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Abstract—Neuromorphic computation is based on spike trains
in which the location and frequency of spikes occurring within
the network guide the execution. This paper develops a frame-
work to monitor the correctness of a neuromorphic program’s
execution using model-based redundancy in which a software-
based monitor compares discrepancies between the behavior
of neurons mapped to hardware and that predicted by a
corresponding mathematical model in real time. Qur approach
reduces the hardware overhead needed to support the monitoring
infrastructure and minimizes intrusion on the executing appli-
cation. Fault-injection experiments utilizing CARLSim, a high-
fidelity SNN simulator, show that the framework achieves high
fault coverage using parsimonious models which can operate
with low computational overhead in real time.

Index Terms—Neuromorphic computing, spiking neural net-
works, model-based fault detection, online monitoring

I. INTRODUCTION

Neuromorphic platforms execute SNNs which are networks
of spiking neurons interconnected via synapses in which neu-
rons communicate with each other by sending short impulses
of infinitesimally small duration, called spikes, via synapses.
Such spiking neurons can be organized into feed-forward
layers or in a recurrent topology. A typical feed-forward
SNN has one input layer, one or more hidden layers, and
one output layer. Other widely-used neural network models,
such as convolutional neural networks (CNN), can also be
systematically converted to equivalent SNNs and mapped
to neuromorphic hardware [1]. These can be deployed in
mobile devices and native sensors, which have low-power
requirements and must operate in real time.

SNNs are typically used to solve classification problems
in image and signal processing. The computation performed
within the SNN is based on asynchronously occurring spike
trains in which the location and frequency of spikes occurring
within the network guide the execution. For example, the
inter-spike interval (ISI) or the time between subsequent
spikes encodes information critical to the correctness of the
computation — which in this case is classification accuracy.

The work described in this paper concerns dependability
of neuromorphic computing — specifically, monitoring the
SNN’s execution on the underlying neuromorphic platform
for correctness in the face of hardware failures. We pro-
vide answers to the following questions: (1) how do we
determine correctness of an SNN executing on neuromorphic
hardware; (2) what are the appropriate metrics that can detect
manifestation of faults in this hardware; (3) what is the
hardware/software interface needed to collect these metrics;
and (4) how to develop a low-cost monitoring framework to
assess the health of neuromorphic hardware.

o We describe the design of performance monitoring units

(PMUs) to gather key statistics on synaptic events occur-
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ring within the neuromorphic hardware, which are spike
rate and the average ISI for a neuron. Counters within
the PMU accumulate these events in real time and make
them accessible to the monitor. The PMUs are designed
to minimize intrusion on the executing SNN.

o We develop a model-based approach for fault detection
and isolation (FDI) in which software-based monitors
compare discrepancies between the behavior of neurons
mapped to hardware to that predicted by corresponding
mathematical models in real time.

o Missing or delayed or spurious spikes from neurons
within the SNN, which are the manifestation of faults
affecting the crossbars, tend to distort the ISI, resulting
in performance loss. Therefore, we develop parsimonious
models, suitable for use in real time, to estimate ISI while
minimizing the number of such models needed for full
coverage of crossbars within the neuromorphic hardware.

o We use CARLsim, a library which simulates SNNs [2], to
generate synthetic networks and inject faults which cause
IST distortion in spike trains. Our approach is evaluated
in terms of fault-detection rate as well as computational
and storage overhead incurred by the models.

II. BACKGROUND

A crossbar is a two-dimensional arrangement of synapses,
with n? synapses for n input neurons. To build large neuro-
morphic hardware, the common practice is to integrate multi-
ple such crossbars along with a shared interconnect [3]. This
hardware abstraction fits most neuromorphic architectures and
will be used in this paper.

Figure 1 shows the 3D-view of a crossbar in terms of
top electrodes (TEs) which form rows and bottom electrodes
(BEs) which form columns [4]. A synaptic cell is connected
at a crosspoint via an access transistor. Synaptic weights are
specified in terms of conductivity of non-volatile memory
(NVM) cells, allowing these cells to act as computational
units through analog summation of the current that flows
through them [5]. The NVM is shown as a resistive element
in Fig. 1. Pre-synaptic neurons are mapped along the TEs and
post-synaptic neurons along the BEs. The synaptic weight
between a pre- and a post-synaptic neuron is programmed
as conductance of the corresponding synaptic cell at the
crosspoint. A pre-synaptic neuron’s voltage v, applied on
the TE, is multiplied by the conductance to generate current
according to Ohm’s Law. Current summation occurs on each
BE according to Kirchoff’s Current Law, when integrating
excitation from other pre-synaptic neurons. The figure shows
the integration of input excitation from two pre-synaptic neu-
rons to one post-synaptic neuron via synaptic weights w and
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Fig. 1: Crossbar organization showing the top and bottom
electrodes. Each synaptic cell consists of an NVM device
(resistive element) and an access transistor.

