
CH3: A Mixed Workload Benchmark

for Scalable NoSQL

Mehnaz Tabassum Mahin1†, Bo-Chun Wang2, Kamini Jagtiani2‡, Michael Carey23, and Keshav Murthy2

1University of California, Riverside, 2Couchbase, Inc., 3University of California, Irvine
1mmahi004@ucr.edu

AbstractÐDatabase management systems that support hybrid
workload (i.e., HTAP or HOAP) first arose in the relational world.
Such hybrid data management support in the document database
of the NoSQL world is also gaining popularity in both commercial
and research arenas. The CH2 benchmark was proposed in
2021 to evaluate such hybrid NoSQL platforms. In addition to
the operational and analytical services, full-text search is a key
component of NoSQL platforms that provides search engine-like
query processing capability on JSON documents. In this paper,
we present CH3, a mixed workload benchmark for evaluating
scalable NoSQL platforms with OLTP, OLAP, and full-text search
(FTS) workloads. Like CH2, the CH3 benchmark borrows from
and extends both TPC-C and TPC-H. However, CH3 generates
meaningful text contents and includes necessary FTS indexes
and relevant FTS queries on these indexes to handle the FTS
workload. This paper presents the required extensions from CH2
to address the FTS workload, the detailed design of CH3, and
the performance results by running the CH3 benchmark against
Couchbase Server (that offers Query, Analytics, and Search
services). The results provide insight into the performance of
Search Service, the performance isolation among OLTP, OLAP
and FTS workloads, and the horizontal scalability of Couchbase
Server as well as the effectiveness of CH3 for evaluating a mixed
workload performance of such NoSQL platforms.

Index TermsÐbenchmark, NoSQL, OLTP, OLAP, full-text
search

I. INTRODUCTION

Traditionally, operational (OLTP) and analytical (OLAP)

processing are categorized as two separate workloads, with

each running on their own separate infrastructures. OLTP sys-

tems serve transaction-oriented applications and provides high

availability and low latency to a large number of users. OLAP

systems analyze large amounts of business data for a relatively

small number of users. Both systems play vital role to the day-

to-day operations of enterprises and organizations. To address

the pressing need for timely analytics, and bridge OLTP and

OLAP in a single infrastructure, database system architectures

with hybrid data management support ± referred to as HTAP

(Hybrid Transactional/Analytical Processing [1]) or HOAP

(Hybrid Operational/Analytical Processing [2]) support ± have

gained traction in both industry and research. Originating in

the relational world, hybrid platforms are commonly linked to

other concurrent high-end server technology trends; columnar

storage and main-memory data management are two of the

technologies that are often assumed to be part of that picture.

†This work was done while Mehnaz Tabassum Mahin was interning at
Couchbase, Inc.

‡This work was done while Kamini Jagtiani was at Couchbase, Inc.

Traditional relational database systems are designed for

strict consistency and data control; thus they tend to fall

short of the agility, flexibility, and scalability demands of

today’s new applications that support millions of interactions

with end-users. This has led to the emergence of the new

generation of data management systems known as NoSQL

systems [3]. Couchbase Server [4] and MongoDB [5] are

two examples of document databases, sub-category of such

NoSQL systems. NoSQL systems aim to scale incrementally

and horizontally on clusters of computers as well as to reduce

the mismatch between the applications’ view of data and

its persisted view, thus enabling the players ± ranging from

application developers to DBAs and data analysts as well ±

to work with their data in its natural form. In this paper, we

focus on NoSQL systems and aim to explore key aspects of

NoSQL platforms’ support for HOAP 1 and search engine-like

full-text search.

In the relational world, TPC-C [6] and TPC-H [7] are

two standard benchmarks, where TPC-C is for transactional

query processing performance and TPC-H is for analytical

processing performance. In 2011, a mixed workload CH-

benCHmark [8] was introduced in the DBTest workshop,

it measures the performance by combining a transactional

workload based on TPC-C and a corresponding TPC-H-

equivalent analytical workload. For the NoSQL world, a mixed

workload, CH2 [9] was introduced in the TPCTC conference

in 2021. It is based on extending and improving the original

CH-benCHmark. It evaluates hybrid NoSQL platforms with

operational and analytical workloads.

