,Π
λ2β

.(13)

Recall that the assumption X is s-sparse means there exists an s-dimensional linear subspace
S ⊆ R

d such that supp(µ) = W ∩ S. For the variance bound, Lemma 12 implies

E[(f̄λ(X)− f̂λ,n(X))2] ≤
5‖f‖2∞ + 2σ2

n
E[Nλ (W ∩ S)].

Let WS := W ∩ S. By Lemma 4 and the fact that for k > s, E[V (WS [k], Z[d− k])] = 0, we have
for each i = 1, . . . K,

E[Nλ (WS))] = vold(Π)
s∑

k=0

(
d

k

)

λk
E[V (WS [k], Z[d− k])].

Then,

E[(f̄λ(X)− f̂λ,n(X))2] ≤
(5‖f‖2∞ + 2σ2)vold(Π)

n

s∑

k=0

(
d

k

)

λk
E[V (WS [k], Z[d− k])].(14)
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Combining equations (13) and (14) gives the first claim. The right hand side above is of order
O
(
λs

n

)
, and letting λ = L2/(s+2β)n1/(s+2β) gives the second claim. �

3.4. Proof of Theorem 9. We first need the following technical lemma.

Lemma 13. Let Zλ
x be the cell of P(λ) containing the point x ∈ R

d. Assume x ∈ S ⊆ R
d for a

linear subspace S of dimension s. Then,
∫

S
(z − x)E

[
1{z∈Zλ

x }
vols(Zλ

x ∩ S)

]

dz = 0

Proof. First, we observe the intersection P(λ) ∩ S of P(λ) with a linear subspace is a STIT
tessellation that is stationary with respect to S. By stationarity and a change of variable, for
x ∈ S,

∫

S
(z − x)E

[
1{z∈Zλ

x }
vols(Zλ

x ∩ S)

]

dz =

∫

S
yE

[
1{y∈Zλ

0 }

vols(Zλ
0 ∩ S)

]

dy.

Then by (1),

E

[
1{y∈Zλ

0 }

vols(Zλ
0 ∩ S)

]

=
1

E[vold(Zλ)]
E

[
vold(Zλ ∩ Zλ − y)

vols(Zλ
0 ∩ S)

]

.

By the fact that volume is translation invariant,

E

[
vold(Zλ ∩ Zλ + y)

vols(Zλ
0 ∩ S)

]

= E

[
vold(Zλ − y ∩ Zλ)

vols(Zλ
0 ∩ S)

]

.

The integrand yE
[
vold(Zλ−y)

vols(Zλ
0 ∩S)

]

is an odd function, and thus the integral is zero. �

Proof of Theorem 9. We begin the proof in the same way as the proof of Theorem 3 in [19]. For
each m, define

f̄
(m)
λ (x) = EX [f(X)|X ∈ Zλ,(m)

x ],

and let f̄λ,M(x) = 1
M

∑M
m=1 f̄

(m)
λ (x). Also, define

f̃λ(x) := E[f̄
(m)
λ (x)] = E

[
1

µ(Zλ
x )

∫

Zλ
x

f(z)µ(dz)

]

=

∫

Rd

f(z)E

[
1{z∈Zλ

x }
µ(Zλ

x )

]

µ(dz).

The bias-variance decomposition for the risk of a tree estimator can be extended to the random
forest estimator as in [2, Equation (1)]:

E[(f̂λ,n,M(X)− f(X))2] = E[(f̂λ,n,M(X)− f̄λ,M(X))2] + E[(f̄λ,M(X)− f(X))2].(15)

This is due to the fact that E[f̂λ,n,1(x)|P(λ)] = f̄λ,1(x). Indeed, by the independence of the Xi’s,

EDn [f̂λ,n,1(x)] =
1

n
EDn

[∑n
i=1 Yi1{Xi∈Zx}
Nn(Zx)

]

=
1

n

n∑

k=1

(
n

k

)

PDn(X1, . . . , Xk ∈ Zx|Nn(Zx) = k)

· EDn

[∑k
i=1 f(Xi)1{Xi∈Zx}

k

∣
∣
∣
∣
X1, . . . , Xk ∈ Zx,Nn(Zx) = k

]

= EX [f(X)|X ∈ Zx] = f̄λ,n,1(x).
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Also, by Proposition 1 in [2],

E[(f̄λ,M(x)− f(x))2] = E[(f(x)− f̃λ(x))
2] +

Var(f̄
(1)
λ (x))

M
.

