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Abstract—Mobile edge computing (MEC) is an emerging plat-
form that enables mobile devices to offload computation intensive
tasks to the edge servers co-located with base stations (BSs) at the
network edge for enhanced computation capabilities and low la-
tency. This paper investigates the computation offloading problem
in next-generation massive multiple-input multiple-output (M-
MIMO) non-orthogonal multiple access (NOMA) MEC networks
using a distributed alternating direction method of multipliers
(ADMM) approach. Specifically, we develop a novel ADMM-
based offloading algorithm to optimize latency and increase
energy efficiency over next-generation mobile networks in a
multiuser M-MIMO NOMA -configuration. Simulation results
demonstrate that the proposed offloading scheme significantly
improves the system performance.

Index Terms—MIMO, NOMA, Energy efficiency, latency, Dis-
tributed ADMM.

I. INTRODUCTION

The increasing growth of smart, computation-heavy and
latency-critical Internet of Things (IoT) applications im-
pose great challenges for future wireless communication
systems regarding offloading delay and power efficiency.
Non-orthogonal multiple access (NOMA), multiple-input-
multiple-output (MIMO), and recently mobile edge computing
(MEC) [1] have been acknowledged as promising techniques
to address these challenges [2]. The IoT devices, in MEC
setups, can execute computation offloading by transferring
their computationally demanding tasks to the base station (BS).
The BS, being in close proximity of the IoT devices, then
sends the results, processed by the edge servers, back to the
devices with less latency and traffic load [1].

Quite a few works [3]-[6] study the effective design of joint
communication and computation in multiuser MEC systems.
For example, in [3], You et al. used the orthogonal frequency-
division multiple access (OFDMA) based computation of-
floading to minimize the user’s energy consumption [7]. In
another work [4], Chen et al. used game theory and code-
division multiple access (CDMA) based offloading for the
energy efficiency among the users. A time-division multiple
access (TDMA) based offloading for MEC [5] is proposed
by Bi and Zhang where the computation offloading and local
computing at the users are powered by wireless power transfer
from the BS. Although the research is ongoing, generally
these works cannot achieve the full capacity of the multiple
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access channel from multiple users to the BS, because they use
orthogonal multiple access (OMA) for computation offloading
(e.g., OFDMA and TDMA) or CDMA where interference is
treated as noise. This inspires us to explore new multiple
access schemes for computation offloading in this paper.

NOMA has been regarded as one of the key 5G cellular
network strategies throughout the past few years [7]. Un-
like conventional OMA, NOMA enables multiple users to
communicate with the base station (BS) at the same time
and frequency resources. By using advanced multi-user detec-
tion schemes such as the successive interference cancellation
(SIC) at receivers, the NOMA-based communication system
executes better spectral efficiency than OMA [8]. NOMA is
expected to considerably enhance the performance of multi-
user computation offloading for MEC systems as a result of
its advantages over OMA. Study, e.g. [7], [8] have already
demonstrated the benefits of applying NOMA to MEC; in [7],
for example, the authors exploited NOMA for computation
offloading for enabling multiple users to share the allotted
spectrum. However, there is a lack of total response-time (i.e.,
latency) optimization, and performance comparison for the two
schemes — NOMA and OMA on the response-time and energy
consumption, which is the motivation of this paper and which
can be crucial for network design. Moreover, investigation on
the analytical and realistic computer emulation (i.e. simulation
analysis) performance for a better understanding of the impact
of NOMA on MEC is also lacking in the literature.

