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Summary. The Extremal River Problem has emerged as a flagship problem for causal

discovery in extreme values of a network. The task is to recover a river network from only

extreme flow measured at a set V of stations, without any information on the stations’

locations. We present QTree, a new simple and efficient algorithm to solve the Extremal

River Problem that performs very well compared to existing methods on hydrology data

and in simulations. QTree returns a root-directed tree and achieves almost perfect recovery

on the Upper Danube network data, the existing benchmark data set, as well as on new

data from the Lower Colorado River network in Texas. It can handle missing data, has an

automated parameter tuning procedure, and runs in time O(n|V |2), where n is the number

of observations and |V | the number of nodes in the graph. Furthermore, we prove that

the QTree estimator is consistent under a Bayesian network model for extreme values with

noise. We also assess the small sample behaviour of QTree through simulations and detail

the strengths and possible limitations of QTree.

1. Introduction

Causal inference from extremes aims to discover cause and effect relations between large
observed values of random variables. To understand causality of high risk variables
is much needed as rare events like environmental or financial risks are often cascading
through a network. Pollutants can propagate through an unseen underground waterway,
causing extreme measurements at multiple locations (Leigh et al., 2019). Credit markets
might fail due to some endogenous systemic risk propagation (Rochet and Tirole, 1996).
However, it is not immediately obvious how to extend the past decades of work on
causal inference (Bollen, 1989; Drton and Maathuis, 2017; Lauritzen, 1996; Maathuis
et al., 2019; Pearl, 2009; Spirtes et al., 2000) for Gaussian and discrete distributions
to extreme values. Since the focus is on maxima rather than averages, correlations or
other bivariate measures of dependence in the center of the distribution are replaced by
extreme dependence measures (Coles et al., 1999; Engelke and Volgushev, 2020; Larsson
and Resnick, 2012; Sibuya, 1960), which are often difficult to estimate from limited data.

These extreme dependence measures are derived through asymptotic theory from gen-
eralized extreme value distributions—modelling sample extremes—or generalized Pareto
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distributions—modelling excesses over high thresholds. Textbook treatments can be
found in (Beirlant et al., 2004; Coles et al., 2001; de Haan and Ferreira, 2007; Resnick,
1987, 2007). A very readable review paper is Davison and Huser (2015). The develop-
ment of graphical models for extremes follows these two approaches. Max-linear causal
graphical models or max-linear Bayesian networks are motivated by extreme value dis-
tributions, which are max-stable (closed with respect to taking maxima). Introduced
in Gissibl and Klüppelberg (2018), they are defined via a max-linear recursively defined
structural equation models on a directed acyclic graph (see Pearl et al. (2009)). Each
node represents a positive random variable defined as a weighted maximum of its parent
variables and an independent innovation. The multivariate distribution of a max-linear
vector is not restricted to a Fréchet distribution; indeed the independent innovations can
have arbitrary continuous distributions. The emphasis of the model is on its structure
given by a directed graph. Nonparametric statistical inference aims at identifying the
directed graphical structure regardless of the node distributions.

Engelke and Hitz (2020), on the other hand, define a new extreme conditional de-
pendence concept for multivariate Pareto distributions and use this concept to define
extreme graphical models similarly as the classical concept for densities. The multivari-
ate distribution determines the model and has to be specified for statistical inference.
Here the multivariate Hüsler-Reiss distribution plays a prominent role; see Asenova et al.
(2021); Asenova and Segers (2022); Engelke and Volgushev (2020); Engelke et al. (2022);
Hu et al. (2022); Rötter et al. (2022).

Motivated by extreme value theory, it is not surprising that max-linear Bayesian
networks have been mostly investigated for heavy-tailed innovations: (Einmahl et al.,
2018, Section 3.3) consider tail dependence functions for i.i.d. Fréchet innovations.
Gissibl et al. (2018) investigate tail dependence for i.i.d. regularly varying innovations,
and Klüppelberg and Krali (2021) the scaling properties of the same model. Asenova
et al. (2021) and Segers (2020) investigate regularly varying Markov trees, and more
recently, Asenova and Segers (2022) investigate a new max-linear graphical model on
trees of transitive turnaments.

1.1. The Extremal River Problem

The relevance of extremal graphical models for multivariate distributions has been
validated on several data sets, prominently on the Upper Danube river network. The
goal is to recover a river network from only extreme flow measured at a set V of sta-
tions, without any information on the stations’ location. We refer to it as the Extremal
River Problem. Here, the true river network serves as the ‘gold standard’, allowing one
to verify the performance of the proposed estimator. Success in solving the Extreme
River Problem can translate to new solutions to the contaminant tracing challenge in
hydrology (Leigh et al., 2019; McGrane, 2016; Rodriguez-Perez et al., 2020; Ver Hoef
and Peterson, 2010; Ver Hoef et al., 2006; Wolf et al., 2012). There, one needs an inex-
pensive method to trace pollutants or chemical constituents transported by a complex
and unknown underground waterway that is prohibitive to model or survey with tradi-
tional fluid mechanics methods (Anderson et al., 2015). Recent advances point towards
an imminent data explosion (Bartos et al., 2018; Mao et al., 2019), where pollutants
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exceeding certain thresholds can be detected via a sensor network. Thus, contaminant
tracing with sensors data is a version of the Extremal River Problem without the gold
standard, where the network is truly unknown.

The Extremal River Problem with test data given by river discharges of the Upper
Danube river network has proven to be challenging and very stimulating for extreme
value theory, with each paper taking a different technique. The data have been pre-
processed in Asadi et al. (2015) and are available in the R package graphicalExtremes
(Engelke et al., 2019).

The preprocessed data have been analysed in a number of publications with focus on
modelling extreme dependence: flow- and spatial dependence (Asadi et al., 2015) and
undirected graphical models for extremes (Engelke and Hitz, 2020; Engelke et al., 2022;
Hu et al., 2022; Gong et al., 2022; Rötter et al., 2022). In a first paper, Engelke and Hitz
(2020) returned a highly accurate but undirected graph, followed by publications using
new models and applying different methods for reconstructing the undirected graph.

Our focus is on causality in extremes, modelled by a directed tree; hence, a large
value at node j causes a large value at node i, whenever there is an edge from j to
i. Similar problems have also been considered modelling causal extreme dependence by
expected quantile scores in (Mhalla et al., 2020) and by causal dependence coefficients
in (Gnecco et al., 2021). Gnecco et al. (2021) correctly recovered the causal order of 12
nodes out of 31, but did not learn the entire river network, while Mhalla et al. (2020)
focused on flow-connections and did well at detecting nodes connected by a directed
path; see Figure 7 in Mhalla et al. (2020). These two publications have slightly different
notions of causality; we discuss this in Section 4.

1.2. Main contributions and structure of the paper
The novelty of our paper lies in several directions.

(a) We suggest a new algorithm QTree to recover causality in extremes, where causality
is modelled by a directed tree. The advantage of the proposed max-linear Bayesian
tree is a structural model, which does not require to specify multivariate distribu-
tions. Moreover, no normalization of the data to standard Fréchet or Gumbel is
needed.

(b) The QTree algorithm estimates a pair-wise score matrix W , and applies Chu–Liu/-
Edmonds’ algorithm to output a root-directed spanning tree of optimum score.
The algorithm is simple, using properties of a max-linear Bayesian tree, and has a
stabilizing subsampling procedures that is based on bootstrap aggregation.

(c) We prove strong consistency of the estimated trees in an extreme value setting with
possible noise as the sample size tends to infinity. This proof is based on a new
variational argument to account for noise in the data.

(d) We analyse three new data sets from the Lower Colorado river network in Texas.
We also show by a simulation study that QTree is robust with respect to differ-
ent dependence structures (given by edge-weights) and different node distributions
entailed from different innovations distributions.

QTree performs extremely well on real-world data sets. Algorithm 2 achieves almost
perfect recovery of the Upper Danube network. In addition to the Upper Danube, we
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further test QTree on three sectors of the Lower Colorado river network in Texas. These
are much more challenging data sets. The Colorado river network suffers from severe
drought, extreme flooding, and sensors failure, with up to 36.9% missing data (the Upper
Danube has none). These challenges make recovering the Lower Colorado network much
closer to the trace contaminant challenge. Remarkably, on all three sectors of the Lower
Colorado, QTree Algorithm 2 also achieves almost perfect recovery (cf. Section 4).

Beyond hydrology, QTree can be applied to cause and effect detection in every
high risk problem assuming that the network is a root-directed tree. At a high level,
QTree aims to fit a max-linear Bayesian tree to the data. Max-linear Bayesian net-
works have recently emerged as a suitable directed graphical model for causality in
extremes (Améndola et al., 2022; Buck and Klüppelberg, 2021; Gissibl, 2018; Gissibl
and Klüppelberg, 2018), however, existing methods for learning them aim to learn the
model parameters and thus are highly sensitive to model misspecifications; see Buck
and Klüppelberg (2021); Gissibl (2018); Gissibl et al. (2021); Gissibl et al. (2018);
Klüppelberg and Krali (2021); Klüppelberg and Lauritzen (2020). In particular, they
do not perform well on the Upper Danube data set. In contrast, QTree relies on qual-
itative aspects of the max-linear Bayesian network model to score each potential edge
independently, and then applies Chu–Liu/Edmonds’ algorithm to return an optimal
root-directed spanning tree; see e.g. Gabow et al. (1986), Section 3. We detail the al-
gorithm and the intuition behind it in Section 2. Note that QTree heavily relies on the
assumption that there are sufficiently many extreme observations, and that the signal
has heavier tail than the noise. Assuming that the data come from a noisy max-linear
Bayesian network with appropriate signal-to-noise ratio, we prove that the tree output
by QTree is strongly consistent (cf. Theorem 1).

QTree is very flexible, has only two tuning parameters, and is very efficient. It runs
in time O(n|V |2), where n is the number of observations and |V | is the number of nodes.
QTree maximizes the information available from missing data since at each step it only
utilizes the data projected onto two coordinates. QTree is implemented as a plug-and-
play package in Python (Tran, 2021) at

https://github.com/princengoc/qtree

which includes all data and codes to produce the results and figures in this paper.

Our paper is organized as follows. We introduce QTree (Algorithm 1) and auto-tuned

QTree (Algorithm 2) in Section 2 and discuss its intuition supported by preliminary
simulation results. In Section 3, we present the data sets, discuss their specific challenges
and describe the data preprocessing steps. In Section 4, we present the estimation results
of QTree and analyze the performance of the automated parameter selection. Here we
also compare different algorithms in the literature with ours. In Section 5, we test the
limits of QTree by a small simulation study. Section 6 concludes with a summary. The
Supplementary Material includes the proof of the Consistency Theorem (Theorem 1).

