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ABSTRACT

Radio interferometers aiming to measure the power spectrum of the redshifted 21 cm line during the Epoch of Reionization
(EoR) need to achieve an unprecedented dynamic range to separate the weak signal from overwhelming foreground emissions.
Calibration inaccuracies can compromise the sensitivity of these measurements to the effect that a detection of the EoR is
precluded. An alternative to standard analysis techniques makes use of the closure phase, which allows one to bypass antenna-
based direction-independent calibration. Similarly to standard approaches, we use a delay spectrum technique to search for
the EoR signal. Using 94 nights of data observed with Phase I of the Hydrogen Epoch of Reionization Array (HERA), we
place approximate constraints on the 21 cm power spectrum at z = 7.7. We find at 95 per cent confidence that the 21 cm EoR
brightness temperature is <(372) ‘pseudo’ mK? at 1.14 ‘pseudo’ s Mpc~!, where the ‘pseudo’ emphasizes that these limits are
to be interpreted as approximations to the actual distance scales and brightness temperatures. Using a fiducial EoR model, we
demonstrate the feasibility of detecting the EoR with the full array. Compared to standard methods, the closure phase processing
is relatively simple, thereby providing an important independent check on results derived using visibility intensities, or related.

Key words: methods: data analysis—methods: statistical —techniques: interferometric —intergalactic medium —dark ages,
reionization, first stars.

first luminous sources. Current constraints on cosmic reionization are
derived from the scattering of the Cosmic Microwave Background
The Epoch of Reionization (EoR) is a period in cosmic history during (CMB) from the ionized IGM (Planck Collaboration VI 2020) and
which the neutral intergalactic medium (IGM) was ionized by the from absorption effects observed in high-redshift quasars and galaxy
surveys. Combined, these observations point towards a reionization
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midpoint at a redshift of z ~ 7 and a completion of reionization by z
~ 5.5 (Greig & Mesinger 2017).

The 21 cm spin-flip emission of neutral Hydrogen (H1) will be a
powerful probe of cosmic reionization (see e.g. Morales & Wyithe
2010; Pritchard & Loeb 2012; Furlanetto 2016 for reviews). Once
observed, the redshifted 21 cm signal will provide spatially resolved
information about the timing and duration of reionization as well as
the physical properties of the neutral IGM. In return, this will give
insight into the nature of the sources providing the ionizing photons.
An advantage of using the 21 cm signal is that its cosmological
redshift is an indicator of the line-of-sight distance, making it a
tomographic probe of the neutral IGM (Madau, Meiksin & Rees
1997). However, to increase the sensitivity to the 21 cm signal,
current interferometric experiments focus on a statistical detection
by means of its power spectrum rather than tomographic imaging.

There are several ongoing, past and future radio interferometers
aimed at measuring the power spectrum of the cosmological 21 cm
signal. These include the Hydrogen Epoch of Reionization Array
(HERA'; DeBoer et al. 2017), the Donald C. Backer Precision Array
for Probing the Epoch of Reionization (PAPER; Parsons et al. 2010),
The Murchison Widefield Array (MWA; Tingay et al. 2013), the
LOw Frequency ARray (LOFAR; van Haarlem et al. 2013), the Long
Wavelength Array (LWA; Eastwood et al. 2019), the Giant Metre
Wave Radio Telescope (GMRT; Paciga et al. 2013), and the Square
Kilometre Array (SKA; Koopmans et al. 2015). While continuously
lowering the upper limits on the 21 cm brightness temperature of the
IGM, most of these experiments are currently limited by systematic
effects rather than thermal noise (Paciga et al. 2013; Dillon et al.
2015; Beardsley et al. 2016; Patil et al. 2017; Cheng et al. 2018;
Barry et al. 2019; Kolopanis et al. 2019; Li et al. 2019; Mertens et al.
2020; Trott et al. 2020; HERA Collaboration 2022a, c).

One particular challenge is to calibrate the instrument to the
accuracy required for a detection of the cosmological 21 cm signal.
Inaccurate sky models and differences between nominally redundant
baselines can introduce calibration errors that overwhelm the weak
cosmological signal (Barry et al. 2016; Ewall-Wice et al. 2017; Byrne
et al. 2019, 2021). This motivates the use of calibration-independent
closure quantities (Thompson, Moran & Swenson 2017; Samuel,
Nityananda & Thyagarajan 2022; Thyagarajan, Nityananda &
Samuel 2022) to search for the cosmological signal. In this work
we use the closure phase, which is defined as the sum of the three
visibility phases of an antenna triangle (Jennison 1958). It can be
shown that antenna-based direction-independent gain phases cancel
in the closure phase.

The basic concept of the closure phase approach was first intro-
duced in Thyagarajan, Carilli & Nikolic (2018) and its mathematical
foundation is set out in Thyagarajan & Carilli (2020). Using simula-
tions, these papers confirm that the dynamic range required to detect
the weak cosmological signal in the closure phase is comparable to
that of a visibility-based approach. Looking at HERA commissioning
data, Carilli et al. (2018) find that the closure phase agrees well
across redundant measurements. The first results of the closure phase
analysis performed on 18 nights of HERA phase I observing are
presented in Thyagarajan et al. (2020). While the data are partially
affected by systematic effects, they also identify large regions in the
power spectra that are limited by thermal-like noise.

The closure phase analysis is carried out in parallel with the
standard visibility-based analysis (cf. HERA Collaboration 2022a,
hereafter H22a). H22a report improved constraints on the 21 cm
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EoR power spectrum using visibility intensities from a full season
of Phase I HERA data, finding at 95percent confidence that
A% < (21.4)’mK? at k =0.34hMpc~! and z = 7.9 and A%, <
(59.1)’ mK? at k = 0.36 A Mpc~' and z = 10.4. These results are
an update to previously published limits obtained on a subset of
the Phase I data (HERA Collaboration 2022c, hereafter H22c) and
provide an improvement by factors of 2.1 and 2.6, respectively. H22a
use a similar data processing pipeline to that of H22c¢, which incorpo-
rates elaborate methods for preventing RFI and internal instrumental
coupling effects from contaminating the power spectrum (Kern et al.
2019, 2020). The signal losses introduced through these non-linear
processing steps are characterized in a validation pipeline that makes
use of extensive simulations (cf. Aguirre etal. 2022). The upper limits
were then used to set constraints on the IGM and galaxies at z ~ 8
and 10 (cf. HERA Collaboration 2022b, H22a.). These constraints
require heating above the adiabatic cooling threshold prior to z ~ 10.4
and disfavour models with low X-ray heating. While the upper limits
set by HERA are going to be increasingly important in constraining
the EoR, this also calls for independent and alternative approaches to
analysing the data. The closure phase analysis is one such approach
which will increase the confidence in these results.

In this paper, we report upper limits of the closure phase delay
power spectrum obtained from a full season of HERA Phase I
observing. The outline of this paper is as follows. In Section 2,
we shortly summarize the mathematical foundations underlying the
closure phase approach. Section 3 lists the specifications of the
HERA array and Section 4 gives an overview of the data used in
the analysis. In Section 5, we describe the modelling used to validate
the approach. Section 6 details the data selection and delineates the
analysis pipeline. Finally, we present our results in Section 7 and
summarize in Section 8.

2 THEORY

The mathematical foundations of the closure phase approach are
outlined in Thyagarajan & Carilli (2020). For completeness, we
summarize some of the mathematical formalism most relevant to
the closure phase delay power spectrum analysis, without repeating
the involved mathematics in Thyagarajan & Carilli (2020).

