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Design heuristics are traditionally used as qualitative principles to guide the design
process, but they have also been used to improve the efficiency of design optimization.
Using design heuristics as soft constraints or search operators has been shown for some
problems to reduce the number of function evaluations needed to achieve a certain level
of convergence. However, in other cases, enforcing heuristics can reduce diversity and
slow down convergence. This paper studies the question of when and how a given set of
design heuristics represented in different forms (soft constraints, repair operators, and
biased sampling) can be utilized in an automated way to improve efficiency for a given
design problem. An approach is presented for identifying promising heuristics for a
given problem by estimating the overall impact of a heuristic based on an exploratory
screening study. Two impact indices are formulated: weighted influence index and hypervo-
lume difference index. Using this approach, the promising heuristics for four design prob-
lems are identified and the efficacy of selectively enforcing only these promising heuristics
over both enforcement of all available heuristics and not enforcing any heuristics is bench-
marked. In all problems, it is found that enforcing only the promising heuristics as repair
operators enables finding good designs faster than by enforcing all available heuristics or
not enforcing any heuristics. Enforcing heuristics as soft constraints or biased sampling
functions results in improvements in efficiency for some of the problems. Based on these
results, guidelines for designers to leverage heuristics effectively in design optimization
are presented. [DOI: 10.1115/1.4063238]

Keywords: design methodology, design of engineered materials system, design
optimization, multi-objective optimization

1 Introduction

This paper explores approaches to leverage design heuristics in
design optimization. Design optimization is a widely used method
in engineering design, particularly to support trade studies and
detailed design. However, most of the literature studying design
heuristics has focused on other design processes such as design ide-
ation and concept exploration [1,2]. In general, the design optimiza-
tion process consists of a problem formulation step, a search step in
which the tool iterates between generating and evaluating designs,
and a data analysis step that leads to decision-making, i.e., the
down-selection of a (few) design(s) to develop in more detail.
As shown in Fig. 1, expert knowledge can be incorporated in differ-
ent ways in design, including into the different steps of design
optimization. We classified these ways into direct input
(human-in-the-loop), explicit approaches, and implicit approaches.
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As examples of direct input, the engineer directly uses their expert
knowledge to develop a problem formulation and refine it based on
the results. They can also be in the loop during the optimization,
playing different roles such as generating or modifying designs,
evaluating designs, or steering the search towards promising
regions of the design space [3]. The user can also implicitly
provide expert knowledge, e.g., by providing an initial dataset of
good or feasible designs [4]. Alternatively, the user or developer
of the tool can explicitly incorporate their knowledge in different
ways, such as in expert systems [5,6], using ontologies and knowl-
edge graphs [7,8], or using design heuristics [9,10], which is the
focus of this paper.

A design heuristic (as defined in Fu et al. [11]) is a context-
dependent directive, based on intuition, tacit knowledge, or experi-
ential understanding, which provides design process direction to
increase the chance of reaching a satisfactory but not necessarily
optimal solution. In other words, it is a rule of thumb that can
guide the design search toward improved but not necessarily
optimal designs. As a result, heuristics can be leveraged to
improve the efficiency of the design optimization process, i.e., to
reach satisfactory designs using fewer function evaluations com-
pared to conventional data-driven approaches [12-14].
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Fig.1 The scope of the paper within the broad area of incorporating expert knowledge in design processes is shown with thick
dashed lines. The focus of this work is leveraging expert knowledge as design heuristics in the design search step of design
optimization. For this purpose, design heuristics can be represented in different ways and incorporated into the search process

using different methods.

Extraction of design heuristics can be done using interviews
[13,15], examination of high-quality products [16], or through data-
driven methods [17,18]. Fueled by the digital engineering revolu-
tion, design heuristics are increasingly being captured in computer-
friendly forms (e.g., SysML models), conducive to direct incorpo-
ration into computational design tools. Together with the advances
in large language models, this provides an opportunity since orga-
nizations may soon have databases of design heuristics that could
be leveraged to improve their design processes. To achieve this
goal, new methods must be developed to automatically extract
design heuristics, identify which ones are relevant for a given
design problem and task, and incorporate them into that task in a
way that improves efficiency. A recent survey of industrial and aca-
demic professionals showed that, along with an easy-to-understand
representation of design heuristics, the ability to identify good heu-
ristics and test their applicability and validity for a given design
problem is needed [19].

Design heuristics are used throughout the product/system devel-
opment process. For example, heuristics are widely used in design
ideation [20,21]. This paper, however, deals with applying heuris-
tics to design optimization, where there is less literature, despite
the fact that heuristics have been used in practice to solve
complex optimization problems for decades. Human-in-the-loop
design optimization has been found to improve efficiency thanks
to designers using their expert knowledge and common sense.
However, having a human in the loop is costly [22-24], thus moti-
vating the study of methods to automate the identification and incor-
poration of key chunks of expert knowledge into the optimization.
Alternatively, expert knowledge can also be implicitly represented
as databases of good or feasible designs, which can be used to
warm start classical optimization approaches or to train generative
design or reinforcement learning agents for design optimization
(e.g., Ref. [4]). Other methods to accelerate convergence of
design optimization algorithms, such as surrogate-assisted optimi-
zation [25,26] and Bayesian optimization [27,28] utilize function
evaluations to train computationally cheap surrogate models.
Another method to incorporate expert knowledge is an ad-hoc gen-
erative design algorithm, but this is not always available or viable to
develop [29,30]. Theoretically, the use of expert knowledge as
design heuristics does not require any additional function evalua-
tions, although adaptive methods do use function evaluations to
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learn the applicability of the heuristics to the design problem
[31]. Therefore, the question arises of when it is worthwhile in prac-
tice to attempt to incorporate these domain-specific heuristics into
optimization algorithms, given the net improvement in computa-
tional performance, and overall increase in complexity of the
algorithm.

Several papers have devised design heuristics for specific design
problems and shown that adding them to a search algorithm, either
as constraints or as repair operators, can improve search perfor-
mance [32,33]. Binder and Paredis [34] presented a design
method for the problem of designing a pressure vessel in which a
heuristic function based on an inbuilt factor of safety is considered
in the computation of the wall thickness. They found that the
heuristic-enabled design method outperformed an expected-
utility-maximization approach that explicitly accounted for uncer-
tainty in certain regions of the design space. Calvo et al. [10]
introduced a novel heuristic-enabled multi-objective optimization
approach to tackle a protein structure prediction problem.
Problem-specific heuristics related to the side-chain torsion angles
in the protein structure were incorporated as a library of dependen-
cies between these angles and used to appropriately modify protein
structure designs. This approach was shown to be faster than and
have comparable performance to the benchmark algorithm [35]
that iteratively assembles protein structures through guided frag-
ment rearrangements. Hitomi and Selva [36] developed heuristics
to design Earth Observation Satellite systems (EOSS). They
observed that even though all design heuristics were “good” (they
improved the aspect of designs that they are developed to
address), not all heuristics were useful for a given design problem
in the sense that they improved search efficiency when incorporated
as repair operators or soft constraints. For example, a design heuris-
tic may address a problem goal that is very easy to solve by random
search for the given problem formulation, or it may improve an
objective but degrade a conflicting objective or constraint. Addi-
tionally, Hitomi and Selva [9] compared various ways of leveraging
those heuristics based on repair operators and soft constraints. They
showed that for the constellation design problem, leveraging the
design heuristics as repair operators within an adaptive operator
selection (AOS) [31] strategy was superior to using constraint-
based methods such as adaptive constraint handling (a combination
of Refs. [37] and [38]). Thus, in addition to identifying the subset of
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available heuristics to leverage, the selection of the method to lever-
age those heuristics is also important [39,40]. Of note, AOS may
require many function evaluations to learn the promising heuristics
to leverage if the candidate set is large.

The main contribution of this paper is a method to identify prom-
ising design heuristics from a set of candidate heuristics for a given
design optimization problem. Three forms of heuristics are consid-
ered: soft constraints, repair operators, and biased sampling func-
tions. Two novel heuristic impact indices are proposed to identify
the promising heuristics for a given design optimization problem.
The estimation of these indices is done in an “offline” screening
study preceding the optimization, to maximize exploration. The
approach is applied to four test problems: two constrained metama-
terial design problems and two unconstrained Earth Observation Sat-
ellite constellation design problems. We validate the method by
comparing the search performance and efficiency in the four test
problems of three approaches: no heuristics, all heuristics, and prom-
ising heuristics only. In addition, seven guidelines are identified
based on our findings to help tool users and developers leverage
design heuristics for design optimization. This paper extends the
work of Kumar et al. [41] to generalize the method of identifying
promising heuristics to different design problems and different heu-
ristic representations. Unlike previous work, this paper considers
constrained optimization problems, which adds new challenges
when enforcing heuristics that help with constraint satisfaction but
hurt other problem goals. The scope of the paper is multi-objective
evolutionary optimization with discrete (combinatorial) design deci-
sions, but conceptually the method can be applied to continuous
design decisions and other optimization schemes.