Notations. Estimators are compared based on standard metrics in causal inference
(Zheng et al., 2018): normalized structural Hamming distance (nSHD), false dicovery
rate (FDR), false positive rate (FPR), and true positive rate (TPR). All of these metrics

lie between 0 and 1. We recall their definitions here. Let G be the true graph and Ĝ an
estimated graph. The structural Hamming distance SHD(G, Ĝ) between G and Ĝ is the

minimum number of edge additions, deletions and reversals to obtain G from Ĝ. Denote
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E(G) and E(Ĝ) the set of edges in G and Ĝ, respectively. Note that |E(Ĝ) \E(G)| is the

number of edges in Ĝ that are not in G, while |E(Ĝ) ∩ E(G)| is the number of correctly
estimated edges. We then have

nSHD(Ĝ,G) :=
SHD(Ĝ,G)

|E(Ĝ)|+ |E(G)|
, FDR(Ĝ,G) :=

|E(Ĝ) \ E(G)|

|E(Ĝ)|
, (1)

FPR(Ĝ,G) :=
|E(Ĝ) \ E(G)|

|V | × (|V | − 1)− |E(G)|
, TPR(Ĝ,G) :=

|E(Ĝ) ∩ E(G)|

|E(G)|
.

The performance of an algorithm is better the smaller the first three metrics are and the
larger TPR is. We shall use this throughout Section 4.

2. The algorithm

2.1. The data generation model

Throughout we assume data on a root-directed spanning tree T on V nodes. That is,
each node i ∈ V except the root r has exactly one child, the root r has none, and there
is a path from every node i 6= r to r. In the Extremal River Problem, our goal is to
recover the unknown T from extreme discharges Xi at nodes i ∈ V . Our starting point
is the max-linear Bayesian network (Gissibl and Klüppelberg, 2018), a model for risk
propagation in a directed acyclic graph. When the graph is a tree T , then the model is
defined as

Xi =
∨

j:j→i∈T

cijXj ∨ Zi, cij , Zi > 0, i ∈ V. (2)

Here the Zi, called innovations, are independent with support R+ and have atom-free
distributions. The model says that each edge j → i in T has a weight cij > 0, interpreted
as some measure of the flow rate from j to i, and an extreme discharge at i is either the
result of an unknown external input Zi (e.g. heavy rainfall), or it is the maximum of
weighted discharges Zj from an ancestral node j of i.

Here, the root-directed tree T describes the causal structure in the data. The Ex-
tremal River Problem aims at finding this tree from extreme observations only. Indeed,
in Tran (2022), Section 2.1 it is shown that for the Upper Danube data also a naive al-
gorithm based on the pairwise correlation matrix as score matrix performs well, whereas
for the Lower Colorado data it returns a less precise tree. So this is an example, where
the extremes contain more causal information than the average observations.

QTree can, however, also solve a slightly more general problem. Assume that the
tree structure is only in the extremes, whereas ”average” data follow a different model.
It can also happen that only data from certain nodes follow a heavy-tailed distribution
(able to model extreme events, while other nodes are negligible from an extreme value
point of view; see e.g. Embrechts et al. (1997); de Haan and Ferreira (2007); Resnick
(1987, 2007)). Then it may well be possible that the causality in the extremes can be
modeled by a tree on a subset of nodes.
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For numerical stability, we prefer to work with the logarithm of the extreme data. To
avoid new symbols, we keep the same notation, so the max-linear Bayesian tree becomes

Xi =
∨

j:j→i∈T

(cij +Xj) ∨ Zi, cij , Zi ∈ R, i ∈ V. (3)

We further assume that data is corrupted with independent noise in each coordinate.
The Extremal River Problem thus becomes the following.

The Extremal River Problem. Given n observations X = {x1+ε1, . . . , xn+
εn} in R

V , where the xi are generated via (3), and the εi are independent noise
variables in R

V , find T .

We stress that the root-directed tree assumption is different from the usual tree in
Bayesian networks, where each child has at most one parent. Learning the single-parent
tree can be done with the message passing algorithm, which recursively identifies the
parent of a node through likelihood calculations (Wainwright and Jordan, 2008). This
strategy does not work for the root-directed tree, since each child can have multiple
parents.

2.2. Intuition of QTree
In general, learning Bayesian networks with more than one parent is NP-hard, see
(Chickering, 1996). However, learning the max-linear Bayesian network from i.i.d noise-
free observations is solvable in time O(|V |2n) with O(|V |(log(|V |))2) observations (cf.
Lemma S1 in the Supplementary Material). Here is the intuition.

Fix an edge j → i and consider the noise-free model (3). If for an observation x ∈ R
V

the value at j causes that at i, then xi = cij+xj . If j does not cause i, then xi > cij+xj .
Over n independent observations, if the value at j causes the value at i at least twice,
then the distribution of xi−xj has an atom at its left-end point. Repeating this argument
shows that if j causes k and k causes i, then one also has xi − xj = cik + ckj . That is, if
the sample X is noise-free, the empirical distribution of

Xij := {xi − xj : x ∈ X} (4)

has for sufficiently many observations multiple values at the minimum of its support if
and only if j  i. Thus, with enough observations, one can recover the directed path
j  i, from which T can be uniquely constructed as it is a root-directed tree.

QTree exploits the above intuition and makes it work under the presence of noise.
Consider an ordered pair of nodes (j, i) ∈ V . If the noise at i is small relative to the
signal at j, one can expect a concentration near the minimum of Xij if and only if j  i.
This is the intuition of QTree. While we have no control over the noise, one way to
obtain ‘strong signals xj ’ is to replace (4) by the set

Xij(α) := {xi − xj : x ∈ X , xj > QXj
(α)}, (5)

where QXj
(α) is the α-th quantile of the empirical distribution of X in the j-th coordi-

nate. For α > 0, this amounts to a transformation of Xij that amplifies its concentration
near the minimum, at the cost of keeping only a fraction of the available observations
(cf. Figure 1).
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n · (1− α) for all pairs (i, j) and the algorithm would return the exact same tree T̂ as if
the concentration measure was defined without dividing by nij .

We note that there are other choices for a concentration measure, such as the empirical
lower quantile gap,

wij(r, r) :=
1

nij

(

QXij(α)(r)−QXij(α)(r)
)2
, (7)

where 0 < r < r < 1 is a fixed pair of quantile levels. If r is small, then wij(r, r) is
a local measure of concentration in the lower tail of Xij(α). Note that, if the number
of observations is small, then r cannot be too small, so the two empirical concentration
measures are in fact rather similar on a real data set. In practice, the lower quantile gap
has one more parameter to tune, and thus we choose the quantile-to-mean gap as our
default.

Remark 1. Observe that both concentration measures, (6) and (7), are translation
invariant. Consequently, considering log data, both measures are invariant to scaling.

Algorithm 1 QTree for fixed parameters

Parameters: r ∈ (0, 1), α ∈ [0, 1).
Input: data X = {x1, . . . , xn} ⊂ R

V .

Output: a root-directed spanning tree T̂ on V .

1: for j → i, j, i ∈ V, j 6= i do
2: Compute wij(r) by (6).

3: Compute T̂ := minimum root-directed spanning tree on the directed graph (V,G)
with score matrix W = (wij(r)) ∈ R

V×V with Chu–Liu/Edmonds’ algorithm with
variable root.

4: Return T̂

Remark 2. Given a score matrix W (equivalently a bidirected graph) and a unique
root (the initial node), Chu–Liu/Edmonds’ algorithm (see Gabow et al. (1986) and
Grötschel et al. (1988), Sections 7.2 and 8.4 for more background) finds a minimum
directed spanning tree; i.e., a network of minimum score with

∑

j:j→i∈T̂ wij(r) as small
as possible. As we want a minimum root-directed spanning tree, we simply reverse edge
directions. Moreover, we run the algorithm for every possible node as root, and take a
tree with minimum score. Finally, provided that all scores are different, the algorithm
finds a unique minimum root-directed spanning tree.

2.3.1. Theoretical properties of QTree

We prove consistency of Algorithm 1 under natural conditions on the distribution of the
innovations. We focus on the structural tree model of a max-linear Bayesian network
as introduced in Gissibl et al. (2018) taking i.i.d. innovations with Frechét distribution
function P (Zi ≤ x) = e−x

−α

, x > 0, for α > 0. Then, using the solution of (2) given
in Theorem 2.2 of Gissibl and Klüppelberg (2018), by max-stability (e.g. Embrechts
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et al. (1997), Section 3.2), X is multivariate Fréchet distributed with marginals as in
Proposition A.2 of Gissibl et al. (2018)):

P (Xi ≤ x) = exp{−(xiµi)
−α}, x > 0,

for µi =
(
∑

j:j i,j=i cji
α
)−1/α

. Taking logarithms of the Xi is equivalent to taking

logarithms of the innovations Zi with P (log(Zi) ≤ x) = exp{−e−x/β}, x ∈ R, for β :=
1/α > 0. This results in a Gumbel model

P (Xi ≤ x) = exp{−e−(x−µi)/β}, x ∈ R .

Therefore, for log data, the Xi are Gumbel(β, µi) distributed with scale β := 1/α and
location µi.

Instead of taking the logarithmic analog of a Generalised Fréchet model as often done
in the literature, we prefer instead to add a small independent noise to the max-linear
Bayesian tree model (3) with Gumbel(β, 0) innovations. This motivates the noise model

Xi =
(

∨

j:j→i∈T

(cij +Xj) ∨ Zi
)

+ εi, cij , Zi, εi ∈ R, i ∈ V. (8)

with the following innovation-noise distributions:

Gumbel-Gaussian noise model. For i ∈ V , the innovations Zi are i.i.d.
Gumbel(β, 0), the noise variables εi are i.i.d with symmetric, light-tailed den-
sity fε satisfying

fε(x) ∼ e−Kx
p

as x→ ∞, (9)

for some p > 1 and γ,K > 0 and the derivative of fε exists in the tail
region. Throughout, for two functions a, b, positive in their right tails, we
write a(x) ∼ b(x) as x → ∞ for limx→∞ a(x)/b(x) = c, where c > 0 is some
arbitrary constant.

Remark 3. The density fε in (9) belongs to a special class of light-tailed densities
whose convolution tail can be derived asymptotically (Balkema et al., 1993). The family
includes the Gaussian (p = 2), and though it is strictly more general than the Gaussian,
we follow Balkema et al. (1993), and call our noise model Gumbel-Gaussian for ease of
reference. Condition (9) guarantees that the upper tail of εi − εj is lighter than that of
Zi − Zj (cf. Lemma S4 in the Supplementary Material).

