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Abstract—Mobile edge computing (MEC) is an emerging plat-
form that enables mobile devices to offload computation intensive
tasks to the edge servers co-located with base stations (BSs) at the
network edge for enhanced computation capabilities and low la-
tency. This paper investigates the computation offloading problem
in next-generation massive multiple-input multiple-output (M-
MIMO) non-orthogonal multiple access (NOMA) MEC networks
using a distributed alternating direction method of multipliers
(ADMM) approach. Specifically, we develop a novel ADMM-
based offloading algorithm to optimize latency and increase
energy efficiency over next-generation mobile networks in a
multiuser M-MIMO NOMA configuration. Simulation results
demonstrate that the proposed offloading scheme significantly
improves the system performance.

Index Terms—MIMO, NOMA, Energy efficiency, latency, Dis-
tributed ADMM.

I. INTRODUCTION

The increasing growth of smart, computation-heavy and

latency-critical Internet of Things (IoT) applications im-

pose great challenges for future wireless communication

systems regarding offloading delay and power efficiency.

Non-orthogonal multiple access (NOMA), multiple-input-

multiple-output (MIMO), and recently mobile edge computing

(MEC) [1] have been acknowledged as promising techniques

to address these challenges [2]. The IoT devices, in MEC

setups, can execute computation offloading by transferring

their computationally demanding tasks to the base station (BS).

The BS, being in close proximity of the IoT devices, then

sends the results, processed by the edge servers, back to the

devices with less latency and traffic load [1].

Quite a few works [3]–[6] study the effective design of joint

communication and computation in multiuser MEC systems.

For example, in [3], You et al. used the orthogonal frequency-

division multiple access (OFDMA) based computation of-

floading to minimize the user’s energy consumption [7]. In

another work [4], Chen et al. used game theory and code-

division multiple access (CDMA) based offloading for the

energy efficiency among the users. A time-division multiple

access (TDMA) based offloading for MEC [5] is proposed

by Bi and Zhang where the computation offloading and local

computing at the users are powered by wireless power transfer

from the BS. Although the research is ongoing, generally

these works cannot achieve the full capacity of the multiple

access channel from multiple users to the BS, because they use

orthogonal multiple access (OMA) for computation offloading

(e.g., OFDMA and TDMA) or CDMA where interference is

treated as noise. This inspires us to explore new multiple

access schemes for computation offloading in this paper.
NOMA has been regarded as one of the key 5G cellular

network strategies throughout the past few years [7]. Un-

like conventional OMA, NOMA enables multiple users to

communicate with the base station (BS) at the same time

and frequency resources. By using advanced multi-user detec-

tion schemes such as the successive interference cancellation

(SIC) at receivers, the NOMA-based communication system

executes better spectral efficiency than OMA [8]. NOMA is

expected to considerably enhance the performance of multi-

user computation offloading for MEC systems as a result of

its advantages over OMA. Study, e.g. [7], [8] have already

demonstrated the benefits of applying NOMA to MEC; in [7],

for example, the authors exploited NOMA for computation

offloading for enabling multiple users to share the allotted

spectrum. However, there is a lack of total response-time (i.e.,

latency) optimization, and performance comparison for the two

schemes – NOMA and OMA on the response-time and energy

consumption, which is the motivation of this paper and which

can be crucial for network design. Moreover, investigation on

the analytical and realistic computer emulation (i.e. simulation

analysis) performance for a better understanding of the impact

of NOMA on MEC is also lacking in the literature.
In this paper, we investigate the NOMA-based multi-user

computation offloading technique for a multi-user MEC sys-

tem, which consists of one multi-antenna BS and multiple

users. To the best knowledge of our knowledge, the impact of

M-MIMO NOMA on the average task-delay for the users and

energy consumption in the task offloading for edge computing

has not been analyzed yet; not even for M-MIMO only

scenarios without NOMA. The contributions of this paper can

be summarized as follows:

• A time- and energy-efficient MEC design is proposed by

considering three baseline schemes: NOMA offloading,

non-NOMA offloading and local computation only. This

approach minimizes the response time (i.e., latency) at all

users while ensuring the successful task execution at each

user, by jointly optimizing the users’ offloading decision,

transmission powers and rates for offloading.978-1-6654-3540-6/22/$31.00 © 2022 IEEE
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• Optimization of the offloading delay for NOMA-MEC by

deriving the offloading delay minimization problem into

a fractional programming using an iterative distributed

ADMM algorithm.