The paper is structured as follows: Sec. 2 presents and discusses
related work on methods to incorporate design heuristics into design
optimization; Sec. 3 presents the two metamaterial design problems
and two satellite constellation case studies; Sec. 4 presents and
motivates the methods used to ascertain the set of promising heuris-
tics for a given design problem and validating their efficacy; Sec. 5
details the results of the determination of promising heuristics and
the verification of their effectiveness for the design problems;
Sec. 6 provides a detailed discussion on the results from Sec. 5
and presents some guidelines for designers to incorporate design
heuristics into their design problems; and Sec. 7 closes the paper
with the main conclusions, limitations, and future work.

2 Leveraging Design Heuristics for Design
Optimization

A general constrained multi-objective design optimization
problem can be formulated as follows:

x* = arg minf(x)
xeX

st. gx)=0 )]
b(x) <0

where g(x) and b(x) are the equality and inequality constraints on x.
Solving such a design optimization problem implies finding a set of
non-dominated designs (x*) that approximates the true Pareto Front
(PF). This problem is especially challenging when design decisions
are discrete and objective functions and constraints are nonlinear
and computationally expensive, which is the focus of this paper.
Meta-heuristic algorithms such as evolutionary algorithms are
often employed to solve these problems [42]. Therefore, they are
used as the overarching optimization framework in this paper.
In this paper, we define the penalized objectives as

q r
fren@®) =f(X) +1,© (Z &) + Zbkm) (@)
j=1 k=1

Here g and r are the number of equality and inequality constraints
respectively, 1; is an #x 1 size vector of ones, and © is the element-
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wise product. Assuming that the objectives and constraints are nor-
malized, satisfaction of each constraint is considered as important as
Pareto optimality. As such, the weight of the constraint violation
penalties would be equal to the total number of constraints. We
refer to the “problem goals” (noted p;) as satisfying each of the con-
straints and finding non-dominated designs.

There are many types of multi-objective evolutionary algorithms
including dominance-based algorithms such as NSGA-II [43] or
e-MOEA [44], decomposition-based algorithms such as MOEA/D
[45], and indicator-based algorithms such as IBEA [46]. The evolu-
tionary algorithm used in this work is e-MOEA. ¢-MOEA is a
steady-state algorithm that maintains an archive of the best
designs at different stages of the optimization process and uses an
e-box approach to prevent duplicates in the archive and promote
design diversity in the PF.

Three different types of heuristic representations can be used: (1)
soft constraint; (2) repair operator; and (3) biased sampling func-
tion. These representations come from the literature search and
try to generalize some previous work by the authors on heuristics
as repair operators (e.g., Ref. [9]) by systematically considering
the functions involved in design optimization and how heuristics
or expert knowledge in general could be applied to each of those.

Some design heuristics are most naturally represented as a soft
constraint, i.e., a function a:X — R, where x€X represents a
design from the design space X and a(x) represents the degree of
violation of the heuristic by design x. From the definition of a heu-
ristic, it is generally suboptimal to incorporate heuristics as hard
constraints, and a soft constraint approach is more appropriate.
Methods for handling soft constraints include using a weighted-
objective penalty function [47,48], or a constraint selection strategy,
which can be deterministic [49] or stochastic [38,50].

Other heuristics are most naturally represented as a repair opera-
tor representation that encodes the prescriptive action or directive
represented by the heuristic in the form of a move in design
space, i.e., a function O : X —» X. This form is consistent with the
representation of heuristics considered in Filingim et al. [13],
where heuristics prescribe an action toward improving a design.
The operator form acts upon a design to produce a new design
that adheres to the directives of the heuristic to a greater extent.
Just as hard constraint handling mechanisms should not be used
to enforce heuristics, heuristic-based operators [32,51] are often
used in conjunction with other knowledge-independent operators
so as not to excessively reduce exploration of the design space
[51]. When using the operator form, heuristics are handled with
operator selection strategies, which can be either fixed or adaptive
and deterministic or stochastic. Fixed strategies continuously
apply the same set of knowledge-directed operators in the same
way throughout the design search, e.g., assigning a fixed percentage
of solutions to each operator at each iteration [52]. On the other
hand, AOS strategies assign more solutions to operators that
perform better. This requires using a credit assignment strategy to
keep track of the performance of the operators, and applying an
operator selection strategy that considers the performance of the
operators to assign solutions [31]. This approach was used in
Ref. [9] to incorporate design heuristics to the satellite design
problem. A pool of knowledge-independent (e.g., crossover and
mutation) and knowledge-dependent operators is maintained, with
operators being selected based on their relative cumulative perfor-
mance. Different credit assignment strategies (e.g., offspring dom-
inates parent, set improvement, contribution to set) and operator
selection strategies (probability matching, adaptive pursuit) have
been proposed in the literature, building on multi-armed bandit
theory [53,54].

Finally, a heuristic can also be represented as a biased sampling
function that produces a set of designs that statistically tend to
satisfy the directives of the heuristic. In population-based algo-
rithms, the biased set of designs can be used as the initial popula-
tion, with the hope that the initial presence of some “good
designs” will accelerate convergence [55]. These biased sampling
functions can also be used in any other search operator that requires
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Fig. 2 Example design: (a) the 3x3 unit cell and (b) the 3x3
repeated lattice. The bars are members that can only submit
axial forces. The circles are nodes that are modeled mechani-
cally as pin joints.
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random sampling of the design space, such as in mutation, selection,
or crossover [56,57]. Note that the same heuristic intent or directive
can often be implemented using different representations. More
broadly, the details of how the heuristic intent is actually imple-
mented may affect the heuristic’s performance, as is discussed in
Sec. 6.

3 Test Problems

Four test problems, two metamaterial design problems and two
EOSS design problems, are used to demonstrate the proposed
method. These problems were chosen because they are representa-
tive of realistic combinatorial optimization problems found in engi-
neering design across different areas.

3.1 Metamaterial Design Problems. Metamaterials are mate-
rials whose properties are determined by geometry of a repeated
microstructure, in addition to the intrinsic mechanical properties.
The particular metamaterial design problems in this paper were
selected because they contain hard constraints that are difficult to
satisfy, in addition to two conflicting objectives.

3.1.1 Artery Design Problem. The artery design problem is
inspired by matching the 2D components of a stiffness tensor of
an artery. The properties are taken from a material model fit to
rabbit carotid artery data (Table II in Ref. [58]). A 2D 3 x3 node
grid is considered which represents a single repeat unit cell of the
metamaterial (shown in Fig. 2). The design decisions are binary var-
iables that represent the presence or absence of truss members
within the 3 x3 node grid. Allowing for all possible connections
between pairs of nodes, there are 36 possible truss members.
However, to account for repetition of lattice units in the two orthog-
onal directions, the design decisions corresponding to members on
opposite edges must be the same (i.e., using Fig. 2(a) as reference
XAB=XFG> XBC =XGH> XAD =XCE> and xDFz-xEH)v thus maklng the
design vector of 30 elements long.

The effective 2D (or in-plane) material stiffness tensor for each
design is evaluated by modeling the lattice as a truss. Each linear
elastic member can only deform axially and connects to other
members only at the nodes, which are modeled as pin joints. The
stiffness values of individual members are combined based on
shared member endpoints to form the global stiffness matrix. The
effective material stiffness tensor is then calculated by applying a
series of controlled displacements to the boundary of the lattice, cal-
culating force, and normalizing by area to obtain stress components.
The volume fraction of the design is found by summing the volumes

>The code used for data generation, post-processing, and analysis is available on
https:/github.com/seakers/KDDMM and data used in this paper are available upon
request.
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of all members, subtracting redundant volumes that occur at the
intersections of members, and then dividing the corrected lattice
volume by a volume of the same side length and thickness of the
unit cell. Based on convergence of the moduli, all values were cal-
culated using 3 x 3 repeats of the 3 x3 node grid. The ratio of the
radius of each member to the side length of the lattice unit is
fixed at 5:200. All material stiffness tensor values are normalized
to the constituent material elastic modulus.

An unrestricted design space contains many designs that are not
realizable. First, nodes cannot be connected to exactly one member,
as this member will then not actually connect with the rest of the
material. Second, no members can cross or overlap since they
would then occupy the same physical space. These hard require-
ments are enforced as the connectivity (g..,,) and feasibility con-
straints (grqs), respectively. Constraint functions are defined for
each constraint that span from O to 1, with 1 representing no viola-
tions and 0.1 subtracted for each violation.