Theorem 1 below, proved in Section S2 of the Supplementary Material, says that
under the Gumbel-Gaussian noise model, both quantile-to-mean and lower quantile gap
produce together with Chu-Liu/Edmonds’ algorithm strongly consistent estimators for
the true root-directed spanning tree T for appropriate choice of parameters. Simulation
results (cf. Figure 2) indicate that the error scales as O(1/n) for any fixed graph size
|V | = d. In particular, for a large graph with d = 100, QTree only needs n = 200
observations to bring the metrics nSHD to less than 5% and TPR to more than 95%;
see definitions in (1).

We are now ready to state our main theorem. Observe that while α as in (5) is an
important tuning parameter, asymptotically it does not matter as the consistency holds
for α = 0; i.e., by taking the full set of observations.
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Fig. 2. 1/(mean errors) vs. number of observations n for different graph sizes d = 30, 50, 100.

We simulated 100 root-directed spanning trees as described in Section 5, where we use the

Gumbel-Gaussian setting (1). Then we applied QTree Algorithm 1 with quantile-to-mean gap

(7) with r = 0.05 and α = 0 to estimate the true (simulated) tree, and computed the average

error as measured by 1-TPR (left) and nSHD (right) given in (1).

Theorem 1 (Consistency Theorem). Assume the Gumbel-Gaussian noise model (8)
with distributions specified above.
(a) There exists an r∗ > 0 such that for any pair 0 < r < r < r∗, the QTree algorithm
with score matrix W = (wij) defined by the lower quantile gap wij(r, r) in (7) returns a
strongly consistent estimator for the tree T as the sample size n→ ∞.
(b) There exists an r∗ > 0 such that for any 0 < r < r∗, the QTree algorithm with score
matrix W = (wij) defined by the quantile-to-mean gap wij(r) in (6) returns a strongly
consistent estimator for the tree T as the sample size n→ ∞.

Remark 4. [When QTree may fail] To understand why a condition like (9) is necessary,
suppose that V = {1, 2} and that the true graph is 1 → 2. Let F21 be the distribution
function of (ε2 − ε1) + (Z2 − Z1) ∨ c21. The lower tail of F21 essentially is the lower
tail of (ε2 − ε1), while the upper tail is essentially the upper tail of the convolution
(ε2 − ε1) + (Z2 − Z1), which is dominated by the signal (Z2 − Z1) if it is the heavier
tail, and otherwise it is dominated by the noise (ε2 − ε1). Since (ε2 − ε1) has symmetric
distribution, if the noise term dominates the distribution, w12 ≈ w21 and it would be
impossible to distinguish the edge 1 → 2 from the edge 2 → 1. If the signal dominates,
the asymmetry between the lower and upper tails of F12 lends us the crucial inequality
to distinct between the two graphs as illustrated in Figure 1.

The argument extends to d > 2 for a graph with only one directed path. Then it
is not possible to distinguish the direction from a symmetric score matrix. However,
for a realistic matrix with real-valued entries, Chu–Liu/Edmonds’ algorithm outputs an
approximately correct root-directed tree. Intuitively, reversing every edge direction gives
the same score but is generally not a root-directed tree. 2

2.4. Parameter tuning by bootstrap aggegation

Algorithm 1 has two parameters: the quantile r ∈ (0, 1) and the cut-off quantile α ∈
(0, 1). If data came from a noise-free max-linear Bayesian tree, then we should select
r = 0 as small as possible, 1 − α = 1, and fit QTree on all of the available data X .



Estimating a Directed Tree for Extremes 11

Algorithm 2 Auto-tuned QTree

Parameters: subsampling fraction f ∈ [0, 1], number of subsamples m ∈ N, a set of
parameters Θ = {(r, α)} ⊂ [0, 1)2 to search over.
Input: data X = {x1, . . . , xn} ⊂ R

V .
Output: the optimal parameter (r∗, α∗) ∈ Θ and the corresponding root-directed

spanning tree T̂max on V .

1: for (r, α) ∈ Θ do

2: for ` = 1, . . . ,m do

3: Sample without replacement a random subset X ` of n · f observations from
X .

4: Let T ` be the output of QTree(r, α) fitted on X `.

5: Let T(r, α) = {T ` : ` = 1, . . . ,m}
6: Compute S(T(r, α)) by (12).
7: Compute E(T(r, α)) as the maximum root-directed spanning tree of S(T(r, α))

per Lemma 1.
8: Compute Var(T(r, α)) by (11)

9: Define (r∗, α∗) := argmin{Var(T(r, α)) : (r, α) ∈ Θ}.

10: Return the optimal pair (r∗, α∗) and T̂max := E(T(r∗, α∗)).

However, due to the presence of noise, setting r too small and 1 − α too large would
make the estimator volatile to large values of the noise variables.

In this section, we propose in a first step a subsampling procedure to stabilize the
tree estimator of Algorithm 1 and, in a second step, automatically choose r and α in
QTree. This results in Algorithm 2, which we also refer to as auto-tuned QTree.

The basic idea is to run an algorithm on multiple subsets of the data, and then average
the resulting estimator. This subsampling approach is also called bootstrap aggregation
or bagging; see (James et al., 2013, Section 8.2.1) and (Politis et al., 1999) for a variety of
subsampling procedures. Since QTree outputs a directed tree as its estimator, which is a
combinatorial object, one cannot simply take the average of their adjacency matrices, as
that would not produce a tree. Instead, we see the set of output trees as a distribution
over trees. Then, we solve a second problem, namely, to find the centroid tree E(T) of
this distribution, defined as that tree which minimizes the expected Hamming distance
to a typical tree (cf. Definition 1). Lemma 1 below proves that the centroid can be
computed with another application of Chu–Liu/Edmonds’ algorithm. This ensures that
the estimator produced by auto-tuned QTree can be computed quickly (cf. Lemma 2).

Our key indicator for model performance is variability in the estimated tree, that is,
whether the tree T̂ and its reachability graph R̂ output by QTree would change signifi-
cantly if we fit it to different subsamples of the data. Here, we denote the reachability
graph R̂ of T̂ as the graph that results from drawing an edge between a pair (j, i) when-

ever there is path from j to i in T̂ . We propose the following definition of variability for
a distribution of root-directed spanning trees.

Definition 1. Let V be a set of nodes and T = {T 1, . . . , T m} a collection of root-directed
spanning trees on V , and let R = {R1, . . . ,Rm} be their corresponding reachability
graphs. The centroid of T, denoted E(T), is the root-directed spanning tree on V that
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minimizes the sum of normalized structural Hamming distances dH defined in (1) as
follows:

E(T) := arg min
T ∈Ψ

m
∑

i=1

dH(T , T
i), (10)

where Ψ is the space of root-directed spanning trees on V .
Let E(R) denote the reachability graph of E(T). Let eT be the number of edges of

E(T), and eR be the number of edges of E(R), respectively. We define the variability of
T, denoted Var(T), as

Var(T) :=
1

eT

1

m

m
∑

i=1

dH(T
i, E(T)) +

1

eR

1

m

m
∑

i=1

dH(R
i, E(R)). (11)

Involving the Hamming distance of the reachability graphs in (11) penalizes the
situation where T i and E(T) differ in a few edges low down in the tree, for example, if
they have different roots. Such a difference would lead to a small structural Hamming
distance between the two trees, but a large structural Hamming distance between their
reachability graphs, and in particular, very different river networks.

The following lemma says that E(T) is a maximum root-directed spanning tree of a
particular graph with score matrix S(T) that measures the stability among the trees in
T. In particular, E(T) can be computed using Chu–Liu/Edmonds’ algorithm (choosing
the root realizing the minimum score), and thus Var(T) can be computed in polynomial
time.

Lemma 1. Let V be a set of nodes and T = {T 1, . . . , T m} a collection of root-directed
spanning trees on V . Define the stability score matrix S := S(T) ∈ R

d×d
≥0 by

sij := S(T)ij := #{T ∈ T : j → i ∈ T }. (12)

Suppose that the maximum root-directed spanning tree Tmax of the graph on V with score
matrix S(T) is unique. Then E(T) = Tmax.

Proof. Identify a root-directed tree T with the vector T = (Tuv) ∈ {0, 1}|V |2−|V |. Write
1 = (1uv) for the all-one vector of the same dimension. Let T ′ ∈ Ψ be any root-directed
spanning tree on V . Our goal is to show that

m
∑

i=1

dH(T
′, T i) ≥

m
∑

i=1

dH(Tmax, T
i),

which would establish that Tmax = E(T) by (10). Indeed,

m
∑

i=1

dH(T
′, T i) =

m
∑

i=1

∑

u,v∈V :u 6=v

1{T ′
uv 6= T iuv} =

∑

u,v∈V :u 6=v

m
∑

i=1

1{T ′
uv 6= T iuv}

=
∑

u,v∈V :u 6=v

(suv1u→v/∈T ′ + (m− suv)1u→v∈T ′)

=− 2〈S, T ′〉+ 〈S,1〉+ 〈m1, T ′〉 where 〈·, ·〉 denotes the Frobenius inner product
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=− 2〈S, T ′〉+ 〈S,1〉+m(d− 1) since T ′ as root-directed spanning tree has d− 1 edges

≥− 2〈S, Tmax〉+ 〈S,1〉+m(d− 1)〉 by definition of Tmax

=− 2〈S, Tmax〉+ 〈S,1〉+ 〈m1, Tmax〉〉 since Tmax is a spanning tree on V

=

m
∑

i=1

dH(Tmax, T
i).

As shown in Lemma S2 of the Supplementary Material, Algorithm 1 runs in time
O(|V |2n). The quadratic dependence on |V | and linear dependence on n is optimal,
since it takes O(|V |2n) just to compute pairwise statistics such as the concentration
measures in (6) or (7) for every pair of nodes. Similarly, the runtime of Algorithm 2
(auto-tuned QTree) also has optimal runtime, which scales linearly with the number of
repetitions m and the size of the parameter grid |Θ|.

Lemma 2. The auto-tuned QTree Algorithm 2 has complexity O(|V |2nm|Θ|).

Proof. For each pair (r, α) ∈ Θ, step 3 takes O(mn) and step 4 takes O(|V |2nm) by
Lemma S2 in the Supplementary Material. Step 6 takes O(m|V |2), and step 7 takes
O(|V |2) by Chu–Liu/Edmonds’ Algorithm. Computing the reachability graph for a
root-directed tree on |V | nodes takes O(|V |), so step 8 takes O(m|V |2), since for each of
them trees in T we need to compute its structural Hamming distance from the estimated
tree E(T). So, for each pair (r, α) ∈ Θ, steps 3 to 8 take O(|V |2nm) time. Thus overall,
the algorithmic complexity is O(|V |2nm|Θ|).