In the limit where the cosmological 21 cm signal is weak relative
to the foreground continuum visibility amplitudes, we can treat
the cosmological signal as a small perturbation to the foreground
visibility phase ¢, of baseline p. In a first-order approximation, it
can be shown that these phase perturbations are (Thyagarajan &
Carilli 2020)

VP()
~ X )4
6¢p(”) ~ S { VPF(U)} , (1

where VpP and VPF are the perturbing visibility and the foreground
visibility of baseline p, respectively, and I denotes the imaginary
part. The closure phase ¢ is the sum of the three visibility phases of a
closed antenna triangle (triad) and its perturbation is simply the sum
of the corresponding phase perturbations,

> VP)
Sp(v) ~ Z 3 { V:F(z)} ) )

p=1

The line-of-sight fluctuations of the cosmological signal will
cause the phase perturbations to fluctuate across frequency, while
the foreground visibility phases are due to broad-band continuum
emission, and relatively smooth in frequency. It is this frequency
dependence that allows us to separate the cosmological signal from
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the bright continuum foregrounds. More precisely, we perform a
Fourier transform of the closure phase along frequency, which is
known as a delay transform (cf. Parsons et al. 2012). In the delay
spectrum, the spectrally smooth foregrounds are confined to low
delay modes, while higher delay modes can be used to set upper
limits on the HI 21 cm emission from the EoR. The latter is known
as the EoR window (Datta, Bowman & Carilli 2010; Liu, Parsons &
Trott 2014). Formally, we define the delay spectrum as

Wy () = Vegr / e POIW (v)e T d, 3)

where Vg is a scaling factor, W is a spectral tapering function shaped
to fit the observed band, v is the frequency, and 7 is the delay. In this
analysis, we use a Blackman-Harris function (Blackman & Tukey
1958) for W, which is suited to the high dynamic range requirements
of the measurement. Note that instead of directly transforming the
closure phase ¢, we transform its complex exponential. Doing this,
we avoid the discontinuities that can arise because of the circularity
of phase.

The effective visibility Vg provides the delay spectrum with
units of Jy Hz, which are the units of a standard visibility delay
spectrum. Furthermore, V¢ should be designed to gauge the strength
of the closure phase fluctuations to the strength of the perturbing
signal. That is, it should counteract the inverse proportionality to the
foreground visibility in equation (2) so that the spectral fluctuations
in 8¢ are of similar strength to the fluctuations in V; . This allows
one to combine measurements of regions on the sky with different
foreground visibility amplitudes. Motivated by this, we define

3 N2
vat=>" (V) @
p=1

where \7; is an estimate of the foreground visibility amplitude
weighted by the window function W and averaged over the observed
subband (cf. Thyagarajan & Carilli 2020). The summation in inverse
quadrature gives weight to the baselines with the smallest foreground
visibility amplitudes, where the spectral fluctuations of the 21 cm
signal are expected to be strongest. In this analysis, we use calibrated
data to estimate Vlf , as it is readily available from the visibility
processing pipeline. However, in principle, we could use an accurate
sky model instead, making this approach completely independent
of calibration. Note that V¢ is deliberately chosen to be frequency
independent to avoid further foreground contamination into the EoR
window. This assumption should be reasonable over the relative
narrow bands considered herein (Thyagarajan & Carilli 2020). Re-
gardless, any claimed limits or detection using this technique comes
down to comparison with physical models for the cosmological and
foreground signals, which are treated identically to the real data.

Ultimately, we are interested in the power spectrum |‘I‘v(t)|2,
which, statistically, is independent of direction and polarization. This
is due to the assumed isotropy and polarization-independence of the
21 cm signal and allows for the incoherent averaging of different
portions of the data. Section 6.5 describes how we do this in practice.

3 HERA

HERA is a low-frequency radio interferometer designed to measure
the 21 cm emissions of neutral Hydrogen during the EoR. Located
in a radio quiet zone in the Karoo desert in South Africa, it is
minimally affected by radio frequency interference (RFI). In its
complete form, HERA will consist of 320 closely packed 14-m
dishes arranged in a split-hexagonal core and complemented with 30
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Figure 1. The layout of the antennas used in this analysis. These antennas
form a part of the south-west section of the hexagonal array. Their diameter is
14.0 m and the separation between two neighbours is 14.6 m. Antennas that
were flagged completely using flags from H22a are shown in red (cf. Section
6.2). The equilateral triad shapes (EQ14 and EQ29) used in this analysis are
shown in the bottom left-hand corner of this plot.

outrigger antennas (DeBoer et al. 2017). The highly redundant layout
allows for high-precision redundant calibration and is optimized for
the delay spectrum approach (Dillon & Parsons 2016). Furthermore,
it is ideally suited to the closure phase analysis presented herein, due
to the many redundant closure triads in the array.

The data used in this analysis was taken with the HERA Phase
I system, which re-used several system elements from its precursor
instrument PAPER. These elements include dipole feeds, parts of
the analogue signal chain, and the correlator. The Phase I system
operated at frequencies between 100 and 200 MHz and observed
1024 channels simultaneously, resulting in a spectral resolution of
97.7kHz. The temporal resolution is 10.7s (DeBoer et al. 2017,
H22c).

4 DATA

The observations used for this paper cover 94 nights between the
Julian Dates 2458041 and 2458208 (2017 October 15 to 2018
April 1), during which the array was under active construction. As
a result, the number of antennas changes throughout the observing
season. All together, we use 48 antennas, which constitute a part of
the south-west segment of the final array (see Fig. 1). These antennas
are flagged on a nightly basis using the flags from H22a. resulting in
35 to 41 unflagged antennas at any one night. The per antenna and
per night flags are further detailed in Section 6.2.

In this paper, we only consider measurements on closed antenna
triads, rather than baselines or single antennas. We employ closed
triad classes that are equal or point-symmetric at the origin in uv-
space. For example, a north facing equilateral triad and a south facing
equilateral triad belong to the same class, as their uv-geometry can be
matched by inversion through the origin (i.e. they are conjugates of
one another). As a result their closure phases differ only by sign. We

MNRAS 524, 583-598 (2023)
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Figure 2. The observed fields A, B, C, D, and E plotted on the global sky model (GSM) at 160 MHz from Zheng et al. (2017). The locations of other bright
radio sources are also shown on the map. The dashed lines indicate the ~10° field-of-view of HERA at 150 MHz. The fields are chosen to avoid the Galactic
plane and the bright radio galaxy Fornax A, which is located only ~6° from the centre of the HERA strip.

Table 1. The LST ranges of the fields used in this work and their total
observation time in hours.

Field A B C D E
LST (h) 21.5-0.0  0.75-2.75  4.0-625  6.25-9.25 9.25-14.75
Total (h) 55 89 148 214 210

perform the analysis on two triad classes individually, equilateral 14.6
and 29.2-m triads, which we refer to as EQ14 and EQ29, respectively.
This will allow us to see if the two triad classes are affected differently
by systematic effects and to what extent their different responses to
the foregrounds influence the final power spectra. Ultimately, they
probe different spatial scales, leading to more stringent constraints
on cosmic reionization.

As a zenith pointing array, the observable portion of the sky is
limited to a strip centred at a declination of —30.7°. The width of this
strip is defined by the full-width at half maximum (FWHM) of an
antenna beam. For a HERA dish, the FWHM is approximately 10° at
150 MHz (Fagnoni et al. 2021). As shown in Fig. 2 the Galactic centre
transits overhead at Local Sidereal Time (LST) ~18 h. Moreover,
the bright radio galaxy Fornax A at ~3.3h RA and —37° DEC is
located close enough to the HERA strip to produce a sizable fraction
of the total power received by an antenna. We chose to analyse
observations from five fields, denoted A, B, C, D, and E, that avoid
these bright regions on the sky and hence limit the dynamic range
required to measure the cosmological 21 cm signal. The LST-ranges
of the observed fields and their total observation time are listed in
Table 1.