The goal is to maximize density-normalized vertical stiffness

C —2¢€5
(%) while minimizing a deviation term (fy,,) that is
e
the average of various normalized stiffnesses and stiffness ratios
of the repeated lattice configuration, subject to constraints on
design feasibility (1 — grq(x)=0) and design connectivity (1 —
Zeonn®) =0). The deviation term f,,, is specified as

Cp ‘
—-0.421
C C
Jier = Cn + 2 00745‘ =2 00745‘
6 11 11
Ces ‘
— —5.038| —4.5
‘Cn +|C61| |Ce2| | |C16] | 1Casl
1.5¢5 1.5¢5 9e4  9.5¢4
(3)

The normalization constants were adjusted to ensure that each
objective is normalized and each deviation term contributes
equally to the f,, objective.

3.1.2 Equal Normal Stiffness Metamaterial Problem. This
problem is modeled as a constant radius truss design problem
that considers the same 2D 3 x 3 node grid as the artery problem.
The same model used in the artery problem to compute the
objectives and constraints is utilized here but the goal is different:
to maximize vertical stiffness while minimizing volume fraction,
subject to constraints above on design feasibility and design con-
nectivity and an additional constraint representing a target stiffness
ratio (gy(x) =0).

Here, guiy = ‘CH Crarget | and W€ USE Crqrger= 1.

3.1.3 Candidate Heuristics. Four general heuristics are identi-
fied for both metamaterial design problems. All soft constraints are
heuristic satisfaction functions (i.e., large-is-better).

(1) Partial collapsibility (PC): Include at least one diagonal
member in each half of the unit cell, both vertically and hor-
izontally. This heuristic embodies resistance of the truss
design to collapse due to shear loading.

(2) Nodal properties (NP): Create designs where each node has
at least three connections unless completely unused and
there is at most one unused node, for physically stability.
The main goal is to aid in satisfaction of the connectivity
constraint.

(3) Orientation (OR): This heuristic is aimed at satisfying the
stiffness ratio constraint by instructing designers to create
designs that achieve a certain target average orientation of
its members (from the horizontal axis), computed from the
target stiffness ratio c;qrqe The orientation soft constraint
form (a,,) varies from O to 1 with 1 implying full heuristic
satisfaction and calculates a design’s orientation as the
average orientation of all individual members relative to
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Fig. 3 An example architecture design for the two EOSS prob-
lems is shown. The design shows three orbits around the
earth, the first with two satellites, the second with one, and the
third with no satellites. The instruments in one of the satellites
are shown (AERO_POL: aerosol polarimeter, AERO_LID: differ-
ential absorption lidar, CLAR_ERB: broadband radiometer,
ACE_ORCA: ocean color spectrometer).

the horizontal axis, then assigns a score based on the devia-
tion of the design’s orientation from the target orientation
(e.g., 45 deg for a target stiffness ratio of 1). The target ori-
entation is determined by assuming the total member stiff-
ness contribution is directly proportional to the average
member vector. The heuristic operator adds a member such
that the average orientation of the members is closest to the
target orientation. This operator is a greedier version of the
one used in Kumar et al. [41]. Additionally, the biased
prior distribution form generates designs that have an
average orientation across all members within a margin of
10 deg from the target orientation as computed using the
target stiffness ratio.

(4) Intersection (IS): Aimed at improving satisfaction of the fea-
sibility constraint, this heuristic instructs designers to mini-
mize intersections among members.

Only OR was available in the biased sampling form. The soft con-
straint and repair operator implementations of the PC, NP, and IS
heuristics are provided in the Supplementary Material available in
the Supplemental Materials on the ASME Digital Collection.

3.2 Satellite Constellation Design Problems. The two EOSS
problems (assignment and partitioning) are concerned with the
design of a satellite constellation system to measure different
climate-related parameters such as ocean color, precipitation rate,
and atmospheric temperature.® The goal is to maximize the scienti-
fic benefit while minimizing lifecycle cost. The scientific benefit
[59,60] metric quantifies the degree of satisfaction of over 370 mea-
surement requirements provided by the World Meteorological
Organization OSCAR database.* The Value ASsessment of
System Architectures using Rules (VASSAR) tool [61], which
uses a rule-based system to compute the degree of satisfaction of
these requirements, is used to calculate the scientific benefit for
both problems. The lifecycle cost [59,60] metric includes different
costs associated with the development, implementation, integration,
testing, launch, and operation of the system. It is computed using
the spacecraft design algorithm and cost-estimating relationships
also available in VASSAR.

3The code used for data generation, post-processing, and analysis is available on
https:/github.com/seakers/VASS AR—;exec.git—heuristics branch for the EOSS prob-
lems. The raw data are available upon request.

“Observing Systems Capability Analysis and Review Tool available at www.wmo-
sat.info/oscar
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In both problems, each satellite in the constellation can have a
subset of the 12 instruments and can be present in one of the five
orbits as shown in the Supplementary Material available in the
Supplemental Materials. Figure 3 shows the candidate orbits for
the two EOSS problems. In the EOSS assignment problem, any
subset of the 12 instruments can be assigned to each of the five
orbits, resulting in a design vector of 60 binary variables. All the
instruments in a given orbit are assumed to be in the same satellite.
See Ref. [9] for a more complete description of this problem. In
the EOSS partitioning problem, each instrument must be assigned
to exactly one satellite, but each satellite can be assigned to any of
the five orbits. See Ref. [59] for a more complete description of
the partitioning problem. Both problems are unconstrained beyond
the structural constraints ensured by the formulation of the design
vector.

3.2.1 Candidate Heuristics. Seven general heuristics were
used for the two EOSS problems. The first six heuristics presented
are common to both problems, whereas the last heuristic is used
only for the assignment problem. All seven general heuristics
were implemented both as a soft constraint and a repair operator.
Only the last heuristic was available as a biased sampling function.
While the intent of each general heuristic is the same for both prob-
lems, the implementation as a repair operator is slightly different for
the two problems (e.g., to ensure that valid designs are generated in
the partitioning problem). The intents of the general heuristics
are listed below. The implementations of each heuristic representa-
tion are provided in the Supplementary Material available in the
Supplemental Materials. All soft constraints are heuristic violation
functions (i.e., small-is-better). The candidate heuristics are as
follows:

(1) Instrument duty cycles (DC): Avoid resource-constrained
satellites where the duty cycle of instruments must be artifi-
cially reduced to save energy or bandwidth. The soft con-
straint form of this heuristic computes the violation as the
average violation by each satellite, where each satellite vio-
lation is the difference between the duty cycle of the satellite
and a threshold (0.5), or 0 if duty cycle exceeds the threshold.
The operator form moves or removes an instrument from a
satellite that is resource-constrained.

(2) Instrument-orbit relations (IO0): Try to satisfy two instrument-
orbit preference relations. First, instruments measuring atmo-
spheric ozone are best assigned to an afternoon SSO to
observe peak pollution. Second, passive optical instruments
should not be assigned to dawn-dusk orbits to avoid poor
illumination conditions.

(3) Instrument interference (IF): Avoid assigning certain types of
instruments to the same satellite, since that will lead to
increases in spacecraft design complexity and cost [59].
For example, avoid assigning a conically scanning instru-
ment and a sensitive limb sounder to the same satellite,
since the former will induce vibrations that will degrade
the performance of the latter. Ten such instrument pairs are
identified.

(4) Packing efficiency (PE): Try to use the full payload capacity
of the launch vehicle. A launch vehicle packing efficiency is
computed as the max of: (1) the fraction of the volume of the
launch vehicle fairing used by the combined payload
volume, and (2) the fraction of the launch vehicle’s lifting
capacity to the assigned orbit used by the total launch
mass) and compared to a threshold of 0.7.

(5) Spacecraft mass (SM): Most civilian Earth Observation sat-
ellites weigh less than 3000 kg [62], because beyond this
rough threshold, increased complexity may lead to disecon-
omies of scale. Consequently, the heuristic penalizes or
tries to repair designs with satellites that exceed a wet mass
of 3000 kg.

(6) Instrument synergies (SYN): Ten pairs of synergistic instru-
ment types are identified, whose data products can be
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combined when acquired from the same platform to improve
each other’s accuracy or create new higher-level data prod-
ucts. Thus, the heuristic directive is to incorporate these
synergistic instrument pairs into satellites as much as
possible.

(7) Instrument count (IC): This heuristic instructs designers to
limit the total number of instruments in the constellation
(all satellites in all orbits represented by the design) to a rea-
sonable number (15). Keeping the number of instruments per
satellite low simplifies platform design and allows to opti-
mize the design for the given payload, which in turn may
improve performance and reduce cost.