3. Data description

We focus on river discharge data in two river networks, the Upper Danube network with
data from Bavaria, Germany, and the Lower Colorado network in Texas, USA. Large
flood events are classical examples for high risk analysis. The Danube data as well as
the data of all three sectors of the Colorado are available in the Python package QTree

(Tran (2021)). The Danube data are available in the R package graphicalExtremes

(Engelke et al. (2019)).
In general, river discharges across a set of stations is recorded multiple times per

hour and some preprocessing is needed to turn the raw data into independent extreme
discharge data. This was detailed in Asadi et al. (2015) for the Danube data; cf. Figure 3.
We follow their procedure (descibed in Section 3.1) with slight modifications for the
Colorado data (descibed Section 3.2).

3.1. The Upper Danube network

The Danube network data consist of measurements collected at d = 31 gauging stations
over 50 years from 1960 to 2009 by the Bavarian Environmental Agency (http:www.gkd.
bayern.de). Preprocessing the data, Asadi et al. (2015) first take daily mean values in
each time series. The idea is then to find non-overlapping time windows of p days,
centered around the observation of maximal rank across all series. For the Danube, the
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Fig. 3. Topographic map of the Upper Danube Basin, showing sites of the 31 gauging stations

along the Danube and its tributaries.

authors choose p = 9 days (±4 days around the observation of maximal rank). For
each time series, they then take the maximum within the given time window, delete the
data of this window, and proceed until no window of p consecutive days remains. In
order to reduce temporal non-stationarities and the effect of snow melt, only the months
June, July and August are considered. This results in n = 428 observations from a
d = 31-dimensional random vector whose i-th entry corresponds to the maximum water
discharge at the i-th station, observed within a 9-day window where at least one station
witnessed a large discharge value; these observations are assumed to be independent.

3.2. The Lower Colorado network in Texas

This section describes the new data set of the Lower Colorado river network in Texas
collected by the Lower Colorado River Authority (LCRA, https://www.lcra.org/) and
details the preprocessing.

The Lower Colorado is one of the major rivers in Texas. Flowing through major pop-
ulation centers such as Austin, the state capital of Texas, flood and drought mitigation
in the Lower Colorado Basin is of prominent interest. A particularly challenging feature
of the Lower Colorado is prolonged drought (discharge of 0) followed by flash flooding
which can damage sensors, resulting in loss of data over multiple days (cf. Figure 4).
This makes the Lower Colorado data much more challenging than the Danube data.

The river discharges at the Lower Colorado network, measured in cubic feet per
second (cfs), are collected multiple times per day at a total of 104 stations around the
Colorado River and its tributaries in Texas from the 1st of December 1991 to the 14th
of April 2020 (10,363 days); see Figure 5. We do not take into account 5 nodes of
the Blanco River and San Bernand River, which are not flow-connected to the Lower
Colorado River, and also 21 nodes with zero observations. Moreover, we exclude the
nodes 5476, 5634, 5635, 6397, and 6533 as they are located close to hydropower plants.
This gives a total of 73 nodes.
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Table 1. Number of nodes d, number of observations n
and percentage of missing data used for the algorithmic

reconstruction of the river network.

Danube Top Middle Bottom Bottom150
d 31 9 12 21 16
n 428 975 972 961 961
% 0% 18% 27% 37% 22%

Table 2. Optimal parameters α∗ selected by QTree using

grid search with subsampling.

Danube Top Middle Bottom Bottom150
α∗ 0.775 0.825 0.75 0.85 0.725

rate f = 0.75, and number of repetitions m = 1000 to choose the tuning parameter α
automatically from {0.7, 0.725, 0.75, , . . . , 0.9}. The optimal parameters α∗ selected by
QTree for these networks are shown in Table 2.

Figures 6—8 show the estimated trees of the Danube, Top, Middle and Bottom
sectors of the Colorado, respectively. We do two estimated-vs-true comparisons: one
for the tree, and one for its reachability graph. The four metrics we use are normalized
Structural Hamming Distance (nSHD), False Discovery Rate (FDR) and False Positive
Rate (FPR) and True Positive Rate (TPR), defined in (1). Table 3 gives all performance
metrics over all data sets. We recall that the performance of an algorithm is better the
smaller the first three metrics are and the larger TPR is. QTree performs very well
across all data sets, with nSHD and FDR ranging from 10-20%, FPR close to 0, and
TPR around 80-90%. For the reachability graph, the statistics are even better: nSHD,
FPR and FDR are below 9% and TPR is over 87%. In other words, a wrongly estimated
edge directs rather from an ancestor (which is not a parent) to a child (flow-connection
is preserved), than a spurious edge (an edge which contradicts flow-connection). The
number of missing edges are determined by the fact that a tree has exactly d− 1 edges.

Figure 8(top) visualizes the estimation of the Bottom sector of the Colorado. As
expected, this data set is the most challenging due to large portions of missing data
and the clustering of nodes around the city of Austin. Nevertheless, even for this data
set the estimated tree has only two spurious edges, between 6537 and 24 and between
42 and 5525. Both of these node pairs are physically close. All the remaining wrongly
estimated edges are flow-connected.

We note that the majority of errors made by QTree involves nodes with less than 150
observations (which are the nodes 5525, 5450, 5423, 5435 and 5524). This is not at all
surprising. The model was fitted to only 75% of the data, and the optimally chosen α∗

is 0.85, which means that for each edge involving one of the above nodes, the number of
observations available to QTree is at most 150×0.75×0.15 = 14. To check the hypothesis
that this threshold is too small for QTree to perform reliably, we excluded all nodes with
less than 150 observations and refitted QTree on the remaining 16 nodes (Bottom150).
The result depicted in Figure 8(bottom) shows significant improvements. This manifests
another desirable feature of QTree, namely, that it relies on local (pairwise) estimation,
and thus changes to the node set in one part of the tree do not affect the estimated
network elsewhere.
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Table 3. Metrics nSHD, FPR, FDR and TPR for the QTree. Numbers

display the respective metric for the pair (T , T̂ ) and numbers in brackets

for the pair (R, R̂) of their respective reachability graphs.

Danube
Colorado

Top Middle Bottom Bottom150
nSHD 0.18(0.09) 0.13(0.02) 0.09(0.06) 0.45(0.15) 0.10(0.12)
FPR 0.01(0.02) 0.04(0.00) 0.02(0.04) 0.05(0.03) 0.02(0.02)
FDR 0.20(0.05) 0.13(0.00) 0.09(0.10) 0.50(0.02) 0.13(0.02)
TPR 0.80(0.87) 0.88(0.95) 0.90(1.00) 0.50(0.74) 0.87(0.78)

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 23 24 20 21 22

30 31 25 26 27

16 17 18 19

28 29

e = j i : e ∈ T̂ ∩ T

e = j i : e ∈ T̂ ∩ R \ T

e = j i : e ∈ T̂ \ R

e = j i : e ∈ T \ T̂

Fig. 6. Danube river network, estimated by QTree vs. true. Solid (green) edges are correct.

Dashed (green) edges are not in the tree but in the reachability graph, that is, the causal direc-

tion or flow-connection is correct. Squiggly (red) edges are spurious (neither in the tree nor in

the reachability graph). Dotted (black) edges are in the true tree, but not in the estimated tree.

QTree outputs a tree with only six wrongly estimated edges, four of them flow-connected and

one path skipping a single node (the edge 8 → 6 skips node 7). Two edges are spurious.

As expected from a statistical estimation procedure, the statistical choice of the
parameter selection by QTree does not always output the best result on every data set.
However, it fails only by very few edges to the graph estimated with the best choice
of parameters. For example, for the Danube the parameter α = 0.75 (instead of the
optimal α∗ = 0.775) would have lead to a better result (cf. Figure 9). Also for the Top
Colorado, α = 0.9 would have given perfect recovery of the true network; this is clear as
all four metrics become optimal (Figure S4 of the Supplementary Material).

In summary, on all four data sets considered, QTree performed well for nodes with a
sufficient number of observations as becomes obvious from Figure 8(top) and (bottom).
The estimated optimal parameter α∗ is either the best one (i.e., the corresponding es-
timated tree is best across all α) (Top and Bottom sectors of the Colorado), or such
that it is within one to two wrong edges of the best one (Danube and Top sector of
the Colorado). The method can handle data with missing observations and close spatial
proximity between nodes.
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Fig. 7. Top (left) and Middle (right) sectors of the Colorado network, estimated by QTree vs.

true. Node colors represent the amount of available data after taking care of missing data.

Arrows are as described in Figure 6. Both estimated networks only contain one single wrongly

estimated edge. Top: one edge wrong but flow-connected; Middle: one edge spurious.



20 Ngoc M. Tran, Johannes Buck and Claudia Klüppelberg
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Fig. 8. Bottom sector of the Colorado network (Bottom and Bottom150), estimated by QTree

vs. true. Top Figure: Bottom, based on all 21 nodes, QTree outputs a tree with ten wrongly

estimated edges, eight of them flow-connected, two spurious edges pointing in the wrong di-

rection. Bottom Figure: Bottom150, based on 16 nodes, after removing nodes with less than

150 observations. There are only two wrongly estimated edges, one flow-connected, one spu-

rious edge pointing in the wrong direction. Compared to the Bottom sector, this is a significant

improvement. Node colors represent the amount of available data after taking care of missing

data. Arrows are as described in Figure 6

.
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1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 23 24 20 21 22

30 31 25 26 27

16 17 18 19

28 29

QTree

nSHD 0.13(0.06)

FPR 0.01(0.01)

FDR 0.13(0.02)

TPR 0.87(0.90)

Fig. 9. Danube river network, estimated by QTree vs. true for α = 0.75. Compared to Figure 6,

the edges 15 → 14 and 14 → 2 are here correctly estimated. Also the performance measures

at the right bottom of the figure compare favourably to those in the first row of Table 3.
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4.2. Comparison to other scores in the literature

We compare QTree and auto-tuned QTree with existing algorithms for extremal causal
estimation in the literature. To this end, we first define the scores and summarize them
in score matrices. We utilize the empirical versions of the following extreme dependence
measures, where we also include the quantile-to-mean gap for comparison:

(a) The empirical quantile-to-mean gap as in (6) for fixed (r, α) = (0.05, 0.9). We fix
r = 0.05 as we have used this throughout, and α = 0.9 as an arbitrary parameter.

(b) The causal tail coefficient Γij = limu→1 E[Fi(Xi) | Fj(Xj) > u] (Gnecco et al.,
2021, eq. (3)). Observe that in Gnecco et al. (2021), the algorithm EASE outputs
from the estimated score matrix Γ an estimated causal order of the set of nodes,
not a directed graph.

(c) The causal score Sext
ij is based on expected quantile scores (Mhalla et al., 2020,

eq. (15)).§ The goal of the authors is to discover causality in a directed graph
modelled by flow-connection. The scores Sext

ij satisfy Sext
ji +Sext

ij = 1 and an extreme

observation at node j causes an extreme observation at node i, whenever Sext
ij > 0.5.