In this paper, we report results for a frequency band ranging from
160.59 to 167.97 MHz corresponding to a central redshift of about
7.7. This band overlaps with Band 2 (152.25-167.97 MHz) used in
the visibility processing (H22a). The reason for the trimming of Band
2 is that we found residual RFI in the lower part of the band after
averaging the closure phases. The inclusion of such RFI can lead
to excess power in the power spectrum, making it indistinguishable

MNRAS 524, 583-598 (2023)

from a sky based signal. The evidence by which we decided to
cut the band is further discussed in Appendix A. Note that the
initial bandwidth of 7.4 MHz of our band is reduced to an effective
bandwidth of 3.7 MHz after applying the Blackman-Harris function
in equation (3).

5 MODELLING

We use data simulations to validate the closure phase approach
and ultimately to compare the data and the expected signal of
a given EoR model. As our measurements are currently limited
by noise and systematics, we use this comparison to estimate the
additional sensitivity needed to achieve a detection of a fiducial
EoR model (Mesinger, Greig & Sobacchi 2016). In the following
two sections, we describe the sky models used here, consisting of
foregrounds, a 21 cm signal component and noise.

5.1 Foregrounds

We use the Galactic and Extragalactic All-Sky MWA survey
catalogue (GLEAM; Hurley-Walker et al. 2017) as a basis for our
foreground models. Since the GLEAM catalogue does not cover the
Galactic Plane, we restrict our simulations to fields A, B, and C
of this analysis. For a given LST, we select GLEAM point sources
that have an integrated flux density exceeding 50 mJy at 151 MHz
and fall within a radius of 15° of the pointing centre (i.e. they lie
within the main lobe of the antenna beam). Flux densities are then
interpolated in frequency using the fitted spectral indices and fluxes
provided in the catalogue. Where no spectral index is provided, we
fit it using the integrated flux densities at 122, 130, 143, 151, 158,
166, and 174 MHz, respectively, assuming that the flux is described
by a power law in that frequency range. Applying a discrete version
of the van Cittert-Zernike theorem (van Cittert 1934; Zernike 1938),
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we compute the visibilities V), for two antennas separated by b, as

V=3 Ak e )
1

where c is the speed of light, /;(v) is the flux density of source i

at a location given by the unit vector s;, and at frequency v and

A(s;, v) is the response of a simulated HERA-beam (Fagnoni et al.

2021).

Several strong radio sources have been peeled from the GLEAM
catalogue (see table 2 in Hurley-Walker et al. 2017). We simulate
visibilities for these sources whenever they are above the horizon
and assume that they are point-like, which is justified for the
short baselines used in this analysis. For Fornax A we use a three
component model informed by McKinley et al. (2015). The model
consists of point sources representing the two lobes and the core with
flux densities of 478 Jy (west), 260 Jy (east), and 12 Jy, respectively,
at 154 MHz. The spectral indices of the lobes are —0.77 while that of
the core is —0.88. For the other peeled sources, we use the spectral
indices and total flux densities provided in table 2 of Hurley-Walker
etal. (2017).

5.2 EoR signal

We use the public ‘Faint Galaxies’ simulation output of 21cmFast
as an EoR model (Mesinger et al. 2016) and follow a similar
procedure to the one used in Thyagarajan et al. (2020). The EoR
light cone consists of two transverse axes and one line-of-sight
axis which each have a length of 1.6cMpc and a resolution of
1024 voxels. In our simplified model we identify the transverse
direction with orthographically projected angular extent and the line-
of-sight direction with frequency. At z ~ 7.8 the corresponding
angular resolution is thus ~28 arcmin and the frequency resolution
~93kHz, where the conversion was done using the cosmological
parameter from Planck Collaboration VI (2020). Subtending an
angle of ~10°, the EoR light cube does not cover the entire
HERA field of view. For this reason, we tile the model three
times along the transverse axes such that each tile is a reflection
of its neighbouring tiles, thus avoiding discontinuities at the tiling
boundaries. To reduce subsequent computing time, we then smooth
and downsample the model to an effective angular resolution of
~7 arcmin corresponding to 256 pixels per side. The resolution thus
obtained is still well below the FWHM of ~5° of the synthesized
HERA beam. Treating each pixel as a point source, we compute
visibilities in the same way as for the foregrounds described in
Section 5.1.

5.3 Noise

We use calibrated autocorrelation visibilities, V,",‘““’, to model the
system temperature of the array, Ty, as a function of time ¢, and
frequency v (cf. Tan et al. 2021). The system temperature of a single
antenna, indexed by p, is calculated as

c? V;”“’(t, V)
2Uep2 Q2

where Q is the integrated beam area and k, is the Boltzmann
constant and V), is taken from LST-binned and systematics filtered
autocorrelations of the visibility processing pipeline (H22a). The
values of Ty , vary strongly across antennas, with an average
relative standard deviation of 17 per cent. To obtain a model of the
system temperature that characterizes the whole array, we calculate
the quadratic average of Ty , over all antennas. Fig. 3 shows the

Tsys,p(tv V) = s (6)

HERA EoR upper limits using closure phases 587

10 167.5

B C| D E A 165.0

-
o
B
wn

107 4 160.0

Tsys (K)

157.5

Frequency (MHz)

155.0

1525

102

0 5 10 15 20
LST (h)

Figure 3. Our model of the system temperature Ty as a function of LST
and frequency. The observed fields are shaded in grey.

model of Ty plotted against LST and coloured by frequency. As
expected, Ty rises around the transit of the Galactic Plane and is at
its lowest in the colder fields, A, B, and C.

The standard deviation of the visibility noise is related to Ty,
through the radiometer equation

\/ikaZQTsys(ts U)
2/ AtAv

where Ar and Av are the integration time and frequency resolution,
respectively. In our model, we draw the noise from a Gaussian
distribution with standard deviation o and add it to the real and
imaginary parts of the simulated visibilities individually. These
visibilities are then propagated through the data analysis pipeline
described below (Section 6) using the same flags as for the data.

o(t,v) =

(O]

6 ANALYSIS

This section provides an overview of our analysis pipeline. We start
by explaining how we obtain closure phases from raw HERA data and
how we apply flags to the data. We then continue with our averaging
techniques as well as the power spectrum and error estimation. Lastly,
we describe how we estimate upper limits. The processing steps and
the data products of this analysis are delineated in Fig. 4.

6.1 Computing closure phases

Since closure phases are independent from antenna-based calibra-
tion, we compute them directly from raw visibility data. For a given
triad, we do this by taking the phase of the triple product of the
three visibilities. We then generate a uniformly spaced LST-grid
with a resolution given by the integration time of a measurement
and replace the time stamps of the closure phases with their nearest
points on the grid. This allows us to combine the closure phases to
a five dimensional data array of shape N, x N; x N, x N; x Ny. In
this analysis the number of polarizations is N, = 2, as we only keep
the parallel ‘East—West” and ‘North—South’ polarization products
and the number of frequencies is Ny = 76 for our chosen band. The
number of nights Nj;, triads N,, and LST-integrations N; depend on
the observed field (see Section 4). Note that the closure phases will
later be averaged across nights, so the effect of LST-gridding on the
power spectrum will be similar to that of coherent time averaging
described in Appendix B. The introduced signal loss is expected to
be negligible, since the gridding interval is equal to the time interval
of a single integration.

MNRAS 524, 583-598 (2023)
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Figure 4. A flowchart showing the processing steps (red) and data products (blue) of the closure phase analysis. The closure phases are computed directly from
raw HERA data, i.e. there is no calibration step in the pipeline. The modelling and validation steps (black dashed) are described in Section 5 and Appendix B

and are performed independently from the data processing steps.