We then have the following upper bound on the variance:

Var(f̄
(1)
λ (x)) ≤ E

[

(f̄
(1)
λ (x)− f(x))2

]

≤ L2
E[diam(Zλ

x )
2] ≤

L2c2,Π
λ2

,

where the last inequality follows from Lemma 3 and stationarity. Also, by Jensen’s inequality,

E[(f̂λ,n,M(x)− f̄λ,M(x))2] ≤ E[(f̂λ,n,1(x)− f̄
(1)
λ (x))2].

Thus, taking the expectation with respect to X,

E[(f̂λ,n,M(X)− f(X))2] ≤
L2c2,Π
Mλ2

+ E[(f̂λ,n,1(X)− f̄
(1)
λ (X))2] + E[(f̃λ(X)− f(X))2].

We can use Lemma 12 to bound the second term on the right hand side, so it remains to control
the bias term. By Taylor’s theorem, for f ∈ C1,β(L) with β ∈ (0, 1],

|f(z)− f(x)−∇f(x)T (z − x)| =

∣
∣
∣
∣

∫ 1

0

[∇f(x+ t(z − x))−∇f(x)]T (z − x)dt

∣
∣
∣
∣

≤

∫ 1

0

L(t‖z − x‖)β‖z − x‖dt ≤ L‖z − x‖1+β.

Then,

|f̃λ(x)− f(x)| =

∣
∣
∣
∣
E

[
1

µ(Zλ
x )

∫

Zλ
x

(f(z)− f(x))µ(dz)

]∣
∣
∣
∣

≤

∣
∣
∣
∣
E

[
1

µ(Zλ
x )

∫

Zλ
x

∇f(x)T (z − x)µ(dz)

]∣
∣
∣
∣
+ E

[
1

µ(Zλ
x )

∫

Zλ
x

∣
∣f(z)− f(x)−∇f(x)T (z − x)

∣
∣µ(dz)

]

≤

∣
∣
∣
∣
∇f(x)T

∫

Zλ
x

(z − x)E

[
1

µ(Zλ
x )

1{z∈Zλ
x }

]

µ(dz)

∣
∣
∣
∣
+ E

[
1

µ(Zλ
x )

∫

Rd

L‖z − x‖1+β1{z∈Zλ
x }µ(dz)

]

≤ ‖∇f(x)‖

∥
∥
∥
∥

∫

Zλ
x

(z − x)E

[
1

µ(Zλ
x )

1{z∈Zλ
x }

]

µ(dz)

∥
∥
∥
∥
+ LE

[
diam(Zλ

x )
1+β
]

≤ L

∥
∥
∥
∥

∫

Rd

(z − x)E

[
1{z∈Zλ

x }
µ(Zλ

x )

]

µ(dz)

∥
∥
∥
∥
+

Lcβ,Π
λ1+β

.

Up to this point, the proof has closely followed that of Theorem 3 in [19], with more general
bounds for the parameters of STIT tessellations. Now, by the assumptions, there exists a constant
Cp > 0 such that µ has a positive and Cp-Lipschitz density p w.r.t. the Lebesgue measure on its
support. By the assumption that X is s-sparse, supp(µ) = W ∩ S, where S is an s-dimensional
linear subspace. To bound the first term above, the authors of [19] compare the density Fλ,p(z) :=

E

[
p(z)
µ(Zλ

x )
1{z∈Zλ

x }

]

with the density Fλ,unif (z) := E

[
1
{z∈Zλ

x∩[0,1]d}

vold(Zλ
x∩[0,1]d)

]

(where p is the uniform density on

the unit cube). They then apply their Lemma 1, the proof of which relies heavily on the rectangular
geometry of the cells in the Mondrian process. One can generalize their strategy and obtain the
same result for general STIT processes, but we can avoid the boundary issue that appears in their
proof with the following modification. We instead compare Fλ,p with the density

Fλ(z) := E

[
1{z∈Zλ

x }
vols (Zλ

x ∩ S)

]

, z ∈ S,



18 ELIZA O’REILLY AND NGOC MAI TRAN

from Lemma 13. Now, by the assumptions, define p0 := minx∈W∩S p(x) > 0. By Lemma 13, we
add zero inside the norm to obtain the following upper bound on the first term above:

∥
∥
∥
∥

∫

S
(z − x)Fλ,p(z)dz

∥
∥
∥
∥
=

∥
∥
∥
∥

∫

S
(z − x) (Fλ,p(z)− Fλ(z)) dz

∥
∥
∥
∥

≤

∫

S
‖z − x‖

∣
∣
∣
∣
E

[
p(z)

