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As the Internet has transformed into a critical infrastructure, society has become more vulnerable to
its security flaws. Despite substantial efforts to address many of these vulnerabilities by industry, gov-
ernment, and academia, cyber security attacks continue to increase in intensity, diversity, and impact.
Thus, it becomes intuitive to investigate the current cyber security threats, assess the extent to which
corresponding defenses have been deployed, and evaluate the effectiveness of risk mitigation efforts. Ad-
dressing these issues in a sound manner requires large-scale empirical data to be collected and analyzed
via numerous Internet measurement techniques. Although such measurements can generate comprehen-
sive and reliable insights, doing so encompasses complex procedures involving the development of novel
methodologies to ensure accuracy and completeness. Therefore, a systematic examination of recently
developed Internet measurement approaches for cyber security must be conducted to enable thorough
studies that employ several vantage points, correlate multiple data sources, and potentially leverage past
successful techniques for more recent issues. Unfortunately, performing such an examination is challeng-
ing, as the literature is highly scattered. In large part, this is due to each research effort only focusing
on a small portion of the many constituent parts of the Internet measurement domain. Moreover, to the
best of our knowledge, no studies have offered an in-depth examination of this critical research domain
in order to promote future advancements. To bridge these gaps, we explore all pertinent facets of utiliz-
ing Internet measurement techniques for cyber security, ranging from threats within specific application
domains to threats themselves. We provide a taxonomy of cyber security-related Internet measurement
studies across two dimensions. One dimension relates to the many vertical layers (and components) of
the Internet ecosystem, while the other relates to internal normal functions vs. the negative impact of
external parties in the Internet and physical world. A comprehensive comparison of the gathered studies
is also offered in terms of measurement technique, scope, measurement size, vantage size, and the anal-
ysis approach that was leveraged. Finally, a discussion of the roadblocks to performing effective Internet
measurements and possible future research directions is elaborated.

© 2023 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction: Why measure the Internet?

The Internet is a complex, decentralized and dynamic system
with many components and diverse features. It is made up of self-
contained networks that communicate with one another using the
Internet Protocol (IP) and packet switching (Park, 2005). Due to
the Internet’s scattered structure, assessing any element of it on
a global scale is challenging. At the start of 2021, the number
of unique autonomous networks in the Internet’s routing system
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topped 99,378 (Maigron, 2020). By 2023, there will be 5.3 billion
Internet users worldwide (66% of the world population), which is
higher than 3.9 billion (51% of the world population) in 2018. Fur-
thermore, the number of devices linked to IP networks will exceed
three times the world’s population. The number of networked de-
vices is also expected to reach 29.3 billion, which is a large in-
crease from 18.4 billion devices accounted for in 2018. In addition,
14.7B Machine-to-Machine (M2M) connections will have been es-
tablished (Cisco, 2020).

Numerous facets of the Internet’s operation and utilization are
opaque or constantly changing, and may only be understood by
measurement. Moreover, a wide variety of services, ranging from
online entertainment to mission-critical, are entirely reliant upon
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the Internet as a foundation and communication medium. Thus,
for the purpose of dependability, security, and quality of service,
it is essential to continuously monitor performance metrics and
network settings, as well as to execute various tests, assessments,
configurations, and management tasks.

Regarding the Internet as a complex interaction of numerous
simple systems and protocols (Park and Williger, 2005), Internet
measurement is a set of methods of large-scale and in-action (re-
mote) collection of measurable data from the Internet to quanti-
tatively describe the structure (individual systems and protocols),
their interaction, and use of the Internet (the interrelation between
the Internet and the physical world). The three fundamental as-
pects of Internet measurement research, especially for cyber secu-
rity, are its empirical basis, large scale, and in-the-wild data col-
lection. More specifically, the scale of data collection procedures
must be large enough to produce a representative sample size. Ad-
ditionally, the empirical nature of Internet measurement is tightly
coupled with capturing real data in the wild since it is not feasible
to stop or disrupt the Internet’s normal operation for this purpose.

Applications of internet measurement can be effectively catego-
rized into three primary groups. The first of these categories stud-
ies the protocols and services used on the Internet and how they
have adapted to the rapid evolution of the Internet. Since the Inter-
net’'s widespread adoption in the 1990s, some key protocols have
undergone modest revisions to address bugs, enhance the quality
of various services, enforce policies, or comply with new criteria
such as privacy and security. Among such revisions, HTTP incorpo-
rated a few additional headers and methods, Transport Layer Se-
curity (TLS) underwent gradual enhancements, Transmission Con-
trol Protocol (TCP) adapted congestion management, and Domain
Name System (DNS) added capabilities such as Domain Name Sys-
tem Security Extensions (DNSSEC). Additionally, the complexity of
protocol implementations has also increased due to the advent of
network layer independence and the flexibility to modify Internet
protocols at any layer. Moreover, new protocols (e.g., Remote Desk-
top Protocol (RDP), Virtual Private Networks (VPN)) and standards
are regularly being deployed in order to add support for various
technologies as their demand increases (e.g., blockchain, IoT, 5G).

In the second category, Internet measurement is leveraged to
investigate cyberspace’s security. While the applications encom-
passed by this category are vast, many pertain to examining the
security associated with new protocol implementations. Such new
protocol implementations are often shipped with vulnerabilities,
particularly during the early stages of adoption, which attackers
often exploit. Moreover, it may take several years for the extent of
these vulnerabilities to be fully realized and appropriately patched.
To illustrate, there are protocols (e.g., DNS, Network Time Protocol
(NTP)) and services (e.g., Memcached) that have been in use for
many years that, as a result of their insecure deployment, enable
attackers to amplify Denial of Service (DoS) attacks by several or-
ders of magnitude. Furthermore, ubiquitous TLS vulnerabilities can
jeopardize users’ privacy and lead to data breaches (Holz et al.,
2016). In addition to assessing protocol-related security, Internet
measurement is also valuable for investigating a plethora of attacks
at scale, including Denial of Service (DoS), Distributed DoS (DDoS),
botnets, ransomware, and phishing, among several others.

Finally, in the third category, Internet measurement is mapped
to real-world events to assess one’s impact on the other. This is
possible because of the extent to which the Internet now pervades
all facets of human civilization and has inseparably been linked
to society and cyberspace. Consequently, any notable occurrence
in one will inevitably affect the other. As a result, Internet mea-
surement can be an effective tool for investigating the impact of
societal, political, and natural events on the Internet ecosystem.
Additionally, Internet measurement can also be leveraged to de-
termine the Internet’s resilience to unforeseen real-world develop-
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ments and the resultant modifications that may need to be inte-
grated. Some instances of unforeseen real-world developments are
when both Egypt’s and Libya’s governments shut down the Inter-
net in 2011 Dainotti et al. (2011), as well as when governments
have elected to impose restrictions on the Internet (Marczak et al.,
2015).

Ultimately, Internet measurement plays a vital role in analyzing
the spread of known vulnerabilities, detecting emerging threats,
and tracking the evolution of attackers’ activities. It can also be
leveraged to garner public attention by shedding light on the mag-
nitude of these issues, such as the inadequacies of their current
solutions, despite the cost of these solutions continuing to rise. In-
deed, cyber security has emerged as a major issue and will remain
as such for many years to come, and Internet measurement offers a
viable means of enhancing it. To promote this enhancement given
the wide spectrum of Internet measurement, this survey will sys-
tematically detail the collection, use cases, and research of Internet
measurement data.

Given the scarcity of real-world data in cyber security research,
leveraging passive and active measurement techniques in conjunc-
tion with robust analytic methods can offer insight on a subject’s
security posture. Additionally, the Internet is expanding at a rapid
pace across a variety of dimensions, including protocols, devices,
applications, technologies, platforms, users, and threats. As a re-
sult, the behavior of a particular system is dependent on a vari-
ety of variables that might alter the measurement. Furthermore, a
number of facets of the Internet are constantly evolving. Due to
the enormous size of the Internet and its dynamic nature, mak-
ing definitive statements regarding the Internet’s eventual behav-
ior without conducting several experiments and measurements is
largely an impossibility. For example, little is known about a data
stream that a recipient can attribute directly to the suspected
source, as part of the data may have been changed during transit.
Internet measurement is usually compared to astronomy in that it
includes making remote observations in order to gain a better un-
derstanding of how a system works. Furthermore, a measurement
taken from one vantage point may bear little resemblance to a
measurement taken from another vantage point, leading to incon-
sistent findings (Wan et al., 2020) due to Internet-enforced poli-
cies such as political decisions (e.g., censorship Leyba et al. (2019))
or security precautions (e.g., ISPs block Internet Control Message
Protocol (ICMP) messages to avoid exposing their infrastructures to
external scans).

Meanwhile, the continued attention to the privacy of users and
other entities in cyberspace has resulted in a variety of counter-
measures to limit information leaks. While such countermeasures
are commendable and necessary, they undoubtedly increase the
complexities associated with the collection and assessment of em-
pirical cyber security data. Therefore, conducting Internet measure-
ment is often not straightforward and requires devising innovative
techniques to confirm its correctness and completeness. In turn, a
systematic review of the devised Internet measurement techniques
for cyber security aids researchers in performing comprehensive
analysis by highlighting a number of different vantage points that
can be leveraged and successful techniques that could be applied
to new topics. To the best of our knowledge, this survey is the first
systematic review that studies empirical large-scale Internet data
collection for cyber security purposes. In this survey, we make the
following contributions.

1. A taxonomy of cyber security-focused Internet measurement
studies is provided for different components of the Internet
ecosystem to pave the way for researchers that are concentrat-
ing on a particular subject (Sections 4 through 7). These sec-
tions detail the encompassed papers based on the security is-
sues that the works address within a given domain.
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Fig. 1. Holistic view over the Internet measurement for cyber security

2. A review of macroscopic data collection and analysis proce-
dures employed in different cyberspace threat categories is of-
fered (Section 8). This section details publications that investi-
gate a particular cyber attack at scale.

3. A discussion of the impediments to Internet measurement and
possible future research directions are provided.

In Section 2, we elaborate on the literature search methodol-
ogy, covered journals, and conference proceedings. Subsequently,
Section 3 reviews all the published surveys on related topics and
highlights the differences with this review paper. Figure 1 depicts a
comprehensive picture of Internet measurement for cybersecurity,
categorizing the studies according to two dimensions. One dimen-
sion relates to the many vertical levels of the Internet ecosystem,
while the other relates to internal normal functions vs. the nega-
tive impact of external parties in the Internet and physical world.
We classified the Internet ecosystem and its major components
into four main sections (layers) on the basis of their similarity and
function within the technology stack. However, components from
different layers also depend on one another, and a technology is
comprised of multiple components. Consequently, Internet mea-
surement studies frequently explore a particular topic from mul-
tiple vantage points. These points of view may be obtained from
different components and layers. For instance, encrypted DNS re-
search can utilize techniques from the Internet overlay layer, PKI in
the middle layer and optional components layer, and possibly the
access layer for a more thorough analysis, despite the fact that DNS
component remains the primary focus. Within each layer of the In-
ternet, measuring techniques share similarities. Therefore, the top-
ics related to Internet core architecture and services are elaborated
upon in Section 4. Section 5 covers areas of research related to In-
ternet overlay systems and middleboxes. Next, Section 6 reviews
topics related to middle layers such as content delivery networks,
blockchain, as well as optional components such as advertising
networks and web Public Key Infrastructure (PKI). Works pertain-
ing to last mile Internet, access layer and endpoints are explored
in Section 7.

In Section 8, we focus on the adverse effects of attackers that
are detrimental to the Internet and review the associated papers.
Internet measurement papers that study cyber incidents and real-
world implications are detailed in Section 9. Finally, Section 10 pin-

points future trends and the challenges associated with conducting
Internet measurements.

In this article, we examine the publications with regard to mea-
surement method, analytic method, measurement size, and scope
in each of their respective contexts. Internet measuring methods
are typically classified as passive, active, or hybrid. In the passive
technique, data is gathered through passive observation, which fre-
quently necessitates the deployment of monitoring instrumenta-
tion at a network node that can monitor traffic. Typically, this re-
quires cooperation with commercial operators. Active probing, on
the other hand, injects traffic or initiates an action in order to col-
lect a response and observe its effect. Active probing is preferred
by third-party researchers since it may be performed from the net-
work’s edge and requires minimal network access, but it can only
infer a limited number of network characteristics. Moreover, pas-
sive approaches present privacy concerns for network users and
operators. We chose the term ’hybrid’ to refer to a multi-step
process that combines both approaches to develop more complex
measurement methodologies. For instance, passive observation of
one data source followed by active probing of another data type
based on the outcomes of the passive observation. The analysis
method refers to the techniques used to analyze the gathered data.
We identified four important categories, including Heuristic, Statis-
tics, Machine Learning (ML), and Graph Theory. Measurement stud-
ies must indicate their scope, often known as their focus group.
Comparing a study that investigates a phenomenon within an ISP
to an Internet-wide measurement study, the latter may require a
different methodology and have a higher level of complexity. Ma-
jor categories of scope include Internet-wide, Country-level, ISP-
level, campus-level, and lab settings, among others. The measure-
ment size is an additional criterion for contrasting Internet mea-
surement studies and comparing their comprehensiveness, since it
indicates the quantity of data collected on the respective subject.
In the summary of the reviewed studies, we specify the measure-
ment period and the overall size of the gathered artifacts.

2. Literature Search Methodology

A literature search for this survey covered many journals and
conference proceedings, as demonstrated in Table 1. Besides the
conferences and journals dedicated specifically to this field such as
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Table 1
List of Literature Search Methodologies (Journals and transactions are appeared in bold.)
Topic Conferences & Journals
Security IEEE Symposium on Security and Privacy - ACM Conference on Computer and Communications Security — USENIX Security Symposium

- The Network and Distributed System Security (NDSS) Symposium - International Symposium on Research in Attacks, Intrusions and
Defenses (RAID)- Annual Computer Security Applications Conference (ACSAC) - Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN) - ACM ASIA Conference on Computer and Communications Security (ASIACCS) - IEEE
European Symposium on Security and Privacy (EuroS&P) - Privacy Enhancing Technologies Symposium (PETS) - International
Conference on Availability, Reliability and Security (ARES) - IEEE Transactions on Information Forensics and Security - IEEE
Transactions on Dependable and Secure Computing - ACM Transactions on Privacy and Security - Elsevier Computer & Security

Internet ACM Internet Measurement Conference - Passive and Active Measurement Conference - Network Traffic Measurement and Analysis

Measurement Conference - The Web Conference (WWW)

Networking IEEE International Conference on Computer Communications - ACM SIGCOMM - IEEE Global Communications Conference -
Transactions on Networking- IEEE Journal on Selected Areas in Communications

Surveys IEEE Communication Surveys and Tutorials- ACM Computing Surveys

ACM Internet Measurement Conference (IMC), Passive and Active
Measurement Conference (PAM), The Network Traffic Measurement
and Analysis Conference (TMA), and World Wide Web Conference
(WWW), the topics covered in this survey often appeared in other
journals and conferences on computer networks, communications,
network security, and information systems.

Although no survey was found to discuss Internet measurement
for cyber security, we reviewed survey-oriented journals like IEEE
Communication Surveys and Tutorials and ACM Computing Sur-
veys. Further, we used Google Scholar, IEEE Xplore, and ACM Dig-
ital Library to search for related papers in venues enumerated in
Table 1 using the queries consisting of "measurement” + "empir-
ical* + "cyber security* with the following associated keywords:
"Internet”, "network", "active“, and "passive“. The 556 identified
publications were then manually screened to reject those that did
not fall within the scope of this study, resulting in 337 final papers.

Due to the increasing emergence of new threats and vulnera-
bilities, as well as the high volume of publications in various cov-
ered topics, we only included papers that were published from
2015 up to 2022 in this survey, inclusively, in order to focus on the
most recent methods and studies. Papers published prior to 2015
maybe be included if they offer fundamental contributions or are
still highly relevant.

3. Existing Surveys

To the best of our knowledge, Internet measurement for cyber
security as a whole has not been surveyed yet, even though several
surveys of particular tasks and use cases were published in recent
years.

In 2006, Ziviani (2006) reviewed measurement-based meth-
ods related to five topics; bandwidth estimation, traffic ma-
trix estimation, traffic sampling and anomaly diagnosis, network
proximity evaluation, and geolocation of Internet hosts. Bou-
Harb et al. (2013) discussed the nature of cyber scanning, in ad-
dition to the approaches and strategies utilized. The authors pro-
vided a classification for 19 cyber scanning techniques. The survey
covered techniques adopted by adversaries and botnets for wide-
range cyber scanning. Bajpai and Schonwidlder (2015) reviewed In-
ternet performance measurement platforms based on their scale,
coverage, timeline, deployed metrics and measurement tools, ar-
chitecture, and overall research impact. Further, the authors pro-
vided a classification based on use-case deployment, namely, fixed-
line access measurements, mobile access measurements, and oper-
ational support. Fachkha and Debbabi (2015) provided a compre-
hensive survey on darknet (Internet telescope) in 2015, which con-
cerned three main darknet-related categories: deployment, traffic
analysis, and visualization. In fact, the darknet has been used ex-
tensively to extract insights on Internet-wide probes and scanning

activities, DDoS attacks, and other occurrences such as Internet
outages and societal/political events.

Subsequently, Aleroud and Zhou (2017) published a survey
on phishing threats in 2017. The authors not only investigated
phishing attacks and anti-phishing techniques in traditional en-
vironments (i.e. emails and websites) but also in new envi-
ronments such as mobile and social networks. More recently,
Zhou et al. (2018) surveyed existing network data collection tech-
niques in 2018. Although this topic is limited in terms of the
types of data used (e.g., packets and NetFlow) and size of the net-
work, it shares common techniques and challenges with the In-
ternet measurement topic. Additionally, Torabi et al. (2018b) shed
light on the importance of threat detection using passive DNS
data, with the aim of providing a systematic review of the pre-
viously implemented systems that utilized passive DNS data to
detect malicious behavior on the Internet. They discuss the stud-
ies with respect to collected data size, DNS data source type,
DNS level and experimented machine learning models. Similarly,
Zhauniarovich et al. (2018) investigated DNS queries and responses
in order to identify malicious domains based on their behavior.
They surveyed the existing approaches using several viewpoints:
(i) sources of the DNS data, (ii) the data analysis methods, and (iii)
the evaluation strategies and metrics.

In 2019, Jing et al. (2018) surveyed data collection and analyt-
ics for measuring Internet security. The authors categorized secu-
rity data into four main classes: (1) packet-level, (2) flow-level, (3)
connection-level, and (4) host-level data. Analytic methods applied
to DDoS flooding and worm attacks are also elaborated upon in
detail. The studies are summarized depending on the type of se-
curity data obtained (e.g., number of packets, packet rate, etc.), the
analysis method for attack detection, and the various performance
metrics (e.g., accuracy, false alarm, etc.).

In the same year, Singh et al. (2019) presented a comprehensive
survey on DNS-based botnet detection. The authors offered a new
classification of DNS-botnet detection techniques and covered each
technique based on the following categories: flows, anomaly, flux,
DGA, and bot infection. The studies are reviewed in terms of the
techniques used, the whitelist/blacklist criteria, the target botnet,
the dataset, and the pros and cons.

Table 2 summarizes the topics and research areas described in
the related surveys according to the taxonomy offered in Section 2.
This table also highlights how our literature survey differs from
the existing ones. After more than two decades since the Inter-
net measurement field has emerged, we have unfortunately found
that related literature is rather scattered. In large part, this is due
to the field of Internet measurement encompassing many different
and equally important aspects in need of investigation. In turn, re-
searchers typically only focus on a subset of them. Consequently,
to the best of our knowledge, there are no surveys that offer an
extensive view of Internet measurements for cyber security. In ad-
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Table 2
A Classification of Related Surveys
Research Area Ziviani Bou-Harb  Bajpai and Fachkha Aleroud Zhou et al. Torabi et Zhauniarovich  Jing et al.  Singh et al. Ours
(2006) et al. Schon- and and Zhou  (2018) al. (2018b) et al. (2018) (2018) (2019)
(2013) walder Debbabi (2017)
(2015) (2015)
Covered Internet Core v v v v v v v v
Topics Internet v
Overlay
Optional v
Services
Access Layer v
Threats & v v v v v v v
Attacks
Real-world v
Impact
Scope Cyber Security v v v v v v v v v
Internet-Wide v v v v v v v v v
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Fig. 2. A taxonomy detailing the application domains of Internet measurement

dition, providing such an overall picture could inform researchers
and practitioners that are either new to the topic, wish to expand
their knowledge on Internet measurement to associated aspects re-
lated to their expertise, or are simply exploring new possible ap-
plications for their specialty.