• Analytical and simulation results in terms of average re-

sponse time and number of tasks per second are presented

and compared for the far- and near users. Moreover, the

convergence rate of the proposed ADMM algorithm is

presented to showcase the effect of network structure on

the convergence rate.

The remainder of this paper is organized as follows. Sec-

tion II presents the multiuser MEC system model and net-

work model with multi-antenna NOMA-based computation

offloading, and formulates the overall task-delay and energy

minimization problem for the scope of this paper. Section III

describes the problem formulation, discusses the optimization

and decomposition, and proposes an efficient algorithm to

obtain an optimal solution to the problem of latency reduction

and energy optimization. Section IV presents the simulation

details. Section V provides numerical results to evaluate the

performance of our NOMA-based offloading technique by

comparing it to other benchmark schemes. Finally, Section VI

concludes this paper.

II. SYSTEM MODEL AND NETWORK MODEL

We assume here a transmission, in an uplink M-MIMO

NOMA MEC network, for a BS that is connected to two

users: a near and a far user. To that end, we describe an end-

to-end system model with mathematical details along with

problem formulation to assess the overall task-delay. Here,

first, we define the effect of uploading in a M-MIMO system

for clarifying the channel coefficient. Then we derive various

parameter (e.g., data rate, power consumption, task delay etc.)

details of the computation for near and far users. The details

of the network model is discussed afterwards.

A. System model and network model

In the system model formulation, we consider that a set, U

of mobile users are associated with a BS. The BS communi-

cates with the users using the M-MIMO NOMA scheme. To

reduce the system complexity, here we assume that NOMA

SIC is only applied to a pair of users, i, j ∈ U ; we call them

the near user and the far user. The near user employs an

energy harvesting technique to amplify and forward the signal

to the far user assuming a power splitting ratio method. Fig. 1

illustrates the system model.

We assume the task arrival rate at user i (near user) is λi,

and a task contains bi bits of data. User i’s task processing

rate is μi . A proportion of εiλi tasks are offloaded to BS,

and (1 − εi)λi proportion of tasks are processed locally. In

the proposed system model, we use a M/M/1 queuing system.

For the tasks processed by user i locally, the average service

delay (total time a task spends in the system including the time

Fig. 1. System model with one base station and two users.

spent in waiting and executing) does not depend on scheduling

discipline and is computed using Little’s law [9] as in Eq. 1.

dp,i =
1

μi − (1− εi)λi
(1)

Assuming the achieved data rate for user i to send data to

the BS is ri, the task transmission rate and the transmission

queue delay can be obtained from Eq. 2 and Eq. 3 respectively.

The service delay at the edge server is expressed as in Eq. 4.

vi =
ri
bi

(2)

dt,i =
1

vi − εiλi
(3)

dc =
1

μc −
∑

i∈U εiλi
(4)

The average task delay for user i can be written as in Eq. 5.

Di =
λi∑
i∈U λi

[(1− εi).dp,i + εi (dt,i + dc + dri)] (5)

For the purpose of exposition, we focus our study on the

computation offloading and execution phases, by assuming the

duration dri for computation results for downloading to be

constant. In addition, λi∑
i∈U λi

is used as a normalization factor

due to the different task arrival rates of the users.

B. Time delay model

Here, we discuss how to control transmit power of the users

and obtain the achieved offloading data rate. The mathematical

model can be achieved using the following assumptions:

• BS is equipped with N antennas.

• Here, for M-MIMO we use a similar millimeter-wave

(mmWave) model to [10] stated in Eq. 6.

hi =
βi

1 + zαi
[1 e−jπθi ...e−jπ(N−1)θi ]T (6)

here, zi is distance between user i and BS.