4 Methods

The overall methodology is as follows. First, heuristic impact
indices are calculated to identify the promising heuristics among
a set of available heuristics for a given problem. These indices
are calculated in an off-line screening study. Second, the promising
heuristics are incorporated into the optimization and their efficacy
(impact on search performance) is benchmarked against the cases
of no heuristics and all heuristics used. This is done for the four
test problems with all the heuristics defined earlier.

4.1 Identifying Promising Heuristics. A screening study is
used to determine the promising heuristics in an offline manner to
promote exploration. Moreover, for the soft constraint representa-
tion, this allows determining the impact indices for all heuristics
using the same set of designs.

In general, the impact indices are evaluated on a set of randomly
generated designs, as this emulates the initial stages of the optimi-
zation. Heuristics are most useful when only a modest number of
function evaluations are possible, and are hence expected to show
improvements in the initial stages of optimization.

4.1.1 Weighted Influence Index. As mentioned above, heuris-
tics can improve a problem goal while degrading conflicting
goals. Therefore, the idea of the heuristic impact index is to
capture the overall effect of a heuristic across all problem goals.
Intuitively, heuristics strongly aligned with more important or
harder-to-satisfy objectives and constraints will help the most.
This is the idea of the weighted influence index (WII) 1,,;. I,,; esti-
mates the overall impact of a heuristic on the design search as a
weighted average of the correlation coefficients p(a, p;) of the heu-
ristic’s soft constraint function a with each problem goal p;. Here,
the problem goals are satisfaction of each of the constraint functions
gi(x), bj(x), and dominance in objective space. The dominance goal
is represented as minimizing the average distance to the PF dpg. dpp
for a design x is computed as the distance between x and the closest
Pareto design. The WII formulation is shown in Eq. (4).

1 m
Lihy =~ *w(pi)kny,p(h, pi) “)
i=1

where m =g + r+ 1 is the number of problem goals and w(p;) is the
relative weight of problem goal p;. In this paper, we choose w(p;) to
be the mean constraint violation and/or the mean dpr observed in
the sample design set. As a result, hard to satisfy constraints will
have a greater contribution to I,,;, However, the designer may
wish to assign importance to problem goals based on other criteria.
The weights can be normalized between 0 and 1 if it is desired to
compare values of I,;(h) across problems. k,, is the expected
sign of the correlation: k, ,, = 1 if increasing the heuristic’s soft con-
straint function is expected to increase the problem goal function
(e.g., a is a constraint violation function and the goal is function
small-is-better) and kj, =—1 if it is expected to decrease it.
Thus, a positive index value is always expected for promising heu-
ristics. A positive (negative) value of I,; means that the average
effect of the heuristic across all objectives and constraints is positive
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(negative, respectively). A value of /,,; = 1 would mean that the heu-
ristic has a perfect linear relationship with all the objectives and
constraints and can help improve all of them. This, of course, is
extremely unlikely to occur since the different objectives and con-
straints in real-world problems tend to conflict with one another.

There are several choices for the correlation coefficient. In this
paper, both the Pearson [63] (p,,) and Spearman [64] (p,) correlation
coefficients are used to compute two values of the index which are
then averaged. The Pearson’s and the Spearman’s correlation coef-
ficient measure the degree of linearity and monotonicity respec-
tively between the independent and dependent variable, so
averaging the two indices can capture both types of dependencies.
This average provides more accurate correlation estimations in
case of sparse distributions of heuristic and constraint satisfaction
compared to just using either correlation coefficient, which occurs
in the case of very hard and very easy to satisfy heuristics and con-
straints such as the feasibility and connectivity constraints for the
metamaterial problems. Beyond correlation coefficients, other
metrics could be used to measure the statistical alignment of the
heuristics with the problem goals. For example, interestingness
measures from the association rule mining literature (e.g., lift [65]
or F-score [66]) could also be used, but that would require binary
heuristic functions and problem goals and thus subjective threshold-
ing of the heuristic soft functions to determine what is a promising
value of the heuristic.

4.1.2  Hypervolume Difference Index. Another approach to
assess the impact of a heuristic, inspired by the concept of main
effects in design of experiments, is to define impact as the
average difference in problem goal satisfaction before and after
the heuristic is applied. That is the idea behind the hypervolume dif-
ference index (HDI) which assesses the overall effect on the prob-
lem’s goals of applying the heuristic (its repair operator or biased
sampling function) to an initial set of designs. Rather than doing
a weighted average of individual impacts on problem goals as in
the WII, here we simply combine dominance and constraint satis-
faction goals into a single scalar goal, such as the HyperVolume
(HV) [42] of the penalized objectives. It is important to note that
HV captures both convergence and to a certain extent diversity
(in the objective space) of the Pareto designs [67]. Note that the
weights of the problem goals (e.g., the ones used in WII) can still
be incorporated in the penalized objectives. Alternative metrics
such as HV of the feasible solutions (which fully satisfy the con-
straints) can also be used, but would likely yield zero throughout
the screening study for problems with very hard-to-satisfy con-
straints (e.g., the equal stiffness problem). The HDI index is
defined as shown in Eq. (5).

Iha(h) =HV(yp) — HV(y) (&)

where y and y;, are the penalized objectives of the test designs before
and after the operator is applied respectively. A positive value of I,
indicates a promising heuristic. A positive (negative) value of I,
means that the effect of the heuristic on the penalized HV (which
considers all objectives and constraints) is positive (negative,
respectively). If I;,=0, that means that the non-dominated set
after application of the heuristic is the same as before applying it
(or at least it covers the same HYV), i.e., the heuristic has not
improved or worsened the designs globally. If the initial HV was
0 and the best achievable HV was 1, I,;=1 would indicate that
when the heuristic is applied to a base set of designs to generate
new designs, the newly non-dominated set is the true Pareto Front
(i.e., the heuristic is as effective as it could possibly be). This, of
course, is unrealistic. Moreover, in the cases presented here, the
start HV is not 0 and the max HV is not 1 so the max possible
value of ,, is unknown. Beyond HV, other metrics could be used
to assess impact, including any of the well-known indicators used
in indicator-based multi-objective evolutionary algorithms. Regard-
less, the computation of an HDI-like index is less efficient than that
of WII since in HDI, a set of designs needs to be generated for each
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heuristic to assess, whereas in WII, given a set of designs, one can
compute WII for any number of heuristics.

While both WII and HDI could theoretically be applied to any
heuristic representation, the WII is a more natural choice for heu-
ristics represented as soft constraints since one can readily
compute the correlation between problem goals and heuristic vio-
lation functions. On the other hand, the HDI is a more natural
choice for repair operators and biased sampling than the WII,
since it is closer to the way we assess performance in multi-
objective optimization. For biased sampling, the index compares
the HV for a randomly sampled population versus the heuristic-
biased population.

4.1.3  Screening Study. The procedure to screen a heuristic of
different representations is illustrated in Fig. 4. Positive indices
suggest promising heuristics. However, the index is a random var-
iable because the design sampling process and the operator forms of
the heuristics are stochastic. Therefore, we compute each index N =
10 times with different sets of 300 designs generated by simple
random sampling. Other techniques from design of experiments
like orthogonal arrays or Latin hypercube sampling could be
employed for dataset generation. The number of samples and sam-
pling strategy for a dataset should be such that good coverage of the
design space with a diverse range of objectives, constraints, and
heuristics is obtained. To identify promising heuristics, rather
than just using the average index, we use the empirical probability
that the index is positive (p) (i.e., the fraction of cases where the
index is positive). A probability of 70% or more is considered
promising in the studies, which is more robust to noisy indices
than 50%. The results may change for borderline heuristics depend-
ing on the choice of threshold, which would be user-selected based
on the user’s risk aversion. Other approaches to handle noise in the
index without spending too many function evaluations would be
possible such as bootstrapping to generate several smaller subsets
of the dataset, or checking if the index is greater than a threshold
Iin >0 that is a function of the variance seen in the data.

There are some special cases to consider: (1) If a problem goal
shows no variability in the dataset, then one cannot compute the
corresponding correlation coefficients in WIL. This could be
because: (a) the goal is too easy to satisfy, but then its weight
would be zero so this case is not a problem; (b) the goal is too
hard to satisfy, in which case it is suggested to increase the size
of the dataset to increase the chances of finding feasible designs;
(c) the goal takes the same “intermediate” value all the time, in
which case one can simply skip that goal in the computation
since the heuristic does not affect that goal. (2) If a heuristic’s
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Fig.4 Flowchart showing the steps involved in the screening of
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soft constraint is always fully satisfied and thus shows no variability
in the dataset, one can also not compute the corresponding correla-
tion coefficients. In that case, one can conclude that the heuristic is
not promising. (3) If a repair operator’s IF statement is never satis-
fied (i.e., there is nothing to repair in any design in the dataset), then
the heuristic is never applied, and HDI =0, which reasonably sug-
gests that the heuristic is not promising.