4. Internet Core

In this section, we elaborate on several topics related to Inter-
net core components and services, namely, the DNS ecosystem and
routing and transit protocols. Figure 2 presents a categorization of
the subjects covered in studies on Internet measuring techniques
for analyzing the cyber security of Internet core components.

A number of subjects, such as Internet addressing (IPv4/IPv6)
and Internet outages, have some connection to the Internet core
section. Internet-wide scanning is often used to comprehend the
Internet’s topology and security (Durumeric et al., 2013). However,
IPv4 Internet scans have been restricted to a subset of services
since it is too expensive to scan IPv4 addresses across all ports for
all IPv4 services. Therefore, recently, there have been efforts to de-
velop bandwidth-efficient frameworks for discovering services on
unusual ports (Izhikevich et al., 2021; 2022b). Further, the trend
of IPv6 adoption has continued with many network operators de-
ploying IPv6 to significant parts of their networks (Borgolte et al.,
2018b). Considering the vastness of the IPv6 address space, it is
not feasible to probe every possible unicast IPv6 address for mea-
surement purposes, such as when conducting classification tasks
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and other means of comprehending this new address space. Conse-
quently, most of the efforts regarding IPv6 explorations are toward
finding efficient ways to probe the IPv6 cyberspace by discovering
nominated seeds and other methods in order to generate a tar-
get hitlist (Beverly et al., 2018; Borgolte et al., 2018b; Gasser et al.,
2018b; 2016; Murdock et al., 2017; Plonka and Berger, 2015). While
we will not get into the specifics, it is important to note that this
is one method of measuring Internet.

Further, large-scale power outages, underwater cable breaks,
bad network administration, security attacks, natural disasters, and
government-imposed network outages can all cause network dis-
ruptions. These situations may result in the unstable functioning
of the Internet, which can jeopardize the dependability and avail-
ability of essential services and mission-critical applications. As a
result, several research endeavors have focused on outage charac-
terization (Banerjee et al., 2015; Giotsas et al., 2017a; Gunawi et al.,
2016; Holterbach et al., 2017; Padmanabhan et al., 2019a; 2019b;
Richter et al., 2018; Tao et al., 2019; Zhang et al., 2017), Internet
outage detection (Bogutz et al., 2019; Fontugne et al., 2017; Guil-
lot et al.,, 2019; Shah et al., 2017) and assessing real-world events
(Bayat et al., 2021). However, these apply more to the dependabil-
ity of the Internet than to its security.

4.1. DNS

DNS is a critical Internet protocol that was first specified in
1983 in Request for Comments (RFC) 882 and 883 (Mockapetris,
1983; 1987). Despite that its primary objective of resolving do-
main names to IP addresses appears to be rather straightforward,
the DNS environment is quite complex. It consists of a hierar-
chy of recursive resolvers and authoritative nameservers that are
coupled with a diverse set of query types and DNSSEC. Further-
more, authoritative DNS servers can be configured to behave dif-
ferently based on latency, geolocation, and content filtering poli-
cies. As a result, any measurement used to explore this ecosystem
is extremely reliant upon the vantage point(s) from which it is ob-
tained, and it may only provide a partial view of the DNS zone.

Along with the aforementioned complexities, the DNS environ-
ment has become a haven for illicit and fraudulent acts due to
the multistakeholder governance approach it employs. Such acts
pertaining to the name system itself can be categorized by two
distinct forms of threats. To begin, because DNS transactions are
not verified, DNS may create erroneous mappings of names to IP
addresses. Additionally, while the cryptographic DNS zone signa-
ture technology has existed for over a decade, it remains unused.
Second, the name registration environment promotes extremely
opaque name usage, which is not only beneficial for privacy but
also can be leveraged by malicious actors.

Typically, passive DNS collects data about the interaction be-
tween recursive caching name servers (i.e., resolvers) and authori-
tative name servers. Data from passive DNS configurations can be
used for applications such as tracing names connected with mali-
cious IP addresses. Unfortunately, passive DNS does not offer accu-
rate data over time. Specifically, passive DNS will only record data
for domains that are of interest to the clients behind the resolvers
that gather passive DNS data. Additionally, passive DNS has no ef-
fect on the query’s temporal spacing.

The necessity for researchers to obtain dependable DNS data
over time prompted the development of a supplementary alterna-
tive to passive DNS based on active measurements (van Rijswijk-
Deij et al., 2016). With DNS zone files from Top-Level Domains
(TLDs) as input, a set selection of queries for each domain in a TLD
will be sent once every 24 hours. In fact, the behavior of clients
making queries can be controlled via this technique. However, scal-
ing such a method is quite difficult. For instance, the.com domain
alone (the Internet’s largest TLD) includes over 120M names. An
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abstract illustration of passive and active DNS measurement are
shown in Figure 3. In addition, Table 3 summarizes and compares
the papers that will be discussed.

4.1.1. Malicious DNS activities

Passive collection of DNS traffic at recursive DNS, authorita-
tive DNS and TLD servers along with DNS backscatter are typi-
cally used to find malicious activities through analysis of queries.
Kwon et al. (2016) aspired to utilize DNS for fingerprinting botnets.
They leveraged timing information of query generation, regardless
of the number of domains and queries and used the Power Spec-
tral Density (PSD) to discover the significant frequencies resulting
from periodic DNS queries from botnets. Their system gave a de-
tection accuracy of 95% with a false positive rate of 0.1%, and was
able to detect 23 unknown and 26 known botnet groups. DNS is
also leveraged as a covert channel by malware authors in order
to perform data exfiltration. As a result, Nadler et al. (2019) sug-
gested a machine learning method for identifying classes of covert
channels. The authors evaluated their approach on a large-scale re-
cursive DNS server’s logs and detected two malware variants.

With malicious domains being key components in a variety
of cyber attacks, researchers have been leveraging DNS data as
a means of identifying them. Chiba et al. (2016) proposed Do-
mainProfiler, which utilizes DNS logs in order to detect mali-
cious domain names that will likely be abused in the future. Do-
mainProfiler assesses the Temporal Variation Patterns (TVPs) of
domain names to extract information regarding how and when
a domain was recorded in blacklists and whitelists. The au-
thors showed that their system can predict malicious domain
names 220 days in advance with a true positive rate of 0.985.
Rahbarinia et al. (2016) presented Segugio, which utilizes passive
DNS traffic to detect previously unknown malware-controlled do-
main names. The approach first constructs a machine-domain bi-
partite graph of what domains are being queried by machines
that are known to be benign or malware-related. Subsequently,
Segugio couples this information with a number of other domain-
name features (annotated in the graph) to arrive at a probabil-
ity of a particular domain name being used for C&C or that the
machine making the query is infected. The proposed system was
implemented in large ISP networks and achieved a true positive
rate of up to 94%. Despite success in malicious domain detection,
this success has largely been predicated on local features (e.g.,
domain name patterns, daily similarity, average TTL, etc.), which
can potentially be modified by attackers. To address this issue,
Khalil et al. (2016) proposed an approach that analyzes global as-
sociations among domains. The authors primarily leveraged the
expectation that multiple malicious domains will end up being
hosted using the same IPs over time and vice versa. Based off this
intuition, a graph-based inference technique over associated do-
mains (i.e., with common IPs) is constructed to enable the discov-
ery of a large set of unknown malicious domains by using a small
set of domains known to be malicious. The approach was evalu-
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Table 3

Summary of the DNS papers

Computers & Security 128 (2023) 103123

Topic Papers Measur. Method Analysis Method Scope Measurement Size
Malicious DNS Kwon et al. (2016) Passive Statistics Internet-wide ~100M queries, ~10M domains
activities Nadler et al. (2019) Passive ML Internet-wide 47M queries/hour
Chiba et al. (2016) Hybrid Statistics & ML Internet-wide >55M domains
Rahbarinia et al. (2016) Passive Graph Theory & ML  ISP-Level & Country-Level ~101.4M domains
Khalil et al. (2016) Passive Graph Theory Internet-wide 152K domains
Kountouras et al. (2016) Hybrid Heuristic Campus-Level, ~1.5B domains
Internet-wide
Fukuda et al. (2017) Passive ML Country-Level, TLD 7.11x10™ queries
TTL and Moura et al. (2019) Hybrid Heuristic Country-Level 58M domains
Caching Al-Dalky et al. (2019) Passive Heuristic Country-, Campus-Level >5M resolvers
Kiihrer et al. (2015) Hybrid Heuristic Internet-wide 155 domains
Malicious Liu et al. (2016) Active Heuristic Internet-wide Top 10k Alexa ~570k subdomains
Domain Re- Vissers et al. (2017) Active Heuristic Internet-wide Top 10K NS domains
Registration Pearce et al. (2017) Hybrid Heuristic Internet-wide 4.2M open resolvers
Lever et al. (2016) Passive Heuristic ISP-Level 179M expired domains
Lauinger et al. (2016) Passive Heuristic Internet-wide 7.4M domains
Encrypted DNS
Chung et al. (2017) Hybrid Heuristic Internet-wide 59K DNS resolvers, >147M domains
Lu et al. (2019) Hybrid Heuristic Internet-wide & ISP-Level 122k IP addresses in 166 countries
Hoang et al. (2020) Active Heuristic, Statistics Internet-wide 13.6M domains
DGA Plohmann et al. (2016) Hybrid Heuristic Internet-wide >18M DGA domains
Landscape Stevanovic et al. (2015) Passive Graph Theory Regional ISP-Level 13.93M domains
IDN & Liu et al. (2018) Passive Heuristic Internet-wide 1472k IDNs from 56 TLD zone files
Typosquatting Quinkert et al. (2019) Hybrid Heuristic Internet-wide Alexa Top 10K, 3k IDN
Domains Suzuki et al. (2019) Hybrid, crowdsource Heuristic, Statistics Internet-wide 141M domain
Le Pochat et al. (2019) Hybrid Heuristic Internet-wide 15k IDNs
Chiba et al. (2019) Passive, crowdsource Heuristic Internet-wide 4.4M registered IDNs, from 570 TLDs
Yazdani et al. (2020) Hybrid Heuristic Internet-wide 7.5M IDNs
Agten et al. (2015) Active Heuristic Internet-wide Top 500 Alexa domains
Dam et al. (2019) Hybrid Heuristic Internet-wide 485k domains
Khan et al. (2015) Hybrid Heuristic, Statistics Internet-wide, campus-, ~54.7M domains

enterprise-level

ated on a public passive DNS database and reached a true positive
rate of up to 95%.

Kountouras et al. (2016) took a different approach to facilitating
the malicious domain detection effort by offering a large-scale and
freely-available means of aggregating active DNS data. The pro-
posed system, referred to as Thales, accomplishes this aim by gen-
erating numerous DNS queries from a list of publicly accessible
sources of collected domain names (e.g., the Alexa list, various TLD
zone files, etc.). From the resultant dataset, the authors identified
domain names that ultimately ended up consuming over 75% of
public blacklists several weeks later. Additionally, it was demon-
strated that malicious campaigns can be fingerprinted solely using
such active DNS data.

Further, Fukuda et al. (2017) endeavored to identify malicious
events from DNS backscatter. By leveraging machine learning, they
were able to identify several scanning trends and bursts corre-
sponding to Heartbleed. They also showed that the classification of
these queries enabled the fingerprinting of several network events
with a precision of 70-80%.

4.1.2. TTL and Caching

DNS Time To Live (TTL) is a setting that determines how long
a DNS resolver should cache a query. Moura et al. (2019) executed
several controlled experiments on captured passive and active DNS
data to demonstrate how setting TTL values affect operational net-
works and attack mitigation. The authors also enumerated consid-
erations and recommendations for selecting appropriate TTLs. For
example, DNS load balancing or DDoS mitigation may require short
TTLs of 5 or 15 minutes, whereas other implementations may ben-
efit from TTLs of a few hours.

Al-Dalky et al. (2019) studied the behavior of recursive resolvers
that adopted the EDNSO-Client-Subnet (ECS) extension, as well as
their caching implementations. This extension includes end-user

subnet information in DNS queries to offer good approximations of
end-user locations, which enables authoritative DNS servers to bet-
ter assign users to the nearest edge servers in CDNs. To this end,
the authors assessed both the authoritative DNS servers of a major
CDN and a busy DNS resolution service. Their analysis uncovered
both deviations from the expected caching behavior and detrimen-
tal actions (e.g., defying RFC recommendations), which can ulti-
mately lead to the violation of users’ privacy, a decreased effec-
tiveness of DNS caching, and a dramatic reduction of the benefits
of ECS.

Millions of recursive DNS resolvers are still open to the pub-
lic, which makes them vulnerable to cache snooping and DDoS
amplification attacks. Kiihrer et al. (2015) shed light on this phe-
nomenon by analyzing it from two different angles: (1) assess-
ing changes over time and classifying such resolvers by their de-
vice type and software version, and (2) measuring the authenticity
of open resolvers' responses from a client viewpoint. The authors
found that some open DNS resolvers manipulate DNS resolutions
to censor communication channels, inject ads, perform fishing at-
tacks, serve malicious files, or perform malicious redirection. The
amplification vulnerabilities of the DNS protocol were also shown,
as well as its lack of verification mechanisms at the application-
level that allows clients to be redirected to suspicious content.

4.1.3. Malicious Domain Re-Registration

Anyone who re-registers an expired domain implicitly inherits
the domain’s previous residual trust. This occurrence is leveraged
by adversaries to exploit both users and systems. To determine the
extent of such DNS-related vulnerabilities and abuse, researchers
usually concentrate their study on the top domains (e.g., the
Alexa top 10k) and then collect thorough replies and test results.
Liu et al. (2016) shed some light on dangling DNS records (records
pointing to resources that are not available) and demonstrated how
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attackers can even have these compromised domains signed with a
Certificate Authority (CA). In addition, they found 467 exploitable
dangling DNS records in 277 Alexa top 10k domains and 52 edu
zones. Adversaries can also hijack domains via exploiting configu-
ration issues and hardware errors in nameservers in order to seize
control over their requests. Vissers et al. (2017) studied this phe-
nomenon by performing a large-scale analysis of 10K popular do-
mains. Subsequently, they mapped out existing abuse and vulner-
able entities, and uncovered 52.8M domains that were targeted by
nameserver bisquatters who respond with rogue IP addresses. They
also identified 1.28M domains that are at risk for DoS attacks due
to outdated nameservers. In addition to hijacking, DNS manipula-
tion also encompasses DNS poisoning or redirection. To this ex-
tent, Pearce et al. (2017) proposed Iris, a system for measuring the
global manipulation of DNS resolutions. It relies on a variety of
metrics associated with the consistency of resolutions with their
control group and others that can be independently verified with
external data sources (e.g., the HTTPS certificate infrastructure) in
order to determine if manipulation has occurred.

Lever et al. (2016) proposed Alembic, a lightweight algorithm
that detects potential domain ownership changes from passive
DNS. The authors measured the scope and growth of this threat
over six years and identified 27,758 domains from public black-
lists and 238,279 domains that expired and were subsequently re-
solved by malware. Several of the instances of abuse that they
uncovered were previously unidentified, including an expired Ad-
vanced Persistent Threat (APT) domain. Lauinger et al. (2016) of-
fered insight pertaining to the re-registration phenomenon via an-
alyzing the WHOIS databases. Upon overcoming related shortcom-
ings (e.g., inconsistent data formats, the rate limits imposed on the
number of lookups, and ambiguities in the data), the authors col-
lected 7.4M com, net, org, biz, and name domains that were about
to be deleted over the course of ten months. Survival analysis re-
vealed that several re-reservations happened soon after the do-
main’s deletion, especially when the domains were older. Also, it
is challenging to predict the time between the domain’s expiration
date and its deletion.

4.14. Encrypted DNS Protocols

DNSSEC authenticates the resolution of IP addresses with a
cryptographic signature, which ensures the validity of the answers
provided by the DNS server. Chung et al. (2017) performed a 21-
month study on DNSSEC’s PKI management, as well as its deploy-
ment and maintenance. This empirical analysis was carried out on
data from all DNSSEC-enabled subdomains under the com, org,
and net TLDs. In addition, active measurements were conducted
on more than 59K DNS resolvers worldwide to evaluate resolver-
side validation. Ultimately, widespread DNSSEC infrastructure mis-
management was identified, such as 31% of domains supporting
DNSSEC fail to publish all relevant records required for validation.
Moreover, of the 82% of resolvers that requested DNSSEC records,
only 12% of them attempted to validate the response.

Protocols offering encryption for DNS-related traffic (e.g. DNS-
over-TLS (DoT), DNS-over-HTTPS (DoH), and Encrypted Server
Name Indication (ESNI)) have also been introduced, which can
mitigate threats against plaintext DNS packets. To this extent,
Lu et al. (2019) found that encrypted DNS queries are less likely to
be disrupted by in-path interception than traditional DNS queries.
However, they also discovered that 25% of DNS service providers
use invalid SSL certificates, and that far more users rely on tradi-
tional DNS than its encrypted counterparts.

4.1.5. DGA Landscape

Domain Generation Algorithms (DGA) are algorithms that are
utilized by some malware families to periodically generate a large
number of domain names that can function as rendezvous points
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with Command and Control (C&C) servers. Passive DNS is the
primary data source for analyzing and detecting DGA domains.
Plohmann et al. (2016) analyzed 43 such malware families and
variations to conduct a comprehensive assessment of the DGA
landscape. They proposed a DGA taxonomy, which they utilized to
characterize and compare the attributes of these malware families.
They examined the registration status of over 18 million DGA do-
mains and found that pre-compiling future DGA domain names can
accurately identify malware campaigns. Stevanovic et al. (2015) en-
deavored to facilitate the detection of such malicious domains via
machine learning by presenting a semi-manual procedure for la-
beling DNS queries that are used to reach potentially malicious
servers by fast changing domain names and/or IP addresses. The
authors used DNS traffic from an Internet Service Provider (ISP) to
evaluate their approach and showed the importance of domain/IP
address blacklists and whitelists for DNS traffic labeling. However,
it was also highlighted that blindly relying on these blacklists and
whitelists may result in misleading conclusions about the analyzed
DNS traffic.

4.1.6. IDN & Typosquatting Domains

Internationalized Domain Names (IDNs) containing non-ASCII
characters and were installed in DNS over 15 years ago. It enables
IDN homograph attacks, which is caused by the fact that many
different characters look alike but have a different assigned code.
Liu et al. (2018) found that approximately 1.4 million IDNs were
registered under more than 700 registrars, and east Asian regions
have exhibited significant growth in IDN registration. In terms of
IDN abuse, this research endeavor uncovered that URL blacklists
contain over 6K IDNs. Additionally, 1,516 and 1,497 IDNs were
identified as having strong visual (i.e.,, homograph domains) and
semantic similarities, respectively, to well-known brand domains
(e.g., apple.com). Quinkert et al. (2019) aspired to detect homo-
graph IDNs and monitor their activity. The authors implemented
a two-phase procedure consisting of (1) detecting the homograph
IDNs and then (2) collecting metadata about them on a daily ba-
sis. The first phase was conducted for a period of eight months
and resulted in the discovery of around 3,000 homograph domains
targeting both technology and financial organizations. The second
phase was performed for over five months and uncovered several
cases of scamming and phishing, with some of these cases being
active for months.