It is to be noted that both TPC-C and TPC-H, and even CH2,

mainly focus on numeric, date/time, and simple string fields;

and text fields are not queried in these existing benchmarks.

However, Full-Text Search (FTS) is an important service of

NoSQL platforms that provides a Google-like search capability

on JSON documents. A benchmark has yet to be proposed

to evaluate FTS workload performance for scalable NoSQL

systems. In this paper, we propose a new benchmark for

evaluating a mixed workload performance with operational,

analytical, and FTS in the document database world.

The remainder of the paper is structured as follows: Sec-

tion II briefly studies related works on HTAP systems along

with existing SQL and NoSQL benchmarks. Section III dis-

1We prefer the term HOAP over HTAP in the context of NoSQL, as
it seems less tied to strict ACID transactions and columnar, main-memory
technology presumptions.



cusses an overview of Couchbase Server and its approach to

supporting HOAP and FTS. Section IV describes the CH3

benchmark design details. Section V presents the performance

results obtained by running our benchmark on a Couchbase

Server cluster with different workload settings. Section VI

concludes the paper with a summary of the CH3 benchmark

and the results.

II. RELATED WORK

We briefly review related work on HTAP/HOAP and

database benchmarks.

A. HTAP (HOAP)

As mentioned in Section I, the relational database world has

witnessed an emergence of HTAP capabilities in a number of

vendors’ systems in recent years as well as growing research

interest related to HTAP. Noteworthy HTAP offerings include

such systems as HyPer [10] (born in research, but now owned

by and used in Tableau) and SAP-HANA [11]. Other signifi-

cant commercial relational HTAP offerings include DB2 BLU

from IBM [12], Oracle’s dual-engine main-memory database

solution [13], and the real-time analytical processing capabili-

ties now found in Microsoft’s SQL Server [14]. As an example

on the research side, a recent paper introduced and explored

the concept of adaptive HTAP and how to manage the core

and memory resources of a powerful (scale-up) many-core

NUMA server running a mixed main-memory workload [15].

Snowflake has recently announced Unistore [16] running both

transactional and analytical data in a single platform.

Stepping back, one sees that R&D in the relational HTAP

world has focused largely on in-memory scenarios for rel-

atively ªsmallº operational databases. Now that multi-core

servers with very large main memories are available, and

given the degree of compression enabled by columnar storage,

it is possible for main memory to hold much or even all

of an enterprises’ operational business data. As a result,

most current HTAP database offerings rely on main-memory

database technology. And, as would then be expected, the

focus of these offerings is on single-server architectures ± i.e.,

on scaling up rather than scaling out.

In contrast, to the relational world, providing HOAP for

scalable NoSQL document databases brings different problems

that require different solutions. To scale document databases

while providing HOAP, the focus needs to be on Big Data ±

and flexible, schema-less data. In addition, NoSQL systems

and applications have somewhat different transactional con-

sistency needs [3]. Data timeliness is equally important in the

NoSQL world, but there is less of a need to focus on reducing

or eliminating ACID transaction interference and more of a

need to focus on the successful provision of performance

isolation at the level of a cluster’s physical resources.

B. Benchmarks

Many benchmarks have been developed to evaluate the

performance of relational database systems under different

application scenarios [17]. The most notable are the TPC-x

benchmarks developed by the Transaction Processing Council

(TPC). These include TPC-C [6] for transaction processing

as well as TPC-H [7] and TPC-DS [18] for decision support

and analytics. There has also been a variety of benchmarks

proposed and employed in the NoSQL world, including

YCSB [19] for key-value store workloads, BigFUN [20]

for Big Data management platform operations’ performance,

MongoDB’s adaptation of TPC-C to evaluate NoSQL transac-

tional performance [5], and a philosophically similar NoSQL

adaptation [21] of TPC-H to evaluate Big Data analytics

performance, to name a few of the NoSQL and Big Data

benchmarks.

To evaluate HTAP systems, an especially noteworthy effort

was the mixed workload CH-benCHmark [8]. This benchmark

resulted from a Dagstuhl workshop attended by a group of

database query processing and performance experts drawn

from both companies and universities. The CH-benCHmark

combines ideas and operations from TPC-C and TPC-H

in order to bridge the gap between the established single-

workload benchmark suites of TPC-C, for OLTP, and TPC-H,

for OLAP, thus providing a foundation for mixed workload

performance evaluation. The original paper included results

from applying the benchmark to PostgreSQL with all data in

memory and a read-committed transaction isolation level. The

CH-benCHmark gained some traction for HTAP use, having

been used to assess the performance of a new HTAP system

and its scheduler [15].