In this paper, we investigate the NOMA-based multi-user
computation offloading technique for a multi-user MEC sys-
tem, which consists of one multi-antenna BS and multiple
users. To the best knowledge of our knowledge, the impact of
M-MIMO NOMA on the average task-delay for the users and
energy consumption in the task offloading for edge computing
has not been analyzed yet; not even for M-MIMO only
scenarios without NOMA. The contributions of this paper can
be summarized as follows:

o A time- and energy-efficient MEC design is proposed by
considering three baseline schemes: NOMA offloading,
non-NOMA offloading and local computation only. This
approach minimizes the response time (i.e., latency) at all
users while ensuring the successful task execution at each
user, by jointly optimizing the users’ offloading decision,
transmission powers and rates for offloading.
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o Optimization of the offloading delay for NOMA-MEC by
deriving the offloading delay minimization problem into
a fractional programming using an iterative distributed
ADMM algorithm.

o Analytical and simulation results in terms of average re-
sponse time and number of tasks per second are presented
and compared for the far- and near users. Moreover, the
convergence rate of the proposed ADMM algorithm is
presented to showcase the effect of network structure on
the convergence rate.

The remainder of this paper is organized as follows. Sec-
tion II presents the multiuser MEC system model and net-
work model with multi-antenna NOMA-based computation
offloading, and formulates the overall task-delay and energy
minimization problem for the scope of this paper. Section III
describes the problem formulation, discusses the optimization
and decomposition, and proposes an efficient algorithm to
obtain an optimal solution to the problem of latency reduction
and energy optimization. Section IV presents the simulation
details. Section V provides numerical results to evaluate the
performance of our NOMA-based offloading technique by
comparing it to other benchmark schemes. Finally, Section VI
concludes this paper.

II. SYSTEM MODEL AND NETWORK MODEL

We assume here a transmission, in an uplink M-MIMO
NOMA MEC network, for a BS that is connected to two
users: a near and a far user. To that end, we describe an end-
to-end system model with mathematical details along with
problem formulation to assess the overall task-delay. Here,
first, we define the effect of uploading in a M-MIMO system
for clarifying the channel coefficient. Then we derive various
parameter (e.g., data rate, power consumption, task delay etc.)
details of the computation for near and far users. The details
of the network model is discussed afterwards.

A. System model and network model

In the system model formulation, we consider that a set, U
of mobile users are associated with a BS. The BS communi-
cates with the users using the M-MIMO NOMA scheme. To
reduce the system complexity, here we assume that NOMA
SIC is only applied to a pair of users, ¢, € U; we call them
the near user and the far user. The near user employs an
energy harvesting technique to amplify and forward the signal
to the far user assuming a power splitting ratio method. Fig. 1
illustrates the system model.

We assume the task arrival rate at user i (near user) is \;,
and a task contains b; bits of data. User ¢’s task processing
rate is p; . A proportion of €;)\; tasks are offloaded to BS,
and (1 — ¢;)\; proportion of tasks are processed locally. In
the proposed system model, we use a M/M/1 queuing system.
For the tasks processed by user ¢ locally, the average service
delay (total time a task spends in the system including the time

()

Far user j

£
Base Station (BS) '

A

N

Near user i

Fig. 1. System model with one base station and two users.

spent in waiting and executing) does not depend on scheduling
discipline and is computed using Little’s law [9] as in Eq. 1.

1
_ 1
pi— (1 —ei) N M
Assuming the achieved data rate for user ¢ to send data to
the BS is r;, the task transmission rate and the transmission
queue delay can be obtained from Eq. 2 and Eq. 3 respectively.
The service delay at the edge server is expressed as in Eq. 4.

dp,i =

P = — 2
Vi = 2)
1
dii = 3
A 3)
1
de=—— (4)
He — ZieU Eii
The average task delay for user ¢ can be written as in Eq. 5.
Ai
D; = (1 —€)dpi+ € (dii+de+dri)]  (5)

Zz‘eU Ai

For the purpose of exposition, we focus our study on the
computation offloading and execution phases, by assuming the
duration d,; for computation results for downloading to be

constant. In addition, 2:’\71/\ is used as a normalization factor

i

. el
due to the different task arrival rates of the users.