The authors propose a bootstrap method to generate 95% confidence bounds to
guarantee that the score is larger than 0.5. All these scores are interpreted as
directed edges between nodes. Also for the tree example of the Danube data treated
in Section 5 of the paper (cf. Figure 7). The algorithm CausEV outputs flow-
connections induced by all scores larger than 0.5. Thus, their causal edges rather
resemble the edges in the reachability graph of the tree.

(d) The tail dependence coefficient χij = limu→1 P (Fi(Xi) > u | Fj(Xj) > u), also
called extremal correlation. It goes back to Sibuya (1960); see also (Coles et al.,
1999). We add this dependence measure in our comparison as it is the classic one,
having been used for more than 60 years in multivariate extreme value statistics.
Theoretical properties of the tail dependence coefficient in a max-linear Bayesian
network have been investigated in Gissibl et al. (2018). It has values in [0, 1] and a
large value of χij indicate strong extreme dependence. Its empirical estimator takes
u large, but finite, and our estimator is based on 10% of the data (corresponding
to α = 0.9 in (a)). The paper Engelke and Volgushev (2020) uses χ and two
related measures on p. 14, the extremal correlation, the extremal variogram and the
combined extremal variogram for estimating undirected trees with Prim’s algorithm
Prim (1957).

The scores discussed (b)-(d) have not been used to estimate a directed tree, but
as they are all pair-wise scores, their respective estimated matrices can serve as input
for Chu–Liu/Edmonds’ algorithm. This gives a fair comparison, as we use then for
all scores the knowledge that the true graph is a root-directed spanning tree. A few
words on the estimation of the matrices Γ and Sext are necessary to fully understand the
estimation procedure. For better comparability, we estimate the score matrix Γ also for
the declustered Danube data. For the causal score Sext

ij we recall that a spanning tree
with d nodes has exactly d− 1 edges, which are taken by Chu–Liu/Edmonds’ algorithm
as large as possible under the restriction that the outcome is a spanning tree. The

§We want to thank Linda Mhalla for helping us to set up the CausEv implementation.
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Table 4. Metrics nSHD, FPR, FDR and TPR for the simple QTree Algo-

rithm 1 with α = 0.9. Numbers display the metrics for the pair (T , T̂ )
and numbers in brackets for the pair (R, R̂) of their respective reachability

graphs.

Danube
Colorado

Top Middle Bottom Bottom150
nSHD 0.35(0.25) 0.13(0.02) 0.27(0.11) 0.48(0.57) 0.23(0.26)
FPR 0.01(0.02) 0.02(0.00) 0.02(0.03) 0.03(0.15) 0.02(0.01)
FDR 0.40(0.14) 0.13(0.00) 0.27(0.19) 0.60(0.58) 0.27(0.02)
TPR 0.60(0.64) 0.88(0.95) 0.72(1.00) 0.40(0.23) 0.73(0.59)

Table 5. Metrics nSHD, FPR, FDR and TPR presented as in Table 3 for

the maximum root-directed spanning tree estimated by Chu–Liu/Edmonds’

algorithm with score matrix Γ as in Gnecco et al. (2021), eq. (8).

Danube
Colorado

Top Middle Bottom Bottom150
nSHD 0.53(0.58) 0.25(0.42) 0.45(0.17) 0.60(0.71) 0.53(0.67)
FPR 0.02(0.18) 0.05(0.12) 0.04(0.03) 0.04(0.17) 0.04(0.27)
FDR 0.73(0.71) 0.38(0.40) 0.45(0.21) 0.70(0.78) 0.67(0.83)
TPR 0.27(0.37) 0.63(0.43) 0.55(0.88) 0.30(0.10) 0.33(0.12)

Table 6. Metrics nSHD, FPR, FDR and TPR presented as in Table 3 for

the maximum root-directed spanning tree estimated by Chu–Liu/Edmonds’

algorithm with score matrix Sext as in Mhalla et al. (2020), eq. (15).

Danube
Colorado

Top Middle Bottom Bottom150
nSHD 0.88(0.60) 0.63(0.36) 0.73(0.41) 0.95(0.75) 0.80(0.65)
FPR 0.03(0.10) 0.08(0.18) 0.07(0.12) 0.05(0.12) 0.05(0.17)
FDR 0.90(0.60) 0.63(0.43) 0.73(0.52) 0.95(0.68) 0.80(0.68)
TPR 0.10(0.33) 0.38(0.57) 0.27(0.76) 0.05(0.12) 0.20(0.17)

Table 7. Metrics nSHD, FPR, FDR and TPR presented as in Table 3 for

the maximum root-directed spanning tree estimated by Chu–Liu/Edmonds’

algorithm with score matrix χ as in Sibuya (1960) or Coles et al. (1999).

Danube
Colorado

Top Middle Bottom Bottom150
nSHD 0.35(0.54) 0.50(0.26) 0.77(0.78) 0.92(0.54) 0.80(0.51)
FPR 0.02(0.21) 0.06(0.25) 0.07(0.33) 0.05(0.27) 0.06(0.30)
FDR 0.47(0.69) 0.50(0.45) 0.82(0.93) 0.95(0.69) 0.87(0.69)
TPR 0.53(0.48) 0.50(0.76) 0.18(0.18) 0.05(0.26) 0.13(0.28)
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Dashed lines present nSHD for the reachability matrix of the estimated trees vs. true.
Here auto-tuned QTree and QTree give the same answers as for the trees above. The
blue dashes line representing Γ is only moderately worse than the magenta line for QTree
for the Middle and Bottom sector of the Colorado. χ is worst for the Middle Colorado,
for the Danube and the other sectors of the Colorado it performs better than Γ and Sext.

We conclude that for the Danube as well as for the various sectors of the Colorado,
auto-tuned QTree outperforms uniformly all algorithms without the stabilizing subsam-
pling procedure; see Figure 11. Moreover, the QTree score outperforms the other scores
when applying Chu-Liu/Edmonds’ algorithm, therefore we conclude that the quantile-
to-mean gap (6) is superior to the other scores on all data sets considered.

5. A small simulation study

Our main result, Theorem 1 ensures strong consistency of the output trees of QTree

when the sample size n tends to infinity. In this section we show the quality of QTree
through the two metrics nSHD and TPR for varying n and d by a small simulation study.

We generate data X from a max-linear Bayesian tree as defined in equation (3) with
|V | = d nodes. For each node i, we calculate the sample standard deviation σ̂Xi

of
(X1

i , . . . , X
n
i ) and take the sample median σ̂ over all nodes 1, . . . , d. We then generate

i.i.d. normally distributed noise variables εti with mean zero and standard deviation k · σ̂
for i ∈ V and t = 1, . . . , n. For the noise-to-signal ratio k, we choose k = 30%.

We generate root-directed spanning trees as follows. We first generate a random
undirected spanning of size d using the graph generators module networkX (Release
2.8.8) in Python (Hagberg et al., 2008). We then choose the root node uniformly at
random which uniquely determines the root-directed spanning tree. Finally, we assign
edge weights cij independently.

For the distributions of the innovations Z1, . . . , Zd and the edge weights cij , we con-
sider the following three settings:

(1) Innovations Z1, . . . , Zd are independent Gumbel(1, 0) distributed and for every
edge, we draw an edge weight cij from the interval [log(0.1), log(1)] uniformly.
We refer to this as the standard Gumbel setting.

(2) Innovations Z1, . . . , Zd are independent Gumbel(1, 0) distributed and for every
edge, we draw an edge weight cij from the interval [log(0.1), log(0.3)] uniformly.
We refer to this as the weak dependence setting.

(3) 50% of the innovations Z1, . . . , Zd are Gumbel(1, 0) and 50% are N (0, 1). For every
edge, we also draw an edge weight cij from the interval [log(0.1), log(1)] uniformly.
We refer to this as the mixed distribution setting.

For the score, we take the quantile-to-mean gap as in (6) (normalization by nij is not
needed in a simulation setting) given by

wij(r) :=
(

E(Xij(α))−Qχij(α)
(r)

)2

and apply the QTree Algorithm 1 with parameters r = 0.05 and α = 0; we remark that
a sensitivity analysis has shown that altering r influences the results only insignificantly.
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We use graph sizes d = 10, 30, 50, 100 and 100 repetitions. For each repetition, we
calculate the normalized Structural Hamming Distance (nSHD) and the True Positive
Rate (TPR), and then take the mean over all 100 repetitions. For definitions of these
metrics, see equation (1). Observe that both metrics are normalized to lie in the interval
[0, 1] and for nSHD smaller values are better, whereas for TPR larger values are better.

As QTree performs so well not only on simple data like those from the Danube
network, but also on all sectors of the Colorado network, we guess that it is fairly
robust towards the strength of dependence, given by the cij and even different node
distributions. The weak dependence setting (2) should manifest whether QTree is also
able to recover the underlying network if the dependence given by the weights cij is
much much smaller. We want to quantify robustness towards node distributions with
the mixed distribution setting (3).

Figures 12 and 13 depict the mean nSHD and TPR standard Gumbel setting (1) and
all four graph sizes. Both metrics quickly tend to zero, respectively one, as the sample
sizes n increase. Moreover, comparing the four subfigures for a fixed sample size n, the
metrics perform only slightly worse for increasing graph size d.

Figures S8 and S9 in Section S4 of the Supplementary Material depict the mean
nSHD and TPR for the weak dependence setting (2) and all four graph sizes. Again,
both metrics quickly tends to zero, respectively one. In comparison to the previous
setting (1), it performs slightly worse.

Figures S10 and S11 in Section S4 of the Supplementary Material depict the mean
nSHD and TPR for the mixed distribution setting (3) and all four graph sizes. De-
spite the different distributions of the innovations, both metrics quickly tend to zero,
respectively one. The performance compared to settings (1) and (2) is expectedly worse,
however, less than perhaps could be expected.

The decrease in performance for increasing graph size d is presented in Figure 14,
where we plot the minimum amount of data n needed to reach a mean nSHD of 10%.
The first observation is that larger networks need a larger sample size to reach a nSHD
below 10%. Since larger networks have more opportunities for a wrongly estimated
causal influence, this is in line with what we expect. Moreover, the standard Gumbel
setting (1) converges much faster than both other settings. Although the weights cij of
setting (2) are in general much smaller than the weights of setting (1), only for a very
large graph, substantially more data are needed to reach the lower bound for the nSHD.
This implies that the smaller dependence impacts the estimation for a small graph only
moderately, but for a larger graph more data are required. The mixed distribution
setting (3), however, requires for increasing sample size substantially more data. This
is also in line with our expectation as this makes the discrimination between signal and
noise more difficult.