For example, for the metamaterial soft constraint screening
studies, none of the randomly generated designs across the ten data-
sets fully satisfy g rqs&gsiy (special case 1b above). Therefore, in
addition to 100 randomly generated designs, 100 designs from
the middle stages of the optimization and the final population
from an e-MOEA run with an initial population of 100, ¢ bounds
of [0.01, 0.01], and maximum of 6000 function evaluations are
added to the datasets to total 300 designs each in order to more accu-
rately capture correlations with the hard-to-satisfy equality con-
straints. The operator and biased sampling screening studies for
the metamaterial use ten datasets of 300 randomly generated
designs each.

4.2 Assessing Efficacy of Promising Heuristics. To compare
the performance of the optimization algorithm with and without the
enforcement of the promising heuristics identified in the previous
subsection, three cases are considered in general: (1) no heuristics
enforced; (2) all heuristics enforced; and (3) only promising heuris-
tics enforced. As discussed in Sec. 2, each heuristic representation is
leveraged in the design optimization framework using different
methods. The chosen leveraging methods for the soft constraint,
operator, and biased sampling forms are interior penalty, AOS,
and warm starting respectively.

4.2.1 Soft Constraint Forms—Interior Penalty. The interior
penalty method [47] adds a penalty term to the design objectives
based on the degree of violation of the heuristics. The heuristic-
penalized objectives fj(x) are then used for non-dominated
sorting in the e-MOEA algorithm. Equation (6) shows the form of
the penalized objectives.

Srx) =fpen(x)+1tow (6)

Z?:] a;(x)
u
Here 7 is the number of objectives, a,(x) is the degree of satisfaction
of the ith heuristic by design x, and u is the number of enforced heu-
ristics. The weight parameter w represents the relative priority for
heuristic satisfaction relative to penalized objective minimization.
The optimal value of w is hard to predict and must be learned
through multiple trials. This is one of the main shortcomings of
fixed weighted optimization. The same heuristic-weighted penalty
is applied to all objectives. It is also possible to weigh each heuristic
penalty differently and proportionally to the heuristic’s impact
index. An alternative approach to learn the optimal weights would
be to use a co-evolution method [68] in which a population of the
heuristic penalty weights is evolved in addition to the main popula-
tion of designs, and the fitness of the population of weights depends
on the fitness of the designs found using the corresponding weights.

4.2.2  Repair Operator Forms—Adaptive Operator Selection.
Since the performance of AOS may depend strongly on the
choice of credit assignment and operator selection strategy, the
three credit assignment strategies and two operator selection strate-
gies benchmarked in Ref. [54] were considered. The credit assign-
ment strategies are: offspring-dominates-parent (where an operator
receives +1 credit if offspring dominates parent, 0.5 if non-
dominated), set improvement (where an operator receives +1
credit if the offspring enters the archive), and set contribution
(where the offspring receives +1 credit for every iteration in
which a design generated by it remains in the archive). For operator
selection strategies, probability matching and adaptive pursuit were
considered. Probability matching [69] (shown in Eq. (7)) maintains
a quality metric ¢; with a hyperparameter a that determines the
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relative weight of current versus past credits ¢;. The probability of
selection of heuristic i pr; is then updated based on ¢;. In general,
pr; is not allowed to go below a p,;, hyperparameter to ensure
some level of exploration.

Gir1 = (1 —a)giy + aciy @)

qir+1
Priss1 = Pmin + (1 = 10lpmin) —or—— ®)
j=14j.+1

Adaptive Pursuit [70] is a greedier version of probability matching
that defines a maximum probability of selection p,.x based on the
number of operators and the selection probabilities of the operators
are updated such that the best performing operator asymptotically
pursues ppn.x Whereas the others pursue py,. In the version of
AOS used in this work, pny, is reduced by a small amount every
set number of iterations until it reaches zero, assuming that if heu-
ristics are effective mostly at the beginning of the search, they
should be discouraged in the later stages.

The best performing strategies for each problem were chosen. For
the satellite problems, set improvement dominance is used as the
credit assignment strategy. Adaptive pursuit is used as the operator
selection strategy with a=0.8, f=0.8, and p,;, =0.1. For the
metamaterial design problems, offspring-dominates-parent is used
as the credit assignment strategy. Probability matching is used as
the operator selection strategy with @ =0.6 and p,;, =0.03. In all
four problems, every 500 function evaluation, p;, is reduced by
0.01 until it reaches zero.

4.2.3 Biased Sampling Forms—Warm Starting. The biased
sampling forms of heuristics are used to generate the initial popula-
tion for the optimization algorithm. The optimization proceeds nor-
mally after that.

4.2.4  Efficacy Study. Figure 5 shows the procedure of the effi-
cacy study to determine the effect of incorporating all, promising, or
no heuristics in the optimization framework. Thirty runs of each of
the three cases (no heuristics, all heuristics, and promising heuris-
tics) are conducted for comparison. The selected constraint handling
mechanism for the e-MOEA algorithm is a modified dominance
operator for non-dominated sorting where designs are compared
by aggregate constraint satisfaction first, and by Pareto dominance
in case of ties.

For the EOSS problems, the e-MOEA runs use a population size of
300, with ¢ bounds of [0.01, 0.01], and termination criteria of 5000
function evaluations. One-point crossover with probability of 1 and

1
bit-flip mutation with probability of & for the assignment problem

1
and 7 for the partitioning problem are used as the knowledge-
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Fig. 5 Flowchart illustrating the various stages in the efficacy
study for different heuristic representations
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independent operators. Specialized crossover and mutation operators
are employed for the partitioning problem to ensure that the architec-
tures after operation are feasible. The optimization parameters come
from Hitomi et al. [71] which explored the assignment problem.
For the metamaterial problems, the e-MOEA runs are conducted
with a population size of 100, ¢ bounds of [0.01, 0.01], and termi-
nation criteria of 6000 function evaluations. One-point crossover

1
with probability of 1 and bit-flip mutation with probability of 30

are used as the knowledge-independent operators. Similar optimiza-
tion parameters have been used to explore the equal normal stiffness
problem in Kumar et al. [41].

The different bit-flip probabilities arise from the different chro-
mosome lengths for different problems and the common rule of
thumb that mutation probability should be about 1/(chromosome
length).

The single-tailed Wilcoxon rank sum test with p =0.05 is used to
compare HVs between cases enforcing no heuristics, all heuristics,
and only the promising heuristics. For all problems, HV values are
tested at 250 number of function evaluations (NFE) intervals from 0
to 1000 (both included) and at every 500 NFE intervals up to and
including the end of the optimization. The HV of designs that
fully satisfy all constraints is used for performance testing and
visualization.

5 Results

The results of the screening and efficacy studies for the four
design problems are presented in this section. Correlation coeffi-
cients for heuristic-problem goal pairs and fraction of satisfaction
for each constraint and heuristic as well as the efficacy study
statistics and additional plots for all four problems are available
in the Supplementary Materials available in the Supplemental
Materials.

5.1 Screening Study. Figure 6 shows box plots of the distribu-
tion of the impact indices for each heuristic form for the four prob-
lems. Results show that not all heuristics are promising, which
emphasizes the need for robustness in identifying the promising
heuristics. The results for each case study are discussed individually
below.

5.1.1 Artery Problem. Soft constraints: Neither the partial col-
lapsibility nor the nodal properties soft constraints are found to be
promising (p = 0.0 for PC and 0.2 for NP) whereas the orientation
and intersection soft constraints are both promising (p =1.0 for
both.) This makes sense since both orientation and intersection
are aligned with distance to PF in addition to the constraints they
are targeting (see Table in Supplementary Materials available in
the Supplemental Materials with correlation coeffs.) On the other
hand, both partial collapsibility and nodal properties show negative
alignment with distance to PF and feasibility.

Repair Operators: The p for partial collapsibility, nodal proper-
ties, orientation, and intersection repair operators are 0.4, 0.3, 0.7,
and 1.0 respectively. Thus, the orientation and intersection repair
operators are promising, as found with the corresponding soft
constraints.

Biased Sampling: The p for orientation biased sampling is
found to be 0.7, which makes it narrowly promising for this
problem.

5.1.2 Equal Stiffness Problem. Soft constraints: The partial
collapsibility and nodal properties soft constraints are non-
promising (p = 0.0 for both) whereas the orientation and intersec-
tion soft constraints are promising (p = 0.9 and 1.0 respectively),
as in the artery problem.