B. Time delay model

Here, we discuss how to control transmit power of the users
and obtain the achieved offloading data rate. The mathematical
model can be achieved using the following assumptions:

e BS is equipped with /N antennas.

e Here, for M-MIMO we use a similar millimeter-wave

(mmWave) model to [10] stated in Eq. 6.

...€

h; = Bi [1 eI
1422
here, z; is distance between user ¢ and BS.

Now, assuming two users ¢ (near) and j (far), and consid-
ering a maximal ratio combining (MRC) beamformer used at
the BS with a receiver beamforming matrix w; = hff , SINR
for user ¢ can be written as in Eq. 7.

|h{"hil*pi
W h;i|2p; + ZgEU\{i,j} \hf hy|?py + oF

7j7r(N71)01-]T

(6)

SINR; =

)
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here, 07 is the noise power, |k h;|?p; is the interference
by j, and deU\(i’j) |k h,|?p, is the interference by the
mobile users except %,j that transmit data using other M-
MIMO beams. Ideally, when the number of antenna is large,
the beams are narrow, then, >\ (; iy |hH hy|?p, — 0 [10].
For user j, MRC beamforming with w; = hf is used to
decode user j’s signal which maximize SINR as in Eq. 8.

...€

h] B] [1 e—jﬂ'ej

= —jm(N-1)6;1T 8
I+ 27 ] ®

If the BS decode the message of user j without removing the
interference of user ¢ using SIC, the SINR of user 5 becomes
as in Eq. 9.

i1k, o
|h§1hi|2pj + ZggU\{i,j} |hi hj)2pg + 032-
If the BS decodes the message from user ¢ and then use SIC
to cancel user ¢’s signal to decode user j’s signal, the SINR

of j without the interference of i is as in Eq. 10. The data rate
r; for user j can be expressed as in Eq. 11.

|hi"h;i|*p;

SINR;™ =

SINR; = (10
T Ygevrpigy 1 holPpg + 07
r; = Blogy[1 + SINR)] (11)
We use the user selection criterion as stated in Eq. 12.
i = argmax {|h{fhj\2, R h, ...|h{§‘hj|2} (12)

geU\i
For user j, due to SIC, the interference of user ¢ is cancelled,
thus its achieved data rate is the same as that with no user 7’s
interference. For user 7, if there is no interference from user
7, its SINR and data rate can be expressed as in Eq. 13 and
Eq. 14 respectively.

, |hf Ry *pi
SINR; = L (13)
D geM\{ij} |hihy|?pg + oF
r{= Blog,[l + SINR;] (14)

In the next part, we will describe our power consumption
model; there, as described in Eq. (2 - 4), the delay depends
on the data rate r; as in Eq. 15,

r; = Blogy[1 + SINR,]

C. Power consumption model

(15)

The power consumption for local task processing is derived
by Eq. 16.

Ep’i = (1 — Si) )\iep’i (16)

The transmission power consumption to upload the tasks and

the total power consumption rate are expressed as in Eq. 17
and Eq. 18 respectively.

ei)\ibi
LB =pi—— (17)
T
Ei=Epi+ Ei = (1—¢) \iepi + pi- (18)

i
Next, we describe the problem formulation, optimization for
total delay at far and near users, and the decomposition details.

III. PROBLEM FORMULATION, OPTIMIZATION, AND
DECOMPOSITION

A. Problem formulation and optimization

The NOMA technique offers nodes that have enhanced
links with a high signal-to-noise ratio (SNR). This, in turn,
offers enhanced signal quality and data rates. Among the
several evident limitations and challenges, the increase of
the total offloading delay in uplink scheme of the M-MIMO
wireless networks is substantial. Furthermore, in specific ap-
plications, offloading delay is considered as major component
in wireless network, where minimizing the offloading delay
is more challenging than energy consumption. In this work,
the minimization of the offloading delay for NOMA-MEC is
applied by deriving the offloading delay minimization problem
into a fractional programming using an iterative algorithm. The
problem (P ) thus can be formulated as in Eq. 19.