Now, assuming two users i (near) and j (far), and consid-

ering a maximal ratio combining (MRC) beamformer used at

the BS with a receiver beamforming matrix wi = hH
i , SINR

for user i can be written as in Eq. 7.

SINRi =
|hH

i hi|2pi
|hH

i hj |2pj +
∑

g∈U\{i,j} |hH
i hg|2pg + σ2

i

(7)
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here, σ2
i is the noise power, |hH

i hj |2pj is the interference

by j, and
∑

g∈U\(i,j) |hH
i hg|2pg is the interference by the

mobile users except i, j that transmit data using other M-

MIMO beams. Ideally, when the number of antenna is large,

the beams are narrow, then,
∑

g∈U\{i,j} |hH
i hg|2pg → 0 [10].

For user j, MRC beamforming with wj = hH
j is used to

decode user j’s signal which maximize SINR as in Eq. 8.

hj =
βj

1 + zαj
[1 e−jπθj ...e−jπ(N−1)θj ]T (8)

If the BS decode the message of user j without removing the

interference of user i using SIC, the SINR of user j becomes

as in Eq. 9.

SINRi→j
j =

|hH
j hj |2pj

|hH
j hi|2pj +

∑
g∈U\{i,j} |hH

i hj |2pg + σ2
j

(9)

If the BS decodes the message from user i and then use SIC

to cancel user i’s signal to decode user j’s signal, the SINR

of j without the interference of i is as in Eq. 10. The data rate

rj for user j can be expressed as in Eq. 11.

SINRj =
|hH

j hj |2pj∑
g∈U\{i,j} |hH

j hg|2pg + σ2
j

(10)

rj = B log2[1 + SINRj ] (11)

We use the user selection criterion as stated in Eq. 12.

i = argmax
g∈U\i

{
|hH

1 hj |2, ...|hH
g hj |2, ...|hH

|U |hj |2
}

(12)

For user j, due to SIC, the interference of user i is cancelled,

thus its achieved data rate is the same as that with no user i’s
interference. For user i, if there is no interference from user

j, its SINR and data rate can be expressed as in Eq. 13 and

Eq. 14 respectively.

SINRí =
|hH

i hj |2pi∑
g∈M\{i,j} |hH

i hg|2pg + σ2
i

(13)

rí = B log2[1 + SINRí] (14)

In the next part, we will describe our power consumption

model; there, as described in Eq. (2 - 4), the delay depends

on the data rate ri as in Eq. 15,

ri = B log2[1 + SINRi] (15)

C. Power consumption model
The power consumption for local task processing is derived

by Eq. 16.

Ep,i = (1− εi)λiep,i (16)

The transmission power consumption to upload the tasks and

the total power consumption rate are expressed as in Eq. 17

and Eq. 18 respectively.

Et,i = pi
εiλibi
ri

(17)

Ei = Ep,i + Et,i = (1− εi)λiep,i + pi
εiλibi
ri

(18)

Next, we describe the problem formulation, optimization for

total delay at far and near users, and the decomposition details.

III. PROBLEM FORMULATION, OPTIMIZATION, AND

DECOMPOSITION

A. Problem formulation and optimization

The NOMA technique offers nodes that have enhanced

links with a high signal-to-noise ratio (SNR). This, in turn,

offers enhanced signal quality and data rates. Among the

several evident limitations and challenges, the increase of

the total offloading delay in uplink scheme of the M-MIMO

wireless networks is substantial. Furthermore, in specific ap-

plications, offloading delay is considered as major component

in wireless network, where minimizing the offloading delay

is more challenging than energy consumption. In this work,

the minimization of the offloading delay for NOMA-MEC is

applied by deriving the offloading delay minimization problem

into a fractional programming using an iterative algorithm. The

problem (PLE) thus can be formulated as in Eq. 19.