Suzuki et al. (2019) designed ShamFinder, which is an auto-
mated approach for detecting IDN homographs. ShamFinder was
used to conduct a large-scale measurement study in order to bet-
ter understand the IDN homographs that exist in the wild. As a
result, the authors were able to offer insights on effective counter-
measures against IDN homograph attacks. Chiba et al. (2019) pro-
posed DomainScouter, a new system that can detect various homo-
graph IDNs via a calculated deception score, which is the estimated
probability of a user being deceived by a given IDN. Using ap-
proximately 4.4M registered IDNs under 570 TLDs, DomainScouter
detected 8,284 homograph IDNs. Of these detected homographs,
many were previously unknown and targeting non-English brands.
Yazdani et al. (2020) applied homoglyph tables to generate ASCII
counterparts of IDNs in order to detect suspicious homograph do-
main names. The approach was performed on data from the Open-
INTEL platform, which takes daily active DNS measurements of
over 65% of the DNS namespace. The authors also extended exist-
ing homoglyph tables, which allowed them to detect roughly 2.97
times more homograph domains on average than would be pos-
sible with existing homoglyph tables. While the approach is only
designed to fingerprint suspicious domains, it detected domains 21
days before they appeared in the blacklists measured by OpenIN-
TEL, on average.
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In contrast to homograph domains, typosquatting is when ad-
versaries register domains that are a mistype of a popular do-
main name. To this end, Agten et al. (2015) undertook a seven-
month analysis of typosquatting domains by visiting the Alexa top
500 domains. The authors perform their analysis by clustering the
content of potential typosquatting web pages. The study revealed
that typosquatters were targeting 95% of the 500 domains studied,
and the majority of such domains do not employ their own ty-
posquatting domains as a means of defense. Dam et al. (2019) per-
formed a large-scale investigation of a particular type of scam im-
plemented on typosquatting domains, namely, the pop-up scam.
This scam displays a JavaScript alert box, which attracts users’ at-
tention by blocking a user interface element. By leveraging the
Alexa top 1M list, the authors found a total of 9,857 pop-up notifi-
cations on 8,255 different sites, with the majority being displayed
to one specific HTTP user agent only. A distribution of this scam
across different languages was also given. Khan et al. (2015) en-
deavored to assess the typosquatting cybercrime related harms to
users via proposing a methodology called intent inference. They re-
vealed that typosquatting costs the average user 1.3 seconds per
typosquatting occurrence versus obtaining a browser error page.
Moreover, it was also discovered that legitimate sites lose about
5% of traffic over an unregistered typo.

4.2. Routing

BGP is the Internet’s global routing protocol, which is used
by autonomous networks (also known as autonomous systems or
ASes) to communicate network topology information. Since BGP
was created without security in mind, network operators have
been subjected to adversarial attacks on routing (e.g., traffic hi-
jacking). Thus, for more than two decades, the Internet engineer-
ing community has continuously attempted to build and deploy
interdomain routing security mechanisms. However, finding an ef-
ficient method of processing large amounts of distributed or live
BGP measurement data is extremely challenging. Such mechanisms
include passive and active BGP measurement techniques, as shown
in Figure 4. Furthermore, many routing anomalies are caused by
inaccurate BGP prefix announcements (e.g., operational interrup-
tions) rather than routing attacks, which complicates the research.

In this subsection we explored the empirical studies about
the routing attacks, securing Interdomain routing, and BGP com-
munities. In addition, subsection 8.6.3 provides a comprehensive
overview of BPG-based DDoS defense approaches, such as black-
holing.
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The growing use of encrypted network traffic has become a
double-edged sword. On one edge, it ensures safe data transfer,
prevents eavesdropping, and increases the reliability of commu-
nicating hosts. Yet on the other edge, it makes essential network
traffic control tasks (e.g., traffic classification and host recognition)
more difficult. Therefore, monitoring, identifying, and classifying
encrypted communication has caught the attention of researchers
in recent years. In general, these researchers’ works can be cate-
gorized as fingerprinting encrypted traffic (Aceto et al., 2018; An-
derson and McGrew, 2020; Di Martino et al., 2019; van Ede et al.,
2020; Husak et al., 2015; Kohls et al., 2019; Mavroudis and Hayes,
2020; Panchenko et al., 2016; Rimmer et al., 2018; Taylor et al.,
2017; 2016) or insight generation via network traffic analysis (Al-
Naami et al., 2016; Anderson et al., 2018; Frolov and Wustrow,
2019; Holz et al., 2016; Li et al., 2017; Msadek et al., 2019; Siby
et al., 2020; Zhang et al., 2018). However, we will not discuss the
specifics of these articles because their subject matter is not di-
rectly connected to cyber security.

4.2.1. Routing Attacks

Birge-Lee et al. (2019) introduced Surgical Interception using
COmmunities attacks (SICO), which launch interception attacks on
BGP communities in order to study an adversary’s attack and en-
sure a route to the victim. The authors showed that SICO at-
tacks can target specific IP addresses in order to reduce attack
costs. In addition, SICO attacks were executed on the real Inter-
net to evaluate their effectiveness and feasibility. Finally, the au-
thors analyzed the Internet topology and found that at least 83%
of multi-homed ASes have the capacity to launch such attacks.
Schlamp et al. (2016) devised a novel formalization of Internet
routing and applied it to routing anomalies in order to establish
a comprehensive attacker model. The authors used this model to
classify attacks and evaluate the extensiveness of their impact.
Additionally, a new effective approach that investigates hijacking
alarms was proposed and implemented, called the Hijacking Event
Analysis Program (HEAP). Due to the increase in use of BGP poi-
soning, Smith et al. (2020) evaluated the feasibility of poisoning
in practice. BGP poisoning makes use of the routing protocol be-
tween ASes to reroute upstream networks’ return paths onto new
paths. This route hijacking can be exploited for congestion control,
censorship, geopolitical boundaries, etc. By using a multi-country
and multi-router, Internet-scale measurement infrastructure, the
authors captured and analyzed over 1,400 instances of BGP poison-
ing across thousands of ASes. They conducted a detailed analysis
of the performance of steering paths and the graph-theoretic as-
pects of available paths. With this data, a re-evaluation of the sim-
ulated systems was performed. Cho et al. (2019) leveraged super-
vised learning classifiers to detect hijacking attacks in order to doc-
ument the different types of such attacks. The authors introduced
four categories of BGP hijacks: (1) typos, (2) prepending mistakes,
(3) origin changes, and (4) forged AS paths. By leveraging AS hege-
mony (i.e. a measure of dependency in AS relationships), they effi-
ciently identified forged AS paths. Additionally, they used heuristic
approaches to identify typos and AS prepending mistakes. Overall,
the proposed approach correctly classified the authors’ collected
ground truth dataset into the aforementioned four categories with
95.71% accuracy.

Testart et al. (2019) took on a new perspective on BGP hijack-
ing activity by introducing and tracking long-term routing behavior
of serial hijackers. They built a ground truth dataset by extracting
information from network operator mailing lists. Then, based on
this dataset, they shed some light on serial hijacking and how such
networks differ from legitimate networks. They leveraged features
that captured these differences and used machine learning models
to automatically detect ASes that were subjected to serial hijacking.
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The authors found a wide range of malicious activity, misconfigu-
ration, and benign hijacking activity.

Further, researchers found that blocks of IP addresses are be-
ing stolen by BGP hijackers in order to launch spam campaigns.
Since BGP hijacking attacks in the wild are rarely documented or
reported, Vervier et al. (2015) analyzed 18 months of data collected
by an infrastructure built for examining the frequency of inten-
tional stealthy BGP hijacks on the Internet. The authors found more
than 2,000 malicious hijacks. Due to a lack of ground truth, ISP as-
sistance was required to confirm that some of these hijacks indeed
occurred.

4.2.2. Securing Interdomain Routing

There are two primary mechanisms used to secure interdo-
main routing: origin authentication with Resource Public Key In-
frastructure (RPKI) and path validation with BGPsec. However, BG-
Psec is a long way from being adopted due to several issues
such as replacing routing infrastructure and the overhead of online
cryptography.

To this end, lamartino et al. (2015) proposed a measurement-
based approach for prefix origin validation in order to mitigate
routing hijacks that are often due to BGP misconfiguration. This
approach is based on an RPKI in order to reveal mis-origination
problems that occur in RPKI repositories of Internet registries. This
work used data from public BGP monitors (routeview) over a 2.5-
year period to identify the main causes of errors in these reg-
istries and to investigate possible solutions. The impact that in-
valid origins have on routing tables and the traffic at the edge of
a large research network was also shown. Cohen et al. (2016) pro-
posed a deployable extension to RPKI called path-end validation
to supplement the shortcomings of BGPsec. This approach does
not entail in changing the routing infrastructure nor online cryp-
tographic operations. Moreover, the authors showed that path-end
validation has significant benefits even when partially deployed.
Gilad et al. (2018) proposed DISCO, an automated system for cer-
tifying ownership over IP prefixes to address RPKI's deployment
challenges. The authors demonstrated that DISCO can be deployed
on the Internet as currently constructed. Additionally, it was also
shown that DISCO provides a secure path against prefix and sub-
prefix hijacks. Finally, the authors noted that DISCO is a first step
towards mitigating more sophisticated attacks on BGP.

Birge-Lee et al. (2018) performed the first real-world demon-
stration of BGP attacks that can obtain bogus certificates from top
CAs. The authors leveraged a dataset of 1.8M certificates in order
to assess the vulnerability of PKI and found that an adversary is
capable of obtaining bogus certificates for the majority of the do-
mains. Two countermeasures for securing PKI against these attacks
were proposed and verified: (1) CAs that verify domains for several
vantage points in order to make it harder to launch a successful at-
tack, and (2) a BGP monitoring system for CAs that detects suspi-
cious BGP routes. Sermpezis et al. (2018) proposed Automatic and
Real-Time dEtection and Mitigation System (ARTEMIS), a defense
approach against BGP hijacking. The authors based their method
on accurate and fast detection performed by the AS by leverag-
ing public BGP monitoring services that offer real-time streaming.
The authors showed that ARTEMIS enables both fast and flexible
mitigation of hijacking events. For example, it can neutralize prefix
hijacking within a minute.

5. Internet Overlay and Middleboxes

In this section, we cover topics related to Internet overlay and
middleboxes (as shown in Figure 2), namely, Tor, VPN and Proxies.
A synopsis of the publications pertinent to these subjects is also
provided.
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5.1. Tor

The Onion Router, commonly referred to as Tor, is a peer-to-
peer overlay routing network that ensures the privacy of data
during transmission between the source and destination. Tor also
provides low-latency communication and, consequently, seeks to
strike a balance between both anonymity and performance. There
are several research efforts devoted to characterizing the Tor net-
work (Cangialosi et al.,, 2015; Jansen et al., 2018; Mani et al., 2018).
Furthermore, in this section, we group the studies of this network
into the following three major classes: (i) attacks in Tor, (ii) Tor
hidden services, and (iii) information leakage in the Tor environ-
ment.

5.1.1. Attacks in Tor

lacovazzi et al. (2019) proposed DUSTER, which is an active traf-
fic analysis attack based on flow watermarking. DUSTER exploits a
vulnerability in Tor’s congestion control mechanism to link a Tor
onion service to the target’s real IP address. The watermarking sys-
tem embeds a watermark at the entry relay of a Tor circuit, which
is propagated throughout the Tor network and can be identified
by the modified Tor relays that are in proximity of the onion ser-
vice. Several experiments were performed on the real Tor network
and showed that their approach gives a true positive rate upwards
of 94%. They also discussed a solution to mitigate this and other
traffic analysis attacks that exploit Tor’s congestion control. Fur-
ther, Jansen et al. (2018) explored traffic analysis attacks on Tor
that are solely conducted with middle relays. Nasr et al. (2018) ex-
plored flow correlation attacks on Tor and designed DeepCorr, a
system that outperforms the state-of-the-art in correlating Tor con-
nections. The authors leveraged a deep learning architecture in or-
der to learn a flow correlation function specifically tailored to Tor’s
complex network. By only collecting about 900 packets of each tar-
get Tor flow (roughly 900KB of Tor data), DeepCorr provided a flow
correlation accuracy of 96%.

Sun et al. (2015) presented a series of new active routing at-
tacks, called Raptor, that can be launched by ASes in order to com-
promise user anonymity. First, AS-level adversaries can exploit the
asymmetric nature of Internet routing to observe at least one di-
rection of user traffic at both ends of the communication. Second,
such adversaries can exploit Internet routing churn to lie on the
BGP pathways for more users over time. Third, they can tamper
with Internet routing by utilizing BGP hijacking (to find users uti-
lizing specific Tor entry nodes) and interceptions (for traffic anal-
ysis). The authors evaluated their attacks on the live Tor network.
In continuation, Sun et al. (2017) presented a Tor entry relay se-
lection algorithm that mitigates such attacks. They demonstrated
that their algorithm improves the security of Tor clients by 36% on
average, and ASes with high Tor bandwidth can be less resilient to
active routing attacks than ASes with lower Tor bandwidth.

Singh et al. (2017) studied abusive traffic on Tor such as spam-
ming, vulnerability scanning, scraping, and other undesired behav-
ior used by online service providers to discriminate against Tor
users. The authors utilized several data sources for their study,
such as email complaints sent to exit operators, commercial IP
blacklists, web page crawls via Tor, and privacy-sensitive measure-
ments of their own Tor exit nodes. The authors also developed
techniques to classify email complaints, as well as an interactive
crawler to identify subtle discrimination. Finally, they found that
although conservative exit policies are ineffective against the black-
listing of exit relays, it is possible to block them using privacy-
sensitive techniques.

5.1.2. Tor hidden services and topology
Since Tor hidden services are part of the dark Web, they
can be used for many illicit activities, as they provide a cer-
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tain anonymity for its users. In contrast to the exploration and
analysis of Web graphs that has been widely researched over
the years, there is little information on the topology of the Tor
Web graph and reliable ways for detecting Tor hidden services.
Bernaschi et al. (2017) addressed such lack of information by
presenting a study on: (1) automatic Tor Web exploration and
data collection approaches, (2) the adoption of metrics to eval-
uate Tor data, (3) an in-depth analysis of the hidden services
graphs, and (4) a correlation analysis of hidden services’ seman-
tics and topologies. They provided interesting insights and con-
siderations pertaining to the Tor Web organization. In a continu-
ation, Bernaschi et al. (2019) then described the topology of the
Tor graph by measuring global and local properties using well-
known metrics. They considered three different snapshots that
were obtained by crawling Tor three times over a 5-month time
frame. By separately studying each snapshot and their shared sta-
ble core, the authors assessed the renowned volatility of Tor hid-
den services, as well as distinguished time-dependent and struc-
tural aspects of the Tor graph. They found that the graph of Tor
hidden services shows some of the characteristics of Web graphs
and that a very high percentage of nodes do not have outbound
links.

5.1.3. Information Leakage in Tor

The Tor anonymity network uses the.onion pseudo-top-level
domain as its naming convention and to route requests to the Tor
hidden services. However, several.onion requests are still observed
in the global DNS infrastructure. Mohaisen and Ren (2017) ex-
plored this phenomenon. By leveraging two large DNS traces, the
authors uncovered high volumes of diverse leakage in the DNS in-
frastructure that was geographically distributed and targets sev-
eral types of services. Additionally, several spikes in the volumes
of.onion requests were correlated with various global events, such
as geopolitical activities. Information leakage also occurs with the
linking of Tor hidden services to the surface Web. In response,
Zabihimayvan and Doran (2022) considered how this linking can
affect the overall hyperlink structure of Tor hidden services, inves-
tigated the extent to which Tor hidden services are vulnerable to
such leakage, and presented an overall evaluation of the Tor net-
work. To conduct this study, nearly two million pages from 23,145
onion seed addresses were crawled over a three-month period. Ul-
timately, the authors found that the dark-to-surface reference net-
work is a single massive connected component with a small num-
ber of isolated Tor domains. It was also discovered that only a few
Tor hidden services are immune against information leakage, while
over 90% have at least one link to the surface Web.

5.2. VPN & Proxy

Proxy and Virtual Private Network (VPN) servers function as
gateways between users and other servers on the Internet and
have a variety of privacy-related applications (e.g., evading server-
side blocking, circumventing geographic limitations, etc.). On the
other hand, adversaries may utilize these servers to conduct
attacks, harvest user data, and inject both advertisements and
files. As a result, several commercial and free VPN services have
surfaced to offer privacy and anonymity to consumers. Conse-
quently, these services have been the topic of interest in a num-
ber of research endeavors. In the following sections, we break
down these works into VPN clients/providers and VPN traffic
vulnerabilities.

5.2.1. VPN clients & providers

Ikram et al. (2016) provided an analysis of 283 Android VPN
apps. These apps were extracted from more than 1.4 million apps
on the Google Play Store. Both active and passive measurements
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were utilized to investigate the behavior, security, and privacy of
these apps. The authors found out that several expose users to se-
curity and privacy vulnerabilities, such as insecure VPN tunneling
protocols and leakage associated with IPv6 and DNS. Several apps
were also discovered to be actively performing TLS interception.
Additionally, several apps were shown to inject JavaScript to enable
tracking, advertising, and redirecting e-commerce traffic to exter-
nal partners.

Khan et al. (2018) not only tested the privacy of VPN apps
but also their infrastructure. To achieve this aim, they designed
an active measurement system that evaluated 62 commercial
providers. Their system discovered that many VPNs leak user
traffic in a variety of ways and several providers transparently
proxy traffic. Additionally, it was found that 5-30% of the van-
tage points (corresponding to 10% of the studied providers) ap-
pear hosted on servers not located in the countries advertised to
users. Perta et al. (2015) specifically focused on the privacy and
anonymity that commercial VPN service providers claim to offer
to users. The authors analyzed 14 of the most popular commercial
VPN services by inspecting their internals and infrastructure. Their
study revealed that most of these VPN services suffered from IPv6
traffic leakage. A sophisticated DNS hijacking attack was also de-
veloped to transparently capture all traffic.

Durumeric et al. (2017) presented a study on the prevalence
and impact of HTTPS interception. To do so, the authors built a
set of heuristics that detect interception and attribute the respon-
sible entity by investigating middleboxes and client-side security
software. They found that the intercepted connections use weaker
cryptographic algorithms. Additionally, the study revealed that 62%
of middlebox connections were less secure and 58% had severe
vulnerabilities that allowed later interception.

5.2.2. Proxy traffic manipulation

Detecting traffic manipulation and violations of application-
level, end-to-end connectivity on the Internet at scale remains
a difficult undertaking. The majority of successful detection ap-
proaches require dedicated hardware, user-installed software, or
having privileged access to a popular web site. To this end,
Chung et al. (2016a) presented an alternative approach for detect-
ing end-to-end violations by developing Luminati, an HTTP/HTTPS
proxy service that routes traffic through millions of end hosts and
can detect DNS, HTTP, and HTTPS end-to-end violations. The au-
thors evaluated their approach on 1.2M nodes across 14K ASes in
172 countries. Their findings showed that up to 4.8% of the nodes
are subject to end-of-end connectivity violations. As HTTP head-
ers are becoming increasingly prone to middlebox manipulation,
Tyson et al. (2017) endeavored to comprehend how ASes intercept
HTTP headers in the wild. The authors collected data on thousands
of networks, which revealed that 25% of the measured ASes modify
HTTP headers. Lastly, the different types of manipulation and how
they differ from one region to another were analyzed.

Free web proxies are increasingly being utilized for anonymity
and censorship circumvention at zero-cost to their users.
Perino et al. (2018) provided an in-depth examination of this
complex free-proxy ecosystem. First, the authors performed active
measurements to detect free proxies, assess their performance,
and look for potential malicious activities. Subsequently, passive
measurements were conducted to assess the proxys’ performance
and their usage in the wild. After monitoring up to 180,000 free
proxies since January 2017, the authors’ analysis showed that less
than 2% of the proxies relay traffic on behalf of the users. Addition-
ally, it was revealed that user traffic is largely derived from web
browsing. Open HTTP proxies have also been an attractive option,
although routing traffic through untrusted third parties can have
severe consequences. To this extent, Tsirantonakis et al. (2018) per-
formed a large-scale analysis of open HTTP proxies in order to
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determine the extent to which user traffic is being manipulated
while being relayed. The authors’ framework not only detects
proxies, but is capable of attributing certain traffic modifications
to well-defined malicious activities, such as ad injections, user
fingerprinting, and redirection to malware landing pages. After
applying their approach on a large set of publicly available HTTP
proxies, it revealed that 38% of open HTTP proxies modify content.
They also found that 5.15% of those proxies modify or inject either
malicious or unwanted content.

6. Middle Layers and Optional Components

In this section, we studied several topics related to optional
components of the Internet (Figure 2), namely, CDNs, Blockchain,
Ad Networks, Web PKI and cloud services.

6.1. Content Delivery Network

A CDN is a distributed infrastructure that efficiently delivers
web-related content to end-users. CDNs were originally used to
improve the performance, scalability and security of websites. Typ-
ically, they are composed of a large number of surrogate servers
distributed all around the world. Figure 5 provides an overview of
a CDN architecture.