A first step to assess HOAP for scalable NoSQL sys-

tems was reported in [22]. It investigated the performance

isolation in Couchbase Server (6.6) by mixing concurrent

TPC-C NewOrder transactions with a stream of join/group-

by/top-K queries. For the NoSQL world, a mixed workload

benchmark, CH2 [9] was more recently introduced in the

TPCTC conference. CH2 is based on extending and improving

the original CH-benCHmark on Couchbase Server (7.0) for

NoSQL systems and borrows and adapts both TPC-C and

TPC-H ideas.

None of these existing benchmarks consider the full-text

search (FTS) workload which is, now-a-days, a vital service

of document databases. To the best of our knowledge, our

paper presents the first mixed workload benchmark proposed

to evaluate HOAP and FTS for scalable NoSQL systems.

III. COUCHBASE SERVER

Couchbase Server is a highly scalable document-oriented

database management system [4]. With a shared-nothing ar-

chitecture, it exposes a fast key-value store with a managed

cache for sub-millisecond data operations, secondary indexing

for fast querying, and two high performance complementary

query engines [23] for executing declarative SQL-like N1QL2

queries. It also includes support for full-text search.

Figure 1 lists Couchbase Server’s major components. Ar-

chitecturally, the system is organized as a set of services that

are deployed and managed as a whole on a Couchbase Server

2N1QL is short for Non-1NF Query Language.



Fig. 1. Major Couchbase Server Components

Fig. 2. Multi-Dimensional Scaling (MDS)

cluster. Physically, a cluster is a group of nodes operating in

a peer-to-peer topology, and the services on each node can

be managed as required. Nodes can be added or removed

through a rebalance process that redistributes the data across

the cluster’s nodes. This can increase or decrease the CPU,

memory, disk, or network capacity of a cluster. The ability

to dynamically scale the cluster and map services to sets of

nodes is referred to as Multi-Dimensional Scaling (MDS).

Figure 2 shows how MDS might enable a small Couchbase

Server cluster to have 2 nodes shared by its Data and Index

Services, 2 nodes for the Query Service, 1 node for the Full-

Text Search Service, and 2 nodes for the Analytics Service.

A key aspect of Couchbase Server’s architecture is the man-

ner in which data changes are communicated across services.

An internal Database Change Protocol (DCP) continuously

notifies all services of the changes to documents managed by

the Data Service in Figure 1.

The Data Service is the foundation for document manage-

ment. It provides caching, persistence, and inter-node replica-

tion. The document data model is JSON. Documents are stored

in containers called buckets. A ªbucketº contains related docu-

ments, similar to a database in a relational database (RDBMS).

There is no explicitly defined schema, so the ªschemaº for

documents is based on the application code and captured in

the structure of each stored document. Developers can add

new objects and properties at any time by deploying new

application code that stores new JSON data without having

to also make and deploy corresponding changes to a static

schema. As of Couchbase Server 7.0 or higher, documents

within a bucket reside in collections (similar to RDBMS

tables) that can be grouped together logically using scopes

(similar to RDBMS schemas).

The Indexing, Search, and Query Services coordinate via

DCP to provide document database management functionality

that supports high volumes of low-latency queries and up-

Fig. 3. Analytics Service in Couchbase Server

dates for JSON documents. The Indexing Service provides

global secondary indexing for the data managed by the Data

Service. The Search Service provides richer text indexing to

support a wide range of possible search engine-like querying,

i.e., full-text search (FTS); plus a set of APIs for search-

oriented applications that prefer to interact with this service

directly. The Query Service ties this all together by exposing

Couchbase Server’s database functionality through N1QL [24],

[25], a declarative, SQL-based query language that relaxes

the rigid 1NF and strongly-typed schema demands of the

relational SQL standard. As of Couchbase Server 7.0 or higher,

N1QL supports SQL-style, multi-document, multi-statement

transactions using a combination of optimistic and pessimistic

concurrency control. A series of N1QL DML statements can

be grouped into an atomic transaction whose effects span the

Query, Indexing, Search and Data Services. We discuss details

of Couchbase Server’s Search Service in Section III-A.