To post-synaptic neurons

(a) An SNN consisting of four neurons.

L =(X.97) +

I =(X3,73) -

I3 =(X5,73)

Iy =(Np,vh) * |

C

06 TS B F S V1
(b) Neurons mapped to a 4 x 4 crossbar.

Fig. 2: A small SNN mapped to a 4 x 4 crossbar.

wy, respectively. As per Kirchhoff’s law, current summation
along the column implements the sum wjv; + wovy needed
for forward propagation of neuron activation. These current
summations are performed along each column in parallel.

The NVM device of a synaptic cell can be implemented
using technologies such as phase-change memory or oxide-
based memory [5]. To read or to program a cell, its peripheral
circuit drives current through it using a bias voltage generated
by on-chip charge pumps built using CMOS devices. This
voltage must be high enough to compensate for IR drop and
the built-in potential of the access device, which connects the
cell to a row and a column in the crossbar.

SNNs are networks of spiking neurons interconnected via
synapses. These neurons are typically implemented using
integrate-and-fire models in which the membrane voltage of
a neuron increases due to current at its input from other
neurons [6]. A neuron fires a spike when its membrane voltage
exceeds a threshold and subsequently the membrane voltage
is reset. The refractory period refers to a brief rest period after
a spike is fired, during which the neuron cannot fire again.

SNNs have been widely researched in recent years for use
in spatio-temporal pattern recognition applications. To train an
SNN, synaptic weights are adjusted using supervised, semi-
supervised, or unsupervised learning [7]. To map an SNN
to hardware, we start its software model or a previously
trained CNN which has been converted to an equivalent SNN.
A synapse-to-crossbar as well as crossbar-to-charge pump
mapping is generated for the specific neuromorphic hardware
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Fig. 3: Model-based performance monitoring of a crossbar.
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which maximizes crossbar utilization while minimizing the
maximum latency incurred by spikes transmitted over the
interconnect. Performance is verified in terms of the spike
rate and ISI at the output neuron(s) using a cycle-accurate
simulator with a detailed hardware model [8]. Figure 2a shows
portion of an SNN whose neurons are mapped to the 4 x 4
crossbar in Fig. 2b, where neuron N; is mapped to column
1, N3 to column 2, and so on; \" and ¥" denote spike rate
and average ISI, respectively, of the input spike trains.
High-voltage operations involving the crossbar cause resis-
tance drift, electro-migration, and cell-endurance issues which
reduce inference quality in machine-learning tasks. Inference
quality for SNNs is defined in terms of ISI as follows: if

t1,t2,...,t; denote a neuron’s firing times within the time
interval [0, T, the average ISI of this spike train is
1 k
= —F ti —ti—1).
Y (k — 1) ZZZ;( i 7 1)

ISI encodes critical spatio-temporal information within SNNs;
delayed, missing, or spurious spikes distort ISI and reduce in-
ference quality. Accuracy deteriorates quickly with increasing
ISI distortion, and so, we use ISI as the metric to characterize
the quality of the result provided by the SNN.

III. MONITORING APPROACH

We develop a performance monitoring framework that
uses model-based redundancy in which a monitor, realized
in software, compares discrepancies between the behavior
of neurons mapped to hardware and that predicted by a
corresponding predictive model. Figure 3 shows the basic
approach in the case of a single crossbar. Features related
to input spike trains from pre-synaptic neurons, occurring
along the crossbar’s rows, are extracted by the PMU and
provided to the predictive model. The PMUs use the Address
Event Representation (AER) header associated with each
spike packet, which identifies both the pre-synaptic and post-
synaptic neurons associated with the spike, to process the
spike trains of interest to the monitor. Features of interest
from each spike train are the spike rate (number of spikes
per unit time) and average ISI. The model, knowing the
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Fig. 4: Architecture of the performance monitoring unit.

mapping of synapses to that crossbar, predicts the average ISI
for each of the output spike trains along crossbar columns.
Simultaneously, the average ISI values from the actual spike
trains occurring along the columns are extracted, again using
PMUs along the columns. The predicted and actual ISI values
are analyzed by a change detector to generate the error signal
for that crossbar.