6.2 Data flagging

We take the nightly antenna flags from H22a to flag triads formed
by such antennas. These flags are informed by specially designed
metrics for detecting malfunctioning antennas (Storer et al. 2022)
and by the redundant-baseline calibration process of H22a which
is able to identify particularly non-redundant antennas (cf. Dillon
et al. 2020). The exact reason for flagging individual antennas can
be found in Dillon (2021) and the notebooks referenced therein. We
further adopt the time flags listed in tables 2 and 3 in H22a that
are due to broad-band RFI and digital system failures. Time flags
that are due to calibration issues are not applied, as these may not
be relevant to the closure phase analysis. We also flag times during
which the sun is above the horizon and LST’s at which Ve < 5Jy.
Setting this condition on Vg, we avoid instances where one of the
visibility amplitudes happens to be close to zero or is of the order
of the thermal noise because of the coincidence of the orientation of
foreground sources. First, the closure phase is poorly defined if one
of the visibility amplitudes is zero. We observed that this can cause
poles in the closure phase spectrogram, which in return can lead to
excess power in the power spectrum. Secondly, the noise variance of
the scaled closure phase will tend to zero together with V. This has
a strong effect further down the analysis pipeline (see Section 6.5),
where we compute an inverse variance weighted average across
LST. That is, LST’s at which Vg is small relative to the visibility
noise variance will be weighted disproportionately high relative to
other LST’s. We find that a threshold of Vg ~ 5Jy eliminates these
unwanted effects. Across all times, both polarization products and
both triad classes the data is flagged 7 per cent of the time because of
this condition. For model data, we find this flagging condition to be
inadequate, since the visibility amplitudes are generally lower due
to unmodelled diffuse emission. We therefore flag the model data by
hand in regions where one of the visibility amplitudes crosses zero,
resulting in a flagging frequency of 6 percent. We use the model
flags on the data and vice versa to prevent a bias between the two.

Other than that, we do not flag data on a per-integration and per-
frequency basis and rely instead on robust averaging to filter out
remaining RFI (see Section 6.3). In particular, we do not use the final
‘by-hand’ flags of H22a.

Fig. 5 shows the amount of data used after flagging. As can
be seen in the left plot, the observing season can be divided into
four epochs, where, except for the fourth epoch, each successive
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epoch has an increased number of triads in use. The reason for
the decreased number of triads in the fourth epoch can be traced to
an increased number of malfunctioning antennas, despite there being
more antennas connected (cf. Dillon 2021, and notebooks referenced
therein). The number of triads ranges from 13 (EQ29, Epoch 4) to
36 (EQ14, Epoch 4). Note that some of these triads share a baseline
and hence do not have independent noise. The right-hand plot in Fig.
5 shows the number of nights covering a given LST, ranging from
14 night at ~22h LST to 82 unflagged nights at ~ 7h LST.

6.3 Averaging closure phases

Data containing the same sky-based signal can be averaged co-
herently. Under the assumption of perfect redundancy, the closure
phase data has two axes suited for coherent averaging, namely, the
repeated LST-integration of different nights and triads from the same
class. Indeed, the night-to-night variations of the closure phase can
be attributed to noise and RFI. The variations among nominally
redundant triads, on the other hand, are clearly non-random and are
caused by non-redundancies (see Fig. 6). For visibilities, the loss
of sensitivity to the cosmological signal due to non-redundancy has
been found to be at a level of 1-2 percent (Choudhuri, Bull &
Garsden 2021, H22a). It has yet to be established, if these estimates
also apply to the closure phase, but, for the time being, we assume
that the loss of sensitivity under averaging of nominally redundant
triads is at a similar level.

In our processing pipeline, we first average the complex expo-
nentials of the closure phases across nights. This is done using a
geometric median, which is defined as the data point that minimizes
its Euclidean distance to all other data points on the complex plane,
ie.

b= arg mmz |ei¢n — it (8)
o

where the subscripts stand for the Julian Dates. This estimator
has the advantage of being robust to outliers, such as RFI, while
also respecting the circularity of the phase. The application of the
geometric median is the only measure we take to mitigate the imprint
of RFI on the final power spectrum. A persistent or repeated signal
will not be eliminated by this treatment, therefore necessitating a
band that is free of such effects (cf. Section 4 and Appendix A).
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number of triads increases as more antennas were put into operation.
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Figure 6. Closure phase spectra of data used in this analysis. The top plot
shows the spectra for one triad across all nights and the median-averaged
and time-averaged spectrum in black. The night-to-night variations can be
attributed to thermal noise and RFI outliers. The averaged spectrum reveals
a sinusoidal systematic effect with a period of ~1MHz. The bottom plot
shows the filtered and averaged spectra for all triads. Averaging redundant
triads reduces the spectral ripple considerably (black line).

Note that in the visibility processing (H22a) the four epochs (see
Section 6.2) are at first averaged independently to allow for better
systematics mitigation and statistical tests. As these processing steps
are not part of this analysis, we include all epochs in the median-
average. This increases the efficiency of the median at rejecting
outliers.

Next in the pipeline, we average some neighbouring LST inte-
grations. Here, we average in intervals of 171.2s (16 integrations)
using the arithmetic mean. The averaging in time is justified by the

invariance of the closure phase to the translation of the sky. However,
the antenna beam breaks this symmetry, as a result of which we expect
the averaging to introduce a loss of sensitivity to the cosmological
signal. Using our model data, we established the expected scale of
this loss to be ~2 percent. The method we used to determine this
loss is detailed in Appendix B of this paper.

At this point, we could, in principle, average the closure phases
of redundant triads. However, deferring this averaging until after the
computation of cross-power spectra will allow us to omit cross-terms
between triads that share a baseline (see Section 6.5). This has the
advantage of mitigating the effect of baseline based systematics that
are coherent across nights (see Thyagarajan et al. 2020).

6.4 Forming cross-power spectra

We divide the data into two bins containing nights with odd and
even Julian Dates, respectively, and perform the averaging described
in Section 6.3 separately in each bin. This allows us to compute
cross-power spectra between the two bins, defined as

AN (XY - =

Py(k)) = <W> (m) X Wy (T)Wy(T), )
where \Tlv and ‘I'/v are two delay spectra drawn from the first
and second bin, respectively, and the bar denotes complex con-
jugation. The scaling factor is taken from the standard visibility
power spectrum, where the first bracket converts flux density to
brightness temperature, X*Y converts spectral and angular units
to cosmological distances (e.g. Liu et al. 2014), and 2 and Beg
normalize the power by the integrated squared beam response and
the effective bandwidth, respectively. With this definition, the cross-
power spectrum has units of ‘pseudo’ mK? (Mpch~')~* and is a
function of x| = 2z t/X, which has units of ‘pseudo’ (Mpc )
In line with the practice introduced in Thyagarajan et al. (2020),
we use the ‘pseudo’ to emphasize that these units are not physical
but are instead used as approximations to the real distance scales
and brightness temperatures (see Thyagarajan & Carilli 2020). Note
that in computing the scaling factor X?Y we require cosmological
parameters. We take these parameters from Planck Collaboration VI
(2020) and use Hy = 100 2 (kms~!) Mpc~! for the Hubble constant.

Ideally, the two delay spectra W, and El/v should contain the
same contribution due to sky, but independent thermal noise and
transient systematic effects. The sky should therefore occupy the
positive real part of Py (« ), while the noise can introduce negative
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and imaginary components. Hence, we can further reduce the noise
by averaging different cross-power spectra for which, statistically,
the cosmological signal has the same underlying power spectrum.
This averaging is further detailed in the next section.