Repair Operators: The partial collapsibility and nodal properties
repair operators have a p of 0.5 and 0.6 respectively and are
thus non-promising. The orientation repair operator has a p
of 0.6, making it narrowly non-promising, unlike in the
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Fig. 6 Distributions of the impact indices for the heuristic forms of the four test problems shown as boxplots with the p values
and the mean impact index represented as blue dots. The p values of the promising heuristics are shown in green and bold:
(a) artery—soft constraints, (b) equal stiffness—soft constraints, (c) assignment—soft constraints, (d) partitioning—soft con-

straints, (e) artery—repair operator, (f) equal stiffness—repai
repair operator, and (i) biased sampling.

artery problem. This is likely because a stiffness ratio of 1 is easier
to achieve randomly than the arbitrary target of the artery problem.
The intersection repair operator is still promising with a p of 0.9.

Biased Sampling: The orientation biased sampling heuristic is not
promising with a p of 0.3, probably also because the 1 target stiff-
ness ratio is easy to obtain randomly.

5.1.3 Assignment Problem. Soft constraints: Duty cycle,
instrument-orbit relations, interference, spacecraft mass, and instru-
ment count have positive index values for all ten datasets. Synergy
and packing efficiency have probability of positive index of 0.9 and
0.5 respectively. Hence, all heuristic soft constraints except packing
efficiency are considered promising for the assignment problem.
While improving packing efficiency reduces launch cost, it is pos-
sible that it also degrades other aspects of lifecycle cost or science,
leading to a net negative effect.

Repair operators: Both the interference and spacecraft mass
repair operator forms have a probability of positive index of 0.9.
Instrument count repair operator has all positive index values and
packing efficiency and synergy repair operators have negative
index values for all ten datasets. Both duty cycle and
instrument-orbit relations repair operators have probability of posi-
tive index of 0.6. Thus, the promising heuristic repair operators are
interference, spacecraft mass, and instrument count, although duty

Journal of Mechanical Design

r operator, (g) assignment—repair operator, (h) partitioning—

cycle and instrument-orbit relations are almost promising. A poten-
tial reason why the synergy operator is not promising is that it works
by adding a synergistic instrument to the design, which can lead to
too low resources.

Biased sampling: The impact index for the instrument count
biased sampling heuristic is positive for all ten datasets, implying
that it is promising for this problem, as expected.

5.1.4  Partitioning Problem. Soft constraints: All heuristic soft
constraints except packing efficiency have all positive index values
across the datasets and are thus promising. The packing efficiency
soft constraint form is not promising (p = 0.2), as in the assignment
problem.

Repair operators: Duty cycle, instrument-orbit relations, interfer-
ence, and spacecraft mass repair operators have probability of pos-
itive index of 0.8, 0.7, 0.8, and 0.8 respectively whereas packing
efficiency and synergy repair operators have probability of positive
index of 0.3 and 0.4 respectively, probably because of the same
reasons mentioned earlier.

5.2 Efficacy Study. Table 1 shows the results of the efficacy
study for the three heuristic representations incorporated into the
four case studies. The use of the rejection of the null hypothesis
for at least one of the test NFEs to indicate performance
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Table1 Summary of the results of the efficacy studies for the three forms of the heuristics and the four test problems as tested pairs

of cases

Design problem Soft constraints (Int. Pen.)

Repair operators (AOS) Biased sampling (Bias. Init.)

Artery Prom. > All;

Prom. > e-MOEA
All > e-MOEA

Prom. # ¢e-MOEA;
Prom. ¥ All;
All # e-MOEA

Prom. > e-MOEA;
All > e-MOEA;
Prom. ¥ All

Prom. » ¢e-MOEA;
Prom. ¥ All;
All ¥ e-MOEA

Equal stiffness

Assignment

Partitioning

Prom. > All;
Prom. > e-MOEA;

All # e-MOEA

Prom. > All;
Prom. > ¢e-MOEA;
All ¥ e-MOEA

Prom. > All;
Prom. > ¢-MOEA;
All > e-MOEA

Prom. > e-MOEA; —
All > e-MOEA;
Prom. ¥ All

Prom. = All ¥ e-MOEA

All # e-MOEA = Prom.

Prom, = All > e-MOEA

Note: Cases with an improvement in performance due to the promising heuristics (rejection of the HV null hypothesis) for at least one of the test NFEs are
shown with > and in bold font. Case pairs for which the null hypothesis could not be rejected are shown with .

improvement between different test cases can be justified since in
most cases, heuristics are useful in the beginning of the search up
to a certain NFE. It is also worth noting that the number of function
evaluations one can afford for a given problem depends on available
optimization time, computational resources, and infrastructure and
the computational cost of models so this approach, although opti-
mistic, seems reasonable. In general, we see that heuristics help in
most cases, especially repair operators. The results for each case
study are discussed individually in the following.

5.2.1 Artery Problem. For the enforcement of the heuristic soft
constraints using interior penalty, out of the trials conducted using
penalization weights w=0.1, 1, 10 the best results were obtained
for w=10 and those are presented here.

Figure 7 compares the evolution of HV as a function of NFE for
the three cases (all, promising, or no heuristics) for both soft con-
straints (Fig. 7(a)) and repair operators (Fig. 7(b)). The HV for
fully feasible designs as a function of NFE for the biased sampling
cases is shown in Fig. 8(a).

Generally, it is observed that enforcing only the promising heu-
ristics, in the case of both the soft constraint and repair operator
forms, results in a decrease in NFE required to find the first fully
feasible design (i.e., faster jump in the HV plot) compared to no
heuristics and to all heuristics—i.e., there are some NFE savings
for a fixed (low) computational budget.

Soft constraints: Figure 7(a) shows the statistics of the HV for
30 runs for the three cases. The lines show the median HV
values for each case while the shaded regions show the inter-
quartile ranges. The increase in the median HV line and a
portion of the inter-quartile range for the promising heuristics
case at lower NFE values compared to the other two cases in the
embedded plot of Fig. 7(b) shows that enforcing only the promis-
ing heuristics leads to higher HV values for the same NFE for most
runs compared to enforcing all heuristics or enforcing no heuris-
tics. The HV for the promising heuristics case is significantly
higher than the e-MOEA HV at NFE = 750 (U=263.5, p=
0.003) and 1000 (U=247, p=0.001) and significantly higher
than the all heuristics case at NFE =500 (U =304, p=0.01) and
750 (U=265, p=0.003). Additionally, HV for the all heuristics
case is significantly higher than the e-MOEA HV at NFE =
1000 (U=331, p=0.04).

The difference in the median HV jump NFE between enforcing
no heuristics (750) and enforcing only promising heuristics (600)
is 150, which is slightly less than the 300 designs on average
required to determine the set of promising heuristics. Since the fea-
sibility constraint is hard to satisfy, more feasible designs had to be
evaluated as well so in this case the method does not improve effi-
ciency overall. However, the NFE at which the initial jump in HV is

121702-10 / Vol. 145, DECEMBER 2023

observed (which corresponds to the discovery of the first design sat-
isfying all constraints) from enforcing all heuristics is the same as
enforcing no heuristics.

Repair operators: Similar HV trends to the soft constraints case
are observed in Fig. 7(b). The HV for promising heuristics is signif-
icantly higher than the e-MOEA HV at NFE=500 (U=331, p=
0.03), 750 (U=257, p=0.002), and 1000 (U =270.5, p=0.004).
Additionally, the HV for the promising heuristics case is signifi-
cantly higher than the HV for the all heuristics case at NFE =500
(U=1349, p=0.05) and 750 (U=339, p=0.05). The difference in
the median HV jump NFE between enforcing no heuristics (750)
and enforcing only promising heuristics (500) is 250, which is
slightly less than the 300 random designs used in the impact
index computation—i.e., the method does not improve efficiency
overall. However, the HV jump NFE by enforcing all heuristics is
700, resulting in net NFE savings of 200.

Biased sampling: The orientation biased sampling initialization
did not improve HV and has similar performance to the e-MOEA
case. The heuristic enforced case results in a smaller inter-quartile
range of HV values as shown in Fig. 8(a) compared to the
€-MOEA case. The HV for the heuristic enforcement case is not sig-
nificantly higher than e-MOEA HV at any of the tested NFE.

5.2.2  Equal Stiffness Problem. Multiple trials for the enforce-
ment of heuristics using interior penalty were performed with the
penalization weights of 0.005, 0.05, 0.01, 0.1, 0.5, 1, and 10. The
best results were obtained for w=0.05 and are presented here.

Figures 7(c), 7(d), and 8(b) show the results for the soft con-
straint, repair operator, and biased sampling representations
respectively.

Soft constraints: Figure 7(c) shows that enforcing only the prom-
ising heuristics demonstrates an improvement in performance over
enforcing all heuristics, seen by the jump in the median HV curve
for the promising heuristics case compared to the all heuristics
case. However, there is no discernible improvement in performance
compared to the e-MOEA case. The Wilcoxon test on the HV
values for the three cases also does not show significant perfor-
mance improvements between any pair of cases at any of the
tested NFE.