Figure 4 shows the architecture for the PMU which collects
spike information along a single input row or output column of
the crossbar. The PMU accumulates the number of observed
spikes as well as the intervals between spikes within the
shaded registers. To accumulate the ISI values, the circuit
comprises of an up-counter controlled by a very low frequency
oscillator (VLO clock). When a spike event occurs, the
current counter value is latched into a capture register and the
difference between the current and previous counter values is
calculated. These differences are accumulated to obtain the
cumulative IST between spikes. One PMU is associated with
each of the n rows in the crossbar. The AER header associated
with each spike packet can be used to route the incoming
spike to the correct PMU. Similarly, one PMU is associated
with each of the n outgoing columns from a crossbar, and
the AER information can be used to distinguish between the
columns. The clock resides off-chip, requiring no changes
to the neuromorphic hardware itself. Moreover, steady-state
spike rates during typical SNN execution lie in the O to 60Hz
range. These events can be accurately captured using the VLO
clock operating under 10Khz while incurring very low-power
consumption overhead.

For FDI, each column within the n X n crossbar is assigned
a model M which accepts vector I as input and provides
M(I) = 4¢ as output, where ¢ is the predicted average ISI
value for the output spike train occurring along that column.
The input I comprises of elements (Iy,Ils,...,I,) where
element I, = (A},7}) consists of the spike rate A} and
average ISI ~; for the spike train occurring along the E*h row.
Given input I, predicting the continuous output value A€ is a
regression problem. We use supervised approach rather than
ones derived from first principles for the following reasons:
(1) significant amount of training data can be generated offline
using a simulator such as CARLsim, and (2) once trained,
inference is fast for real-time operation. The following models
are evaluated [9]:

o Light Gradient Boosted Machine (LightGBM) is a tree-
based algorithm that uses gradient-based one-side sam-
pling technique for fast and accurate inference.

o Category and Boosting (CatBoost) uses symmetric trees
to speed up inference and employs ordered boosting to
avoid over-fitting to offer a better quality model.

e« ANN/CNN is a neural network model, consisting of an

Mean Absolute Error (MAE)
Crossbar size
nxn ANN CNN LightGBM CatBoost
32 x 32 0.39 + 0.03 0.38 + 0.05 0.37 £ 0.03 0.36 4 0.03
64 x 64 0.36 + 0.03 0.30 4+ 0.05 0.33 +£ 0.01 0.29 £+ 0.01
128 x 128 0.20 4+ 0.01 0.20 + 0.04 0.18 + 0.01 0.19 4+ 0.01

Fig. 5: The MAE achieved by predictive models for different
crossbar sizes. Crossbars are assumed to be fault free.

input layer, at least one hidden layer (convolutional layer
for CNN), and an output layer. It learns linear and non-
linear relationships between the input and output.

The models are trained to predict the average ISI of the
spike train generated by a single column for all possible
active crosspoints occurring along it. We define a crosspoint
along a column as being active if its synaptic weight is
programmed and thus participates in the current summation
process along that column. We generate training samples for
one active crosspoint occurring anywhere along the column,
then concatenate to this set, samples for two active crosspoints
occurring along a column, and so on up to m active cross-
points. To generate a training sample for k active crosspoints,
we use k input spike trains, one for each crosspoint, generated
from a Poisson distribution with firing rate of 10Hz. Values
of synaptic weights at active crosspoints are chosen from a
uniform distribution [w1,ws], which are user-defined values
between O and 1. The training dataset is normalized using
min-max scaling technique. We use 80% of the dataset for
training, 10% for validation, and 10% for testing. Performance
is evaluated using mean absolute eror (MAE) which measures
the average error between the ground truth and the model’s
prediction as 1/m Y .~ |v¢ — 4¢| where m is the number
of testing samples. Figure 5 lists the average MAE achieved
by the models for different crossbar sizes. MAE improves as
the crossbar dimension increases, for the following reason.
When constructing a training sample, elements corresponding
to inactive crosspoints are zeros. This results in sparsity
within each sample, which is detrimental to learning. For
a 32 x 32 crossbar, for example, the training samples have
few features, and moreover, there is sparsity within these
features. As the crossbar’s dimension increases, the number
of features increases as well. Though sparsity is present in
training samples across all crossbar sizes, samples having
fewer number of features are affected more by sparsity when
compared to samples having more features.

A change detector signals a change if the run-time value
~¢ deviates from its prediction 4¢, i.e., |y¢ —%¢| > th, where
th is a user-specified threshold. The basic idea being if a
fault causes a crossbar’s performance to deviate “appreciably”
from behavior learned by the model, this change should be
detected. The MAE achieved by the trained model informs the
choice of th as the MAE provides the residual indicating how
closely the model tracks the ground-truth values. Therefore,
the threshold is chosen as th = M AE + ¢, where € is a small
margin tuned appropriately to reduce false positives.