In Section 7, we also present a form of the power spectrum
which was first introduced in Thyagarajan et al. (2020) and is
mathematically akin to the widely used cosmological variance.
It is computed as A% (k) = x> Py(x))/(27%), where the units are
mK? and «? = Kﬁ + &% . The perpendicular component is defined in
analogy to the perpendicular k-modes in the visibility analysis as
k1 = 2m(|b|/X)/Y, where |b| is the baseline length of an equilateral
triad and A is the wavelength. In the context of the closure phase
analysis, this definition of « is only adequate for equilateral triad
classes, where all baselines are sensitive to the same perpendicular k-
modes (cf. Thyagarajan & Carilli 2020). However, in this paper it will
be useful for obtaining upper limits that correspond approximately to
the cosmological variance and, thus, can be compared to the results
of standard analysis techniques.

6.5 Averaging cross-power spectra

After forming cross-power spectra the data for a given polarization
product has shape N; x N; x N; x N, where N; = Nyis the number
of delays. We precede with averaging across the two redundant triad
axes and the LST axis, noting that the later is an incoherent average
making use of the assumed isotropy of the 21 cm signal.

The noise as well as systematic effects vary across triads and by the
pointing direction of the telescope, which for a zenith pointing array,
such as HERA, coincides with the LST. This motivates a weighted
average

oW, (0) = > wyye Wi, 1, OV, (1, 0), (10)

ijit

where we choose the normalized weights w;;, so that

; an

« w;;wj;, i and jdo not share a baseline.
w;; ’ . . .
vt 0, i and j share a baseline.

where w;, is the inverse variance of triad i at time z. We estimate
w;; by differencing the scaled complex closure phases from different
nightly bins and computing the variance along the frequency axis.
Omitting cross-terms between triads with shared baselines prevents
baseline based systematic that are coherent across nights from
contaminating the power spectrum. This effect has been observed in
Thyagarajan et al. (2020), where the cross-power between identical
triads produced a positive bias in the high-delay region of the power
spectrum.

Assuming an unpolarized and isotropic 21 cm signal, we further
average over the two polarization products and in bins of |« |. The
cross-power spectra thus obtained are the ones presented in Section 7.

6.6 Estimating uncertainty in the power spectra

We estimate the uncertainty of the real parts of the power spectra from
an estimate of their variance. To do this, we divide the data into four
bins along the JD axis. Using these four bins, we form six cross-power
spectra from which we can compute three independent differences.
Any true signal is cancelled in these differences, leaving us with
three independent realizations of the noise (see Thyagarajan et al.
2020 and Tan et al. 2021 for similar approaches). We then perform
the averaging described in Section 6.5 and obtain error bars by
computing the root-mean-square (RMS) of the real parts of the three
noise realizations. The errors thus obtained are themselves subject

MNRAS 524, 583-598 (2023)

to uncertainties because of the small sample size. To decrease this
uncertainty, we smooth the error bars in quadrature along the delay
axis with a flat kernel of width 3. As a result, neighbouring power
spectrum errors will be correlated, but instead we have effectively
increased the sample size from 3 to 9. Averaging negative and
positive |« | bins further increases the sample size to 18. The relative
uncertainty of the resulting error bars is about 17 per cent.

The advantage of this method is that each |«| bin has its own
error, which captures the variance due to thermal noise as well as
systematic noise and accounts for cross-terms between the noise and
any underlying signal. The subsequent smoothing, however, makes
the assumption that neighbouring error bars have similar values. This
assumption is accurate for thermal-like white noise, but can lead to
biased estimates in regions where the noise-signal cross-terms start
to dominate. Fortunately, we are interested in regions where these
cross-terms are minimal and the errors are at most overestimated.

6.7 Estimating upper limits

An upper limit x;; on the closure phase power spectrum is implicitly
given by the probability Pr (0 < u < x; ) = 1 — &, where y is the
true power. We choose o = 0.05 with which the upper limit defines
a 95 per cent confidence interval. Assuming that the power spectrum
data x is drawn from a normal distribution N(u, o) with expectation
u and variance o, we can apply Bayes theorem:

Jo" N(xlp, o)du
Jo Nxlp, o)dp’

where setting the lower integral limit to zero incorporates our
prior knowledge of the true power spectrum and the denominator
normalizes the posterior probability. Computing the integrals, we
find

Pr (O <p< xUL) = (12)

Pr(0 <t < xy) = erf ((xUL —x) /\/50) +erf (x/\/ig) |

1+ erf (x/ﬁa)

13)

where erf is the error function. Defining £ := erf (x / ﬁa) , We can
solve for the upper limit

Xy = V20 (erf'(1 — (1 + E)ar) + erf '(E)). (14)

Although the closure phase delay power spectra do not initially
follow a normal distribution, they will converge to normality as more
data is averaged (cf. Tan et al. 2021). This is a consequence of the
Central Limit Theorem. The degree to which the noise in our power
spectra is normally distributed is investigated in Section 7. A similar
derivation of this result can be found in the appendix of Li et al.
(2019).

7 RESULTS

The final averaged power spectra for fields A, B, and C are shown
in Fig. 7 (EQ14) and Fig. 8 (EQ29), where the left-hand and right-
hand columns show the power spectra obtained from data and the
corresponding models, respectively. The power spectra obtained on
fields D and E are shown separately in Fig. 9. Since fields D and E
where not modelled, we show the power spectra obtained from EQ14
triads in the left-hand column and those obtained from EQ29 triads
in the right-hand column. Note that the power spectra are scaled by a
factor of 2/3 to account for the fact that the fluctuations in the closure
phase enter through three visibilities and that, statistically, the phase
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only recovers half of the visibility fluctuations (cf. Thyagarajan &
Carilli 2020). The plots show the real part of the power spectra (black
filled circles) as well as the imaginary part (grey circles). The latter
should be a good proxy of the noise including signal-noise cross-
terms and can be compared to the real parts to identify excess power
above the noise level. Excess power in the imaginary part, on the other
hand, would either indicate significant systematics-noise cross-terms
or certain classes of systematics that vary in phase across nights or
triads. The plots also show the 2o error bars (grey boxes) and the
RMS of the noise at |«| > 1.0 ‘pseudo’ hMpc~! (black dashed
lines). The power axes is in a symmetric log-scale with a linear
region between 10° ‘pseudo’ mK>A—3Mpc?, allowing us to show
positive and negative powers on the same plot.

We can distinguish between three regions in the power spectra.
The first region is at x| < 0.3 ‘pseudo’ # Mpc~! where the largest
fraction of the power is concentrated. This power is attributed to

the spectrally smooth foreground emissions and peaks between 10
and 10" ‘pseudo’ mK?h—>Mpc? depending on the observed field.
That is, fields containing strong emissions (e.g. Field E) peak higher
than fields with weak emissions (e.g. Field B). Moreover, the power
spectra of EQ29 peak lower than those of EQ14, because of the
weaker response to large scale emissions on the sky. Since this
analysis takes a foreground avoidance approach, we do not set any
upper limits in this region of the power spectra.

The second region is characterized by peaks of amplitude 108
10° ‘pseudo’ mK?h~3Mpc?, which are centred at delays of 1 s and
stretch out to delays of about 1.4 ps. These peaks are not seen in the
models and have uncertainties that are not consistent with thermal-
like noise. In closure phase spectra, this effect appears as a spectral
ripple with a period of ~1 MHz. It is not a multiplicative antenna
based effect, as it would otherwise be eliminated in the closure phase.
In fact, in a visibility based analysis Kern et al. (2019), Dillon,
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Figure 8. Same as Fig. 7 but for equilateral 29-m triads.