Pr g :argmin { Z Di} =

€irPi i€U (19

€iPi | icUu 2~i€U

Ai
argmin { Z " (1 —€i)dp,i + € (de,i +de + dn)]}

The objective of optimization is to reduce the total latency
including the local data processing and to minimize the
achievable sum-rate consumption at the users. In order to
obtain insight into the performance of the proposed M-MIMO
NOMA offloading optimization scheme, here, we focus on the
special case that two users offload their tasks to an edge server
with M-MIMO NOMA transmission technique. After defining
and formulating the problem (Pr ), the optimization problem
is formulated, in which the proportion of the tasks ¢; to be
offloaded to the edge server as well as the transmit power
p; used for offloading by each of the users are determined
to minimize the total average service delay under the power
consumption constraints as stated in Eq. 20.

E,=E,,+E.;=1—¢€)N\iep; +pi Ei/\%bi < Eaz
' (20a)
0 <pi < Prae (20b)
0<e <1 (20¢)

To address the power consumption constraints, stated in
Eq. 20(b), we propose to use a distributed ADMM approach,
stated in the next section, which can effectively address the
constraint optimization problem. It is worth to mention that
the decomposition process is part of the distributed ADMM
approach discussed in the next section.

B. Decomposition

According to the problem formulation expression in Eq. 19,
it can be easily observed that the objective function is com-
posed of two parts €; and p;. Note that p; is shown in the
constraint in Eq. 20. Since ADMM can only be utilized
to solve the optimization problem without constraints, our
problem cannot be directly solved by ADMM. For that,
decomposition of Eq. 19 should be applied first; the users

1201

Authorized licensed use limited to: CatholicU. Downloaded on May 05,2023 at 19:32:37 UTC from IEEE Xplore. Restrictions apply.



2022 IEEE Global Communications Conference: Mobile and Wireless Networks

maximize their offloaded computation tasks, while on the other
hand, the BS aims to minimize its energy consumption.

Here, we introduce T; auxiliary non-negative variable with
size N indicator function such as 7 = {71, 72, ..., T,,} where
Tv € T,K ={K, Ks,...., Kn} where Ky € K, in order to
convert Eq. 19 to an unconstrained one. As shown in Eq. 20a,
the constraints contain of two parts: F,; and F,;, while in
Eq. 20b, it is p;. We introduce variables x = {x1,x9, ..., T, }
and y = {y1,¥2,....,Un} as copies of 7 and K respectively;
here z,, and y,, are as in Eq. 21.

Tp=Tn, YRnEN
{yn =K, YneN @D
The relation for = and y can be expressed as in Eq. 22.
ngnSEmaz, Yn € N
A_{Ogyngpmaza \V/TlEN (22)

From Eq. 22, we can define the total transmission latency of
Prg as in Eq. 23.

Ualy) = { PRV SRy

00 else

An equivalent formulation of Prp can be expressed as in
Eq. 24.
N
Pp g1 argmin Z U, (x,y)

Y p=1

(24)

Eq. 24 is a convex optimization problem. The augmented
Lagrangian function of P g1 is given as in Eq. 25.

L({xy} AT K}, {e, 5})

N
= Uu(x,y)
=1
+ iv: an(2n — Tn) + i\': B (yn — Kp) )
+5 nz::l(xn ~T)+ < nz::l(yn ~K,)?
here, & = {a, az,...,cn} and B = {B1, B, ..., Bu} are the

Lagrangian multipliers, and v is a penalty parameter [11]
related to the convergence speed of the ADMM algorithm.
To that end, the related dual function can be written as in
Eq. 26 while the dual problem can be expressed as in Eq. 27.

d(a, ) = argmin L({x,y},{T, K} {a,8})  (26)
ey} {TK)
max (e, B) 27

C. Purpose of the ADMM offloading algorithm

We use ADMM to solve the dual problem stated
in Eq. 27; here we denote the value ~th iteration as

Step-1: Given {77,K"},{a”, 37}, we update {x7,y”} by
maximizing L where,
{x"*1,y""} = argmin L({x,y},{T", K"}, {a”,67})

{Xn,¥n}
(28)
Now, Eq. 28 can be decomposed into N parallel sub problems,
and each sub-problem solves the following Eq. 29.