Request-routing techniques are the key component for CDN ser-
vices, since such techniques are responsible for directing user re-
quests from the original website to the CDN and subsequently to
the appropriate surrogates. The following are the three most com-
mon request-routing techniques: (1) URL rewriting, which modi-
fies the URL of specific content (e.g. images, css, scripts) in the
origin web site; (2) CNAME (canonical name), which is a type of
DNS record that links a domain name to another name; (3) Do-
main hosting, which entails a website using the CDN’s DNS server
as the authoritative name server for its domain.

The line between CDNs, Cloud-Based Security Providers (CB-
SPs) and DDoS Protection Services (DPSs) is becoming increasingly
blurred. A significant share of CBSPs and DPSs has emerged from
CDN providers that started offering security services on top of their
existing platform.

Liang et al. (2014) studied how CDN and HTTPS work together
and revealed that of the 10,721 HTTPS websites with CDNs, 15%
were found to create invalid certificate warnings that violated the
HTTPS confidence model. Scott et al. (2016) introduced Satellite,
a measurement system for identifying CDN deployments and net-
work interference from only a single measurement node. Satel-
lite detects connected components that represent domains hosted
by the same servers by leveraging a bipartite graph, which con-
nects domains queried with IP address responses collected from
the open resolvers. Satellite uncovered that 20% of the Alexa top
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10K domains are hosted on shared infrastructure, with 10% at-
tributed to CloudFlare accounts.

Chen et al. (2016a) presented and studied forwarding-loop at-
tacks on CDNs. Through building up a large number of requests
(or responses) circulating between CDN nodes, forwarding-loop
attacks enable attackers to massively consume CDN resources,
which results in DoS attacks. The authors measured the vulnera-
bility of several nodes to forwarding-loop attacks in each of the
16 commercial CDNs. The results revealed that all of the stud-
ied CDNs are vulnerable to some form of forwarding-loop at-
tack and that their existing defense mechanisms can be bypassed.
Vissers et al. (2015) studied origin-exposing attacks amid CBSP so-
lutions. The authors selected five well-known providers for this
study: CloudFlare, Incapsula, DOSarrest, Prolexic (PLXedge) and Su-
curi (Cloud Proxy). Among the 17,877 tested CBSP-protected web-
sites, 71.5% of them are bypassable and exposed their real IP ad-
dress through at least one of the eight evaluated attack vectors.

Hao et al. (2018) introduced a new vulnerability of CDNs, called
redirection hijacking, that targets the dynamic characteristics of
DNS records used for a CDN’s request routing. The authors then
conducted a large-scale empirical study to investigate security im-
plications of this vulnerability in the DNS-based CDNs. To this end,
eight geographically distributed vantage points were configured,
and DNS resolution results were retrieved for customer websites
hosted in each CDN provider. The results uncovered that in 14
out of 20 popular CDNs, an adversary might be able to manipu-
late end-user redirection. Jin et al. (2018) conducted a measure-
ment study to investigate the DDoS Protection Service (DPS) usage
dynamics and uncover residual resolution attacks. The authors as-
sessed the Alexa top 1M websites for their adoption of DPS and
usage behaviors (leave, join, pause, resume, and switch). To this
extent, the A records from the nameservers of Cloudflare were re-
trieved, and the CNAMEs of Incapsula’s customers were collected
and resolved. As a result, it was revealed that 24.8% of all 3,504
Cloudflare’s hidden records and 69% of all 42 Incapsula’s point to
the real origins, which makes them highly vulnerable to DDoS.

6.2. Blockchain

Blockchain is built on the top of a decentralized Peer-to-Peer
(P2P) protocol, which is used to propagate relevant information
such as transactions, blocks, and other protocol states. Information
about all transactions and blocks is relayed to all peers, and de-
spite inconsistent ordering and partial incompleteness, all honest
peers eventually agree on a globally consistent state. Although the
blockchain technology and its related services (e.g., cryptocurrency,
smart contracts, distributed apps, etc.) have been studied, little at-
tention has been paid to the underlying P2P networks. Indeed, P2P
networks are responsible for information propagation and enable
maliciousness such as Eclipse attack, DNS hijack, 51% attack, etc.
(Saad et al., 2020).

Internet measurement studies focus on analyzing blockchain
networks to provide a macroscopic view of active blockchain nodes
in order to evaluate their security, reliability, and robustness. Ac-
tive and passive node scanners can be used to identify the discov-
erability and reachability of nodes in a blockchain-based network,
which allows the mapping of the entire network. Figure 6 depicts
an overview of both a passive and active blockchain crawler.

The first approach to scan a network is with the implemen-
tation of a so-called passive crawler node. Such passive methods
refer to injecting a certain number of nodes into different loca-
tions within the network that behave like normal nodes. The aim
is to accept as many incoming connections as possible to discover
nodes by capturing all the traffic sent and received. As opposed to
passive crawlers, active crawlers provide a more targeted and faster
node discovery; however passive approaches have the advantage
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of avoiding the additional complexities associated with discovering
nodes behind a NAT. Several studies are pertinent to understand-
ing the P2P network, decentralization metrics, and transactions in
general (Ben Mariem et al., 2018; Gencer et al., 2018; Kim et al,,
2018; Lee et al., 2020; Loe and Quaglia, 2019; Mariem et al., 2020;
Wang et al., 2021).

Cheng et al. (2019) designed and implemented an Ethereum
honeypot system called Siren that could catch real attacks in the
wild. This helped him figure out how the cryptocurrency-stealing
attack on Ethereum worked. The developed honeypot listens to
the default JSONRPC port (i.e. 8545) and accepts any incoming re-
quests. It is also registered as an Ethereum full node on the Inter-
net and is prepared as a real account that has Ethers. The honeypot
captured more than 308M requests from 1,072 distinct IP addresses
belonging to 36 attack groups with 59 distinct accounts.

Differently, Hara et al. (2020) concentrated on network commu-
nication to understand the behavior of the attacker for transaction
manipulation. Hara et al. (2020), on the other hand, focused on
network communication to better understand the attacker’s behav-
ior that manipulate transactions. The authors conducted detailed
analyzes of attacks and attackers by combining three types of data:
(1) malicious communication history sent to the simple honeypot
installed in 9 countries, (2) information from the Ethereum net-
work and (3) darknet arrival packets. Gao et al. (2019) performed
graph analysis of a measurement study related to the Ethereum
P2P network. The measurement consisted of two steps: (i) discov-
ering Ethereum nodes, and (2) harvesting the nodes’ routing ta-
bles. The authors realized that there are a large number of useless
and stale nodes, however, Ethereum is still resilient to both ran-
dom failures and targeted attacks. Roughly 100 abnormal nodes in
the network were also detected, which may cause issues in net-
work routing.

6.3. Ad Networks

Businesses use online advertising (e.g., search engine advertis-
ing, display advertising, mobile advertising, social media advertis-
ing, etc.) to discover new consumers and extend their demographic
reach. Given the sheer number of online advertising players, adver-
tising networks function as brokers between website owners and
companies to enable efficient and effective ad delivery. Unfortu-
nately, cybercriminals take advantage of this sophisticated struc-
ture to engage in illicit activities such as malvertising, click fraud,
and auction cheating. To further complicate matters, companies are
often aspiring to monitor users while many consumers are employ-
ing ad blockers to circumvent such monitoring. In turn, there have
been a number of research efforts that have studied the particu-
lars of online advertising, which we subsequently elaborate upon.
Table 4 contains a summary and comparison of the papers covered.

In addition, Englehardt and Narayanan (2016); Lerner et al.
(2016); Merzdovnik et al. (2017); Pachilakis et al. (2019) pro-
vide measurement studies to investigate web tracking in Ad net-
works which may violate users’ privacy. Furthermore, Alrizah et al.
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(2019); Gugelmann et al. (2015); Igbal et al. (2017); Malloy et al.
(2016); Snyder et al. (2020); Storey et al. (2017) focus on Ad block-
ers, detecting and measuring anti-ad blocker and privacy intrusive
services.

6.3.1. Attacks on Ad Networks

DeBlasio et al. (2017) studied advertiser fraud on Microsoft’s
Bing search engine platform. Over two years of data pertaining to
the advertising campaign’s management and the user engagement
with the ads (e.g., click-through rates) was used to perform this
study. The authors revealed that Bing’s policies successfully con-
tained fraud. Despite a significant proportion of new account reg-
istrations being fraudulent, Bing successfully prevents the majority
from displaying even a single ad.

The majority of malware infections are caused by drive-by
downloads or Social Engineering (SE) attacks. To this extent,
Nelms et al. (2016) presented the first systematic study of web-
based SE attacks designed to entice users into downloading mal-
ware. The authors captured live network traffic from more than 2K
samples of such attacks in the wild for this study. Analysis of these
samples revealed that a large portion of these attacks are deliv-
ered from low-tier ad networks, which include bogus updates for
Adobe Flash and Java, as well as fake antivirus software. Vadrevu
and Perdisci Vadrevu and Perdisci (2019) developed a system based
on Chromium and JSgraph for large-scale automated discovery and
tracking of Social Engineering Attack Campaigns delivered via Ma-
licious Advertisements (SEACMAs). The authors identified 93,427
different publisher websites that used SEACMAs. From these pub-
lishers, detailed logs of the JavaScript code execution related to on-
line ad networks were captured.

Cho et al. (2015) studied the potential security risks of click mo-
bile advertisement. The authors proposed ClickDroid, a tool that
automatically simulates click generation attacks on the Android
platform. They found that 6 out of the 8 advertising networks (that
is Millennial Media, AppLovin, AdFit, MdotM, RevMob, and Cauly
Ads) are vulnerable to automated click fraud attacks.

6.3.2. Vulnerability Assessment of Ad Networks

Regarding the rising popularity of Internet video streaming
platforms, Rafique et al. (2016) proposed a comprehensive anal-
ysis of the Free Live Streaming (FLIS) services ecosystem; they
attract millions of users and make use of deceptive advertise-
ments. The authors found that users of FLIS websites are not
only exposed to deceptive advertisements but also to malware,
malicious browser extensions, and fraudulent scams. Additionally,
the authors encountered potential trademark infringements via
the abuse of domain names and logos of popular TV channels.
Marciel et al. (2016) presented a set of active measurement tools
which revealed that, when compared to the other audited portals,
YouTube deployed the most effective detection system for fraudu-
lent activity in video ads, although YouTube’s system may still be
susceptible to simple attacks. It was also discovered that views that
were detected as fake and removed from the public view are still
monetized.

Starov et al. (2018) analyzed the identifiers that are used by
18 different third-party analytics platforms to discover malicious
campaigns amongst them. Subsequently, the authors built a sys-
tem that automatically detects malicious pages, which enabled the
discovery of 11K live domains that use analytics associated with
malicious pages. In addition, the proposed approach can be used to
improve upon the coverage of existing blacklists in order to iden-
tify previously unknown phishing campaigns. Liu et al. (2019) stud-
ied how illicit traffic monetization functions on a global scale.
Indeed, the authors developed TrafficStop, the first system that
passively detects such fraud. By applying more than 231B DNS
logs over two weeks, TrafficStop discovered 1,457 fraudulent sites.
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Analysis Method

Scope Measurement Size

Topic Papers Measur. Method
Attacks on Ad DeBlasio et al. (2017) Passive
Networks Nelms et al. (2016) Hybrid
Vadrevu and Perdisci (2019) Active
Cho et al. (2015) Passive
Vulnerability Rafique et al. (2016) Hybrid
Assessment of Marciel et al. (2016) Hybrid
Ad Networks Starov et al. (2018) Hybrid
Liu et al. (2019) Passive & Active
Subramani et al. (2020) Hybrid
Srinivasan et al. (2018) Hybrid
Bashir et al. (2019) Hybrid

Heuristic Internet-wide = ~20K advertisers

Heuristic & ML Campus-level 2K real-world SE download attacks
Heuristic Internet-wide 11 low-tier ad networks
Heuristic Lab setting 8 ad networks

ML & Heuristic Internet-wide 5,685 domains

Statistics, Heuristic ~ Lab Setting Top 5 online video portals
Heuristic Internet-wide 18 third-party analytics platforms
Statistics Internet-wide ~ 231B DNS logs

Statistics Lab setting 82k second-level domain
Heuristic, Statistics Internet-wide 23k domains

Heuristic Internet-wide  Alexa top-100K

In fact, those sites receive more than 53B DNS requests within
a year, which could result in a company losing 53K dollars per
day due to this fraudulent traffic. Recently, ad networks have
been leveraging new strategies, such as the Web Push technol-
ogy enabled by modern web browsers, to keep up their revenues.
Subramani et al. (2020) proposed PushAdMiner, a system that not
only automatically collects Web Push Notifications (WPN) from
publisher websites but also finds WPN ads among these notifi-
cations to discover malicious WPN-based Ad campaigns. In fact,
PushAdMiner identified 572 WPN ad campaigns from a total of
5,143 WPN-based ads. Further, the authors found that 51% of all
WPN ads collected were malicious, and that traditional ad-blockers
are ineffective against them.

Srinivasan et al. (2018) studied Technical Support Scams (TSS)
techniques that combine online abuse and social engineering to
exploit services such as sponsored advertisements returned in
search engine queries. The authors’ study lasted approximately
eight months and revealed 9K TSS domains of both passive and ag-
gressive nature. Furthermore, 2,400 domains were discovered that
were assisting the detected TSS domains in manipulating organic
search results.

In May 2017, the Interactive Advertising Bureau (IAB) Tech Lab
introduced the ads.txt standard to help ad buyers verify authorized
digital ad sellers. Bashir et al. (2019) presented a 15-month longi-
tudinal study of the ads.txt standard to understand (1) if it pro-
vides useful data to researchers and privacy advocates, and (2) if it
helps ad buyers in mitigating ad fraud. ads.txt enabled identifica-
tion over 1K domains that belong to ad exchanges. However, this
study also found that while ads.tx data may be useful, it contains
errors that should be addressed prior to it being used to mitigate
ad fraud.

6.4. Web PKI and SSL/TLS Certificates

Secure communications through HTTPS is becoming more com-
mon on the modern web, thanks to Transport Layer Security (TLS)
and its predecessor Secure Socket Layer (SSL). SSL is a crypto-
graphic protocol that allows two interacting applications to com-
municate secretly while still ensuring message integrity. This pro-
tocol is based on a secure PKI, which uses digital certificates to ver-
ify the ownership of a public key associated with a domain name.
SSL is a well-studied protocol, however other protocols that oper-
ate on top of it (e.g., HTTPS, websocket secure (WSS)) are more
complicated and changing. As a result, a number of noteworthy
research efforts have focused on this ecosystem, which we subse-
quently detail.

6.4.1. Evolution, Adoption, and Misconfiguration
Kotzias et al. (2018) conducted a longitudinal study over a
six-year period to study the responses of the TLS ecosystem to
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high-profile attacks. This study identified a TLS client fingerprint
database consisting of 1,684 fingerprints. The authors also observed
a significant shift in the ecosystem from 2012, such as changes
with cipher suites and TLS extensions offered by clients and ac-
cepted by servers. Additionally, some of these changes were able
to be correlated with specific attacks on TLS. Lastly, a large number
of client software was observed that likely offers unsafe ciphers.

Mayer et al. (2016) assessed the state of the security mecha-
nisms in the email ecosystem. They collected and scanned e-mail
related TLS configurations for the entire IPv4 range. To this end,
more than 20M IP/port combinations of all related protocols (SMTP,
POP3, IMAP) and legacy ports were analyzed. It was shown that
securing the server-to-server communication of the scanned proto-
cols is inherently more difficult than securing the client-to-server
communication. Lastly, the volatility of TLS certificates and trust
anchors in the email ecosystem were analyzed, which uncovered
that many steps still need to be taken in order to effectively secure
email. Durumeric et al. (2015) reported the global adoption rates
of SMTP security extentions, which include STARTTLS, SPF, DKIM,
and DMARC. The authors presented data from two perspectives: (i)
SMTP server configurations for Alexa top 1M domains and (ii) over
a year of SMTP connections to and from Gmail. Analyzing these
data revealed that the top email providers (e.g., Gmail, Yahoo, and
Outlook) proactively encrypt and authenticate messages. However,
only 35% of these providers had successfully configured encryption
and 1.1% specified a DMARC authentication policy.

Additionally, Anderson and McGrew (2019) conducted an inves-
tigation encompassing what applications are using TLS, how they
are using it, and trends in enterprise TLS applications beyond the
browser. In order to perform this study, the authors built a sys-
tem for capturing process information from end hosts and mixed it
with network data in order to produce a TLS fingerprint knowledge
base. The knowledge base consisted of 471 million labeled and 8
billion unlabeled endpoint TLS sessions obtained from enterprise
edge networks in five countries. The authors also incorporated mil-
lions of sessions from a malware analysis sandbox, which allowed
them to reveal trends in the use of TLS by malware (e.g., adoption
of cipher suite randomization). Alternatively, Fadai et al. (2015) ex-
amined the trust model used by SSL. In particular, the authors ana-
lyzed the number and origin of companies and governmental insti-
tutions that are trusted by several operating systems and browser
vendors. It was determined that these trusted entities were grow-
ing over time. They also correlated Root Certificate Authorities
against a variety of trust indexes to assess the trustworthiness of
the countries represented by these authorities.

Samarasinghe and Mannan (2019) endeavored to analyze device
vulnerabilities based on their certificates and TLS parameters. The
authors noticed an increase in TLS adoption from 29.4% in 2016
to 73.7% in 2018. However, some devices were found to still have
significant vulnerabilities, such as the use of known private keys,
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DDLv3, MD5-RSA, and RC4. For this reason, the authors contacted
the leading manufacturers of vulnerable devices to convey their
findings.

Beurdouche et al. (2015) designed a robust composite state
machine that correctly multiplexes between a variety of proto-
cols, extensions, authentication modes, and key exchange meth-
ods. Next, popular open source TLS implementations for state ma-
chine bugs were tested, which led to the identification and sub-
sequent patching of hidden critical security vulnerabilities, such as
the FREAK flaw. With TLS utilization still in its early stages, Mayer
and Schmiedecker Mayer and Schmiedecker (2016) aspired to ad-
vance the securing of communication content by creating and vali-
dating rules used by the HTTPS Everywhere browser extension. The
authors first used multiple seeding approaches over a five-month
period to obtain results from more than 7,500 websites. TLScom-
pare was then leveraged, which showed that its users had a ten-
dency to disagree with one another. This phenomenon was even
found to be true with binary decisions, such as deciding if two
websites are similar over ports 80 and 443.

6.4.2. Certificates

Gustafsson et al. (2017) presented the first large-scale char-
acterization of the Certificate Transparency (CT) landscape. Both
passive and active measurements were used to highlight similar-
ities and differences in public CT logs, as well as the usage of
such logs and the certificates they include. Their analysis showed
that popular domains appear to be more willing to pay the ex-
tra cost of Extended Validation (EV) certificates. The authors also
offered insight pertaining to how these certificates relate to the
certificates and keys that are observed in regular web traffic.
VanderSloot et al. (2016) delved into different data sources to com-
pare PKI from several perspectives, namely passive monitoring of
networks, scanning the most popular domains or the IPv4 space,
search engines such as Censys, and CT logs. The authors found
that the aggregated CT logs and Censys snapshots encompassed
over 99% of all certificates found by any of these techniques. How-
ever, such an approach still misses 1.5% of certificates found in a
crawl of all domains in.com,.net and.org. The authors demonstrated
how combining CT logs and Censys snapshots affected the results
of previous studies. Gasser et al. (2018a) also leveraged the in-
formation in the CT logs to check if these certificates adhere to
the industry’s Baseline Requirements and found that 907K certifi-
cates violate them. Additionally, the authors used data from active
measurements to compare certificates in logs, evaluate CT-specific
HTTP headers, and identify non-HTTPS certificates in logs. A com-
bination of passive and active measurements was also performed
to analyze CT’s gossiping and pollination approaches, which re-
vealed low rates of log inclusion. Furthermore, with the increas-
ing deployment of CT, there have also been concerns about in-
formation leakage due to the visibility of certificates in CT logs.
To this end, Scheitle et al. (2018) introduced a CT honeypot to
better understand this threat. The authors showed that the data
from CT logs was being used in order to identify targets for scan-
ning campaigns just minutes after certificate issuance. A method-
ology that learns and identifies new subdomains from the do-
mains extracted from CT logged certificates was also presented and
evaluated.