PLE :argmin
εi,pi

⎧⎨
⎩

∑
i∈U

Di

⎫⎬
⎭ =

argmin
εi,pi

⎧⎨
⎩

∑
i∈U

λi∑
i∈U λi

[(1 − εi).dp,i + εi (dt,i + dc + dri)]

⎫⎬
⎭

(19)

The objective of optimization is to reduce the total latency

including the local data processing and to minimize the

achievable sum-rate consumption at the users. In order to

obtain insight into the performance of the proposed M-MIMO

NOMA offloading optimization scheme, here, we focus on the

special case that two users offload their tasks to an edge server

with M-MIMO NOMA transmission technique. After defining

and formulating the problem (PLE), the optimization problem

is formulated, in which the proportion of the tasks εi to be

offloaded to the edge server as well as the transmit power

pi used for offloading by each of the users are determined

to minimize the total average service delay under the power

consumption constraints as stated in Eq. 20.

Ei = Ep,i + Et,i = (1− εi)λiep,i + pi
εiλibi
ri

≤ Emax

(20a)

0 ≤ pi ≤ Pmax (20b)

0 ≤ εi ≤ 1 (20c)

To address the power consumption constraints, stated in

Eq. 20(b), we propose to use a distributed ADMM approach,

stated in the next section, which can effectively address the

constraint optimization problem. It is worth to mention that

the decomposition process is part of the distributed ADMM

approach discussed in the next section.

B. Decomposition

According to the problem formulation expression in Eq. 19,

it can be easily observed that the objective function is com-

posed of two parts εi and pi. Note that pi is shown in the

constraint in Eq. 20. Since ADMM can only be utilized

to solve the optimization problem without constraints, our

problem cannot be directly solved by ADMM. For that,

decomposition of Eq. 19 should be applied first; the users
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maximize their offloaded computation tasks, while on the other

hand, the BS aims to minimize its energy consumption.

Here, we introduce Ti auxiliary non-negative variable with

size N indicator function such as T = {T1, T2, ...., Tn} where

TN ∈ T , K = {K1,K2, ....,Kn} where KN ∈ K, in order to

convert Eq. 19 to an unconstrained one. As shown in Eq. 20a,

the constraints contain of two parts: Ep,i and Et,i, while in

Eq. 20b, it is pi. We introduce variables x = {x1, x2, ...., xn}
and y = {y1, y2, ...., yn} as copies of T and K respectively;

here xn and yn are as in Eq. 21.{
xn = Tn, ∀n ∈ N
yn = Kn, ∀n ∈ N

(21)

The relation for x and y can be expressed as in Eq. 22.

Λ =

{
0 ≤ xn ≤ Emax, ∀n ∈ N
0 ≤ yn ≤ Pmax, ∀n ∈ N

(22)

From Eq. 22, we can define the total transmission latency of

PLE as in Eq. 23.

Un(x,y) =

{
PLE(x,y) x,y ∈ λ

∞ else
(23)

An equivalent formulation of PLE can be expressed as in

Eq. 24.

PLE1 : argmin
x,y

N∑
n=1

Un(x,y) (24)

Eq. 24 is a convex optimization problem. The augmented

Lagrangian function of PLE1 is given as in Eq. 25.

L({x,y}, {T ,K}, {α, β})

=
N∑

n=1

Un(x,y)

+

N∑
n=1

αn(xn − Tn) +
N∑

n=1

βn(yn −Kn)

+
v

2

N∑
n=1

(xn − Tn)2 +
v

2

N∑
n=1

(yn −Kn)
2

(25)

here, α = {α1, α2, ..., αn} and β = {β1, β2, ..., βn} are the

Lagrangian multipliers, and v is a penalty parameter [11]

related to the convergence speed of the ADMM algorithm.

To that end, the related dual function can be written as in

Eq. 26 while the dual problem can be expressed as in Eq. 27.

d(α, β) = argmin
{x,y},{T ,K}

L({x,y}, {T ,K}, {α, β}) (26)

max
α,β

d(α, β) (27)

C. Purpose of the ADMM offloading algorithm

We use ADMM to solve the dual problem stated

in Eq. 27; here we denote the value γth iteration as

{xγ ,yγ}, {T γ ,Kγ}, {αγ , βγ}. The sequential iterative

optimization steps are given as follows.