Parsons & Kern (2021) and H22a find evidence that the ripple is a
baseline-dependent systematic effect caused by over-the-air coupling
between different array elements. Furthermore, the effect is found to
vary slowly in time but strongly across baselines (cf. Kern et al. 2019).
Both triad classes are equally affected by this systematic effect. In
the averaged power spectra, the peaks take on negative as well as
positive values, indicating a partial de-correlation between triads.
This agrees with the findings of Thyagarajan et al. (2020) that the
peaks are considerably suppressed when excluding the cross-power
between identical triads (cf. Section 6.5). While the spectral ripple is
fitted for and subtracted in the visibility processing (Kern et al. 2019),
we do not use filtered data to form closure phases. The subtraction
violates closure properties and would have to be performed on raw
data rather than averaged data, which would be computationally
expensive. Filtering the systematic directly from the closure phase
also has its problems. The filtering in Kern et al. (2019) makes use
of the fact that the systematic varies slowly in time, therefore having
a fringe rate close to zero. However, the same applies to closure
quantities, which can be shown to be invariant under the translation
of the sky. Filtering the systematic from the closure phase would
therefore also remove a large part of the cosmological signal. Hence,
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we take the more conservative approach and completely avoid the
affected delay modes.

The third region at 7 2 1.4 us or equivalently |« | 2 0.8
‘pseudo’ hMpc~! is dominated by noise, meaning that the power
is comparable to its overall variance. In other words, the error bars
mostly cross Py, = 0. Note that by ‘noise’ we mean thermal-like
noise as well as non-thermal-like noise such as RFI and instrumental
effects. For thermal-like noise the high-delay region of the power
spectrum should fluctuate randomly around zero. However, some of
the power spectra have a tendency towards positive values in their
real parts. To see this more clearly, we investigate the cumulative
distribution functions (CDF) of the real and imaginary parts of the
power spectrum at ||| > 1 ‘pseudo’ h Mpc~! as well as the combined
real and imaginary parts of the differenced power spectra Pp;s used
to obtain error bars (see Section 6.6). We use the latter as a proxy for
the noise. The CDFs are plotted in Fig. 10 together with the CDF of
a Gaussian distribution (grey solid line) with the same variance as
Ppigr. Note that the CDFs of the differenced power spectra (magenta
dashed line) are in good agreement with the Gaussian CDFs, which
is a consequence of averaging many power spectra together (Central
Limit Theorem). To quantify the consistency between the different
CDFs, we use two statistical tests, the Shapiro-Wilk (SW, Shapiro &

€202 1890500 L0 U0 150nB AQ 29%E0./€8G/1/%ZS/9101E/SEIuW/WOo0"dNO"dIUSPEoE//:SA]IY WOI) PEPEOJUMO(]



0

1015
10134
101t 4
1094
107 4
10° A
103 4
—-103 1
-10° 1
—-107 1
-10° {

-101
1015

(pseudo mK?h~3Mpc3)

PV(K”)

2
3

-0t

T (us)

4

HERA EoR upper limits using closure phases

593

T (us)

5 0 1 2 3 4 5

EQ14 Field D

" e EQ29 Field D

o]

1013 J
1014
109 4
107 4
105 4
103 4
—-1031
—-10°
-107 {
—10° 1

EQ14 Field E

b . EQ29 Field E

o-a-e-Rooooeo e

0.5

e Real

1.0
|kyj] (pseudo hMpc~1)

Imaginary

1.5 2.

0 2.5

"20" Error Bars

0.5 1.0 1.5 2.0

|ky| (pseudo hMpc~1)

2.5

---- Noise RMS (|| > 1.0 pseudo hMpc~?)

Figure 9. Closure phase delay power spectra of HERA-fields D and E. Unlike the other fields, these two fields cannot be modelled adequately. The left-hand
and right-hand columns show the power spectra for equilateral 14.6 and 29.2 m triads, respectively.

LOTeq1amm 7 [Equars 77 |Equarc @ EQL4 FD Ir" TEQUaFE 7
-~ . - :
0.8 1 4 £ P g
1 & : {/' 'l
. 0.6 A ik I i 4
S ., 0 £ 17 & ¥
0.4 B ol i 1 i
E4 ki fi i Fs
0.2 Ji ) & & I
001" _¢ _£J _ 4
“TEQoFA /7 EQ29 FB /.,;f* EQ29 FC EQ29FD ;~.. | EQ29FE ="
; % -
0.8 S i i &
o £l ! 4 /4
w V.07 I. / a4 rl //:.
a I ;! " ]" ‘i
© 0.4 i f 'I 2 / l
. ,' a ly l 1’./:'
02 3 A 4 i
N d Sl ¢ /AN
0.0 Frrrmetor it PRtk e i

Gaussian CDF

-2-1

Q o]
]
NE
w ]

— = Differenced

Figure 10. The cumulative distribution functions of the cross-power spectra at k| > 1.0 ‘pseudo’ & Mpc~!. The red dashed and the blue dotted lines show the
CDFs of the real and imaginary parts of the power spectra, respectively, while the magenta dash dotted line shows the CDF of the noise realization obtained by
differencing closure phases with the same underlying sky signal. As a reference, we also plot a Gaussian CDF with the same variance as the noise (grey solid

line). The abscissa is given in units of standard deviations of the differenced closure phases.

Wilk 1965) and the Anderson-Darling (AD; Anderson & Darling
1952) test, the results of which are shown in Table 2. We use the
former to test the null-hypothesis Hy that the differenced power
spectra are drawn from a normal distribution. In all cases the SW test
fails to reject Hy at the 5 per cent level. We use the AD test to test

the null-hypothesis Hy that the noise and the real or imaginary parts
of the power spectra at |« )| > 1 ‘pseudo’ hMpc~! follow the same
distribution. For fields A, B, and C, we also use the AD test to test the
data against the corresponding model at |« )| > 1 ‘pseudo’ h Mpc
Unlike the SW test, the AD test does not make any assumptions about

-1
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Table 2. Summary of the results from statistical tests performed on the cross-power spectra at k|| > 1.0 ‘pseudo’ Mpc~!. The variables W and A? denote
the test statistics of the Shapiro-Wilk and Anderson-Darling test, respectively. We set our critical value for rejecting the null-hypothesis Hy at 5 per cent. See
the table notes for further elaboration.

Test Shapiro-Wilk! Anderson-Darling® Anderson-Darling? Anderson-Darling?
Samples Ppitr Ppigr and R{Pg } Ppigr and I{Py } R{Py} model and data
Name w p-value reject AN A? reject AN A? reject AN A? reject Hy

EQI14 Field A 0.992 0.605 False 1.889 False —0.043 False 4.877 True
EQI14 Field B 0.994 0.762 False —0.062 False 0.425 False —-0.976 False
EQ14 Field C 0.994 0.842 False 0.971 False 0.560 False 0.140 False
EQI14 Field D 0.993 0.627 False —0.051 False —-0.474 False - -
EQI14 Field E 0.989 0.283 False —0.627 False —0.413 False - -
EQ28 Field A 0.990 0.342 False 2.319 True —0.523 False 1.787 False
EQ28 Field B 0.985 0.098 False —0.904 False —0.605 False 0.883 False
EQ28 Field C 0.991 0.474 False 0.450 False —0.399 False —0.106 False
EQ28 Field D 0.993 0.684 False —0.172 False —-0.912 False - -
EQ28 Field E 0.993 0.661 False 0.936 False —0.185 False - -

Notes. ! The null hypothesis Hy of the Shapiro-Wilk test is that Pp;g is drawn from a normal distribution. 2 The null hypothesis Hy of the two sample
Anderson-Darling test is that two samples are drawn from the same distributions. Here, we test Pp;s against R{ Py } and I{Py, }, and the models against the
data. The critical values of the test statistic A2 are 0.325, 1.226, 1.961, 2.718, 3.752, 4.592 and 6.546 at 25, 10, 5, 2.5, 1, 0.5, and 0.1 per cent significant

levels, respectively.

the shape of the underlying distributions. For the imaginary parts, the
AD test fails in all cases to reject Hy at the 5 per cent level. For the
real parts, Hy is rejected for the power spectrum of EQ29 on Field A,
and not rejected otherwise. The test of the data against the models, on
the other hand, fails to reject Hy for all power spectra except that of
EQ14 on Field A. The CDFs of the real parts of Field A show a shift
towards positive values, which is consistent with a ‘detection’ of a
signal. This signal is of unknown origin and could be due to a variety
of different effects such as RFI or digital artefacts. Since Field A is
the least sensitive field, it should be less affected by low-level RFI.
On the other hand, it is covered by fewer nights, thus making the
median-averaging across nights less effective at rejecting RFI.