Repair operators: Figure 7(d) illustrates the improvement in
performance by enforcing only the promising heuristic repair
operators. The promising heuristics case is able to find designs sat-
isfying all constraints faster, as seen in the comparison of the point
of jump in the median HV curves. The difference in the
NFE at which the jump takes place for the promising heuristics
(950) and e-MOEA (3850) cases is 2900, which is much
more than the 300 function evaluations required on average to
ascertain the set of promising heuristics. The HV for the
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Fig. 7 HV as a function of time (NFE) for the three cases in the metamaterial problems. The lines represent the median values,
the shaded regions represent the inter-quartile ranges and only designs satisfying all constraints are considered: (a) artery—soft
constraints, (b) artery—repair operators, (c) equal stiffness—soft constraints, and (d) equal stiffness—repair operators.

promising heuristics case is significantly higher than for both the
all heuristics and the e-MOEA from 500 NFE onwards (all
p-values are <0.01).

Enforcing all the heuristics (as either soft constraints or repair
operators) results in more than half of the runs failed to reach
fully satisfying designs, thus illustrating the merit of identifying
the promising heuristics to enforce.

Biased sampling: The orientation biased initialization strategy
did not significantly improve HV and in fact, hurts performance
as seen by comparing the mean HV curves for the heuristic
enabled and e-MOEA cases. Any advantage of improved orienta-
tion satisfaction in the initial population appears to be immediately
lost after application of other operators.

5.2.3 Assignment Problem. Penalization weights (w in Eq. (6))
of 1 and 0.1 were tried for the enforcement of the heuristic soft con-
straints using interior penalty. The best results were obtained for
w =0.1 and are presented here.

Figures 9(a), 9(b), and 8(c) show the results for the assignment
problem’s repair operators+soft constraints and biased sampling
respectively.

Soft constraints: Comparing the inter-quartile ranges in
Fig. 9(a) shows that enforcing only the promising heuristics
leads to the design search obtaining better performing designs

Journal of Mechanical Design

for most runs compared to enforcing all heuristics and no heuris-
tics. As aresult, the HV for the promising heuristics case is signif-
icantly higher than the e-MOEA HYV for NFE = 1000 (U =325, p
=0.03), 1500 (U=293, p=0.01), 2000 (U =285, p=0.008), and
2500 (U=1337, p=0.05). Additionally, the HV for the all heuris-
tics case is significantly higher than the e-MOEA HV for NFE =
1500 (U=338, p =0.05), 2000 (U=326, p=0.03), and 2500
(U=317, p=0.02). This can be explained by the fact that since
only packing efficiency is not promising, there is not a huge
improvement in performance between the promising and all
cases. However, removing the non-performing heuristic quickens
the improvement in performance over e-MOEA. The NFE savings
depend on the level of performance (median HV). To achieve an
HV =0.88 for the all heuristics case 500 fewer NFE are needed,
compared to only 300 fewer for the promising heuristics case in
comparison with e-MOEA. The promising heuristics case also
performs better for HV=0.87. In contrast, the all heuristics case
performs better for HV =0.85 and 0.86. At HV =0.70, both heu-
ristics enforcement cases show NFE savings of 100 with respect to
e-MOEA. In general, both heuristics enforcement cases are evenly
matched in terms of NFE savings at most values of HV. But these
savings are less than the 300 designs on average used in the
screening study, i.e., the method does not improve efficiency
overall.
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Fig. 8 Performance comparison between cases for the metamaterial design problems with orientation and for the assignment
problem with instrument count violation enforced as a biased initial population. The lines represent the median values, the
shaded regions represent the inter-quartile ranges, and only designs that fully satisfy the constraints are considered: (a) artery

problem, (b) stiffness problem, and (c) assignment problem.

Repair operators: The improvement in performance by enforcing
the heuristic repair operators is apparent in the comparison of the
inter-quartile ranges of HV for the three heuristics enforcement
cases in Fig. 9(b). The HV for the all heuristics case is significantly
higher than the e-MOEA HYV at all tested NFEs except at NFE =0,
250, and 2000 (all p-values are < 0.04, except at 2500 NFE where
p =0.05). The promising heuristics HV is significantly higher
than the e-MOEA HV at all tested NFE except at NFE =0, 250,
and 5000 (all p-values are <0.02 except at 4500 NFE where
p =0.05). The promising heuristics HV is significantly higher
than the all heuristics HV at NFE=1000 (U=323, p=0.03),
1500 (U =338, p=0.05), 2000 (U=322, p=0.03), and 2500 (U
=341, p=0.05). The maximum NFE savings with respect to
e-MOEA for the all heuristics case is 1000 for median HV =0.89,
compared to 800 for the promising heuristics case. In contrast,
the maximum NFE savings by enforcing the promising heuristics
is 900 for median HV =0.88 which is greater compared to 700
NFEs saved by enforcing all heuristics. For median HV =0.70
the promising heuristics case saves 200 NFEs whereas the all heu-
ristics case saves only 150 NFEs. However, these savings are again
less than the 300 designs on average used in the screening study.

Biased sampling: The clear separation between the inter-quartile
ranges for the two cases in Fig. 8(c) demonstrates the clear superior-
ity of the biased initialization case over e-MOEA. The biased sam-
pling case HV is significantly higher than the e-MOEA HV for all
tested NFE (all p-values are <0.01). The median HV difference
between the two cases at 0 NFE is 0.2284 and e-MOEA takes
more than 5000 NFE to catch up, thus illustrating the high
savings in NFE by enforcing the instrument count biased sampling
form.

Overall, all methods show significant improvements in efficiency
for the assignment problem, although the gains are much larger for
biased sampling than for the other two forms.

5.2.4  Partitioning Problem. To enforce the heuristic soft con-
straint forms, different trials of interior penalty were conducted with
penalization weights of 0.005, 0.1, 1, and 10. The best results were
obtained for w=0.1 and are shown here.

Figures 9(c) and 9(d) show the results for the soft constraints and
repair operators respectively.

Soft constraints: Comparing the inter-quartile ranges of HV for
the three heuristic enforcement cases in Fig. 9(c) shows that there
is no significant improvement in performance obtained by enforcing
the heuristic soft constraints. None of the HV values is significantly
higher between any case pairs at all tested NFE.

Repair operators: Comparing the inter-quartile ranges for the
three heuristic enforcement cases in Fig. 9(d) does not show any
noticeable improvement in performance by the enforcement of the
repair operators at the beginning of the search. However, the prom-
ising heuristics HV is significantly higher than the e-MOEA HV at

121702-12 / Vol. 145, DECEMBER 2023

NFE =3500 (U=329, p=0.04), 4000 (U=297, p=0.01), 4500
(U =304, p=0.02), and 5000 (U=324, p=0.03). Additionally,
the all heuristics HV is significantly higher than the e-MOEA HV
at NFE =4000 (U =338, p=0.05), 4500 (U=306, p=0.02), and
5000 (U =297, p=0.01). The promising heuristics HV is not sig-
nificantly higher than the all heuristics HV. Interestingly, the perfor-
mance improvement happens towards the end of the optimization,
which is opposite to the usual behavior of heuristics. The
maximum NFE savings by enforcing only the promising heuristics
(700) is seen for median HV =0.91, in comparison to only 600 by
enforcing all heuristics. Additionally, 300 NFEs are saved by
enforcing only the promising heuristics to reach median HV =
0.66, whereas no savings are observed by enforcing all heuristics.
However, these savings are not seen for both heuristic enforcement
cases for other HV values. Overall, for the partitioning problem, the
repair operator heuristics lead to small but significant gains in effi-
ciency after a few thousand NFEs, whereas soft constraints do not
seem to improve efficiency at any point.

6 Discussion

6.1 Main Findings. Table 2 summarizes the efficacy study
results for all problems and all heuristic representations as a compar-
ison of the NFE savings (if any) for the promising heuristics case
compared to the e-MOEA case with the 300 NFE used in the screen-
ing study. Nearly all cases except the equal stiffness problem and par-
titioning problem soft constraint cases show gains in enforcing only
the promising heuristics as compared to enforcing no heuristics.
The greatest NFE gain is observed in the assignment problem
(biased sampling function case) and the equal stiffness problem
(repair operator case). Starting with a lower number of instruments
on average (as enforced by the instrument count biased sampling
form) aided in finding the optimal balance between allocation of
instruments to satellites to satisfy the stakeholder requirements and
incurring high cost. It is also worth noting that although enforcing
the promising heuristics in the Assignment problem soft constraint
and repair operator cases shows NFE savings greater than 300 at
high HV values (0.88 for both cases), this is contrary to the assump-
tion that heuristics are useful at the beginning of the search up to a
certain NFE. The partitioning problem repair operator case also
shows similar results, however the promising heuristics show NFE
savings of 300 at HV =0.66.