{X’Y+17 y7+1} = argmin{U, (x,y)
{Xn,)’n}
+al(xn —T) + Bllye —K]) (29
+ 500 = T+ 5 (v — K%

It is worth noting that Eq. 29 is an unconstrained convex
optimization problem, where the optimal solution can be
obtained by the gradient descent method. After solving N
parallel sub-problems, we update {z7,y?} with {71 ¢7 1},

Algorithm 1 Distributed Solution using ADMM Algorithm

: procedure Initialize MEC

: Itr <~ Number of iterations

- Solve Eq. 29 to obtain {7
: Set {x7,y7} + {27 7“}
: Update {7, K} using Eq. 31

: Update {«, 8} using Eq. 32

: Return to step 3 until convergence
END

’y+1}

e B N S I S

Step-2: Given {27! 471}, we minimize L with respect to
{T,K} as in Eq. 30.

= Tn)

EPICE

N
TrHL K = argmm a)(x
() g (3

n=1

- Z By — Kn)

n=1
v N
5 Z yn n }

- (30)

Since Eq. 30 is a unconstrained quadratic convex problem,
we derive a low complexity algorithm by simply setting the
gradients of 7 and K to zeros, and the iteration results are
given as in Eq. 31.

l\J@

a’y
Tt =gt 4 7", Vn e N

Kot — o+l ﬁg
n Yn +73

3D
VYn € N

Step-3: Given {z?*! 71} and {77!, K71}, we we op-

timize Eq. 27 with respect to {, 87}, which is achieved by

updating {«, 8} as in Eq. 32.
a;}’l-‘rl — a’)’ + (x’Y"rl

ﬂ;/+1 57+U( y+1 _

~ T, VvneN

32
Kt , VneN 2

X7,y {T7, K"}, {a?,57}. The sequential iterative
optimization steps are given as follows. The above three steps are conducted alternatively until conver-
gence. As depicted the algorithm 1, the distributed nature of
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(b) Sample network with BS, near- and far users, edge server, and their app settings.

Fig. 2. Sample AdvantEDGE setup with BS, two users, edge server and their
corresponding apps.

this algorithm allows for a very efficient parallel implementa-
tion which can be implemented in parallel mobile devices.

IV. SIMULATION SETUP

After getting the initial results using the formulation stated
in above sections, we port these results, e.g., number of
tasks sent to the BS, task transmission error rates, transmit
power etc., on each node to AdvantEDGE [12] for further
simulation. AdvantEDGE is a mobile edge emulation platform
that allows the connection of real cloudlet and UE applications
so that simulation can capture the impact of network design
on application performance [12]; this makes it a very useful
platform for edge network simulation. As it is not feasible to
implement, connect and deploy edge node servers in a real
mobile network infrastructure, our work relies instead on the
realistic emulations using AdvantEDGE. We use it to emulate
our mobile wireless network with one BS and two users and
then compare the results obtained from this platform with our
analysis results. Fig. 2 shows our sample AdvantEDGE setup
with one BS, two users (near and far users), an edge server, and
their corresponding apps. Detailed instructions on designing
such a network can be found in [12].