The Analytics Service complements the Query Service by

supporting more expensive ad-hoc analytical queries (e.g.,

large joins and aggregations) over JSON document collections.

Figures 3(a) and 3(b) show its role in Couchbase Server. The

Data and Query Services provide low-latency key-value-based

and query-based access to their data. Their design point is

operational; they support many users making well-defined,

programmatic requests that tend to be small and inexpensive.

In contrast, the Analytics Service focuses on ad hoc and

analytical requests; it has fewer users posing larger, more

expensive N1QL queries against a real-time shadow copy of

the same JSON data. The Query service has a largely point-to-

point/RPC-based query execution model; the Analytics Service

employs partitioned parallelism under the hood, using parallel

query processing to bring all of the resources of the Analytics

nodes to bear on each query [23].

The Eventing Service offers an Event-Condition-Action

based framework that provides near real-time handling of data

changes in the Couchbase cluster.

So what about HOAP? As Figures 3(a) and 3(b) try to

indicate, operational data in Couchbase Server is available for

analysis as soon as it is created; analysts always see fresh

application data thanks to DCP. They can immediately pose

questions about operational data, in its natural data model,

reducing the time to insight from days or hours to seconds.

There are several differences between this approach and HTAP

in the relational world. One is scale: The Analytics Service can

be scaled out horizontally on a shared-nothing cluster [23],

and it can be scaled independently (Figure 2). It maintains a



Fig. 4. Search Service in Couchbase Server

real-time shadow copy of operational data that an enterprise

wants to analyze; the copy is because Analytics is deployed on

its own nodes with their own storage to provide performance

isolation for the operational and analytical workloads. Another

difference relates to technology: Couchbase Analytics is not an

in-memory solution. It is designed to handle a large volume of

NoSQL documents ± documents whose individual value and

access frequency would not warrant the cost of a memory-

resident solution, but whose aggregated content can still be

invaluable for decision-making.

A. Couchbase Search Service

The Search Service in Couchbase Server supports language-

aware searching by analyzing textual and other contents of

JSON documents and building multi-purposed FTS indexes

within a Couchbase bucket. The indexes created and used by

the Search Service are designed to provide scores to the search

results based on their relevancy and to handle FTS workloads

very efficiently. These indexes are entirely separate from and

different to those of the Indexing Service.

Figure 4 shows the major components of the Couchbase

Server Search Service. The FTS engine handles text indexing

for JSON documents. It analyzes the ingested data from the

server using the text analyzer 3, builds an inverted index for the

analyzed contents, and stores into the FTS database. The text

analyzer, consisting of a tokenizer and token filters, breaks

down the raw text into a list of words, referred as tokens.

These tokens are more suitable for indexing in the database

and searching documents. Depending on the definition of the

tokenizer and token filters, different tokens are generated.

Consider a sample text: ªJurassic Parkº. The whitespace token

filter breaks the sample text into tokens when a whitespace is

found, and outputs ªjurassicº, ªparkº as tokens. In contrast, the

edge-n-gram token filter forms n-grams of specified length. If

the minimum length is 3 and maximum length is 5, then it

generates ªjurº, ªjuraº, ªjurasº, ªsicº, ªssicº, ªassicº ªparº,

ªparkº, ªarkº as tokens. Other commonly used token filters

include to lower, stop en, stemmer, etc. The to lower token

filter converts all characters to lowercase; while the stop en

token filter removes unnecessary tokens for FTS, e.g., ªisº,

ªandº, ªorº, ªtheº, etc. The stemmer token filter transforms

tokens following the Porter Stemming Algorithm [26]; for

3The details on the text analyzers in Couchbase Server can be found at
https://docs.couchbase.com/server/current/fts/fts-index-analyzers.html

example, it transforms both ªfeelsº and ªfeelingº tokens as

ªfeelº.