Although not rejected by the AD test at a 5 percent level, the
CDFs of the real parts of Field D extend towards high positive values.
Looking at the power spectrum, we see a peak of excess power at
delays of about 2 ps. H22c identify a similar feature in the visibility
delay spectrum and trace it to the polarized emissions of the pulsar
PSR J0742-2822 (Lenc et al. 2017). The polarization direction is
rotated as the radiation passes through magnetic fields. This effect,
known as Faraday rotation, is frequency dependent, thus leaving an
imprint on certain delay modes in the power spectrum. In the visibility
analysis, the Faraday effect can be suppressed below the current
noise level by forming pseudo Stokes I visibilities (H22c). This is not
possible for the closure phase approach, as each polarization will have
independent gains, meaning that the closure phase of a pseudo Stokes
I visibility would loose its desirable properties. Consequently, we
cannot reliably interpret fields with strong highly polarized sources
at high rotation measure.

The real parts of the power spectra on Field C and of EQ29 on
Field E also have a somewhat higher AD statistic A> compared with
other power spectra, albeit not high enough to be rejected at the 5
per cent level. In the CDFs of EQ29 Fields C and E, we see that both
have an extended tail towards negative values, which could indicate
the presence of a systematic effect that is uncorrelated across triads
or nights. Moreover, since we do not see the same effect in the power
spectra of the EQ14 triads, this demonstrates that the two triad classes
are affected differently by systematic effects.

Comparing the noise RMS at |«)| > 1 ‘pseudo’ h Mpc~! between
the data and the models, we find that the RMS’s of the models are
on average a factor of ~1.2 lower than those of the data. Possible
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Figure 11. The closure phase power spectrum of EQ14 Field C in units of
mK? (cf. Fig. 7). Data points with negative powers are only shown by their
error bars (grey boxes) on this plot. The dashed line indicates the RMS of the
power spectrum errors at |« || > 1.0 ‘pseudo’ h Mpc~!.

explanations of this discrepancy are the presence of non-thermal
effects (e.g. RFI), an underestimate of the system temperature,
or other model inaccuracies. As expected, we also find that the
noise RMS of EQ14 power spectra are lower than those of EQ29
power spectra, since there are fewer triads in EQ29 that can be
averaged.

Despite the presence of non-thermal like effects in some of the
power spectra, we can use the Bayesian framework described in
Section 6.7 to set upper limits on the cosmological 21 cm signal.
Here, we provide the limits for our deepest field and triad class, Field
C and EQ14. Fig. 11 shows the power spectrum in units of ‘pseudo’
mK? and Table 3 shows the associated upper limits at different «-
modes. The strongest noise-limited upper limit is (372)?> ‘pseudo’
mK? at 1.14 ‘pseudo’ hMpc~'. We re-emphasize that this limit
should only be interpreted as approximations to the physical distance
and brightness scales of the conventional 21 cm power spectrum (cf.
Thyagarajan & Carilli 2020).
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Table 3. The upper limits (2/ 3)A2v uL at 95 per cent confidence
and the standard deviation o of the closure phase delay power
spectrum obtained from EQ14 triads on Field C between 0.38 and
1.45 ‘pseudo’ hMpc~!.

K (2/3)A2 o
‘pseudo’ h Mpc~! ‘pseudo’ mK? ‘pseudo’ mK?
0.38 (2058)? (1443)?
0.53 (937)? (274)%
0.69 (1367)? (401)?
0.84 (824)2 473y
0.99 (518)% (317)%
1.14 (372)? (241)?
1.29 (431)? (285)%
1.45 (491)? (338)?
Delay (us)
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Figure 12. A simulated delay power spectrum of the frequency band 152.25—
167.97 MHz (z ~ 7.9). The dashed line is the power spectrum of a sky with
foregrounds only (GLEAM sources at 5h LST) and the solid line is that of
a sky including a cosmological HI signal (Faint Galaxies, 21cmFast). While
the foreground dominate the low |« |||-modes, the HT signal dominates at |« |
> 0.25. Also shown is the noise level at ||| > 1.0 of our most sensitive field
(horizontal dotted line). An improvement in sensitivity of at least two orders
of magnitude is required for a hypothetical detection of this commonly used
EoR model.

8 SUMMARY

We present closure phase delay power spectra using data from a
full season of HERA Phase I observing. The data was observed
over 94 unflagged nights using 48 antennas. We show power spectra
for two triad classes, equilateral 14.6 and 29.2-m triads, and five
separate LST ranges. Using our most sensitive field, Field C, which
covers 2.25h of LST centred at 5.125h, we provide upper limits
on the closure phase power spectrum of equilateral 14.2-m triads
and find a noise-limited upper limit of (372)? ‘pseudo’ mK? at 1.14
‘pseudo’ h Mpc~!. Comparing the power spectrum RMS at k > 1.0
‘pseudo’ 2 Mpc~! with that of Thyagarajan et al. (2020) at ¥ > 0.85
‘pseudo’ 2 Mpc~!, we find an improvement in sensitivity by a factor
of ~26. The limits reported here are only approximately related
to the true distance and brightness scales of the redshifted 21 cm
power spectrum, which is why they are given in ‘pseudo’ units. A
more careful interpretation of results obtained with the closure phase
requires detailed forward-modelling of the sky signals. However,
making use of the approximation with ‘pseudo’ units, we find that
our most sensitive noise-limited upper limit is a factor of ~5 above
that of H22a at k = 1.16 hMpc ™.

As can be seen in Fig. 12, the sensitivity of the power spectrum
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needs to be improved by at least two orders of magnitude to achieve
a hypothetical detection of the EoR model used here (see Section 5).
When fully operational, HERA will have 320 antennas which can be
used for the closure phase analysis. This amounts to ~7 times more
nominally redundant triads than are used in this analysis, which can
be combined coherently to improve the sensitivity by the same factor.
Moreover, HERA will observe all year round for ~12 h per night.
Combining different fields incoherently could potentially double the
sensitivity (~4 more data in LST). Repeated nights can also be
combined coherently. Taken together, it should therefore be possible
to improve the power spectrum sensitivity by a factor greater than
107 within the observing horizon of HERA (~5 yr). This should be
sufficient for a detection of commonly assumed 21 cm signals at k ~
0.4 h Mpc~! provided that we are not limited by systematic effects.

There are some limitations to the analysis as it is presented here.
Unlike the visibility analysis, we are not able to model and subtract
any baseline-dependent systematic effects such as the 1 ps spectral
ripple without loosing the desirable properties of the closure phase.
Consequently, we do not have access to the lowest x-modes which,
otherwise, are expected to be most sensitive to the cosmological
signal. The new HERA system uses fibre optic transmission lines,
which may eliminate the 1 ps ripple and allow us to access lower
k-modes.