To summarize the results of our simulation study, QTree is sensitive to weaker depen-
dence, but much more sensitive to the tail behavior of innovations/noise distributions.

We conclude that QTree works for sufficiently many observations very well even for
limited data, across different dependence structures in the tree, and different distribu-
tions at the nodes.
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In particular, C∗ can be computed in time O(|V |2n). If for every node, each of the
parents is independently and equally likely to be the one that achieves the maximum,
then the matrix C∗ is recovered exactly for n = O(|V |(log(|V |))2).

Proof. Since a root-directed spanning tree has at most one path between any pair of
nodes (j, i) we have for an edge j → i that c∗ij = cij . Furthermore, as indicated at the
beginning of Section 2.2 in the Paper, if for an observation x the value at j causes that at
i, then xi = c∗ij+xj . If j does not cause i, then xi > c∗ij+xj . Rearranging motivates the
estimator (S2) with properties as stated in (Gissibl et al., 2021, Proposition 1). Equation
(S3) follows from (Gissibl et al., 2021, Lemma 1).

Now we prove the complexity claim. Since there are O(|V |2) many edges, and for
each edge we need O(n) operations to compute the minimum in (S2), the complexity is
O(|V |2n). The number of observations needed, so that each edge is seen at least twice, is
a variant of coupon-collecting (Boneh and Hofri, 1997; Boneh and Papanicolaou, 1996),
where each node must collect two coupons (parents) among its set of parents. Since
the nodes are collecting the coupons simultaneously, by the union bound, the number of
observations needed is at most log(|V |) times the number of observations needed for the
node with highest degree to collect all of its coupons, which in turn is O(|V | log(|V |)).

Lemma S2 (Complexity of QTree). QTree Algorithm 1 runs in time O(|V |2n).

Proof. For each pair i, j ∈ V, i 6= j, to estimate wij , one needs to compute the α-th
quantile of Xj , the r-th quantile and the mean of Xij(α). Since α and r are fixed in
advance, the empirical quantiles can be computed in time O(n), see Musser (1997). As
there are O(|V |2) pairs, computing W = (wij) takes O(|V |2n). Chu–Liu/Edmonds’ al-
gorithm runs on the complete bidirected graph supported byW , and thus takes O(|V |2),
see Gabow et al. (1986). So the complexity of QTree is O(|V |2n+ |V |2) = O(|V |2n).

S2. Proof of the Consistency Theorem

In this section, we prove Theorem 1 of the Paper, which we recall here for ease of
reference.

Gumbel-Gaussian noise model. For i ∈ V , the innovations Zi are i.i.d.
Gumbel(β, 0) (location 0 and scale β), the independent noise variables εi are
i.i.d with symmetric, light-tailed density fε satisfying

fε(x) ∼ e−Kx
p

as x→ ∞, (S4)

for some p > 1 and γ,K > 0 and the derivative of fε exists in the tail
region. Throughout, for two functions a, b, positive in their right tails, we
write a(x) ∼ b(x) as x → ∞ for limx→∞ a(x)/b(x) = c, where c > 0 is some
arbitrary constant.

Theorem S1 (Theorem 1 of the Paper). Assume the Gumbel-Gaussian noise model.
(a) There exists an r∗ > 0 such that for any pair 0 < r < r < r∗, the QTree algorithm
with score matrix W = (wij) defined as the lower quantile gap

wij(r, r) :=
1

nij

(

QXij(α)(r)−QXij(α)(r)
)2

(S5)
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returns a strongly consistent estimator for the tree T as the sample size n→ ∞.
(b) There exists an r∗ > 0 such that for any 0 < r < r∗, the QTree algorithm with score
matrix W = (wij) defined as the quantile-to-mean gap

wij(r) :=
1

nij

(

E(Xij(α))−QXij(α)(r)
)2

(S6)

returns a strongly consistent estimator for the tree T as the sample size n→ ∞.

The proof of this theorem comes in a series of steps. Moreover, for simplicity, we
omit the normalization by nij and the squaring in (S5) and (S6) as this leaves the proof
unchanged. Also we set in the proof α = 0.

As a preliminary result, Lemma S3 identifies a set of ‘good’ deterministic input ma-
trices W = (wij), where if we apply the QTree algorithm to such an input, then it
returns the true tree T exactly. The proof then reduces to the problem of proving that
as n→ ∞, the matrices Wn derived from data converge a.s. to a ‘good’ W . Intuitively,
W is ‘good’ if for each node j, the weight wij is smallest when i is the child of j. For
the root we have a special explicit condition. For each fixed j, we split the set of node
pairs {(j, i) : j, i ∈ V, i 6= j} into three scenarios:

• j  i, that is, i is a descendant j in the true tree,

• i j, that is, i is an ancestor of j in the true tree, and

• i 6∼ j, that is, i is neither of the above.

We first consider the case where W = (wij) is the matrix of lower quantile gaps (S5)
of the true distribution. Note that this W is no longer random. The goal is to show that
if the true quantiles are known, then one can choose the parameters (r, r) such that W
is good.

Next Proposition S1 gives an explicit representation for wij in each of the three
scenarios above as the lower quantile gap of a certain family of distributions (F b : b ∈ R),
parametrized by a single parameter b, one value for each edge j → i. Then, we use a
calculus of variation argument to detail how wij changes as b varies. This allows us to
show (cf. Corollary S1 and Lemma S6) that among the three scenarios above, there exist
some choices of quantile levels (r, r) such that for any fixed j, wij is smallest when i is
the child of j in the true tree. A separate argument is made for the root. Thus, this
proves that if the true quantiles are known, then the resulting W is good.

Finally, we invoke the fact that the empirical quantiles converge a.s. to the true
quantiles as n→ ∞, and thus the empirical wij are a.s. close to the true ones. A union
bound over the d nodes of the graph thus says that, the empirical Wn is a.s. ‘good’ as
n→ ∞, and thus proves the Consistency Theorem for the lower quantile gap.

The proof for the quantile-to-mean gap is similar, with Proposition S2 playing the
role of Proposition S1.

Lemma S3 (A criterion for ‘good’ inputs W ). Let W = (wij) be a score matrix such
that each true edge j → i ∈ T satisfies

wij < wi′j for all i′ ∈ V, i′ 6= i, j, (S7)
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and in addition, the true root i∗ satisfies

min
i′
wi′i∗ > max

i,j:j→i
wij . (S8)

Then the QTree algorithm applied to input W returns the true tree T .

Proof. QTree applies Chu–Liu/Edmonds’ algorithm to find a minimum directed spanning
tree from the complete graph with score matrixW , and returns that tree. We shall prove
that under the conditions (S7) and (S8) on W , Chu–Liu/Edmonds’ algorithm would
converge after one iteration and returns the true tree T . Indeed, let G denote the graph
that consists of the smallest outgoing edge at each node. By (S7), G = T ∪ i∗ → i′ for
some node i′ ∈ V . By Chu–Liu/Edmonds’ algorithm, the minimum spanning tree Tw is
a subset of G. In particular, Tw is a minimum spanning tree of G. By (S8), edge i∗ → i′

is the maximal edge. Since it belongs to the unique cycle in G, deleting this edge would
yield the minimum directed spanning tree of G. Therefore Tw = T .

S2.1. Proof of Theorem 1 for the lower quantile gap

S2.1.1. For known quantiles, W is ‘good’ for appropriate choices of (r, r)
In this subsection we work with the lower quantile gap matrix W = (wij) derived from
the true quantiles of the distributions of Xi−Xj under the Gumbel-Gaussian model, for
some quantile levels (r, r). The goal is to show that there exist some appropriate choices
of (r, r) such that the resulting W is ‘good’, that is, it satisfies Lemma S3.

The first main result is Proposition S1, which gives an explicit representation for wij
in the three scenarios. We start with the necessary definitions to state it.

Recall the definition of C∗ from the beginning of Section 1. Since the true graph is
a tree, if j  i, there is a unique directed path from j to i. Let c̄ij denote the sum
of all the edges along this unique path. Path uniqueness implies that c̄ij = c∗ij and C∗

is transitive, i.e. c∗ij = c∗ik + c∗kj if j  k  i. Thus, by the Helmholtz decomposition

on graphs (Lim, 2015, equation 2.6), c∗ij is an edge flow. That is, there exists a unique

t∗ ∈ R
d with t∗1 = 0 such that for all j → i ∈ G,

c∗ij = t∗i − t∗j . (S9)

For each i ∈ V , define the constant

θi :=
∑

k i

exp(−t∗k/β). (S10)

For b ∈ R∪{−∞}, define the random variable

ξb := (εi − εj) + ((Zi − Zj) ∨ b) (S11)

with the convention that ξ−∞ := (εi − εj) + (Zi − Zj). Let F b denote the distribution
function of ξb and qr(F

b) the r-th quantile of F b for r ∈ (0, 1). These quantities are
deterministic and do not depend on i, j since by assumption, εi, εj are i.i.d and Zi, Zj
are i.i.d.
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Proposition S1. Assume the Gumbel-Gaussian model. Fix 0 < r < r < 1. Let
wij = wij(r, r) be the lower quantile gap (S5). Fix j ∈ V . For i ∈ V, i 6= j, we have
three cases.

(1) If j  i, then wij = qr(F
b)− qr(F

b) for b = β(log θj − log(θi − θj)).
(2) If j 6∼ i, then wij = qr(F

b)− qr(F
b) for b = −∞.

(3) If i j, then wij = q1−r(F
b)− q1−r(F

b) for b = β(log θi − log(θj − θi)).

Proof. We first consider the noise-free case. Observe that by (S11) ξb simplifies to
(Zi − Zj) ∨ b. Therefore, it is sufficient to prove that wij equals the lower quantile gap
of (Zi − Zj) ∨ b. For i ∈ V , let X̄i := Xi − t∗i . Then X̄i − X̄j is a constant translation
of Xi − Xj , so the lower quantile gap of the two corresponding distributions are the
same. In other words, it is sufficient to prove the Proposition for X̄ instead of X. Let
Z̄i := Zi − t∗i . Then

X̄i = Xi − t∗i =
∨

j:j i

(c∗ij + Zj)− t∗i by (S1)

=
∨

j:j i

(t∗i − t∗j + Zj)− t∗i by (S9)

=
∨

j:j i

Z̄j . (S12)

For each ordered pair (i, j), define

Si = Z̄i ∨
∨

i′ 6=i,i′ i,i′ 6 j

Z̄i′ Sj = Z̄j ∨
∨

j′ 6=j,j′ j

Z̄i′ (S13)

In Figure S1 we illustrate the two index sets of the random variables Si and Sj .

i′1 i′2 i′3 j′1 j′2 j′3

i j

Fig. S1. Illustration of the index sets of Si and Sj for an ordered pair (i, j). The index set for

Si includes besides i also i′
1
, . . . , i′

3
and all nodes on the paths j  i (excluding j), i′k  i for

k = 1, . . . , 3, while the index set for Sj includes j, j′
1
, . . . , j′

3
and all nodes on the paths j′k  j

for k = 1, . . . , 3.