In Couchbase Server, there are some pre-constructed ana-

lyzers, including keyword, simple, standard, etc. The keyword

analyzer creates a single token representing the entire input;

while the standard and English analyzers apply the Unicode

tokenizer and to lower and stop en token filters. Along with

these token filters, English analyzer uses the stemmer token

filter. As a result, the standard analyzer generates ªjurassicº,

ªparkº as tokens while the English analyzer generates ªjurassº,

ªparkº as tokens for the above mentioned sample text. Apart

from these predefined analyzers and filters, one can create

custom token filters and analyzers in Couchbase Server. To

run a FTS query on a FTS index, the analyzer specified for a

query needs to be the same as specified in the FTS index. If

no analyzer is specified in the query, the analyzer used for the

corresponding FTS index is used. Note that the non-analytic

FTS queries do not support any text analyzers on the query

texts.

IV. CH3 BENCHMARK DESIGN

When we undertook the effort reported here, we aimed to

explore several key aspects of NoSQL platforms’ support for

HOAP together with search engine-like full-text search. To

investigate the multi-dimensional scaling and measure the per-

formance of a 3-part mixed workload with operational (OLTP),

analytical (OLAP) and Full-Text Search (FTS) queries, here

we introduce a new benchmark, CH3. We extended the CH2

framework [9] for CH3. In this extended benchmark, our goal

was to more fully explore the performance of NoSQL plat-

forms, including (1) workload isolation among OLTP, OLAP

and FTS, (2) scaling of sub-workloads, and (3) performance

of the full-text search service. These were of interest because

most NoSQL systems are designed to scale out horizontally on

shared-nothing clusters and their initial design points for query

processing have been OLTP-oriented, i.e., they are gener-

ally built to support high-concurrency/low-latency operational

workloads as opposed to more complex data analytics and

search engine-like full-text search workloads.

So far we have investigated the CH3 benchmark on a

Couchbase Server cluster. However, CH3 is not specific to

Couchbase Server; rather it can also be implemented on other

NoSQL platforms that support query, analytics and full-text

search services. The rest of this section discusses details of

the CH3 benchmark.

A. Benchmark Schema

The CH3 schema is adapted from the CH2 schema, which in

turn is a modified version of the original CH-benCHmark [8]

schema adapted for the NoSQL world. Figure 5 shows the

CH2/CH3 schema. It summarizes the 9 tables and relationships

of the standard relational TPC-C schema. This schema models

businesses which ªmust manage, sell, or distribute products or

servicesº [6] and it follows a continuous scaling model.

The Order and Order-Line tables of TPC-C were combined

in CH2 by having Order-Line inlined as arrays inside of the



Fig. 5. CH2/CH3 Schema.

TABLE I
CH2/CH3 COLLECTIONS [9] AND EXAMPLE SIZES WITH W = 1,000

WAREHOUSES.

Collection Collection Size (W=1000)

Warehouse 1,000
District 10,000
History 30,000,000
NewOrder 9,000,000
Stock 100,000,000
Customer 30,000,000
Orders (Order-Line) 30,000,000 (300,000,000)
Item 100,000

Supplier 10,000
Nation 62
Region 5

Orders collection, and it retains the other 7 tables from TPC-

C. No other nesting changes were made to the TPC-C schema,

as doing so would involve over-nesting and would be a poor

database design for such use cases[5], [21]. Like the CH-

benCHmark, in addition to adopting the nested order modi-

fication and TPC-C’s scaling rules, CH2 borrows 3 TPC-H

tables with some modifications as additional CH2 collections

to support a TPC-H-equivalent analytical workload. Following

CH, CH2 borrows Supplier and Region, both unchanged, from

the TPC-H schema, along with a slightly modified version

of Nation. The modifications in collections from TPC-C are

highlighted and the collections borrowed from TPC-H are

indicated in Figure 5.

In the CH3 benchmark, we use all of the collections from

CH2 for the operational and analytical workloads. For the

FTS workload, we mainly focused our extensions on the

collections with meaningful text fields, and so, considered all

collections except Warehouse, New-Order, Nation and Region.

Note that, like CH and CH2, the CH3 benchmark database

size is scalable based on the number of warehouses (W) and

it adopts the TPC-C scaling rules.

Table I lists the CH2/CH3 collections and gives an example

of their scaling by listing their 1,000-warehouse cardinalities.

Orders are nested with an average of 10 Order-Line items in

each. The line separates the modified TPC-C collections (top)

from the three CH (and CH2/CH3) additions (bottom).