V. ANALYSIS AND SIMULATION RESULTS

This section presents the performance of NOMA-based
offloading scheme in MEC for two users — a near user
(relatively near to the BS) and a far user (relatively far than
the near user from the BS). Below we present analysis and
simulation results which we achieved by using the formulation
and simulation setup as described in previous sections. The
distances between the BS, and the two users are 200 and
400 meters. Each task contains 10,000 bits and the path loss
exponent is set to 3.5. The system bandwidth for computation
offloading is set as 2MHz and the noise power at the BS

0.55

T
—&— Analytical result (uplink) : Eq. 15
~—&-- Simulation result (uplink)

0.5
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Fig. 3. Avgerage response time vs. number of tasks per second at each user:
analysis and simulation results.
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Fig. 4. Average response time vs. number of task per second at each user.

receiver is set to —174 + 10log1o(BW); BW = bandwidth.
Except for Fig. 7, we use N = 64 no. of antennas for all of
the other figures; in Fig. 7, we vary N from 32 to 128.

A. Verification of ADMM-based NOMA offloading method

Fig. 3 shows the analytical and simulation results for the
average response time versus number of tasks per second
at each user. Here the simulation results are obtained using
AdvantEdge [12]. Here, we can observe the curve for the
analytical result in Eq. 15 match with the simulation result’s
curve, which verifies the accuracy of our analysis.

Fig. 4 shows that the average response time increases as the
as number of task per second increases. Here, we use three
base schemes — i) offloading (uplink) with NOMA+ADMM,
ii) offloading without NOMA, and iii) local computing only.
The NOMA+ADMM offloading scheme is observed to achieve
the smallest response time among all the schemes. Compared
with the non-NOMA-based offloading scheme, significantly
less response time is required by the NOMA+ADMM based
one, especially when number of task per second becomes
large. It is also observed that the non-NOMA-based scheme
out-performs the local-computing-only scheme.

Fig. 5 demonstrates that the achievable rate becomes satu-
rated after a transmit power of 10d Bm for the far user which is
a typical characteristic for all NOMA networks. This saturation
is caused due to the interference experienced by the far user.
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Fig. 5. Power consumption vs. achievable rates for far- and near users.
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Fig. 6. Convergence rate of the distributed ADMM algorithm.

It would not occur if the required data rate of the far user is
less than the saturation limit. OMA does not suffer from such
problems, due to its simultaneous transmission capability.

B. Characteristics of ADMM-based NOMA offloading method

Fig. 6 shows the convergence performance of our distributed
ADMM algorithm 1 for our proposed network. Here, we see
that our proposed algorithm can converge to the global optimal
solution within the first few iterations (less than 30 iterations).

Fig. 7 shows a depiction of the average response time of
our NOMA-based network by varying the number of antennas;
here we use N = [32, 64, 96, 128] antennas respectively. Here,
we observe the behavior of the network in terms of the average
response time on how it varies as the number of antennas in the
network changes. The result shows that, when the number of
antennas becomes larger, there will be higher antenna gains
and consequently, the achievable data rate would also be
higher. Hence, the average response time would be lower.

VI. CONCLUSION AND FUTURE WORKS

This paper presents a time- and energy-efficient MEC
design, by using a distributed ADMM technique, which con-
siders three baseline schemes: NOMA offloading, non-NOMA
offloading and local computation only. This design minimizes
the response time at all users while ensuring the successful
task execution at each user, by jointly optimizing the users’
offloading decision, transmission powers and rates for offload-
ing. Here, the offloading delay for NOMA-MEC is optimized
by deriving the offloading delay minimization problem into a

Average response time

02 I I I I

1 2 3 4 5 6 7 8
Number of task per second

Fig. 7. Average response time vs. number of antennas at each user.

fractional programming using an iterative distributed ADMM
algorithm. The proposed system- and network model consists
of a near and a far user to the BS where the near user employs
an energy harvesting technique to amplify and forward the
signal to the far user assuming a power splitting ratio method.
Our numerical analysis results demonstrate that the proposed
technique efficiently minimizes offloading delay and optimize
the energy for an uplink NOMA-based MEC network. More-
over, our simulation results, and the rate of convergence of
the proposed algorithm further prove its efficiency. In future,
we would like to incorporate multiple near users in our design
and analyse its impact on the effectiveness and performance.
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