By definition, Si and Sj are independent. Since Z̄i’s are translated independent
Gumbel(β) by assumption, standard properties of the Gumbel(β) distribution yield that
Si and Sj are also translated independent Gumbel(β). The exact constants of translation
depend on the relation between i and j, as this dictates the definition of Si and Sj . Now
we consider the three cases. In the first case, j  i. Then, (S12) implies X̄i = Si ∨ Sj
and X̄j = Sj .
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A short computation yields Si
d
= Zi + β log(θi − θj), Sj

d
= Zj + β log θj . Therefore,

denoting
d
= equality in distribution,

X̄i − X̄j = (Si ∨ Sj)− Sj = (Si − Sj) ∨ 0

d
= (Zi − Zj − β(log θj − log(θi − θj))) ∨ 0

= ((Zi − Zj) ∨ β(log θj − log(θi − θj)))− β(log θj − log(θi − θj))

= ((Zi − Zj) ∨ b)− β(log θj − log(θi − θj)),

where b = β(log θj − log(θi− θj)). Since β(log θj − log(θi− θj)) is a translation constant,
the quantile gap of X̄i− X̄j is equal to the quantile gap of (Zi−Zj)∨ b. This concludes
the case j  i. Computations for the third case, i j, is similar, with the role of i and
j reversed, r is replaced by 1− r, and r is replaced by 1− r. For the second case, i 6∼ j,

then X̄i=Si, X̄j=Sj , where Sj
d
= β log θj + Zj and Si

d
= β log θi + Zi. Then

X̄i − X̄j = Si − Sj
d
= Zi − Zj + β(log θi − log θj).

Since β(log θi − log θj) is a translation constant, the quantile gap of X̄i − X̄j is equal to
the quantile gap of Zi − Zj , as claimed.

S2.1.2. How the lower quantile gap wij varies with b
Now, we aim to show through a variational argument that under the Gumbel-Gaussian
assumption, among the three scenarios of Proposition S1, wij is smallest when it falls in
a subset of case (1), namely, j → i. We first give an overview. By Proposition S1, the
lower quantile gaps wij in cases (1) and (2) are all of the form q(b, r)− q(b, r) for some
constant b = b(i, j). In particular, for fixed j, b(i, j) is largest when j → i. Lemma S5
says that one can choose the quantile levels (r, r) such that q(b, r)− q(b, r) is monotone
increasing as a function of b on a large interval. Corollary S1 then shows that a good
choice can be made so that for each fixed j, the quantile gap is smallest for the edge from
j to its child ch(j). Case (3) of Proposition S1, where i is an ancestor of j, is handled
by Lemma S6. The Gumbel-Gaussian assumption comes in through Lemma S4, which
is a technical result that gives an explicit form for the density of the noise differences
η := εi−εj . Intuitively, it shows that under the Gumbel-Gaussian model, the tail of η is
lighter than the tail of the signal differences Zi−Zj . This is a key observation exploited
in the proofs.

Lemma S4. Under the Gumbel-Gaussian model, for any pair of nodes i, j ∈ V, i 6= j,
ξ := Zi − Zj has density

fξ(x) =
ex/β

β(1 + ex/β)2
∼

1

β
e−x/β as x→ ∞, (S14)

and η := εi − εj has density

fη(x) ∼ x1−p/2 e−Kx
p

as x→ ∞. (S15)
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Proof. Computing the convolution integral yields

P(Zi − Zj > x) =
1

1 + ex/β
, x ∈ R, (S16)

and taking the derivative gives the first statement. For the second statement, the density
fε is a density with Gaussian tail in the sense of Balkema et al. (1993):

f(x) ∼ γ(x)e−ψ(x) as x→ ∞,

for constants γ and ψ(x) = Kxp. The asymptotic form of fη follows by Laplace’s
integration principle as shown in (Balkema et al., 1993, page 2).

Since fε is differentiable in the tail, fη is also differentiable in the tail, and differen-
tiation of (S15) yields the following formula for the derivative:

f ′η(x) ∼ fη(x)
(

−Kpxp−1 + (1− p/2)x−1
)

(S17)

For functions with two arguments, let ∂1 denotes the derivative in the first argument,
∂2 denotes the derivative in the second argument, ∂212 := ∂1∂2 denote the mixed second
derivatives and so forth. Define the functions H : R×R → [0, 1], q : R×[0, 1] → R by

H(b, a) = P (ξb ≤ a), q(b, r) = r-th quantile of ξb.

Lemma S5. Under the Gumbel-Gaussian model, for each finite constant B, there exists
some r∗ = r∗(B) ∈ (0, 1) such that

∂212q(b, r) < 0 for all r ∈ (0, r∗), b ≤ B.

Equivalently, for any pair (r, r) such that 0 < r < r < r∗ and any pair (b′, b) such that
b′ < b ≤ B,

q(b, r)− q(b, r) < q(b′, r)− q(b′, r). (S18)

Proof. By definition,
H(b, q(b, r)) = r. (S19)

We take derivatives of both sides, first with respect to r, then to b. Note that functions
and derivatives of H are always evaluated at (b, q(b, r)) while those of q are evaluated
at (b, r), so we suppress them in the notations. Differentiate both sides sof (S19) with
respect to r gives

∂2H · ∂2q = 1. (S20)

Now, differentiating both sides of (S19) with respect to b, we get

∂

∂b
H1(b, q(b, r)) = ∂1H + ∂2H · ∂1q = 0,

therefore,

∂1q =
−∂1H

∂2H
. (S21)



Estimating a Directed Tree for Extremes 37

Differentiate (S20) with respect to b using implicit differentiation and chain rules, we
get

0 =
∂

∂b
(∂2H · ∂2q) =

∂

∂b
(∂2H(b, q(b, r)) · ∂2q + ∂2H · ∂212q

= (∂212H + ∂222H · ∂1q) · ∂2q + ∂2H · ∂212q

=
∂212H − ∂222H · ∂1H∂2H

∂2H
+ ∂2H · ∂212q by (S20) and (S21). (S22)

Rearranging the last equation gives

∂212q =
∂222H · ∂1H − ∂212H · ∂2H

(∂2H)3
. (S23)

For fixed b, by definition of H, ∂2H is the density of ξb, so ∂2H > 0. So ∂212q(b, r) < 0 if
and only if

(∂222H∂1H − ∂212H∂2H)(b, q(b, r)) < 0. (S24)

Now we compute each of the terms ∂2H, ∂1H, ∂
2
12H and ∂222H in the LHS of (S24)

explicitly in terms of the density fη of the noise difference η = εi − εj . Note that
ξb = η + (ξ ∨ b) where ξ := Zi − Zj . Then we have for ε > 0 (see Fig. (a))

H(b+ ε, a)−H(b, a) = P(η + ξ ∨ (b+ ε) ≤ a)− P(η + ξ ∨ b ≤ a)

=







0 if ξ > b+ ε,
P(η + b+ ε ≤ a)− P(η + b ≤ a) if ξ ≤ b (light shaded),
P(η + b+ ε ≤ a)− P(η + ξ ≤ a) if b ≤ ξ ≤ b+ ε (dark shaded).

Since η and ξ are independent, this implies

H(b+ ε, a)−H(b, a) = −P(ξ ≤ b)P(a− b− ε ≤ η ≤ a− b) +O(ε2). (S25)

Hence,

∂1H(b, a) = lim
ε↓0

H(b+ ε, a)−H(b, a)

ε
= −P(ξ ≤ b)fη(a− b). (S26)

A similar calculation gives (see Fig. (b))

∂2H(b, a) = lim
ε↓0

H(b, a+ ε)−H(b, a)

ε
= P(ξ ≤ b)fη(a− b) +

∫ ∞

b
fη(a− x)fξ(x) dx

=: (−∂1H +A)(b, a). (S27)

Thus,

∂212H(b, a) = −P(ξ ≤ b)f ′η(a− b),

∂222H(b, a) = P(ξ ≤ b)f ′η(a− b) +

∫ ∞

b
f ′η(a− x)fξ(x) dx

= −∂212H(b, a) +

∫ ∞

b
f ′η(a− x)fξ(x) dx.

= (−∂212H +Aa)(b, a).
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Fig. S2. H(b+ ε, a)−H(b, a) is the probability

that (ξ, η) lies in the shaded regions (light +

dark shaded)

Fig. S3. H(b, a + ε) −H(b, a) is the probabil-

ity that (ξ, η) lies in the shaded region (light +

dark shaded)

Now we have

(∂222H∂1H − ∂212H∂2H)(b, a) = (Aa∂1H −A∂212H)(b, a)

=P(ξ ≤ b)

(

−fη(a− b)

∫ ∞

b
f ′η(a− x)fξ(x) dx+ f ′η(a− b)

∫ ∞

b
fη(a− x)fξ(x) dx

)

.

Thus, (S24) holds if and only if

−fη(q(b, r)−b)

∫ ∞

b
f ′η(q(b, r)−x)fξ(x) dx+f

′
η(q(b, r)−b)

∫ ∞

b
fη(q(b, r)−x)fξ(x) dx < 0.

(S28)
Now we need to show that for each constant B, there exists an r∗(B) > 0 such that for
all r < r∗ and b ≤ B, (S28) holds. Fix the constant B. Since the noise ε has no upper
bound, η and hence ξb have unbounded support below. For each fixed b, q(b, r) → −∞
as r ↓ 0. Therefore, there exists some sufficiently small r∗ > 0 such that for all r < r∗,
q(b, r)− b is a large negative number. Fix such an r∗. Therefore, for all x > b, q(b, r)−x
is a large negative number. This allows us to use Lemma S4 to make the LHS of (S28)
explicit. In particular, by (S15), as t→ ∞,

fη(t) = K1t
1−p/2e−Kt

p

(1 + o(1)), f ′η(t) = fη(t)
(

−Kptp−1 + (1− p/2)t−1
)

(1 + o(1)).