B. Benchmark Data

While designing the CH3 benchmark, we first encountered

a major problem ± the text fields in CH2 are just space-

filling gibberish (as in TPC-C, TPC-H, and CH). To execute

any FTS queries, we needed human-readable and meaningful

texts so that we can execute meaningful FTS queries. One

way to address this problem would have been to use a real-

world dataset with a TPC-C-like schema. However, we found

it difficult to find a real-world dataset which follows the TPC-

C schema. As a next idea, we considered using FakerJS 4 for

generating some fake datasets, especially for the text fields.

Though FakerJS could serve our purpose to some extent, it

fails to generate meaningful item names and data, and there is

no correlation among city, state and zip code values. Instead,

we ended up borrowing field values from an eCommerce

inventory dataset from Flipkart [27] and a worldwide zip

code population dataset alongside FakerJS. Overall, the CH3

database generator is a modified version of the CH2 data

generator which now supports OLTP, OLAP and FTS queries.

Table II indicates the major changes in the CH3 database

generator from the CH2 data generator. Note that we did not

modify c_last of Customer in order to maintain compliance

with the database population requirement of TPC-C (Clause

4.3.2.3). Also, the text fields for the collections, not men-

tioned in Table II, are directly adapted from CH2 in CH3.

Figure 6 shows some examples of how the CH3 benchmark

documents in the Item and District collections differ from the

corresponding CH2 documents. One can see that the numeric

fields in the example documents of the Item and District

collections are same in both CH2 and CH3, and the text

fields differ in CH3 from CH2 as mentioned in the table. The

CH2 data generator generates i_data and i_name fields

as space-filling and meaningless texts while the CH3 data

generator borrows values from the eCommerce Flipkart dataset

for these fields and provides some meaningful texts. Similarly,

the text values of the District document in CH2 are also

meaningless. In contrast, in CH3, values are borrowed from

the Zip code population dataset for d_city, d_state,

d_zip fields, and FakerJS is used to generate d_street_1

and d_street_2 field values of the District document.

These meaningful texts allow us to execute meaningful FTS

queries on the CH3 documents.

C. Benchmark Indexes

In Couchbase Server, every Full-Text Search is performed

via a user-created Full Text Index that contains the targets

on which searches are to be performed. These targets are

values derived from the textual and other contents of docu-

ments within a specified bucket or collections within a scope.

4https://github.com/faker-js/faker



TABLE II
CH3 DATABASE GENERATOR USING VALUES FROM REAL DATASETS AND FAKERJS PYTHON LIBRARY.

Source of field values Collection(s) Field(s) Comments on generated data

Zip code population
dataset

Warehouse w_city, w_state, w_zip
The _zip values do not comply with the database
population requirement of TPC-C (Clause 4.3.2.7).

District d_city, d_state, d_zip

Customer c_city, c_state, c_zip

eCommerce Inventory
dataset (Flipkart)

Item i_name, i_data

Both of the fields are truncated to meet the length
requirements of TPC-C and support the adaptation
of TPC-C queries.

FakerJS python library

Warehouse w_street_1, w_street_2
These fields are not correlated with the _city,
_state, _zip values.

District d_street_1, d_street_2

Customer c_street_1, c_street_2

Customer c_data, c_first, c_phone

The c_data field is a paragraph containing text
about the profile creation date, username, job title,
company, email and website url of each customer.

History h_data These values meet the length requirements of
TPC-C.Stock s_data

Supplier su_address, su_phone

{
"i_data": "luwpheubaxzviqhjucpccqc

fnhuouogciahtycgqdttk",

"i_id": 10003,

"i_im_id": 3903,

"i_name": "rwpdxigerwokocf",

"i_price": 20.31

}

An Item document in CH2

⇐⇒

{
"i_data": "Brand: Women Material: PU

Closure: Zip\nDescripti..",

"i_id": 10003,

"i_im_id": 3903,

"i_name": "Edel Shoulder Bag",

"i_price": 20.31

}

An Item document in CH3

{
"d_city": "jkgkfzjrnht",

"d_id": 5,

"d_name": "ilnlryd",

"d_next_o_id": 3001,

"d_state": "lu",

"d_street_1": "qouifvenhyihu",

"d_street_2": "ydenbupwiuzer",

"d_tax": 0.1842,

"d_w_id": 1,

"d_ytd": 30000,

"d_zip": "399811111"

}

A District document in CH2

⇐⇒

{
"d_city": "Alva",

"d_id": 5,

"d_name": "HM_district_5",

"d_next_o_id": 3001,

"d_state": "WY",

"d_street_1": "8822 Campbell Spur",

"d_street_2": "Apt. 469",

"d_tax": 0.1842,

"d_w_id": 1,

"d_ytd": 30000,

"d_zip": "82711"

}

A District document in CH3

Fig. 6. Examples of showing differences between CH2 and CH3 documents.