Overall, it can be concluded that the impact indices are able to
identify the promising heuristics which are found to be effective
for most cases. That said, the gains are more significant in some
problems than in others, and they depend on the computational
budget. It must be noted here that although NFE is computed sim-
ilarly for three efficacy study cases, the incorporation of repair
operators through AOS does increase runtime slightly compared
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Fig. 9 HV as a function of time (NFE) for the three cases in the EOSS problems. The lines represent the median values, the
shaded regions represent the inter-quartile ranges: (a) assignment—soft constraints, (b) assignment—repair operators,
(c) partitioning—soft constraints, and (d) partitioning—repair operators.

to the e-MOEA case owing to the computational overheads per-
taining to the knowledge-dependent design manipulation, operator
credit assignment, and selection. In this paper, we assume that the
cost of executing a heuristic is negligible compared to the cost of
executing the design evaluation model, which we believe is a rea-
sonable assumption for real-world engineering problems. The
computational overheads associated with the soft constraint and
biased sampling forms are negligible compared to the e-MOEA
design search.

Large differences in performance are seen between different heu-
ristic representations for the different problems, with repair opera-
tors being the most robust overall. This can be attributed to the
details of how the heuristics are implemented as well as how they
are incorporated into the optimization framework. Soft constraint
forms continuously impact the design search since the heuristic vio-
lation penalizations to the objectives are always levied. In compar-
ison, there can be stages in the optimization algorithm wherein the
heuristic repair operator is not applied and hence is not directly
impacting the design search. Moreover, interior penalty, which is
used to enforce the heuristic soft constraints, has the inherent short-
coming that the penalization weight is a hyperparameter that must
be fixed using trials.

The results for the partitioning and stiffness problems show that
there is some utility in continuing to utilize heuristics that improve
both objective minimization and constraint satisfaction throughout
the optimization process and not just at the beginning.

Journal of Mechanical Design

6.2 Designer Guidelines. Based on the results of the case
studies, seven guidelines for designers to incorporate design heuris-
tics are presented. These guidelines are most useful for whomever
is in charge of either developing the search tool or configuring it
for a given problem, which in some cases may also be the user of
the tool (i.e., the “designer” or “systems engineer”) but not
necessarily.

(1) Many heuristics “look good” but are actually not useful for a
given problem. Thus, employ the screening study to identify
the promising heuristics. For example, nodal properties were
non-promising for both metamaterial problems even though
it was aimed at increasing the satisfaction of the connectivity
constraint. Additionally, the screening study is especially
useful if many heuristic repair operators are available. Even
though AOS is an online adaptive operator enforcement
method, it may take a lot of function evaluations for AOS
to learn the useful heuristics for a given problem.

(2) Heuristic representation and implementation details matter.
Different representations of the same general heuristic may
have very different behaviors (see results of the EOSS
study). Even the details of the heuristic implementation
(e.g., the “move size” or a threshold parameters for a repair
operator) may have a large impact on heuristic performance.

(3) Heuristics that help with hard to satisfy problem goals (e.g.,
constraints) have great potential to be promising for the
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Table2 Summary of the results of the efficacy studies for the three forms of the heuristics and the four test problems as tested pairs

of cases

Design problem Soft constraints (Int. Pen.)

Repair operators (AOS) Biased sampling (Bias. Init.)

Artery 150
Equal Stiffness x
Assignment 100 (at HV=0.70)

Partitioning X

250 x
2900 x

200 (at HV =0.70) >5000

300 (at HV = 0.66) -

Note: Here the NFE savings by enforcing the promising heuristics compared to enforcing no heuristics is shown for each case (including the test HV as is
applicable), with the savings > the 300 NFEs on average required for the screening study in bold font and x implies no performance improvement.

problem. For example, for the metamaterial problems, orien-
tation and intersection in its various representations aided in
reaching the fully satisfying designs faster, whereas many
€-MOEA runs could not find a single fully feasible design.

(4) In the presence of very-hard-to-satisfy constraints, there can
be high variability in the screening study results. Designers
are advised to rerun the screening study using different data-
sets to assess robustness.

(5) In constructing heuristic repair operators, incorporating ran-
domness into the operation of the heuristic will help reduce
the exploitation of its inherent knowledge and may help
maintain appropriate balance between exploration and
diversity.

(6) Repair operators seem to be a more robust way overall of
incorporating heuristics compared to the other forms we
studied. The implementation as soft constraints has some lim-
itations. First, the fixed-weight interior penalty method we
used continuously enforces the heuristics even in design
regions where they may not be promising and thus hurt the
design search (although that could be alleviated if an adaptive
penalty method is used such as Ref. [68]). Second, in cases
with very hard to satisfy constraints, the screening study for
soft constraints required a large number of NFE to find
designs with varying degrees of constraint satisfaction.

(7) Incorporate the promising heuristics using an adaptive
approach such as AOS in repair operators. This approach
can “shut down” heuristics selectively when they stop
being useful for the problem, and restart them if they
become useful again (as seen in the partitioning problem).

7 Conclusions and Future Work

This paper is, to the best of our knowledge, the most comprehen-
sive study on the use of design heuristics to improve the efficiency
of multi-objective design optimization. A novel approach to iden-
tify the promising heuristics from a set of candidate heuristics for
a given design problem is introduced, which utilizes two new
impact indices that capture the aggregate effect of a heuristic on a
given problem’s goals (objectives and constraints).

The approach is tested and validated on four multi-objective
design problems: two unconstrained EOSS design problems and
two constrained metamaterial design problems. For six out of
the eight cases (four design problems with heuristic soft constraint
and repair operator forms for each), the identified promising heu-
ristics were found to significantly improve the design optimization
performance in comparison to enforcing all heuristics and enforc-
ing no heuristics. For the remaining two cases, the performance of
the promising heuristics was found to be at least as good as the
enforcement of all heuristics. Results for the three cases of
heuristic-biased distribution enforcement varied from a perfor-
mance improvement for the Assignment problem, to a perfor-
mance decline for the stiffness problem and no significant
change in performance for the artery problem. Based on the
results, some points of discussion and guidelines for designers
were provided.

The study has several limitations. The scope of this work was
limited to multi-objective evolutionary algorithms and specifically
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the baseline algorithm was e-MOEA. Other baseline algorithms
and how to incorporate heuristics into other search schemes (e.g.,
Bayesian optimization) should be explored.

All our findings and guidelines are based on four test problems
and more work is to be done to ascertain the generalizability
to other problems. In particular, all the problems are combinato-
rial optimization problems (i.e., they only have discrete design
decisions) and problems with continuous variables should be
studied.

The study used specific methods to incorporate the heuristics of
various forms, namely interior penalty, adaptive operator selection,
and warm starting. However, other methods exist to leverage the dif-
ferent design heuristic representations (e.g., a heuristic-biased sampling
form can be incorporated into the evolutionary optimization frame-
work as a biased crossover, mutation, or selection operator) and
should be explored in the future. Additionally, as shown in Fig. 1,
design optimization involves more than just searching: it also involves
creating a problem formulation and evaluating designs. One could also
consider heuristics for design evaluation, or model selection if multiple
models of varying fidelities were available. Naturally, a lot of expert
knowledge goes into developing a problem formulation (i.e., choice
of design variables, objectives, constraints, etc.). Figure 1 also suggests
some different ways to incorporate different heuristic representations
into different steps of the optimization process (selecting designs, gen-
erating designs). For example, the heuristic-biased sampling function
form can also be incorporated as a biased crossover or mutation opera-
tor. Finally, heuristics can also be used for selecting search operators—
replacing the domain-independent adaptive operator selection strategies
used in this work.

The study used a relatively small number of heuristics. Therefore,
the results we obtained could be due to our choice and specific
implementation of heuristics rather than the proposed methods.
More heuristics should be studied, particularly for the biased sam-
pling form. Although only a few heuristics in this work are repre-
sented as biased prior distributions, this is still consistent with the
main goal of the paper, to demonstrate the efficacy of the method-
ology in identifying the promisingness of a heuristic. More broadly,
the method should be applied to problems with a larger database of
available heuristics. To work in practice, knowledge-based mecha-
nisms (e.g., knowledge graph embeddings) may be used to down-
select from a larger list of heuristics to a smaller list for the screen-
ing study.

The proposed indices evaluate the impact of heuristics
one-at-a-time and therefore they do not capture potential interac-
tions between heuristics (e.g., one heuristic “undoing the work*
of the other). Future work will explore how to incorporate interac-
tions into the indices.

Despite these limitations, overall, the results of the identification
and leveraging of the promising heuristics for the four design prob-
lems show that the framework has potential in significantly speed-
ing up the process of finding satisfying designs.
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