Step-1: Given {T γ ,Kγ}, {αγ , βγ}, we update {xγ ,yγ} by

maximizing L where,

{xγ+1,yγ+1} = argmin
{xn,yn}

L({x,y}, {T γ ,Kγ}, {αγ , βγ})
(28)

Now, Eq. 28 can be decomposed into N parallel sub problems,

and each sub-problem solves the following Eq. 29.

{xγ+1,yγ+1} = argmin
{xn,yn}

{Un(x,y)

+ αγ
n(xn − T γ

n ) + βγ
n(yn −Kγ

n)

+
v

2
(xn − T γ

n )2 +
v

2
(yn −Kγ

n)
2}

(29)

It is worth noting that Eq. 29 is an unconstrained convex

optimization problem, where the optimal solution can be

obtained by the gradient descent method. After solving N
parallel sub-problems, we update {xγ , yγ} with {xγ+1, yγ+1}.

Algorithm 1 Distributed Solution using ADMM Algorithm

1: procedure Initialize MEC
2: Itr ← Number of iterations
3: Solve Eq. 29 to obtain {xγ+1, yγ+1}
4: Set {xγ , yγ} ← {xγ+1, yγ+1}
5: Update {T ,K} using Eq. 31
6: Update {α, β} using Eq. 32
7: Return to step 3 until convergence
8: END

Step-2: Given {xγ+1, yγ+1}, we minimize L with respect to

{T ,K} as in Eq. 30.

{
T γ+1,Kγ+1

}
= argmin

{T ,K}

{
N∑

n=1

αγ
n(x

γ
n − Tn)

+

N∑
n=1

βγ
n(y

γ
n −Kn) +

v

2

N∑
n=1

(xγ
n − Tn)2

+
v

2

N∑
n=1

(yγn −Kn)
2

}
(30)

Since Eq. 30 is a unconstrained quadratic convex problem,

we derive a low complexity algorithm by simply setting the

gradients of T and K to zeros, and the iteration results are

given as in Eq. 31.

T γ+1
n = xγ+1

n +
αγ
n

v
, ∀n ∈ N

Kγ+1
n = yγ+1

n +
βγ
n

v
, ∀n ∈ N

(31)

Step-3: Given {xγ+1, yγ+1} and {T γ+1,Kγ+1}, we we op-

timize Eq. 27 with respect to {αγ , βγ}, which is achieved by

updating {α, β} as in Eq. 32.

αγ+1
n = αγ

n + v
(
xγ+1
n − T γ+1

n

)
, ∀n ∈ N

βγ+1
n = βγ

n + v
(
yγ+1
n −Kγ+1

n

)
, ∀n ∈ N

(32)

The above three steps are conducted alternatively until conver-

gence. As depicted the algorithm 1, the distributed nature of
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Fig. 2. Sample AdvantEDGE setup with BS, two users, edge server and their
corresponding apps.

this algorithm allows for a very efficient parallel implementa-

tion which can be implemented in parallel mobile devices.

IV. SIMULATION SETUP

After getting the initial results using the formulation stated

in above sections, we port these results, e.g., number of

tasks sent to the BS, task transmission error rates, transmit

power etc., on each node to AdvantEDGE [12] for further

simulation. AdvantEDGE is a mobile edge emulation platform

that allows the connection of real cloudlet and UE applications

so that simulation can capture the impact of network design

on application performance [12]; this makes it a very useful

platform for edge network simulation. As it is not feasible to

implement, connect and deploy edge node servers in a real

mobile network infrastructure, our work relies instead on the

realistic emulations using AdvantEDGE. We use it to emulate

our mobile wireless network with one BS and two users and

then compare the results obtained from this platform with our

analysis results. Fig. 2 shows our sample AdvantEDGE setup

with one BS, two users (near and far users), an edge server, and

their corresponding apps. Detailed instructions on designing

such a network can be found in [12].