A further limitation is that we do not combine different triad
classes in our analysis. While in the visibility analysis many different
baselines can be averaged by the method of the so-called spherical
averaging, there is no analogous method to do this for different triad
classes. This is especially true for non-equilateral triangle shapes
such as isosceles, scalene, or linear triads that are formed by baselines
of different lengths. Including all these triad classes would lead to
a considerable improvement in sensitivity, but as long as there is
no physically motivated way to combine them to a single power
spectrum, the classes will have to be analysed separately from one
another. In other words, the power spectra of the different triad classes
need to be considered as separate measurements, which, combined
and in conjunction with forward-modelling, can be used to infer the
presence of a signal. This combined analysis may therefore open up
a pathway to exploiting the full sensitivity of the array.

Lastly, we find that Faraday rotated emissions may contaminate
EoR window of the closure phase delay power spectrum. This
effect could be mitigated by forming the closure phase from pseudo
Stokes I visibilities. However, the antenna based gains are generally
independent between different polarizations, meaning that we would
loose some of the advantages of the closure phase approach. To
completely bypass the problem of Faraday rotation, one would either
have to directly measure Stokes I (i.e. by using circular antenna feeds
if the emissions are unpolarized) or resort to polarization independent
closure quantities such as the closure trace (Broderick & Pesce 2020).
The implications of using the latter have yet to be investigated in
detail. For HERA, a closure phase-based approach will need to avoid
regions containing strong pulsars such as the Galactic Plane (e.g.
Field D).

Despite these limitations, the closure phase analysis still retains
advantages over the standard approach. Most importantly, our anal-
ysis is independent of multiplicative antenna-based effects, which
allows us to bypass conventional calibration. As a result, we require
considerably fewer analysis steps and expect fewer errors and
systematic effects to be introduced in the data processing.

The closure phase analysis provides an alternative and independent
method by which the 21 cm signal during the EoR can be searched
for. Initially, the prime objective is a first detection of the signal. The
interpretation of a detected signal will require extensive forward-
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modelling of the sky, which includes the 21 cm signal as well as
foregrounds, as the closure phase is a higher order (non-linear)
interferometric quantity. Future work will explore the possibilities
of inferring astrophysical properties of the IGM from the closure
phase delay power spectrum.
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APPENDIX A: RFI AVOIDANCE IN AVERAGED
CLOSURE PHASE DATA

We briefly describe how we selected our frequency band for this
analysis. Unlike the visibility processing, our RFI treatment relies
onrobust averaging rather than flagging and inpainting. However, this
strategy is only effective if the RFI is transient and does not repeat
on a nightly basis (cf. Section 6.3). Hence, before proceeding with
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Figure Al. Modified Z-score spectrum of time averaged, high-pass filtered
closure phase data. EQ14 is shown in purple and EQ29 in orange. The dashed
line shows the lower bound of our selected band.

the computation of the cross-power spectra, we search for residual
RFI in the averaged closure phase data.

First, we average the median-averaged data across triads and
polarization products using inverse variance weights (computed as
in Section 6.5). The resulting data are two dimensional, consisting
of a time and a frequency axis. The aim is to identify features in this
spectrogram that, if included, would leak into the high-delay region
of the power spectrum. This can be achieved using a wavelet high-
pass filter. A complete treatment of wavelets would go beyond the
scope of this paper, but we give a brief delineation of the concept.

Wavelets are functions that are localized in frequency and delay
(or traditionally time and frequency) and are generated by scaling
and translating a common function called the mother wavelet. A
wavelet transform decomposes a signal into a set of wavelets of
different scales and shifts. The concept of the wavelet high-pass
filter is to approximate the high-delay components of the original
signal using only the finest scale ‘detail’ coefficients. The filter will
then be particularly sensitive to features that have a similar shape to
the wavelet. Here, we perform a stationary wavelet transform using
a Symlet with two vanishing moments (Daubechies 1988) and use
the resulting first-level detail coefficients to construct the high-pass
filtered data.

The advantage of using wavelets is that they offer sparse repre-
sentations of a signal, meaning that a signal can be approximated
by a small number of wavelets. The smooth components of a
signal are represented by large scale wavelets while singularities are
represented by highly localized fine scale wavelets. Ringing effects
due to discontinuities are highly localized in wavelet approximations.
In contrast, Fourier approximations suffer from Gibbs oscillations,
which can affect large parts of the approximated signal (Mallat 2009).

To get a picture of the RFI situation across the spectrum of
Band 2, we average the absolute values of the high-pass filtered
data over time. The spectrum thus obtained will mainly consist of
noise fluctuations around zero and peaks corresponding to spectral
discontinuities (e.g. RFI). To identify peaks exceeding the noise level,
we compute a modified Z-score (cf. HERA Collaboration 2022c),
defined as

Zl,_md — i |—med{]x[} (A1)

OMAD
omap = 1.4826 x med {||x| — med{|x|}|}, (A2)

where opmap is the Median Absolute Deviation (MAD) calculated
across frequency, x; is an element of the averaged high-pass filtered
data x, and the factor of 1.4826 ensures the equivalence between
the standard deviation and the MAD for normally distributed data
(Rousseeuw & Croux 1993). Fig. Al shows the modified Z-score
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of the high-pass filtered and time-averaged spectrum. From this it is
clear that the lower part of Band 2 is significantly contaminated by
residual RFI. We choose to set the lower frequency of our band
at 160.59 MHz above which there is little to no significant RFI
contamination.

APPENDIX B: COHERENT TIME AVERAGING
AND SIGNAL LOSS

As explained in Section 6.3, the averaging of closure phases in time
will lead to a small loss in sensitivity to the cosmological signal. To
determine the scale of this loss, we use the EoR model described in
Section 5. At a given LST, we then place GLEAM point sources on
the grid defined by the EoR model and weight by the beam response
of a HERA dish. Note that it is important to include foregrounds in
these simulations since the closure phase is a higher order quantity.
The closure phase will hence consist of cross-terms between the
foregrounds and the EoR signal (see Section 2) and the fluctuations
due to the latter depend on the foreground structure through equation
(2). Different foreground structures could therefore cause different
degrees of sensitivity-loss under coherent time-averaging.

To emulate the change of the apparent sky, we shift the beam with
respect to the sky in the interval of a pixel corresponding to ~7
arcmin or an observing interval of about 28.6 s. We compute closure
phases and their delay spectra for these sky models. Using these, we
can define the fractional loss as:

(W@, OP), — (¥, ),
1= S : (B1)
(w(@, o),

where 7 is the factor by which the EoR signal is reduced in the
power spectrum and the angular brackets denote an average over a
time interval Az. We compute fractional losses for 1000 pointings
within Field C and average them together. The total fractional loss
thus obtained is plotted in Fig. B1 as a function of At. It can be seen
that the overall loss at Ar = 171.2s as used in the data analysis is
below 2 per cent. In a similar analysis Aguirre et al. (2022) find that
averaging visibilities over an interval of 240 s produces a loss of
~ 1 per cent. The observing interval in our model is greater than the
true interval of 10.7 s, which results in a slight underestimation of the
loss. However, the loss at short intervals is considerably lower than
the overall loss and should therefore be considered a small effect.

0035] ® T>2us .

- 2%
0.030 4 ]
0.025 4

= 0.020

-
0.015
0.010 °
0.005 L

0.000 4 L ]

0 50 100 150 200 250 300
Integration Time (s)

Figure B1. The average fractional loss at T > 2 ps as a function of integra-
tion time. Here, we average in intervals of 171.2s, which corresponds to a
loss smaller than 2 per cent.
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