µ(Zλ
x )

1{z∈Zλ
x }

]

− E

[
1{z∈Zλ

x }
vols(Zλ

x ∩ S)

]∣
∣
∣
∣
dz

≤

∫

S
‖z − x‖E

[∫

Zλ
x∩W∩S |p(z)− p(y)|dy

µ(Zλ
x )vols(Z

λ
x ∩ S)

1{z∈Zλ
x }

]

dz

≤ Cp

∫

S
‖z − x‖E

[∫

Zλ
x∩W∩S ‖z − y‖dy

µ(Zλ
x )vols(Z

λ
x ∩ S)

1{z∈Zλ
x }

]

dz

≤ CpE

[
diam(Zλ

x )vols(Z
λ
x ∩W ∩ S)

µ(Zλ
x )vols(Z

λ
x ∩ S)

∫

S
‖z − x‖1{z∈Zλ

x }dz

]

≤ CpE

[
diam(Zλ

x )
2vols(Z

λ
x ∩W ∩ S)

µ(Zλ
x )

]

≤
Cp

p0
E
[
diam(Zλ

x )
2
]
≤

Cpc2,Π
λ2p0

,

where the last inequality follows from Lemma 3 and stationarity. Thus,

E[(f̃λ(X)− f(X))2] ≤

(
LCpc2,Π
λ2p0

+
Lcβ,Π
λ1+β

)2

,

and the total risk satisfies

R(f̂λ,n,M(X)) = E[f̂λ,n,M(X)− f(X))2] ≤ O

(
L2

λ2M
+

L2

λ2(1+β)
+

λs

n

)

.

Letting λ = λn = L2/(s+2β+2)n1/(s+2β+2) and M = Mn � λ2β
n gives the rate

O
(
L2s/(s+2β+2)n−(2β+2)/(s+2β+2)

)
. �

3.5. Proof of Theorem 11.

Proof of Theorem 11. By Corollary 1 in [29], the typical cell of a STIT tessellation with lifetime
parameter λ has the same distribution as the typical cell of a Poisson hyperplane tessellation with
intensity λ and the same associated zonoid/directional distribution. The distribution of the typical
cell determines the distribution of the zero cell by Theorem 10.4.1 in [27], and thus, the same proof
methods used in Theorems 7 and 9 can be applied in this setting and the results follow. �

4. Discussion and Future Work

This work expands and strengthens the theoretical basis for data independent random forests,
and establishes stochastic geometry theory as an extremely promising tool set for analyzing random
partition based regression and classification algorithms. In particular, we showed that a large class
of random forests built from stationary hyperplane partitions all achieve the same minimax rates as
Mondrian forests featured in [19], and we extended these rates to depend on the intrinsic dimension
of the input as opposed to the ambient dimension of the feature space. This work motivates many
more questions at the intersection of stochastic geometry and machine learning. We outline a few
future research directions here.

First, the notion of sparsity used in our assumptions about the input has limited applicability.
However, we hope that our results and proof techniques can form a basis for future work to
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obtain optimal rates under more general notions of sparsity of the input or the relevant feature
space. Additionally, as mentioned in Remark 2, to obtain optimal rates in practice one needs an
adaptive way of tuning the lifetime parameter and number of trees, since the sparsity dimension
and regularity are not known a priori. For adaptation to regularity, a model aggregation method
was proposed in [19] for Mondrian forests which could potentially be extended to STIT forests.

Another open question is whether the flexibility of the directional distribution allows us to
find “optimal” split directions, or directional distribution φ for a given data set. In particular,
a direction distribution that depends on the input data density pX may improve performance
and decrease computational costs by decreasing the complexity of the partition needed to achieve
optimal rates. It also remains an open question in general whether, under different assumptions
about the underlying function f , one can obtain convergence rates that depend on the directional
distribution, and whether optimal rates are achieved with an optimal choice of split directions.
A third research direction concerns data-dependent random forests. STIT or Poisson hyperplane

tessellations with a non-stationary intensity measure Λ can yield inhomogeneous random partitions
of space. The key open question is thus how to incorporate the given data set into Λ. In the
stochastic geometry literature, some non-stationary random tessellation models have been studied.
Sections 11.3 and 11.4 in [27] collect results on non-stationary flat processes and Poisson hyperplane
tessellations. Many of the results there appear in [25], and [14] studies intersection densities and
a generalization of the associated zonoid for non-stationary Poisson hyperplane tessellations.
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