V. ANALYSIS AND SIMULATION RESULTS

This section presents the performance of NOMA-based

offloading scheme in MEC for two users – a near user

(relatively near to the BS) and a far user (relatively far than

the near user from the BS). Below we present analysis and

simulation results which we achieved by using the formulation

and simulation setup as described in previous sections. The

distances between the BS, and the two users are 200 and

400 meters. Each task contains 10, 000 bits and the path loss

exponent is set to 3.5. The system bandwidth for computation

offloading is set as 2MHz and the noise power at the BS

Fig. 3. Avgerage response time vs. number of tasks per second at each user:
analysis and simulation results.

Fig. 4. Average response time vs. number of task per second at each user.

receiver is set to −174 + 10log10(BW );BW = bandwidth.

Except for Fig. 7, we use N = 64 no. of antennas for all of

the other figures; in Fig. 7, we vary N from 32 to 128.

A. Verification of ADMM-based NOMA offloading method

Fig. 3 shows the analytical and simulation results for the

average response time versus number of tasks per second

at each user. Here the simulation results are obtained using

AdvantEdge [12]. Here, we can observe the curve for the

analytical result in Eq. 15 match with the simulation result’s

curve, which verifies the accuracy of our analysis.

Fig. 4 shows that the average response time increases as the

as number of task per second increases. Here, we use three

base schemes – i) offloading (uplink) with NOMA+ADMM,

ii) offloading without NOMA, and iii) local computing only.

The NOMA+ADMM offloading scheme is observed to achieve

the smallest response time among all the schemes. Compared

with the non-NOMA-based offloading scheme, significantly

less response time is required by the NOMA+ADMM based

one, especially when number of task per second becomes

large. It is also observed that the non-NOMA-based scheme

out-performs the local-computing-only scheme.

Fig. 5 demonstrates that the achievable rate becomes satu-

rated after a transmit power of 10dBm for the far user which is

a typical characteristic for all NOMA networks. This saturation

is caused due to the interference experienced by the far user.
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Fig. 5. Power consumption vs. achievable rates for far- and near users.

Fig. 6. Convergence rate of the distributed ADMM algorithm.

It would not occur if the required data rate of the far user is

less than the saturation limit. OMA does not suffer from such

problems, due to its simultaneous transmission capability.

B. Characteristics of ADMM-based NOMA offloading method

Fig. 6 shows the convergence performance of our distributed

ADMM algorithm 1 for our proposed network. Here, we see

that our proposed algorithm can converge to the global optimal

solution within the first few iterations (less than 30 iterations).

Fig. 7 shows a depiction of the average response time of

our NOMA-based network by varying the number of antennas;

here we use N = [32, 64, 96, 128] antennas respectively. Here,

we observe the behavior of the network in terms of the average

response time on how it varies as the number of antennas in the

network changes. The result shows that, when the number of

antennas becomes larger, there will be higher antenna gains

and consequently, the achievable data rate would also be

higher. Hence, the average response time would be lower.

VI. CONCLUSION AND FUTURE WORKS

This paper presents a time- and energy-efficient MEC

design, by using a distributed ADMM technique, which con-

siders three baseline schemes: NOMA offloading, non-NOMA

offloading and local computation only. This design minimizes

the response time at all users while ensuring the successful

task execution at each user, by jointly optimizing the users’

offloading decision, transmission powers and rates for offload-

ing. Here, the offloading delay for NOMA-MEC is optimized

by deriving the offloading delay minimization problem into a

Fig. 7. Average response time vs. number of antennas at each user.

fractional programming using an iterative distributed ADMM

algorithm. The proposed system- and network model consists

of a near and a far user to the BS where the near user employs

an energy harvesting technique to amplify and forward the

signal to the far user assuming a power splitting ratio method.

Our numerical analysis results demonstrate that the proposed

technique efficiently minimizes offloading delay and optimize

the energy for an uplink NOMA-based MEC network. More-

over, our simulation results, and the rate of convergence of

the proposed algorithm further prove its efficiency. In future,

we would like to incorporate multiple near users in our design

and analyse its impact on the effectiveness and performance.
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