We explain the FDI strategy using the monitoring configu-
ration for the 4 x 4 crossbar previously shown in Fig. 2b. The
configuration is shown in Fig. 6 in which a separate monitor is
associated with each column. Each model requires only those
inputs which are associated with active crosspoints; rest of
the inputs are set to zero. Consider, for example, the model
MY uses the third column input (I1, I3, I4,0) to predict 45.
The change detector 1§ associated with this model examines
v5 and 45, and gives a binary decision ef indicating if the
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Fig. 6: Monitoring configuration for the 4 x 4 crossbar
previously shown in Fig. 2b.

column is faulty or not. All four columns are monitored in
this way and if one or more columns are determined to be
faulty, the crossbar is flagged as faulty.

IV. EVALUATION

Crossbar arrays of different sizes are simulated within
CARLsim and fault-detection performance is evaluated on
a single column within the crossbar. Since each column
is monitored independently, the result generalizes readily
for all n columns. Software used to generate the results
is available at https://github.com/abhishekkumarm98/Online_
performance_monitoring. The functional fault model targets
two types of physical faults affecting the crossbar architecture
previously shown in Fig. 1: (1) stuck-at RESET fault and (2)
resistance drift within the NVM cell. A stuck-at RESET fault
in which w; — 0, caused by the access transistor being stuck
at 0, manifests as missing or delayed spikes in the output spike
train. To inject resistance drift, the original weight is increased
three-fold to w; — 3 X w; based on reported findings [10] and
this fault manifests as spurious spikes in the output spike train.
The monitor looks for effects of these faults on the average
ISI of the output spike train.

Once an SNN is mapped to hardware, some fraction of
crosspoints along each column will be active. Figure 7 lists the
highest detection rates achieved by the models as a function
of column utilization, defined as the ratio of number of active
crosspoints to n. We generate 10k samples for each crossbar
wherein 5k samples contain missing and delayed spikes and
the remaining contain spurious spikes. The monitor observes
each spike train over non-overlapping windows of length
1000ms each, and the detection rate is the fraction of these
spike trains flagged as faulty. Note that as utilization increases,
the detection rate decreases; for a crossbar of size 64 x 64 with
10% utilization (7 active crosspoints), the detection rate for
missing spikes is 89% but as utilization increases to 50% (16
active crosspoints), the detection rate decreases to 70%. This
result is to be expected since as the number of crosspoints
increases, the output spike train becomes less sparse and
therefore, the ISI is less distorted due to a single stuck-at
RESET fault. Similar behavior is observed for other crossbar
sizes. For 32 x 32 and 64 x 64 crossbars at 50% utilization, an
average detection rate of 71% is achieved, which is decent,
but for a 128 x 128 crossbar, the rate is very low at 16%.
Results are qualitatively similar for spurious spikes.

The computational cost for FDI is dominated by model-
inference time. The system used for benchmarking is an Intel
Xeon CPU operating at 2.20GHz. For the largest crossbar
size (128 x 128) considered in our experiments, ANN incurs
433.47ms to process one column (5k samples) whereas Light-
GBM is significantly faster at 65.07ms. Since each column in
the crossbar can be monitored independently and concurrently,

Crossbar size Ydlization Model
nxn 10% | 20% | 30% | 40% | 50%
Missing Spikes
32 x 32 092 | 0.82 | 0.81 0.77 0.72 CNN
64 x 64 0.89 | 0.86 | 0.79 0.74 0.70 | LightGBM
128 x 128 0.71 0.55 0.37 0.24 0.16 ANN
Spurious Spikes
32 x 32 094 | 0.88 0.87 0.85 0.84 CNN
64 x 64 0.89 | 0.87 0.82 0.76 0.69 | LightGBM
128 x 128 0.83 0.67 0.52 0.38 0.30 ANN

Fig. 7: Detection rates for various crossbar utilization levels.

128 ANN models can be loaded into main memory, which
requires 197.44MB of space, whereas 128 LightGBM models
require 19.16MB. A roving monitor can extend fault coverage
over multiple crossbars within the neuromorphic architec-
ture in cost-effective manner by time-sharing the monitoring
hardware as well as prediction models between crossbars of
interest. Only a single monitor is necessary and the hardware
overhead is therefore shared among several crossbars.

V. DISCUSSION

The developed approach constitutes the first step towards
dynamic redundancy wherein a combination of FDI and
reconfiguration is used to tolerate failures in cost-effective
fashion. When faulty SNN execution can be isolated to a
crossbar, it can be locked down, and the affected neurons
and synapses remapped to a spare. Execution of the SNN can
be restarted on the reconfigured system. Ongoing research
is addressing some limitations of this work. Average ISI,
being simple to calculate in real time, was the metric used to
detect changes between spike trains. Other metrics are being
evaluated to improve both sensitivity and robustness of FDI.
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