Since the circumstances of certificate revocation within the SSL
ecosystem are still not well understood, Liu et al. (2015) took a
closer look at the Web’s PKI. The authors performed 74 HTTPS
scans of the entire IPv4 address space and found that 8% of the
certificates have been revoked. Additionally, it was discovered that
obtaining certificate revocation information is often expensive in
terms of latency and bandwidth for clients. Finally, the revocation
behavior of 30 different combinations of web browsers and oper-
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ating systems was studied, which showed that browsers often do
not check if a certificate has been revoked. Oakes et al. (2019) con-
ducted a longitudinal study of the characteristics of SSL certifi-
cate chains that are presented to clients during HTTPS connection
setup. The authors leveraged 23B SSL certificate chains collected
from a global panel consisting of more than 2M residential client
machines for a period of 6 months. As a result, more than 35M
unique certificate chains with different relationships were identi-
fied at all levels of the PKI hierarchy. Invalid certificate chains were
also examined, which revealed that 93% contained an untrusted
root certificate. Finally, the unintended behaviors of root certificate
deprecation and secure traffic interception were investigated in the
data.

Chung et al. (2016b) performed a study of SSL certificates to
better understand why the SSL ecosystem of the web is populated
by an overabundance of invalid certificates. In particular, the im-
pact these certificates have on security and where they originated
from was assessed. By analyzing over 80M certificates, it was dis-
covered that the majority of invalid certificates came from a few
categories of end-user devices. Additionally, these invalid certifi-
cates had properties that were radically different from their valid
counterparts. Moreover, many of these end-user devices reissued
invalid certificates on a regular basis. In response, the authors de-
veloped new tools to trace such reissues across scans. These tools
enabled the tracking of over 6.7M devices.

Roberts et al. (2019) studied domain impersonation attacks that
threaten end-to-end authentication. The authors then introduced a
new classification of impersonation attacks, referred to as “target
embedding”. Next, a user-study was performed to better under-
stand the efficacy of target embedding versus other popular imper-
sonation attacks (e.g. typosquatting, combosquatting, and homo-
graphs). The study uncovered that target embedding is the most
effective attack against modern browsers. The authors also lever-
aged all HTTPS certificates collected by Censys to conduct longitu-
dinal analysis of how this attack has evolved and who is responsi-
ble for issuing impersonating certificates.

6.5. Cloud Services

Infrastructure-as-a-Service (IaaS) and, more broadly, the cloud,
have altered the environment of Internet system operations. Large-
scale IaaS systems have been introduced for public use by IT giants
such as Amazon, Microsoft, and Google. IaaS combines multiple
third-party services into a single physical pool, however, sharing
physical resources with customers can result in security breaches.
While several aspects of [aaS have been explored by a number of
researchers, very few measurement studies assess [aaS security and
threats.

Miao et al. (2015) presented a large-scale characterization of
nine types of inbound and outbound cloud attacks (e.g., DDoS,
SQL injection, spam, etc.) from May to December 2013. The au-
thors investigated over 200 TB of NetFlow records collected from
dozens of edge routers spread across multiple geographically dis-
tributed data centers of a major cloud providers. The study re-
vealed high variations in attack throughput across time and Vir-
tual IPs (VIPs). Most VIPs experienced one attack per day, although
there are a few cases of multiple attacks targeting 20 to 60 VIPs
simultaneously.

Xu et al. (2015) conducted a measurement study of the co-
residence threat in laaS environments. In particular, the authors
investigated Amazon EC2 from the perspectives of virtual machine
placement, network management, and Virtual Private Cloud (VPC).
ZMap (2022) was used to scan the specified ranges of IP addresses
published by EC2 for several well-known ports to acquire a list of
live hosts in EC2. Such scanning followed by several experiments
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(e.g., traceroute) revealed that VPC can prevent the co-residence
threat. Finally, the authors presented a technique that achieves
co-recovery in VPC and can detect live hosts from their domain
names, IP addresses, and mapping between public and private IP
addresses.

Borgolte et al. (2018a) conducted a measurement study span-
ning 120 days that collected all DNS responses in Farsight’s pas-
sive DNS that contain A records pointing to the Amazon Web Ser-
vices (AWS) EC2 cloud, the Microsoft Azure cloud, and the Digital
Ocean cloud. Next, the authors checked whether the IP addresses
respond to ICMP ping requests or 36 of the most frequently used
ports within a two-second timeout, in order to identify which IPs
are online (i.e., allocated) or offline (i.e., freed). Ultimately, 702,180
unique domains (0.539%) pointed to available or freed IP addresses.
In addition, 80.31% of domain migrations were delayed, 17.24%
were abandoned, and only 2.45% were auxiliary.

7. Last Mile Internet, Access Layer and Endpoints

In this section, we elaborate on application topics pertaining to
web layer, endpoints and last mile Internet. Refer to Figure 2 for
the detailed taxonomy. A synopsis of the publications pertinent to
these topics is also provided.

There are a few additional topics that may be relevant to
this section, including malicious actions in Online Social Networks
(OSNs), browser security, and mobile applications. OSNs have be-
come ingrained into our daily life. Consequently, they have at-
tracted the attention of both attackers and the research com-
munity. The primary topics of interest include large-scale detec-
tion and measurement of fake accounts and impersonation attacks
(Boshmaf et al., 2015; Chen and Freire, 2020; Goga et al., 2015;
Gong et al., 2019; Mariconti et al., 2017; Yao et al.,, 2017; Yuan
et al.,, 2019), social botnets and crowd turfing (Besel et al., 2018;
Minnich et al., 2017; 2017; Nilizadeh et al., 2017; Stringhini et al.,
2015; Zhang et al., 2016). However, we find that the related arti-
cles are more concerned with analysis approaches rather than data
collection.

Modern web browsers have evolved considerably since be-
ing invented for hypermedia dissemination in 1990. Currently,
they are relied upon by billions of individuals globally for in-
terfacing with the Web; thus, browsers have garnered substan-
tial attention from researchers in terms of browser extensions
(Chen and Kapravelos, 2018; Pantelaios et al., 2020; Starov et al.,
2019; Starov and Nikiforakis, 2017), browser security (Jueckstock
and Kapravelos, 2019; Snyder et al., 2017), and browser finger-
printing(Gomez-Boix et al., 2018; Laperdrix et al., 2016; Sarker
et al, 2020; Vastel et al., 2020). Further, as a consequence
of the rapid growth of mobile app ecosystems, the corpus of
mobile applications and app markets has been the subject of
several research studies (e.g., android apps Allix et al. (2016);
Le et al. (2015); Oltrogge et al. (2021); Possemato and Fratanto-
nio (2020); Razaghpanah et al. (2017, 2015); Song and Hengart-
ner (2015); Wang et al. (2019, 2018b), iOS apps Deng et al. (2015);
Markert et al. (2020); Orikogbo et al. (2016); Tang et al. (2020),
etc.). This involves looking at how apps interact with the operating
system through API calls, ensuring secure implementations (e.g.,
utilizing TLS), and assessing the third-party libraries used in app
development (Backes et al., 2016; Chen et al., 2016b; Derr et al.,
2017; Tang et al.,, 2019). Research efforts within this domain of-
ten leverage the Google Play Store or Apple App Store, however
some studies alternatively limit their analysis to app stores based
on vendor, country, or stores provided by third-parties. We observe
that the articles in these areas are primarily concerned with bulk
software security evaluation techniques rather than Internet mea-
suring and data collection methodologies.
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7.1. Web

Web technologies are the primary interface for common users
to interact with digital world, and therefore a single website has
the potential to impact millions of users. Furthermore, the con-
stant growth of Web technologies has resulted in an evolving at-
tack surface and ever-changing vulnerabilities. For these reasons,
researchers have focused their efforts on uncovering the vulnera-
bilities of the most popular websites (e.g., the Alexa top 1M) by
large-scale experimentation or examining trends over time in the
Internet Archive.

7.1.1. Attacks on the Web

Lekies et al. (2017) proposed a novel Web attack that can
circumvent all of the existing cross-site scripting (XSS) mit-
igation techniques. This attack abuses script gadgets, which
are legitimate JavaScript fragments within an application’s code
base. Subsequently, the authors empirically studied script gad-
gets and demonstrated their presence in almost every modern
JavaScript framework. Regarding web attack mitigation techniques,
Musch et al. (2019a) presented ScriptProject, a non-intrusive
transparent protective measure against client-side XSS introduced
by third-party scripts. ScriptProject automatically removes unsafe
string-to-code conversion capabilites from third-party code. An
evaluation of the proposed approach showed that 30% of Alexa top
5K websites could benefit from such protection.

Roth et al. (2020) investigated the impact of script gadgets
on Content Security Policy (CSP) at scale. This research endeavor
demonstrated that attackers can sideload libraries with known
script gadgets as long as the hosting site is whitelisted in the CSP.
Additionally, the authors generated sensible CSPs for the Alexa top
10K websites in order to prove that these websites are susceptible
to a bypass through script gadget sideloading.

Staicu and Pradel (2018) conducted a large-scale study of Reg-
ular expression Denial of Service (ReDoS) vulnerabilities in real-
world websites. The authors proposed a novel methodology to an-
alyze the susceptibility of deployed servers to this attack. This
study revealed 25 previously unknown ReDoS-based vulnerabilities
in popular libraries and tested them against 2,846 of the most pop-
ular websites. Of these websites, 339 suffer from at least one of
these vulnerabilities.

Ghasemisharif et al. (2018) investigated Single Sign-On (SSO)
and its association with account hijacking on the modern Web. The
authors introduced novel hijacking attacks that leverage SSO and
subsequently evaluated them against 95 Web and mobile services
to characterize their severity and stealthy nature. Ultimately, this
work uncovered the limitations of the SSO schemes that do not al-
low users to remediate account hijacking. In response to this short-
coming, an OpenID Connect extension referred to as Single Sign-
Off was proposed, which revokes access to all accounts associated
with a hijacked account.

Zhang et al. (2019b) investigated click interception practices on
the Web present in the Alexa top 250K websites. The authors
found that some websites collude with third-party scripts to hi-
jack user clicks for monetization, such as online advertisements. It
was also discovered that users can be exposed to malicious content
(e.g., scamware) through click interception.

Mirheidari et al. (2020) presented a large-scale study of Web
Cache Deception (WCD) in the wild. The study covered 340 high-
profile websites from the Alexa top 5K. The authors revealed that
WCD vulnerabilities that leak privacy information can be leveraged
to conduct severe Web application attacks (e.g., leakage of per-
sonal information or security tokens). Additionally, many websites
remain susceptible to this attack up to two years after the public
disclosure of a WCD vulnerability.
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7.1.2. Examining the Web

Stock et al. (2017) examined client-side Web security by study-
ing the Internet Archive. In particular, the authors analyzed code
and header information of the 500 most relevant pages for each
year between 1997 and 2016. From this data, key client-side tech-
nologies (e.g., JavaScript, Flash, Java, and Silverlight) were identified
in order to subsequently assess any associated vulnerabilities. The
results of this study revealed that client side injection vulnerabil-
ities have risen. Additionally, sites that use HTTPonly cookies are
more likely to be vulnerable to XSS. Lauinger et al. (2017) stud-
ied the use of outdated JavaScript libraries and found that 37% of
the websites evaluated use at least one library with known vul-
nerabilities. Many of these websites included libraries in an ad hoc
and transitive way, which can result in having inconsistent versions
of a library in different parts of the same document. It was also
discovered that libraries included via code pertaining to adds and
tracking are more likely to be vulnerable.

[kram et al. (2019) performed a large-scale study of dependency
chains in the Web. This study was conducted on Alexa top 200K
websites and resulted in the following findings: (1) around 50% of
first-party websites render content that they did not directly load,
(2) 84.91% of websites have short dependency chains (below 3 lev-
els), and (3) 1.2% of the third-party domains that first-party web-
sites import resources from were identified as suspicious by Virus-
Total. Chapuis et al. (2020) conducted a large-scale longitudinal
study of the use of the Subresource Integrity (SRI) recommenda-
tion on the Web. The authors analyzed around 3B URLS crawled on
the Web over 3.5 years. The results indicated that SRI is adopted
in only around 3.4% of these websites. Moreover, such adoption
is highly influenced by the practices of popular library developers
and CDN operators. Additionally, the authors noted that SRI is in-
tegrated manually, which is a practice that can lead to errors and
lacks scalability.

Invernizzi et al. (2016) studied blackhat cloaking techniques
that target browsers, networks, or contextual cues in order to
detect organic visitors. They first investigated the capabilities of
prominent cloaking services by studying several IP blacklists con-
taining over 50M addresses that are tied to the top five search
engines, 10 antivirus and security crawlers. As a result, an anti-
cloaking system was proposed that could identify split-view con-
tent returned to two or more distinct browser profiles with 95.5%
accuracy. Kharraz et al. (2018) proposed SurveyLance, a system that
leverages machine learning to detect online survey scams. After
SurveyLance identified these scams, their capabilities were investi-
gated, their impact on exploited users was quantified, and the con-
nections between the entities involved in them were mapped out.
As a result, the authors uncovered 8,623 unique websites involved
in online survey scams and that a large number of such scams are
easily reachable though the Alexa top 30K websites.

Das et al. (2018) proposed the first large-scale measurement of
smartphone sensor API usage and stateless tracking on the mobile
Web. The authors developed OpenWPM-Mobile, which is an exten-
sion of the OpenWPM Web privacy measurement tool. OpenWPM-
Mobile identified that 3,695 of the Alexa top 100K websites ac-
cessed one or more sensor APIs. Fingerprinting attempts on mobile
platforms were also detected where 63% of the JavaScript programs
that accessed motion sensors also engaged in browser fingerprint-
ing. Finally, a large disparity between the intended and actual use
of the device sensors was uncovered.

7.2. lIoT

Several technical challenges impede data-driven study of Inter-
net of Things (IoT) insecurities at large, including the excessive
diversity of IoT devices coupled with their Internet-wide deploy-
ments, the lack of IoT-relevant empirical data and the shortage
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of IoT-specific actionable attack signatures (Mangino et al., 2020).
Therefore, researches often deploy specific honeypots to study the
threats toward these devices/services. Another approach is running
an extensive number of off-the-shelve devices in a lab environ-
ment or using a large number of emulated IoT firmware and mal-
ware binaries to get insights (Bou-Harb et al., 2016; Dib et al.,
2021; Pour et al, 2022; Khoury et al., 2022). Internet scanning
on popular IoT-related ports is employed to collect service ban-
ners and certificates, as well as to assess vulnerabilities at scale.
Further, passive measurement techniques such as an Internet tele-
scope (darknet) (Pour and Bou-Harb, 2019; Torabi et al., 2020), as
shown in Figure 7, and ISP level data are valuable resources that
require preliminary IoT discovery and fingerprinting ((Feng et al.,
2018; Guo and Heidemann, 2018; Perdisci et al., 2020; Saidi et al.,
2020; Yan et al.,, 2019; Yang et al, 2019; Yu et al., 2020)) fol-
lowed by the analysis of vulnerabilities/threats. Further, there are
studies that focused on the automated large scale analysis of IoT
firmware (Costin et al., 2016; Zhang et al., 2019a) and malware
analysis (Alrawi et al., 2021; Cozzi et al., 2018) to find vulnerabili-
ties in IoT devices. Table 5 summarizes and contrasts the examined
publications from a range of perspectives.

7.2.1. IoT vulnerability Assessment

Scanning the entire Internet can provide significant information
for identifying deployed IoT devices with known vulnerabilities.
Zhao et al. (2022) presented a large-scale systematic study on the
vulnerability of 1,362,906 IoT devices of six different device types.
This ten-month-long study provided several insights: (1) 28.25% of
the devices suffer from at least one N-days vulnerability, (2) 2,669
of these vulnerable devices may have been compromised by bot-
nets, and (3) 88% of MQTT servers have no password protection.
Hastings et al. (2016) measured the actions taken by end users and
vendors over time in response to vulnerabilities in network devices
associated with weak keys. The authors analyzed public Internet-
wide TLS scans performed between 2010 and 2016. From these
scans, 81M distinct RSA keys were extracted. Their analysis showed
that several vendors never produced a patch and that the number
of vulnerable hosts has increased since 2012. Samarasinghe and
Mannan (2019) found that some devices still have significant weak-
nesses, such as the use of known private keys, DDLv3, MD5-RSA,
and RC4. The authors compared their findings with the results of
their 2016 study that encompassed device vulnerabilities based on
certificates and protocol parameters. Kumar et al. (2019) provided
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Table 5
Summary of the IoT papers
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Topic Papers Measur. Method Analysis Method  Scope Measurement Size
IoT Zhao et al. (2022) Hybrid Heuristic Internet-wide 1,362,906 IoT devices
vulnerability Hastings et al. (2016) Passive Heuristic Internet-wide 81M distinct RSA keys
Assessment Samarasinghe and Mannan (2019) Passive Heuristic Internet-wide ~8M devices
Kumar et al. (2019) Hybrid Heuristick ML Internet-wide 83M devices
Xu et al. (2018) Hybrid Heuristic Internet-wide ~320K IP cameras
Ren et al. (2019) Hybrid& Crowd sourcing  Heuristic Campus-level 81 devices
Alrawi et al. (2019) Passive Heuristic Lab setting 45 devices
Fernandes et al. (2016) Passive Heuristic Lab setting 499 SmartThings apps
Celik et al. (2018a) Passive Heuristic Lab setting 230 SmartThings apps
Celik et al. (2018b) Passive Heuristic Lab setting 65 SmartThings apps
Huang et al. (2020) Crowd Source & Passive Heuristic Internet-wide 54,094 smart home devices
IoT Botnet Antonakakis et al. (2017) Hybrid Heuristic Internet-wide ~269K IPs
Analysis Herwig et al. (2019) Hybrid Heuristic Internet-wide 10M unique bot keys
Tanabe et al. (2020) Hybrid Heuristic Internet-wide ~60k IoT malware samples
Griffioen and Doerr (2020) Hybrid Heuristic Internet-wide 7,500 IoT honeypots
Vervier and Shen (2018) Hybrid Heuristic Internet-wide 1.5M unique IP addresses
Cetin et al. (2019) Hybrid & Crowd source Heuristic ISP-level ~2K IP addresses& 76 subscribers
Pour et al. (2020) Hybrid ML& Statistics Internet-wide 3.6 TB of darknet traffic
Torabi et al. (2018a) Passive Heuristic Internet-wide 5TB darknet data
Pa et al. (2016) Passive Heuristic Internet-wide 87 IP addresses
ICS and SCADA Fachkha et al. (2017) Hybrid Statistics Internet-wide 50GB darknet data
Mashima et al. (2019) Passive Heuristic Internet-wide 6GB of ICS network traces
Husak et al. (2018) Passive Heuristic Internet-wide 16.8 TB of darknet data
Dahlmanns et al. (2020) Active Heuristic Internet-wide 2k IP addresses
Vasilomanolakis et al. (2016) Active Heuristic Lab setting /24 subnet
Nawrocki et al. (2020) Passive Heuristic ISP and IXP level ~ 329K ICS packets

a large-scale empirical analysis of IoT devices in real-world homes.
User-initiated network scans yielded 83M devices. Subsequently,
the author investigated security aspects of such devices, including
their open services, their weak default credentials, as well as their
vulnerabilities to known attacks. It was found that nearly half of
the TP-Link home routers have guessable passwords in Eastern Eu-
rope and Central Asia. Xu et al. (2018) studied the security of IP
cameras without any password protection. They conducted a large-
scale empirical investigation of these IP cameras based on inse-
cam.org, the largest online directory for IP cameras. After moni-
toring the site for 18 days, a comprehensive characteristic analysis
of IP cameras was performed. The authors uncovered hidden hosts
and services on the internal network where a susceptible IP cam-
era is placed, and then conducted a vulnerability analysis.