Documents can also be grouped by the user across multiple

buckets/scopes.

The CH3 data are stored in a single scope ch3 in a bucket

called bench in the Data Service, so we focused on creating

Full Text Indexes in the Search Service within that scope.

We used the Full-Text Search REST API for creating these

indexes where a JSON document (the body of the REST

request) contains the definition of an index. We created 3

indexes on single collections and 3 indexes across multiple

collections within the bucket/scope 5: (1) customerFTSI on

Customer, (2) itemFTSI on Item, (3) ordersFTSI on Orders,

(4) ngramFTSI on History and Stock, (5) nonAnalyticFTSI on

5The FTS index definitions for the CH3 benchmark are available at https:
//github.com/couchbaselabs/ch3

Customer, Stock and Supplier, and (6) multiCollectionFTSI on

Customer, District and Orders collections.

For CH3, we considered different text analyzers like key-

word, English, edge-n-gram analyzers, etc. in different FTS

indexes. The customerFTSI index uses keyword and English

text analyzers on different fields to index the documents.

Specifically we applied the keyword analyzer on the c_first

field in the Customer collection so that it forces exact matches

and preserves characters such as spaces during indexing the

documents. The other indexed fields in customerFTSI follow

the English analyzer. Similarly, the nonAnalyticFTSI index

uses keyword and English text analyzers on different fields.

We considered the default standard analyzer for the indexed

fields in itemFTSI, ordersFTSI, and multiCollectionFTSI in-



dexes. In contrast, the ngramFTSI index uses a customized

token analyzer using an edge-n-gram token filter to index the

documents.

D. Benchmark Queries

To design the mixed workload of CH3, we included all

the operational and analytical queries from CH2 without any

modifications against the CH3 benchmark data. These queries

are expressed in N1QL (i.e., SQL++), a SQL-like query

language that considers nested data. In addition to the CH2

queries, we have included 20 FTS queries. We pose the FTS

queries in JSON format so as to execute them via the Search

Service of Couchbase Server. When running FTS queries in

N1QL format, the queries are sent to the Query Service,

rerouted to the Search Service to fetch the results, and the

results are returned from the Query Service to the client node.

To maintain better isolation, we decided to send the FTS

queries in JSON format so that operational and FTS queries

can be run separately by the Query Service and Search Service

components, respectively.

In Couchbase Server, the Full-Text Search Service allows

us a wide range of query options, including match queries,

match-phrase queries, range queries, non-analytic queries,

compound queries, etc. Match and match-phrase FTS queries

can analyze their input texts and perform fuzzy and/or prefix

matches. The fuzziness of a query can be specified so that

the scope of the matches can be constrained to a particular

level of exactitude. In contrast, non-analytic FTS queries do

not support analysis on their query texts and will return only

exact matches. Fuzziness, regular expressions, wildcards, etc.,

can be specified for a non-analytic query. Range queries can

find documents containing a value in the specified field within

the specified range, where the specified range can be either of

a date, numeric or term range. Compound queries are designed

to accept multiple queries simultaneously, and return either the

conjunction of results from the result-sets of all child queries,

or a disjunction.

We designed the 20 FTS queries in CH3 so that together

they cover all of supported FTS query types in Couchbase

Server. We categorized these FTS queries into Simple, Ad-

vanced, and Non-analytic queries. Among the 20 FTS queries,

6 are simple queries, 8 are advanced queries and 6 are non-

analytic queries. Simple queries are simple match and match-

phrase queries, whereas compound queries and relatively com-

plex match queries are categorized as advanced queries.

Table III shows examples of a simple FTS query and an

advanced FTS query in JSON format. The name of collections

and corresponding FTS indexes on which we can execute FTS

queries are also mentioned along with the queries in the table.