(S29)

Setting t = |x− q(b, r)| and use the fact that fη is symmetric, fη(q(b, r)− x) = fη(|x−
q(b, r)|), we have

− fη(q(b, r)− b)

∫ ∞

b
f ′η(q(b, r)− x)fξ(x) dx+ f ′η(q(b, r)− b)

∫ ∞

b
fη(q(b, r)− x)fξ(x) dx

=fη(q(b, r)− b)

∫ ∞

b
[−Kp(x− q(b, r))p−1 + (1− p/2)(x− q(b, r))−1]fη(q(b, r)− x)fξ(x) dx

+ [Kp(b− q(b, r))p−1 − (1− p/2)(b− q(b, r))−1]fη(q(b, r)− b)

∫ ∞

b
fη(q(b, r)− x)fξ(x) dx

=fη(q(b, r)− b)

∫ ∞

b
A(x)fη(q(b, r)− x)fξ(x) dx,

where

A(x) =
(

Kp[(b−q(b, r))p−1−(x−q(b, r))p−1]−(1−p/2)[(b−q(b, r))−1−(x−q(b, r))−1]
)

.
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If p ∈ (1, 2], since x > b, the first term (b− q(b, r))p−1 − (x− q(b, r))p−1 and the second
term −(1 − p/2)[(b − q(b, r))−1 − (x − q(b, r))−1] are both negative. If p > 2, since
x > b � q(b, r) the first term (b − q(b, r))p−1 − (x − q(b, r))p−1 is a large negative
number. Since q(b, r) is a large negative number, b − q(b, r) is a large positive number,
so (b− q(b, r))−1, (x− q(b, r))p−1 < 1. Thus |(1−p/2)[(b− q(b, r))−1− (x− q(b, r))−1]| ≤
|1− p/2|. For this reason, A(x) < 0 for all p > 1, x > b, while fη, fξ > 0 everywhere as
they are densities. Thus the integral is negative, that is, (S28) holds for all r ∈ (0, r∗)
and b ≤ B, as needed.

Below we denote ch(j) the child of node j.

Corollary S1. Under the Gumbel-Gaussian model, there exists an r∗1 > 0 such that: for
all 0 < r < r < r∗1, for all j ∈ V and for all i′ ∈ V, i′ 6= j, ch(j) and either j  i′ or
j 6∼ i′, then

wch(j) j < wi′j .

Proof. It is sufficient to show that the above holds with some constant r∗(j) for each fixed
j, then set r∗1 = minj r

∗(j). Fix j and i′ as stated. Let b∗ := β(log θj − log(θch(j) − θj)),
and let r∗(j) be the constant r∗ that works for B = b∗ in Lemma S5. By Proposition
S1,

wch(j) j = q(b∗, r)− q(b∗, r).

Now we consider two cases.
Case 1: i′ is a descendant of j, that is, j  i′. Then by Proposition S1,

wji′ = q(b, r)− q(b, r)

where b = β(log θj − log(θi′ − θj)). But since i
′ 6= ch(j), i′ must be a descendant of i as

well. By definition of θ’s in (S10), i i′ implies θi′ > θi. Therefore, b < b∗, so by (S18),
wij < wi′j . This concludes case 1.
Case 2: j 6∼ i′. Then by Proposition S1,

wi′j = q(−∞, r)− q(−∞, r).

Since −∞ < b∗, so by (S18), wij < wi′j . This concludes case 2.

Lemma S6. There exists some r∗2 > 0 such that for all 0 < r < r < r∗2, for all j ∈ V ,
i′  j implies

q(b, r)− q(b, r) < q(b′, 1− r)− q(b′, 1− r), (S30)

where b = β(log θj − log(θch(j) − θj)) and b
′ = β(log θi′ − log(θj − θi′)). In particular, if

i′  j, then for all quantile levels r, r such that 0 < r < r < r∗2,

wch(j) j < wi′j . (S31)

Proof. It is sufficient to prove that (S30) holds for each fixed j with some constant r∗2(j),
and then set r∗2 = minj r

∗
2(j). Fix j. First, we do some manipulations on (S30) to relate

it to the partial derivatives of H. Define

B := {β(log θj − log(θi − θj)) : i, j ∈ V, j  i}. (S32)
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Note that (S30) is equivalent to

∂2q(b, r) < ∂2q(b
′, 1− r) for all r ∈ (0, r∗2) and for all b, b′ ∈ B. (S33)

By (S20), we have

∂2q(b, r)− ∂2q(b
′, 1− r) =

1

∂2H(b, q(b, r))
−

1

∂2H(b′, q(b′, 1− r))
.

By (S27), ∂2H > 0 point-wise, thus our goal now is to show that for sufficiently small r,

∂2H(b′, q(b′, 1− r))− ∂2H(b, q(b, r))<0 (S34)

for all b, b′ ∈ B, that is, some finite set of constants.We shall do this by writing ∂2H
in terms of the tail densities fη and fξ using (S27), then apply Lemma S4. Indeed, by
(S27),

∂2H(b′, a) = P(ξ ≤ b′)fη(a− b′) +

∫ ∞

b′
fη(a− x)fξ(x) dx

By Lemma S4, fξ has heavier tail than fη, so for a → ∞, the main contribution from
∫∞
b′ fη(a− x)fξ(x) dx comes from fξ(a). That is, for large a, there exists some constant
b1 > 0 such that

∂2H(b′, a) > b1fξ(a). (S35)

Now we consider ∂2H(b,−a). From (S27),

∂2H(b,−a) = P(ξ ≤ b)fη(−a− b) +

∫ ∞

b
fη(−a− x)fξ(x) dx.

Again, for large a
fη(−a− x) < fη(−a− b) for all x > b.

Therefore, we can bound the second term above as
∫ ∞

b
fη(−a− x)fξ(x) dx < fη(−a− b)

∫ ∞

b
fξ(x) dx = fη(−a− b)P(ξ > b).

Adding in the first term, we get that for large a,

∂2H(b,−a) < fη(−a− b)

Combining this with (S35) and noting that ∂2H(b, a) is just the density fξb(a) of ξb, we
get

fξb(−a) = O(fξb′ (a)) (S36)

for all b, b′ ∈ B and a large. Now ∂2H(b, q(b, r)) is just the slope of the cdf of fξb at
its r-th quantile. Therefore, for r small, by (S36), ∂2H(b′, q(b′, 1− r)) < ∂2H(b, q(b, r))
which proves (S34) and thus completes the proof of (S30). The last statement follows
from Proposition S1, case (3).
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Corollary S2. If the true quantiles are known, then there exist some choices of (r, r)
such that the lower quantile gap matrix W satisfies the conditions of Lemma S3, that is,
(S7) and (S8).

Proof. Set r∗ = min(r∗1, r
∗
2) where r∗1 comes from Corollary S1, and r∗2 comes from

Lemma S6. Let (r, r) be any pair such that 0 < r < r < r∗, and let W be the corre-
sponding lower quantile gap matrix with the true quantiles. Then (S8) holds because of
(S31) and the fact that for the root r of the root-directed spanning tree, i′  r holds
for every i′ 6= r. Corollary S1 and Lemma S6 together guarantee that (S7) is satisfied
for W .

Proof of Theorem 1 for the lower quantile gap

Fix (r, r) such that Corollary S2 holds, and let W be the corresponding lower quantile
gap matrix derived from the true quantiles. Let Wn be the lower quantile gap matrix
derived from an empirical distribution with sample size n. Note that the set of ‘good’
matrices, that is, those that satisfy Lemma S3, is an open polyhedral cone in the space
of matrices R

d×d, since the conditions of ‘goodness’ is a set of linear inequalities. By
Corollary S2, W is a point inside this cone. Recall that empirical quantiles converge
a.s. as n → ∞ to the true ones for continuous limit distributions, hence, also the
empirically-derived lower quantile gap converges a.s.. By a union bound over the d2 − d
possible edge pairs (i, j), for any metric D (e.g. induced by a matrix norm), we thus
have D(Wn,W ) → 0 a.s. The Consistency Theorem then follows from Lemma S3.

S2.2. Proof of Theorem 1 for the quantile-to-mean gap

Our proof follows the same structure as the previous proof, but the calculations in all
steps are a bit simpler, since there is only one quantile parameter to deal with. First,
expectation is linear, so we work with empirical means X̄i for i ∈ V and mention
in passing that they converge a.s. to the true mean as n → ∞. The analogue of
Proposition S1 is the following.

Proposition S2. Fix r ∈ [0, 1), and let wij be the quantile-to-mean gap (S6). Assume
the Gumbel-Gaussian model. Then

(1) If j  i, then wij = −qr(ξ
b) where b = β(log θj − log(θi − θj)).

(2) If j 6∼ i, then wij = −qr(ξ
b) where b = −∞.

(3) If i j, then wij = q1−r(ξ
b) where b = β(log θi − log(θj − θi)).

Instead of a lengthy proof of the analog of Proposition S1 by duplicating arguments,
we provide some informal reasoning. We check that our quantile-to-mean gaps wij satisfy
the inequalities of Corollary S1 and Lemma S6 by first checking the noise-free case, where
εi ≡ εj ≡ 0. We consider the three cases of Proposition S2.

(a) If j  i. Then ξb has a left-most atom at b = β(log θj − log(θi − θj)), so for
sufficiently small r, wij = −b. This is minimal when i is a direct descendant of j.
So Corollary S1 for the case j  i holds in the noise-free case.
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(b) If j 6∼ i. Then ξb has no left-most atom, so as r ↓ 0, qr(ξ
b) → −∞, so wij → ∞.

So Corollary S1 also holds in the noise-free case for the remaining case, j 6∼ i.
(c) If i  j. Then ξb has a left-most atom, but no right-most atom. Again, as r ↓ 0,

q1−r(ξ
b) → ∞, so wij → ∞. Thus, Lemma S6 holds in the noise-free case.

Now we consider the effect of noise. We send r ↓ 0. As long as η := εi−εj has lighter
tail than Zi − Zj , as guaranteed by Lemma S4, then we have the following.

• In case (1), qr(ξ
b) is dominated by the lower tail of η.

• In case (2), qr(ξ
b) is dominated by the lower tail of Zi − Zj and, in particular, is

going to −∞ at a faster rate than case (1).

• In case (3), q1−r(ξ
b) is dominated by the upper tail of Zi − Zj , and in particular,

is going to ∞ at a faster rate than case (1).

This domination calculation is the same calculation done in the proof of Lemma S6. The
above says that for fixed j, for small enough r, the minimum of {wij : i 6= j, i ∈ V } lies
in case (1). Within case (1), we want to make sure that, if wij is smallest, then i is the
child of j. Indeed, write

ξb = εi − εj + ξ′ij

where ξ′ij = (Zi−Zj)∨ (β(log θj − log(θi− θj))). For fixed j, (ξ
′
ij : j  i) is a particular

family of distribution indexed by i. By a decoupling argument, it is sufficient to show
that qr(ξ

′
ij) is smallest when i is the child of j. But this reduces to the noise-free case,

which we already proved above. This finishes the proof of Theorem 1 for the quantile-
to-mean gap.

S3. Supplemental Figures for Section 4.2

Below we present the figures analogous to Figure 10 of the Paper for the different data
sets of the Colorado river network.
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