Another method involves testing a number of commercially
available devices in a laboratory setting. Ren et al. (2019) con-
ducted a set of controlled experiments (34,586) comprising 81 con-
sumer IoT devices in the US and UK in order to investigate the
potential privacy risks associated with consumer IoT devices. The
authors found that 72 out of 81 devices have at least one destina-
tion that is not a first party (i.e., belonging to the device manufac-
turer). In addition, 56% of the US devices and 83.8% of UK devices
where shown to have contacted destinations outside their region.
Alrawi et al. (2019) proposed a methodology to analyze the secu-
rity properties of home-based IoT devices. To identify neglected re-
search areas, 45 devices were evaluated.

Regarding the expansion of app-enabled IoT devices,
Fernandes et al. (2016) proposed an in-depth empirical secu-
rity analysis of an emerging smart home platform. The authors
analyzed the SmartThings platform and 499 SmartApps. They
discovered two design flaws that lead to significant overprivilege
in SmartApps. In fact, it was found that 55% of the apps in the
store are overprivileged. Additionally, once the app is downloaded,
it is granted full access to the device, even though only limited
access is needed. Moreover, four proof-of-concept attacks were
constructed that secretly plant and steal door lock codes, disable
the vacation mode of a home, and induce a fake fire alarm.
In a similar vein, Celik et al. (2018a) presented SAINT, a static
taint analysis tool for IoT applications that evaluates the use
of sensitive information. Initially, this tool translates IoT source
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code into Immediate Representations (IR). Then, it performs static
analysis to identify sensitive data flows. The authors evaluated
SAINT on 230 SmartThings apps and found that 60% of them
include sensitive data flows. They also demonstrated their tool
on IoTBench, a novel open-source test suite that contains 19 apps
with 27 unique data leaks. Celik et al. (2018b) proposed SOTERIA,
a static analysis system that validates whether an IoT app or IoT
environment adheres to security and functional properties that
were identified. This system first translates IoT source code into IR.
Next, it extracts a state model from the IR to subsequently verify if
this model contains the desired properties. The authors evaluated
their system on 65 SmartThings apps and found that 14% of them
violated 29% of the properties.

Some efforts rely on crowdsourcing techniques in order to gain
knowledge about consumer devices on local networks that are in-
accessible via Internet scanning. Huang et al. (2020) developed IoT
Inspector, an open-source tool that allows users to observe traffic
from smart home devices on their own home networks. In fact, by
allowing users to download IoT Inspector, the authors were able
to collect (and analyze) labeled network traffic from 54,094 smart
home devices. Their analysis showed that many device vendors,
such as Amazon and Google, use outdated TLS versions and send
unencrypted traffic.

7.2.2. IoT Botnet Analysis

Designing and deploying honeypots is one of the most valu-
able passive sources for IoT botnet detection and investigation.
Pa et al. (2016) proposed IoTPOT, a novel honeypot and sandbox
that analyzes Telnet-based attacks against several IoT devices that
run on CPU architectures such as ARM, MIPS, and PPC. After eval-
uating the results of the honeypot and the captured malware sam-
ples, the authors showed that at least five distinct DDoS mal-
ware families targeted Telnet-enabled IoT devices. It was also re-
vealed that one of the families has evolved to target more devices
with different CPU architectures (as many as nine). For six months,
Vervier and Shen (2018) used low and high-interaction IoT honey-
pots to observe the diversity and sophistication of IoT botnets. The
authors also discovered that although Mirai is still prevalent, it co-
exists with other botnets such as Hajime and IoT Reaper. In addi-
tion, these botnets were found to be packed with software vulner-
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abilities that target specific devices in order to have a higher in-
fection rate. Tanabe et al. (2020) presented a comprehensive anal-
ysis of 10T botnets based on 23 months of data gathered via hon-
eypots and monitoring botnet infrastructure. The authors focused
on three dominant families: Mirai, Bashlite, and Tsunami. Their
analysis showed that bots are immediately used after capture and
then abandoned. Though IoT botnets appear less advanced than
Windows-based botnets, it was discovered that the disposable na-
ture of IoT botnets makes them resistant to blacklisting and C&C
take down. Griffioen and Doerr (2020) provided a comprehensive
view on Mirai and its many variants.They leveraged 7,500 IoT hon-
eypots as well as the design flaw in Mirai's random number gener-
ator to gather insights into Mirai infections worldwide. As a result,
botnet networks and particular malware strains were found to be
tightly coupled. Additionally, the authors discovered that IoT bot-
nets are not self-sustaining; thus, without continuous pushes from
bootstrapping, Mirai and its variants would die out.

The darknet (Internet telescope) is an additional valuable source
of data that enables the identification of infected IoT bots through
their detected Internet-scanning activity observed on the darknet
(Pour et al,, 2019, 2021). Antonakakis et al. (2017) proposed a
seven-month retrospective analysis of the Mirai botnet’s growth.
The authors showed its peak of 600K infections and the history
of its DDoS victims. Additionally, they analyzed how the botnet
emerged, which devices were affected, and how its variants have
evolved. Surprisingly, novice malicious techniques were found to
compromise enough low-end devices to threaten even the best-
defended targets. Finally, several technical and non-technical in-
terventions were recommended to address such risks. Regarding
fingerprinting infected IoT devices, Pour et al., 2020; Pour et al.
(2019) leveraged macroscopic, passive empirical data provided by
network telescopes to shed light on the evolving IoT threat land-
scape. The authors aimed at classifying compromised IoT devices
from one-way network traffic. By analyzing 3.6 TB of darknet traffic
along with leveraging active scanning and machine learning tech-
niques, their approach effectively uncovered 440K compromised
IoT devices and 350 IoT botnets that were active in the wild.
Torabi et al. (2018a) analyzed over 5TB of passive measurements
to identify compromised IoT devices as well as those targeted by
DoS attacks. Their evaluation exposed 28K compromised IoT de-
vices. They also revealed unreported malware variants that specif-
ically target IoT devices.

Herwig et al. (2019) focused on Hajime IoT botnet by crawling
its P2P infrastructure network. The authors found that there are
more comprised IoT devices than previously reported. They also
discovered that churn is high among IoT devices and that new ex-
ploits can quickly increase the size of an IoT botnet.

Cetin et al. (2019) provided an empirical study of IoT mal-
ware cleanup in the wild. The authors specifically tried to
remove Mirai infections within a medium-sized ISP network.
Remediation rates were measured, which revealed that noti-
fying infected customers remediates 92% of infections within
14 days. It was also found that only 5% of the customers
who were notified suffered from another infection within five
months.

7.2.3. ICS and SCADA

Generally, Industrial Control Systems (ICS) and SCADA devices
can be considered subclasses of IoT devices; thus, the same large-
scale measurement techniques are often employed by the re-
searchers. However, we chose to separate them into different sub-
sections to put more emphasis on this topic due to their impor-
tance and prevalence in the critical infrastructure systems (e.g., Cy-
ber Physical Systems (CPS)).

Mashima et al. (2019) analyzed six months worth of net-
work traces that were collected in low-interaction smart grid
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honeypot systems deployed in different regions on the Ama-
zon cloud platform. In addition, they discussed the observed at-
tack patterns, as well as other factors such as the correlation
among different locations and the dynamics in access sources.
Vasilomanolakis et al. (2016) proposed a novel honeypot that de-
tects multi-stage attacks targeting ICS networks. After detecting an
attack, the honeypot generates signatures so that Intrusion Detec-
tion Systems (IDSs) can prevent attacks with the same signatures.
The authors showed that their honeypot detects attacks with good
accuracy and that the Bro IDS can successfully use their signatures
to prevent future attacks.

Further, Fachkha et al. (2017) exploited passive monitoring from
a network telescope with the aim of building broad notions of
real CPS maliciousness. The authors inferred and characterized
large-scale probing activities that target more than 20 diverse and
heavily-employed CPS protocols. Their analysis revealed the pres-
ence of 33K probes that target CPS protocols, of which 74% were
persistent throughout the analysis. Husak et al. (2018) presented
an empirical Internet-wide study on malicious activities gener-
ated from and targeted towards critical sectors. The authors lever-
aged 16.8 TB of darknet data to infer probing activities and DDoS
backscatter in critical sectors. In fact, they observed more than 11K
probing machines and 300 DDoS attack victims hosted by critical
sectors. They also provided insights related to the maliciousness of
various business sectors, including the financial sector.

Dahlmanns et al. (2020) leveraged active scanning of the IPv4
address space to study whether Internet-facing OPC UA appli-
ances are configured securely. The authors observed problem-
atic security configurations, such as missing access control, dis-
abled security functionalities, or deprecated cryptographic primi-
tives. Additionally, they found several hundred devices that share
the same security certificate, which allows for impersonation at-
tacks. Nawrocki et al. (2020) uncovered unprotected inter-domain
ICS traffic at an IXP and ISP level. They leveraged data from
honeypots and scans to provide an Internet-wide, in-depth view
on ICS communications. They were also able to classify indus-
trial and non-industrial ICS traffic based on cross-correlations
with other data sources. In addition, their study showed that
ICS systems are controlled remotely without any protective
mechanisms, which harms the industrial infrastructures and the
Internet.

7.3. Wireless and Mobile

Over the last 20 years, wireless Local Area Networks (LANs)
based on 802.11 have grown ubiquitous in workplace and college
settings. Additionally, only a small amount of research has been
done on SIM-enabled wearable traffic on ISP networks in order to
acquire customer insights and better understand the traffic dynam-
ics. The study of mobile devices is becoming more important due
to several factors, which includes, the introduction of technologies
that enable smart cities (e.g., 5G, 6G, Helium (2021), etc.), Internet
connectivity of IoT devices with limited resources (e.g., long-range
wide-area network), the continued growth of vehicles connected
to the Internet, and the increased demand for micromobility plat-
forms. There is relatively limited research in this topic because of
the difficulty in data gathering and the scarcity of data.

Andrade et al. Andrade et al. (2017) conducted network-scale
measurements of over 1B radio connections using 1M connected
cars on a production cellular network. They found that connected
automobiles have a variety of features, including some that are
comparable to ordinary smartphones (e.g. overall diurnal pattern)
and loT devices.

Kolamunna et al. (2018) analyzed the network traffic of tens of
thousands of SIM-enabled customers of a major European mobile
ISP. Over the course of a five-month observation period, they saw
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Table 6
Summary of the Phishing papers
Analysis
Topic Papers Measur. Method ~ Method Scope Measurement Size
Phishing Tian et al. (2018) Hybrid ML Internet-wide 657K domains, 224M DNS records
Ecosystem Ho et al. (2019) Passive ML Organization-level ~ 113M emails from 92 organizations
Han et al. (2016) Hybrid Heuristic Internet-wide 643 unique phishing kits over 5 months
Oest et al. (2020b) Passive Heuristic Internet-wide 404k phishing URLs, data from paypal
Zhang et al. (2021) Hybrid Heuristic Internet-wide 112k phishing websites reported to APWG
(over 14 months)
Oest et al. (2019) Active Heuristic Internet-wide 10 anti-phishing platform over 1.5 years.
2,380 phishing sites
Oest et al. (2020a) Hybrid Heuristic Internet-wide 4k phishing URLs, 2.8k PayPal-branded
phishing websites, data from 10
anti-phishing entities
Maroofi et al. (2020) Hybrid Heuristic Internet-wide 105 phishing websites, data from 7
anti-phishing entities
Victim’s Cognitive Van Der Heijden and Allodi (2019)  Passive ML, Statistics, Organization-level 115k emails, 11k alerts (over 10.5
Behavior Heuristic months)
Simoiu et al. (2020) Passive Heuristic Gmail ecosystem 1.2B phishing and malware attacks, 17M

weekly targeted users

a 9% growth in SIM-Enabled wearable users. However, only 34%
of these users actually produce any network transaction. They also
found that sim-enabled wearable users are much more active in
terms of mobility, data consumption, and frequency of app usage.

Zhang et al. (2020) presented a large-scale characterization of
the Fake Base Station (FBS) spam ecosystem by leveraging three-
months worth of real-world FBS detection results. The authors un-
covered the characteristics of FBS spammers, such as business cat-
egories, temporal patterns, and spacial patterns. The FBS ecosys-
tem'’s organization and evasion detection were also investigated. It
was found that over 75% of the messages are associated with il-
legal or fraudulent businesses. Further, 7,884 FBS campaigns were
identified via the contact information of spammers.

8. Threats, eCrime and Attacks

In this section, we elaborate on several topics related to threats,
namely, Phishing, Ransomware, RAT, Cryptojacking, Spam and De-
nial of service attacks. We also offer a summary of the papers rel-
evant to these topics.

8.1. Phishing

Phishing attacks are a form of social engineering or online
identity theft in which an attacker tricks people into giving away
private information. In 2016, the Anti-Phishing Working Group
(APWG) recorded over 1.2 million phishing attacks. Such attacks
can be carried out via domain squatting techniques such as ty-
posquatting. Typosquatting is the deliberate registration of a do-
main name that is a misspelling of a well-known domain name. In
addition, as characters from different languages can look like each
other, IDNs have been used to impersonate popular domains for
phishing purposes, i.e.,, IDN homograph attacks. We direct readers
to subsection 4.1.6, which contains a review of IDN-related works,
particularly (Hu et al., 2021; Suzuki et al., 2019) and typosquatting-
related works such as (Agten et al., 2015; Quinkert et al., 2020;
Szurdi et al., 2014) that focus on phishing.

Despite several mitigation efforts such as applying email fil-
ters, blocking and taking down phishing websites, or using browser
plugins that notify users when they are being redirected to po-
tentially malicious pages, phishing attacks are far from being
solved. Table 6 summarizes and contrasts the articles that will be
discussed.

8.1.1. Phishing Ecosystem
Tian et al. (2018) introduced SquatPhi, an end-to-end measure-
ment framework to detect squatting phishing domains at both the
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domain and content levels. The authors tested 224M DNS records
for five types of squatting and discovered 657K domains that are
potentially impersonating 702 popular brands (e.g., Facebook, Pay-
pal). They also built a machine learning classifier to detect phish-
ing sites. The classifier identified 1,175 squatting pages (857 web
pages and 908 mobile pages). It was revealed that over 90% of the
phishing websites successfully evaded well known blacklists such
as VirusTotal, PhishTank, and eCrimeX.

Ho et al. (2019) investigated lateral phishing attacks (i.e., phish-
ing emails are sent to other users using a compromised enterprise
account). The authors leveraged a large dataset consisting of emails
sent by more than 100M employees from 92 enterprise organiza-
tions. It was found that 14% of randomly sampled organizations
experienced at least one incident within a seven-month timespan.
It was also found that targeted messages are used in 7% of attacks.

In a more advanced measurement technique,
Han et al. (2016) designed a web honeypot system to attract
real attackers into installing phishing kits in a compromised web
application. According to the findings, 643 unique phishing Kkits
were discovered. Phishing kits were only operational for less than
10 days after being installed, where most of them only gather
a small amount of user credentials. The authors also found that
attackers use infected websites to load a vast number of phishing
kits in a shot-and-forget strategy in order to quickly switch to new
phishing pages as the old ones became blacklisted. In a continua-
tion, Oest et al. (2020b) introduced Golden Hour, a framework that
passively measures victim traffic to phishing pages. The authors
found that the typical phishing attack lasts 21 hours from the first
to the last victim’s visit, and that anti-phishing entities identify
each attack nine hours after the first victim’s visit. Because attack-
ers make a lot of money during this period, it was dubbed golden
hours.

Several research efforts utilized well-known crowdsourced
phishing datasets (e.g., APWG). Zhang et al. (2021) presented
CrawlPhish, a framework that collects the source code of reported
phishing websites and automatically detects the client-side cloak-
ing evasion techniques that are used. CrawlPhish analyzed 112,005
websites over a fourteen-month period and uncovered 35,067
(31.3%) cloaking usages. It was also revealed that, by the end of
the study, the cloaking usages increased from 23.32% to 33.70%.

In addition, a number of studies concentrate on anti-phishing
blacklists and evasion tactics. Oest et al. (2019) presented Phish-
Farm, a scalable framework to methodically test the resilience
of anti-phishing entities and browser blacklists. It was revealed
that current infrastructures allow some phishing sites to go un-
noticed, leaving them accessible to victims. It was also discov-
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ered that phishers who employ simple cloaking techniques have
reduced the likelihood of being blacklisted by 55% on average.
Oest et al. (2020a) proposed PhishTime, a framework that contin-
uously identifies unmitigated phishing websites in the wild and
generates longitudinal experiments to measure the given ecosys-
tem’s protections. In six experimental deployments over a nine-
month period, the authors reported 2,862 new phishing websites
and evaluated the performance and consistency of blacklists. The
results revealed that the average response time against unsophis-
ticated phishing websites is 55 minutes, whereas the average re-
sponse time of phishing websites that use common evasion tech-
niques is 2 hours and 58 minutes. Maroofi et al. (2020) looked
at how anti-phishing entities fare against three advanced anti-
analysis approaches based on human verification: Google re-
CAPTCHA, alert boxes, and session-based evasion. The authors
found that only Google Safe Browsing detected all the reported
URLs protected by alert boxes. It was also identified that none
of the entities could detect phishing URLs armed with Google re-
CAPTcha, making it currently the most effective phishing content
protection solution accessible to malicious actors.

8.1.2. Victim’s Cognitive Behavior

Van Der Heijden and Allodi (2019) conducted a measurement
study on the effect of cognitive vulnerability triggered in phish-
ing emails. The authors collected 115,698 reported emails between
February 1st, 2018 and 15 December, 2018 from Org (a large finan-
cial organization in Europe with more than 8M customers). The
authors also gathered 11,936 alerts for malicious links that Org’s
phishing response team detected. The analysis results revealed that
consistency and scarcity exercised a clear positive effect on the
number of generated clicks. Simoiu et al. (2020) analyzed over 1.2B
email-based phishing and malware assaults against Gmail users to
see what factors put people at risk of being attacked. The authors
discovered that assault campaigns are often short-lived and, at first
look, appear to indiscriminately target consumers on a worldwide
scale. However, by modeling the distribution of targeted individ-
uals, it was discovered that a person’s demographics, geography,
email usage behaviors, and security posture had a major impact
on the chance of an attack.

8.2. Ransomware

Some Papers were dedicated to understanding ran-
somware attacks in scale from ransom payment aspects.
Huang et al. (2018) created an end-to-end framework to ana-
lyze cybercriminal operations that have adopted Bitcoin as their
payment channel. The authors tracked the financial transactions,
from the moment victims acquire bitcoins to when operators
cash them out. Akcora (2020) proposed a novel, efficient, and
tractable framework that can automatically predict new ran-
somware transactions in a ransomware family. The authors found
that their approach has a higher accuracy than existing heuristic
and ML-based procedures. Meanwhile, other papers developed
novel ransomware detection methods which lead to uncovering
new insights. Kolodenker et al. (2017) developed PayBreak, an
automated proactive defense mechanism against ransomware. This
approach relies on the fact that secure file encryption uses hybrid
encryption with symmetric session keys on the victim computer.
The authors evaluated PayBreak against 20 successful families
of real-world ransomware and were able to restore the files of
12 of these families. Moussaileb et al. (2018) proposed a graph-
based ransomware detection. The authors leveraged more than
700 active samples of ransomware that were analyzed in their
environment. It was discovered that the per-thread file system
traversal is enough to reveal malicious activities.
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8.3. RAT

RATs are a type of malware that grant an attacker direct, in-
teractive access to a victim's computer, which enable the adver-
sary to steal personal information, spy on the victim in real-
time via the camera and microphone, or harass the victim ver-
bally via the speaker. Farinholt et al. (2017) studied DarkComet,
a popular commercial RAT. By utilizing 19,109 malware samples,
the authors monitored the behaviors of each of the samples in
their honeypot environment. The operator behavior on 2,747 in-
teractive sessions that was captured during the experiment was
reported. Operators were found to engage with victims through
remote desktop, capture video, audio, and keystrokes. Operators
were also found to exfiltrate files and credentials during these ses-
sions. Rezaeirad et al. (2018) reported the attackers and the vic-
tims of two popular RATs, namely, njRAT and DarkComet. The au-
thors first leveraged VirusTotal to collect all instances of these RATs
and identify the domain names of their controllers. The expired
domains were then extracted to determine the victims of such
attacks. The results showed that over 99% of the 828,137 IP ad-
dresses that were connected to the author’s sinkhole were not real
victims. Farinholt et al. (2020) presented a longitudinal study of
the DarkComet RAT ecosystem. The authors leveraged 6,620 victim
log databases from DarkComet controllers during a five-year pe-
riod and proposed novel techniques to track RAT controllers across
hostname changes. The analysis showed that there were at least
57,805 victims of DarkComet over this period. It was also found
that 69 new victims were being infected every day, where many
of their keystrokes, activities, and webcams have been caught,
recorded, and observed.

8.4. Cryptojacking

[llicit crypto-mining enables criminals to mine cryptocurrency
using resources stolen from victims. Apart from binary-based
crypto-mining malware that exploits the host device’s resources,
the advent of memory-bound cryptocurrencies such as Monero and
Coinhive has made the deployment of mining code in browser-
based JavaScript a viable alternative to specialized mining rigs. Cer-
tain websites mine cryptocurrency without the customers’ aware-
ness in lieu of showing advertisements. This strategy of monetizing
websites has enticed both website owners and criminals to look for
new revenue streams.

Some research focused on the top Alexa websites to determine
the prevalence of cryptojacking on the web. Riith et al. (2018) in-
spected 137M.com/.net/.org and Alexa top 1M domains for min-
ing code, and proposing a new fingerprinting method. It was re-
vealed that the prevalence of cryptojacking is less than 0.08% in
such domains. Coinhive was identified as the largest cryptojacking
provider, which is used by 75% of the mining sites. Further inves-
tigation clarified that the authors contributed 1.18% of the blocks
in the Monero blockchain, which is worth 150K USD per month.
Similarly, Konoth et al. (2018) performed analysis on Alexa top 1M
websites. By leveraging 28 Coinhive-like services, 20 active cryp-
tomining campaigns were identified. The authors also discussed
how current heuristics based on CPU usage as well as blacklist-
ing approaches are insufficient. Finally, MineSweeper, a detection
technique that is based on intrinsic characteristics of cryptomine
code, was proposed. Bijmans et al. (2019a) performed an Internet-
scale crawling using the Minesweeper tool and investigated about
20% of 1,136 TLDs (48.9M websites). Overall, the authors identi-
fied 204 cryptojacking campaigns in the wild. It was also discov-
ered that attackers spread cryptojacker scripts over a large num-
ber of domains by using third-party software (e.g., WordPress).
Musch et al. (2019b) proposed a three-phase analysis approach in
the Alexa 1M websites. Their findings showed that cryptojacking is
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common, where 1 out of 500 sites host a mining script. The au-
thors then performed a measurement of code characteristics, an
estimate of expected mining revenue, and an evaluation of the cur-
rent blacklist-based countermeasures to gain insight into the cryp-
tojacking characteristics. Hong et al. (2018) proposed CMTracker, a
behavior-based tool with two runtime profilers that automatically
detects and tracks cryptocurrency mining scripts and their related
domains. By leveraging 853,936 popular webpages, CMTracker suc-
cessfully discovered 2,770 unique cryptojacking samples. The au-
thors found that attackers frequently update their attack domains
on the order of days to evade detection. Further, attackers use
many other evasion techniques such as code obfuscation and lim-
iting their CPU usage.

Pastrana and Suarez-Tangil (2019) studied crypto-mining mal-
ware during a twelve-year period by investigating about 4.5M mal-
ware samples (1.2M malicious miners) pulled from malware feeds
such as VirusTotal, Palo Alto network, virus share, and others. The
authors employed static and dynamic analysis to extract informa-
tion from the samples, such as wallet identifiers and mining pools.
The results revealed that Monero is currently the preferred cur-
rency used by criminals who have accumulated a large amount of
earnings from illicit mining.

Bijmans et al. (2019b) reported a new attack vector in cryp-
tojacking where cyber criminals use a firmware vulnerability in
MikroTik routers to rewrite outgoing user traffic and embed cryp-
tomining code in every outgoing web connection. The authors
monitored the activities of Netflows recorded in a Tier 1 network,
semiweekly crawls, and network telescope traffic over a ten-month
period. The findings showed that 1.4M routers were under the
adversaries’ control, which consisted of approximately 70% of all
Mikrotik devices deployed worldwide.

8.5. Spam

Spam emails have an impact on millions of users, waste im-
portant resources, and are a drain on email systems. Spam has
long been a popular technique for criminals to do unlawful oper-
ations on the Internet, such as stealing sensitive information, sell-
ing counterfeit goods, and distributing malware, among other mali-
ciousness. As a result, spam emails include valuable cyber security
information.

Liao et al. (2016) studied how long-tail Search Engine Opti-
mization (SEO) spam is implemented on cloud hosting platforms.
The authors leveraged 3,186 cloud directories and 318,470 door-
way pages to characterize long-tail SEO spam’s abusive behav-
ior. The results showed that 6% of the doorway pages made it
into the top ten search results for poisoned long-tail keywords. It
was also discovered that these doorway pages are able to mon-
etize traffic and manage the cloud platform’s countermeasures.
Dinh et al. (2015) proposed a framework that detects, analyzes, and
investigates spam campaigns from 678,095 messages and 91,370
unique IP addresses. This framework not only identified spam
campaigns in real-time but also labeled, scored, and collected a
multitude of information about them. Gupta et al. (2018b) lever-
aged 23M posts over five different OSNs to characterize cross-
platform spam campaigns that use phone numbers for monetiza-
tion purposes. The authors found that although Indonesian cam-
paigns create the highest volume ($3.2M posts), only 1.6% of the
accounts that are involved in such campaigns have been sus-
pended. Additionally, if intelligence was shared throughout the
OSNs, roughly 35K victims and $8.8 million may have been saved.
Gupta et al. (2018a) studied multiple spam campaigns, includ-
ing tech support scams. The authors leveraged approximately 70M
tweets from 2.5M user accounts that contain over 5,786 phone
numbers during a fourteen-month period to measure the proper-
ties of these campaigns. First, the data collection technique is able
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Fig. 8. Leveraging darknet (Internet Telescope) for DDoS-related measurements.
(adapted from Fachkha and Debbabi (2015))

to identify tweets containing phone numbers. Second, they were
able to cluster tweets that are a part of Outgoing Phone Commu-
nication (OPC) attack campaigns. It was also found that only about
3.5% of the accounts involved in the top 15 spam campaigns were
suspended by Twitter.

8.6. Denial of Service

DoS attacks are becoming one of the biggest threats to Internet
stability and reliability. Moreover, DDoS attacks have become com-
moditized, allowing abusive subscribers to cheaply extort, harass,
and threaten businesses. In addition, amplification DDoS attacks
have gained increasing popularity by abusing so-called amplifiers
(or reflectors) to exhaust the bandwidth of a victim. One common
DDoS-related measurement technique is leveraging backscatters at
the darknet (Fachkha et al., 2015) as shown in Figure 8. BGP black-
holing is one of the main mitigation techniques, which discards
traffic bound for the given prefix. Table 7 summarizes and con-
trasts the papers encompassed herein that study this topic.

8.6.1. Investigating the DoS Ecosystem

Blenn et al. (2017) used passive traffic from the /16 network
telescope to research the attack size and duration of DDoS attacks
over the span of 26 months, which revealed new insights into
emerging challenges and the progression of adversarial tactics over
time. Despite the fact that the media reports new milestones of
DDoS attack sizes on a daily basis, the vast majority of such at-
tacks are small and can be defended with readily accessible tech-
nologies and applications. Jonker et al. (2017) introduced a new
framework for the macroscopic characterization of DoS ecosystem
(e.g., attacks, attack targets, and mitigation behaviors) by correlat-
ing diverse sets of the global Internet infrastructure’s measurement
data. The authors found that more than one third of the total num-
ber of IPv4 network blocks that are operating on the Internet were
targeted by over 20M DoS attacks during the study period. They
observed that after an attack, 4.3% of attack targets migrate to a
DPS.

Wang et al. (2018a) used both active and passive measuring
techniques to provide a complete picture of both attackers and vic-
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Table 7
Summary of the DDoS papers
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Measurement Size

Topic Papers Measur. Method Analysis Method Scope
Investigating the  Blenn et al. (2017) Passive Heuristic
DoS Ecosystem Jonker et al. (2017) Hybrid Heuristic
Wang et al. (2018a) Hybrid Heuristic
Moura et al. (2018) Hybrid Heuristic
Abhishta et al. (2019) Active Heuristic
Amplification Kramer et al. (2015) Hybrid Heuristic
Attacks
Krupp et al. (2016) Hybrid Heuristic
Rossow (2014) Hybrid Heuristic
MacFarland et al. (2017) Active Heuristic
Bushart and Rossow (2018) Active Heuristic
Rytilahti and Holz (2016)  Hybrid Heuristic
Bock et al. (2021) Hybrid Heuristic, ML
Moon et al. (2021) Active Heuristic
DDoS Protection Giotsas et al. (2017b) Hybrid Heuristic
Jonker et al. (2018) Passive, Hybrid Heuristic
Jonker et al. (2016) Active Heuristic
Dietzel et al. (2016) Passive Heuristic
Nawrocki et al. (2019) Passive Heuristic

Internet-wide
Internet-wide
Internet-wide
Internet-wide

/16 Internet telescope data over 26 months

1M events targeted at > 2M /24 network blocks

50k DDoS from 674 botnets (7 months)

Leveraging 9k RIPE Atlas probes, +15K vantage points,.nl
and the root DNS zone

Internet-wide NS1 and Dyn DNS service providers, OpenINTEL active

DNS

Internet-wide >1.5M attacks from 21 globally-distributed AmpPot (4
months)

Internet-wide 1.3M amplification attacks (over 23 weeks), 48 AmpPot
instances

Internet-wide, 130 real-world DRDoS attacks, 14 protocols, large ISP (1M
users), a /17 and a /27 network telescope

130M DNS domains and 1M unique DNS servers

entire Ipv4 and 4,170k DNS resolvers

47,900 responsive hosts

184 IP addresses and 1,052 URLs from the Quack dataset

ISP-level

Internet-wide
Internet-wide
Internet-wide
Internet-wide

Internet-wide, Lab 10K sampled servers using 31 nodes from CloudLab
settings
ISP/IXP-level 12,940 IP peers

Internet-wide 28.14M DoS, 1.30M blackholing using /8 Internet
telescope, Ampbot honeypot, BGP data

Internet-wide (9 Alexa top 1M over 1.5 years

major DPS)
IXP-wide 22,994 blackholing BGP announcements from a large IXP
IXP-level 590M sampled flows from control & data plane IXP (104

days)

tims. At first malware families (used to launch a range of DDoS at-
tacks) are reverse-engineered and assigned to a known malware
family. Then, hosts participating in the specific botnet are enu-
merated, monitored over time, and their activities are evaluated
by connecting with infrastructure infected by that malware fam-
ily (e.g. the C&C). They characterized 50,704 different DDoS attacks
launched by 674 different botnets from 23 different botnet fami-
lies directly observed in a seven-month period. During this mea-
surement period, 9,026 victim IPs belonging to 1,074 organizations
in 186 countries were identified. The authors discovered that the
geospatial distribution of the attacking sources follows certain pat-
terns, which enables the accurate source prediction of future at-
tacks.

Moura et al. (2018) conducted a controlled measurement ex-
periment and assessed the resilience of the DNS resolution system
during DDoS attacks on authoritative servers to gain insights about
the role of DNS caching, retries, and use of multiple DNS recursive
resolvers. The authors uncovered that in about 30% of the time,
clients do not benefit from caching. However, it was also discov-
ered that DNS caching and retries provide a high degree of client
user resilience during DDoS attacks. Abhishta et al. (2019) ana-
lyzed two DDoS attack events on NS1 and Dyn on May 16th, 2016
and October 21st, 2016, respectively. They discovered that a sig-
nificant number of customers who were solely utilizing Dyn’s or
NS1’s Multicast DNS (mDNS) service switched to non-exclusive use
following the attacks. Further, the bulk of newly non-exclusive cus-
tomers began using an mDNS service provider as a secondary DNS
to help minimize the chance of downtime.

8.6.2. Amplification Attacks

Krdamer et al. (2015) developed AmpPot, a novel honeypot that
imitates services that are considered to be vulnerable to amplifica-
tion attacks, such as DNS and NTP. They observed more than 1.5M
attacks between February and May 2015 by deploying 21 globally-
distributed AmpPot instances. The researchers found that the vast
majority of attacks are brief, and most victims are only targeted
once. Using AmpPot, Krupp et al. (2016) carried out a measure-
ment study that took a snapshot of 1,351,852 amplification attacks
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detected by honeypots over the course of 23 weeks and attribute
such attacks to the infrastructures that triggered them. The au-
thors devised a method for embedding a fingerprint on scanners
that conduct reconnaissance for amplification attacks, which allows
them to trace subsequent attacks back to the scanner. This method
lead to the identification of scanners that were involved in 58% of
all attacks with more than 99.9% confidence. Further investigation
revealed that only 20 scanners were responsible for almost half of
the attacks.

Rossow (2014) revisited popular protocols of network services,
online games, and P2P filesharing networks to assess their secu-
rity against Distributed Reflection Denial of Service (DRDoS) at-
tacks. The authors found 14 protocols to be susceptible to band-
width amplification that could multiply traffic by up to a factor
of 4670. Additionally, millions of public hosts could be abused as
amplifiers. MacFarland et al. (2017) studied the threat potential
associated with DNS amplification attacks that rely on using au-
thoritative servers as amplifiers. The authors found that in cer-
tain data sets, fewer than 3.8% of authoritative servers are re-
sponsible for the largest amplification factors. The results also
showed that rate-limiting is only utilized by 10.23% of servers in
practice. Bushart and Rossow (2018) proposed DNS Unchained, an
application-layer DoS attack against core DNS infrastructure that
uses amplification. The authors carefully chained CNAME records
and forced resolvers to perform deep name resolutions to achieve
an attack amplification of 8.51. In addition, 178,508 potential am-
plifiers were identified, where 74.3% of them could be used in such
an attack because of the way they cache records with low TTL
values. Finally, several countermeasures were suggested for DNS
servers to limit the impact of DNS chaining attacks. Rytilahti and
Holz (2016) demonstrated how the same features used for NTP-
based attacks can be used to obtain a global picture of ongo-
ing attacks on the Internet. The authors found that only a frac-
tion of all the vulnerable services are susceptible to attacks and
attack tracking. Many known vulnerable hosts that remained un-
used because of their small response sizes were also discovered.
Bock et al. (2021) demonstrated that non-trivial TCP-based ampli-
fication is conceivable, and that it can be more effective than the
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commonly used UDP-based amplification. The authors found and
maximized the efficacy of new TCP-based reflection amplification
attacks using a novel application of a recent genetic algorithm, and
presented several packet sequences that lead network middleboxes
to respond with more packets than what they sent. In addition, the
entire IPv4 Internet was surveyed and hundreds of thousands of IP
addresses with amplification factors greater than 100x were dis-
covered. Several open questions regarding DoS attacks were also
investigated. Finally, network factors that caused some TCP-based
attacks to be so effective were discussed.

Moon et al. (2021) presented AmpMap, a lightweight Inter-
net health monitoring service that systematically and continuously
quantifies DDoS attacks in order to facilitate mitigation efforts.
They found that relying on previous recommendations to block or
rate-limit specific queries is not enough, as such recommendations
can result in many other amplification-inducing query patterns be-
ing missed. Instead, the authors developed an efficient approach to
search across the space for protocol headers and servers.

8.6.3. DDoS Protection & BGP Blackholing

BGP blackholing is an operational countermeasure that utilizes
the characteristics of BGP to mitigate various forms of malicious-
ness, such as DoS attacks and spam. BGP blackholing is imple-
mented using the BGP communities attribute, which is a BGP ex-
tension that enables the exchange of additional information be-
tween BGP peers. BGP blackholing uses a particular set of BGP
community tags to request an upstream provider (ISP) or IXP to
filter traffic to a certain destination prefix (Giotsas et al., 2017b).
Giotsas et al. Giotsas et al. (2017b) were able to uncover that
hundreds of networks (including about 50 IXPs and large tran-
sit providers) offer blackholing services to their customers, peers,
and members. Upon leveraging both active measurements and pas-
sive datasets, it was found that blackholing is highly effective.
Jonker et al. (2018) conducted a global-scale study to discover the
operational deployment of blackholing as a DoS mitigation strat-
egy by comparing DoS attacks with BGP blackholing events. For
this purpose, the authors leveraged DoS attacks identified from a
network telescope and DoS honeypot, and compared these attacks
with a set of blackholing events inferred from BGP routing data
over 1100 days. According to the findings, blackholing is a fast and
effective way to mitigate such attacks. Additionally, 44% of attacks
that are blackholed are mitigated within one minute, and 85% are
mitigated within ten minutes.

Leveraging active DNS measurement, Jonker et al. (2016) stud-
ied the adoption of cloud-based DPSs by analyzing nine major DPSs
globally. The findings showed a 1.24x increase in DPS adoption
over 1.5 years, a notable trend in comparison to the overall expan-
sion of the global domain name system. Large hosting providers
and domainers are the key drivers of this pattern, as they turn
DDoS protection on and off for lots of domains on a regular ba-
sis.

Some studies utilize data from large IXPs.
Dietzel et al. (2016) looked at the prevalence of blackholing
used by the IXP members and its efficacy. The authors collected
five-minute snapshots of routing and traffic measurements over a
three-month period (from December 2014) from one of the largest
IXPs in Europe, which lead to the discovery of 22,994 blackhole
BGP announcements. Blackholing was found to succeed in reduc-
ing DDoS attack traffic. Nawrocki et al. (2019) correlated 104 days
of data and control plane measurements in order to study the
collateral damage introduced by blackholing at a big European
IXP. The authors discovered that just a third of the 34k apparent
blackholing cases are linked to DDoS attack signals. Besides, they
realized that blackholing drops just half of unnecessary traffic on
average, making it a much less effective method for preventing
DDoS attacks than previously thought. In addition, they found 300
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blackholing events with traffic containing collateral damage from
1000 detected servers.

9. Cyber Incidents and Real-World Impacts

In this section, we go through three subjects linked to traces
of cyber incidents in real world. We begin with an examination of
the economics and a study of cybercrime. After that, we go into
the aftermath of cyber attacks. Finally, we discuss an assessment
of existed security platforms. Refer to Figure 2 for the detailed tax-
onomy of the application domains. A synopsis of the publications
pertinent to these subjects is also provided in this section.

9.1. Economy and Analysis of Cybercrime

Anonymity is a double-edged sword. On one edge it safeguards
people’s privacy and, in authoritarian societies, fosters freedom of
speech. On the other edge, it is used by criminals and even cyber-
terrorists to conceal their operations. We are facing two identity
shielding technologies: (1) the Dark Web and (2) cryptocurrencies.
The Dark Web leverages anonymous routing methods (e.g., Tor)
to hide users’ identities. Cybercriminals also exploit the dark web
for the commoditization of instruments and services, which is an-
ticipated to accelerate cybercrime growth. It is also used for ille-
gal advertisement material and hosting C&C servers. Cryptocurren-
cies (e.g., Bitcoin and Ethereum) enable individuals to perform P2P
transactions without a central authority. The Bitcoin blockchain
scheme requires people to use an extensive list of aliases to per-
form transactions safely. This cryptocurrency poses threats to law
enforcement as it is decentralized, completely uncontrolled, and
both participants in a malicious transaction are shielded behind
pseudo-anonymous identities. However, Bitcoin has a property that
is unfavorable for cybercriminals: by design, all transactions are
public. This helps researchers to retrieve the economic inner work-
ings of cyber-criminal activities through transaction clustering and
tracing.

[liou et al. (2016) presented a crawler capable of traversing both
the Surface Web and the Dark Web (i.e. Tor, I12P, and Freenet).
The crawler is designed to discover web resources on any given
topic, with a particular focus on topics of interest to law enforce-
ment agencies. The experimental examination showed its consid-
erable efficacy, and incorporating an additional classifier further
improved effectiveness without posing a bottleneck to its perfor-
mance. Pastrana et al. (2018) introduced CrimeBot, a tool to scrape
underground forums and cybercriminal communities. They created
CrimeBB, a dataset of more than 48M posts made from 1M ac-
counts in four different operational forums over the course of a
decade. As a case study, they investigated how currencies have
evolved over the last 10 years, noted the increase of exchanges
involving Amazon gift cards in the last two years, and identified
key actors. Lee et al. (2019) introduced MFScope, a Dark Web data
collection and analysis platform to study where the money goes
from the trading of illicit services and goods by online merchants,
as well as how perpetrators acquire their money while minimiz-
ing the risk of being tracked. The authors revealed that Bitcoin
contains the majority (99.8%) of cryptocurrency addresses among
collected addresses, and that more than 80% of Bitcoin addresses
are used for illicit intent. By developing a Taint-based Bitcoin flow
analysis, around 180M USD was estimated to be the illicit mon-
etary volume. Vu et al. (2020) investigated a dataset of transac-
tions created and completed on the established underground mar-
ketplace HackForums. The dataset includes the associated threads
and posts from June 2018 to June 2020. The authors observed the
growth of users making only one transaction, as well as power-
users who make many transactions. Insights were also provided
about the sorts of services being exchanged, preferred payment
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methods, and how users overcome the cold start problem when
joining the market without established trust.

Van Wegberg et al. (2018) conducted a measurement study to
answer to the main questions regarding the increasing commodi-
tization of cybercrime. The authors found 44K listings and over
564K transactions between 2011 and 2017. It was also discovered
that cash-out services contain the most listings and generate the
largest revenue. At least 15M was generated between 2011-2017 in
overall revenue for cybercrime commodities on online anonymous
markets.

Booters are another area of interest to the academics.
Karami et al. (2016) analyzed 15 booter services on the dark web
and conducted a large-scale payment intervention in partnership
with PayPal to assess the impact of this deterrent against their op-
erations. They also shed light on booters technological and eco-
nomical structure, namely, advertising, attack, hosting, and pay-
ment. Krupp et al. (2017) presented several techniques to attribute
DDoS amplification attacks to booter services. They proposed a ma-
chine learning classifier that leverages features related to a DDoS
service, such as the set of reflectors used by that service. In the
most challenging real-time attribution scenario, they were able to
attribute DNS and NTP attacks with a precision of over 99% and a
recall upwards of 69%.

Regarding the ransom payments, Conti et al. (2018) reported the
economic impact of ransomware families from the Bitcoin trans-
actions, presented a lightweight framework to analyze Bitcoin ad-
dresses managed by malicious actors, and subsequently provided
a longitudinal measurement related to twenty recent Bitcoin ran-
somware instances. The authors began with a set of collected ran-
som addresses reported by victims and security analysts in the
online community, and then used those as initial seeds to iden-
tify other addresses that have a similar payment behavior. Further,
they considered multi-input transactions and shadow/change ad-
dresses. Simoiu et al. (2019) studied the prevalence and character-
istics of ransomware attacks on the general population, how users
perceive risks and respond to attacks, as well as what proportion
of the population pays. The authors developed a proof-of-concept
method for risk-assessment that is based on self-reported security
habits. By using a representative survey sample of 1,180 American
adults, they estimated that 2-3% of the adults were affected over
a one-year period (between 2016 and 2017). In addition, the av-
erage demanded payment was $530, where only about 4% of the
affected users reported paying. Meland et al. (2020) performed a
measurement study on the current impact of Ransomware-as-a-
Service (RaaS) and the participating actors. They studied RaaS over
a period of two years (fall of 2017 to the fall of 2019) within well-
known dark web forums and markets. The findings showed that
the occurrence of RaaS actually tends to be more modest than sug-
gested in media by security firms.

9.2. Aftermath of Cyber Incidents

Cybercriminals steal login credentials for webmail accounts in
order to publish them or sell them on the dark web. Little else is
known about what these stolen accounts are utilized for. For this
purpose, a number of articles have contributed to a better under-
standing of how stolen credentials are used. Some studies exam-
ine how law enforcement and organizations counteract specific cy-
ber attacks on the Internet, while others examine how individuals
patch their computers over time.

Onaolapo et al. (2016) shed some light on the modus operandi
of cybercriminals who access stolen Gmail accounts. They devel-
oped a methodology that monitors the activity of Gmail users
by leaking 100 controlled account credentials on public paste
sites and underground forums. Subsequently, they monitored these
leaked accounts for a period of seven months. Such monitoring
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allowed the authors to devise a taxonomy of the behavior of
cybercriminals that use stolen Gmail credentials and their mali-
cious activity in order to identify several mitigation techniques.
Thomas et al. (2017) presented a longitudinal measurement study
of the underground ecosystem that provides stolen credentials and
poses a risk to millions of users. The authors found 788K po-
tential victims of off-the-shelf keyloggers, 12.4M potential victims
for phishing kits, and 1.9B credential leakages from data breaches.
They also found that 7-25% of exposed passwords match a Google
account. Peng et al. (2019a) performed an empirical measurement
of the transmission and sharing of stolen login credentials. Over
the course of five months, they collected more than 179K phishing
URLs from 47K live phishing sites. The authors found that third-
party servers are often located in a different country as compared
to the phishing server, which may create difficulties in taking them
down. Golla et al. (2018) presented two user studies on password-
reuse attacks by presenting data from 180 users. The first study
showed that less than a third of the respondents had intentions
to change their passwords. In the second study, the authors syn-
thesized 15 variations of a model notification based on the results
from the first study. Then, 588 respondents saw one of 15 vari-
ations of the model. The results showed that although the varia-
tions’ impacts differ slightly, the respondents would still be vul-
nerable to future password re-use attacks.

Regarding the booter ecosystem, Collier et al. (2019) measured
the impact of police interventions (e.g., arrests and website take
downs) by looking at usage reports that booters themselves pro-
vided and at measurements of reflected UDP DoS attacks. They
found that take downs of individual booters precede significant yet
short-lived reductions in attacks. They also discovered that the clo-
sure of HackForum'’s booter reduced attacks for 13 weeks globally
and the FBI's coordinated operation in December 2018 reduced at-
tacks by a third for at least 10 weeks. Kopp et al. (2019) looked
at booter-based DDoS attacks in the wild and the effect of an FBI
takedown targeting 15 booter websites in December 2018. The au-
thors purchased Gbps-level attacks against their own infrastructure
from four popular booters and collected five months of data to un-
derstand spatial and temporal trends of the booters’ DDoS traffic.
They discovered that the takedown had an immediate impact on
DDoS amplification traffic, especially against reflectors, but it has
little impact on traffic reaching victims or the amount of attacks
detected.

Nappa et al. (2015) leveraged data collected over five years
on 8.4M hosts through Symantec’s WINE platform and analyzed
the deployment of patches on hosts around the world. The au-
thors found that, at most, 14% of vulnerable hosts are patched
when exploits are released. The patching rate is affected by user-
and application-specific factors such as automated updating mech-
anisms, which have lower median times to patch.

10. Internet Measurement Impediments and Future Directions

The more intertwined the Internet becomes and the greater
the variety of technologies and dependence on numerous compo-
nents, the more difficult it is for researchers to conduct indepen-
dent measurements and investigations. To this end, throughout the
past few years, there have been a number of studies and work-
shops devoted to the current difficulties in Internet measuring and
related discussions claffy and Clark;(Claffy and Clark, 2020; Claffy
et al., 2021; Claffy and Clark, 2019). In this section, we explore the
measurement impediment of the Internet, the reproducibility of
research and the assessment of security measurement platforms,
as well as a few trendy research topics for the future.
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10.1. Internet Measurement Impediments

Independent, third-party researchers can only work with the
data that is available to them. They have no ability to compel the
release of data. Traditionally, the network measurement commu-
nity has used two methods to gather data: active probing, and
passive observation. In addition, a measurement can be performed
from the edge or within the Internet. Independent academic re-
searchers most often analyze the Internet from the edge and use
active probing. Active probing can only infer a few aspects of the
network being probed and may fail to obtain a complete picture of
the target, as the Internet’s complexity can restrict access to end-
points. Moreover, the set of networks that are accessible via ac-
tive probing is a small fraction of the networks on the Internet,
and they are not where most traffic originates. Passive observa-
tion requires deploying monitoring instrumentation at a point in
a network where it can observe activities. In this case, the vantage
size influences the completeness of the view, particularly when it
is collected on edge (e.g., darknet, honeypot etc.). Besides, passive
monitoring raises serious concerns about privacy individuals com-
municating across the network and network operators.

On the other hand, network operators and employees of com-
mercial firms collect extensive data on their own networks, but
with restricted access and no corporate interest in sharing. There
is no incentive for a commercial network operator to let any unaf-
filiated party gather data from its network. Sometimes it is illegal
to do so, but even if legal barriers are overcome, there is always
a risk that data related to a provider’s service offering can shed
light on aspects of that service that the provider wished to keep
secret or that could potentially reflect poorly on the operator. Oc-
casionally, a research team can negotiate a one-time data sharing
contract with a commercial company to acquire access to such data
for research purposes. In certain cases, the outcomes of these col-
laborations appear to be noteworthy. Although, concerns regard-
ing scientific objectivity may arise when an associate of a linked
company is named as an author. Additionally, since the data is not
public, the analysis cannot be checked or reproduced.

Independent research is hindered by current trends that re-
duce visibility across all Internet layers, from the physical layer to
the application. With advances in ISP and cloud connections come
measuring challenges. CDNs, like ISPs and cloud providers, oper-
ate dense server networks that leverage anycast or DNS-based net-
work traffic redirection. These servers are typically hosted by third-
party networks, which obscures the CDN’s existence. Wireless ca-
bles, WiFi access points, and repeaters are common components
of modern home networks. Physical layer and media access con-
trol system variability hampers conclusions regarding home net-
work characteristics. The proliferation of wirelessly linked gadgets,
such as e-readers and smart household appliances, aggravates the
situation. Cloud and ISP actions are obscured by changes at the
application layer. DNS resolution is one example of a previously
on-premises application that now communicates with cloud-based
service endpoints. In fact, the majority of cloud-based services are
complicated systems with muddled underlying architectures and
linkages. Concerns about privacy are motivating further encryption
at the application layer, such as QUIC at the transport layer and
TLS wrapping plain text application-layer protocols. The conflict
between privacy and measurement research is not new, but scien-
tific evidence has mainly been overlooked in the argument. Allow-
ing researchers to see user endpoints (with authorisation) would
allow them to collaborate with users while respecting their pri-
vacy. In this regard, there is a growth in the number of works that
rely on crowdsourcing approaches in which end users consent to
share their own data. Several cellular infrastructure components
are obscured by end-to-end Internet measurements (such as ra-
dio access and core networks). Extending these insights to a vast
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number of phones, however, remains a difficulty. Mobile network
design (for example, OpenRAN) is becoming more open and inter-
operable, providing more insight into mobile carrier networks.

10.2. Research Reproducibility and Assessment of Security
Measurement Platforms

Existing initiatives to promote reproducibility, public data, and
reevaluation of results have had minimal effectiveness. Due to the
dynamic nature of the Internet, it is challenging to replicate a pre-
vious study. In addition, it is difficult to reuse data collected for
a certain study objective for another objective. Different aims fre-
quently necessitate distinct studies and data sets.

Furthermore, threat intelligence data streams are available from
a variety of public and private sources. The knowledge of this
data, its characterization, and the extent to which it can sup-
port its intended purposes is currently restricted. In addition, re-
searchers make extensive use of threat intelligence systems, phish-
ing blacklists, reputation feeds, and online scan engines to label
harmful URLs and files. Unfortunately, these systems often func-
tion as blackboxes and offer no understanding of how labels are
formed or how dependable the outcomes are. This raises the ques-
tions of whether these labels are even reliable and whether re-
searchers are making the best use of these platforms. Recent ef-
forts have concentrated on the reliability of commercial threat in-
telligence (Bouwman et al., 2020), VirusTotal (Peng et al., 2019b;
Zhu et al., 2020a; 2020b), third-party blocklists (Li et al., 2021),
domain classification platforms (Vallina et al., 2020) and Internet
scanning search engines (Zhao et al., 2022); however, researchers
must pay greater attention to the aforementioned objectives.

10.3. Future Directions

Here, we first elaborate on possible future directions with re-
spect to core elements in Internet security and resiliency, namely,
the DNS ecosystem and routing security. Subsequently, we discuss
newly emerging topics that have attracted considerable attention.

Due to the significance of the DNS environment’s role in de-
tecting and preventing cyber threats, it deserves special consid-
eration despite a large body of research devoted to it. A topic of
interest is indeed the prevalence of domain encryption (e.g., DNS-
over-HTTP). ISPs have traditionally (using DHCP) had control over
the resolver, so recursive server operators have the ability to ban
domains (though skilled users can configure their operating sys-
tem to use a different resolver). Using DNS-over-HTTP, the browser
provider and any native application on a mobile device can de-
termine which recursive resolver is being used. In fact, any appli-
cation may exercise control over name resolution, e.g., by utiliz-
ing a custom resolver or avoiding the DNS entirely, which makes
measurements and large-scale evaluations difficult. Moreover, do-
main name encryption can be a two-edged sword for network ad-
ministrators who desire complete visibility and control over do-
main resolutions in their networks. Domain name information ex-
tracted from network traffic has been especially valuable to the
operation of firewalls, intrusion detection systems, and anti-spam
or anti-phishing filters up until now (Hoang et al., 2020). There-
fore, the ground truth upon which major threat detection systems
rely will shift and new Internet measurement tools need to be de-
veloped to overcome technical and performance related challenges
(Izhikevich et al., 2022a).

Surprisingly, routing security is one of the areas where there is
a plethora of data available. However, increased measurement cov-
erage is just one factor in determining the frequency, reach, and
impact of various hijacking types throughout time. A fundamental
hurdle in the routing security discussion is the difficulty in differ-
entiating sophisticated traffic engineering (with malevolent intent)
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from configuration mistakes. After more than two decades of re-
search, there is currently no consensus on the occurrence and effi-
cacy of route hijacking attacks. Further, there is no public source to
report which ASes/prefixes are being hijacked. Another line of re-
search may be determining the real extent of harm that hijackers
are capable of doing.

Other interesting research directions in this area discussed in
Claffy and Clark (2020) are related to MANRS and MANRS+ initia-
tives. MANRS stands for the Mutually Agree Norms for Routing Se-
curity. The project specifies steps that ISPs should take to mitigate
vulnerabilities such as route hijacking and leaks. The Internet So-
ciety does not collect statistics on its members’ compliance with
these requirements, nor does it conduct research on the effective-
ness of these activities in mitigating risks. Some questions that re-
quire more measurement studies are Claffy and Clark (2020): e Are
MANRS members directly connected today? e Are participating ISP
comply with the requirements? e Which areas of the Internet re-
main vulnerable to a certain hijack? e Do various types of hijacks
spread differently? e Are they all supplied by the same ASes? e
Would a more dense deployment of BGP probes enhance the anal-
ysis’s credibility? Only a non-compliant area may spread a hijack.
e How do these areas appear? e Are they multi-homed? e Can we
do an analysis of the topology surrounding the infamous serial hi-
jacker ASes? e Are clients of that AS at a lower risk of being hi-
jacked? e Can additional benefits be quantified? e Is it feasible to
demonstrate that compliance with MANRS+ benefits the participat-
ing AS?

Apart from fundamental Internet system security, the early
stages of emerging technology adoption are interesting time to per-
form Internet measurement studies in order to give security as-
sessments. In this regard, we found a few major themes:

1. IoT, ICS, and smart cities: Given that we are still in an era of
growing use of smart devices and the creation of more net-
worked devices for the aim of developing smart cities, this is-
sue demands increased attention to regularly examine and an-
alyze the cyber security posture. The variety of IoT devices in
terms of vendor, firmware, kind, and application makes finger-
printing, vulnerability detection, and analysis of attacks against
them difficult on a broad scale. Currently, many studies focus
on a small number of popular gadgets and analyze them in test
environments.

2. Blockchain transactions, P2P networks and decentralized
apps: Large-scale analysis of transactions can uncover illicit
money exchange on their network and help with cyber foren-
sics and assessing cyber attack harm, particularly for ran-
somware. Further, Blockchains are adopted in different appli-
cation domains as an infrastructure. As an example, Helium is
a decentralized blockchain network that leverages a global net-
work of Hotspots to provide long-range connectivity to IoT de-
vices (Jagtap et al., 2021). Analysing blockchain P2P networks
along with other measurement datasets can uncover interest-
ing outcomes.

3. Teleworking: COVID-19 has demonstrated that dynamics in the
area of cyber security have shifted dramatically as a result of
enterprises’ operations being shifted from the city to the house-
hold in telework mode. At home, the cyber security architecture
is not as secure as it is in businesses, and if the house is built
on a smart infrastructure plan, the cyber security attack surface
grows. Additionally, remote work is the norm in today’s world
and will continue to be a part of our lives. As a result, large-
scale measurement and assessment were required to ascertain
the cyber security consequences of teleworking. Measuring this
transition is difficult. Analysts can establish digital footprints to
identify which businesses utilize remote workers, information
flow patterns, and economic effect on businesses and employ-
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ees. They may compare performance and other results by geo-
graphic and network region using this data. Stutz et al. (2021) is
an example of efforts to address teleworking challenges.

4. Large-scale machine learning/deep learning model security
assessment: Machine/deep learning models are widely de-
ployed in cloud, software, IoT devices, websites, and smart-
phone apps. This is mostly because pre-trained models and
simple-to-use cloud-based APIs are available. These applications
take on a variety of forms and facets, ranging from visual filters
to cyber security protections. There is a need to examine them
from a variety of angles, particularly those that threaten the se-
curity and privacy of users and organizations, in order to deter-
mine their current state and potential harm. Recent initiatives
include a holistic comparative analysis of widely deployed ma-
chine learning models on devices in the wild (Almeida et al.,
2021) and an empirical research of machine learning model
protection on mobile devices (Sun et al., 2021).

5. 5G, Edge computing and Software Defined Network (SDN):
The advent of 5G, edge computing and SDN has brought with
it support for the increase in traffic volume and quality of ser-
vice demands resulting from the expanse of the Internet and its
applications. Notably, while each of the aforementioned tech-
nologies aims to increase throughput and reduce latency, 5G
and edge computing are also tightly coupled with amplifying
Internet traffic rates. Such an increase in traffic rates is inher-
ently problematic for typical Internet measurement techniques
running on general purpose CPUs, as their software-based op-
erations may result in undesirable delays (Kfoury et al., 2021),
such as for analyzing, detecting or mitigating attacks. In con-
trast, the Tbps traffic processing capabilities of SDN and its
programmable data plane counterpart allow the same opera-
tions to be easily performed in real-time. To this extent, how
can SDNs and programmable data planes best be leveraged to
obtain real-time Internet measurements in order to promptly
mitigate the risks associated with privacy violations, more so-
phisticated botnets and a plethora of other forms of mali-
ciousness that escalate within 5G environments? Additionally,
the centralized control planes of SDN and programmable data
plane environments inherently offer flexibility and scalability
(AlSabeh et al.,, 2022). In turn, can this flexibility and scala-
bility be harnessed to offer effective cyber security solutions
amid the rapidly varying network conditions of edge comput-
ing schemes?

11. Conclusion

The transition of the Internet to critical infrastructure has left
society more exposed to security issues. Despite significant efforts
by a number of parties (e.g., industry, government, academia) to
mitigate these issues, cyber security threats are running rampant.
Thus, it is necessary to measure the success of both risk reduction
initiatives and defenses deployed. Such efforts require the applica-
tion of unique analysis techniques to large-scale empirical data ob-
tained through Internet measurement methodologies. Third-party
researchers either leverage the data they have access to or perform
Internet measurements; however, both options are frequently diffi-
cult and require individualized approaches to assure accuracy and
completeness. Alternatively, researchers can perform more compre-
hensive investigations by utilizing diverse vantage points, correlat-
ing multiple data sources, and perhaps extending past methodolo-
gies to new predicaments. Unfortunately, the literature associated
with these measurement strategies is scattered, as researchers gen-
erally focus on a few key components. To the best of our knowl-
edge, this is the first study that has performed a comprehensive
aggregation of such literature in order to examine this vital re-
search field in depth. In particular, we investigated threats inside
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specific application domains as well as the threats themselves. A
taxonomy of cyber security-related Internet measurement stud-
ies across multiple application areas was presented to aid aca-
demics working in specific domains. Moreover, a review of the
macroscopically-acquired data analysis of cyber attacks was pre-
sented. Each corresponding study’s scope, measurement breadth,
and vantage size are compared, along with the analytic approach
leveraged. Finally, a discussion of the challenges to Internet mea-
surement was included as well as prospective paths.
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