The left query is a simple query that is basically a range query

searching for a range of dates from the Orders collection, and

the corresponding FTS index named ordersFTSI indexes the

o_entry_d field of the Orders collection. The right query

is an advanced query that finds documents with matching

terms from two fields of two collections, i.e., documents that

match the given terms in the h_data field of the History and

the s_data field of the Stock collection. The corresponding

FTS index named ngramFTSI indexes both h_data and

s_data fields of the History and Stock collections based on

a customized token analyzer using an edge-n-gram token filter

of min length 3 and max length 7.

Note that as the number of results obtained for a FTS

query can be large at times, we can limit how many results to

fetch starting at which offset by specifying size and from

parameters in the FTS query. As a result, in response to a

FTS query, size + from number of results are fetched and

size number of results are returned starting at offset from.

V. CH3 BENCHMARK RESULTS

In this section, we report the performance results from

implementing and running our mixed workload CH3 bench-

mark on a 6-node Couchbase Server cluster. Our primary

focus here is to use CH3 to explore several key aspects of

NoSQL platforms, including (1) performance isolation among

OLTP, OLAP and FTS workloads, (2) the scalability of their

architectures with mixed workloads, and (3) full-text search

service performance.

A. Benchmark Implementation

To implement the CH3 benchmark’s mixed workload, we

started with the CH2 adaptation of CMU’s py-tpcc benchmark

system, the same package recently used by MongoDB [5].

We then modified CH2’s data generator following the earlier

description, added FTS indexes and queries in JSON, and

finally added a CH3 driver for Couchbase Server to meet our

mixed workload requirements 6.

The CH3 data resides in a scope called ch3 in a bucket

called bench in the Data Service (in JSON document form).

The required indexes to support the operational queries and

updates were created in the bench bucket in the Data Service.

In contrast, the required FTS indexes to support the FTS

workload were created in the bench bucket in the Search Ser-

vice. For these experiments, we generated a 1,000-warehouse

instance of CH3. The cardinalities of the CH3 collections are

thus consistent with the example numbers shown in Table I.

Each operational, analytical, or FTS user is simulated by a

stream running on a client node of the configured Couchbase

Server cluster. Each stream consistently sends query requests

to the system. 0-128 streams send TPC-C operations to the

Query Service, 0-128 streams send FTS query requests to

the Search Service, with 0 or 1 stream sending analytical

queries to the Analytics Service. These stream counts simulate

a typical business model with more front-end users (either

running OLTP or FTS queries) than data analysts.

B. Benchmark Configuration(s)

As mentioned earlier, we ran our CH3 benchmark imple-

mentation on a cluster consisting of 6 nodes. Hardware-wise,

the cluster was comprised of 5 nodes, each with 24 vCPUs,

64GB of memory, and up to 10 Gbps of network bandwidth,

6The software artifacts associated with this paper’s benchmark are avail-
able at https://github.com/couchbaselabs/ch3



TABLE III
A SIMPLE FTS QUERY (LEFT) AND AN ADVANCED FTS QUERY (RIGHT)

Collection: Orders Collections: History, Stock
FTS Index: ordersFTSI FTS Index: ngramFTSI

{
"explain": false,

"fields": [

"*"

],

"highlight": {},
"query": {
"start": "2015-01-01",

"end": "2016-10-30",

"field": "o_entry_d"

},
"size": 5,

"from": 0

}

{
"explain": false,

"fields": [

"*"

],

"highlight": {},
"query": {

"disjuncts": [

{
"match": "Expert opinion",

"field": "h_data"

},
{
"match": "international policy",

"field": "s_data"

}
]

},
"size": 5,

"from": 0

}

forming the Couchbase Server cluster. Moreover, there is one

client node with 48 vCPUs, 64GB of memory, one 480GB

SSD, and up to 10 Gbps of network bandwidth that was used

to run the client workload driver. The nodes running a Data,

Index, Query, and Search Service utilized one 1TB SSD drive,

while the nodes running the Analytics Service utilized two

1TB SSDs drives uniformly for enhanced query parallelism.

We show the results with six different workload settings: (1)

only FTS streams, (2) only TPC-C streams, (3) CH2 streams,

i.e. both TPC-C and TPC-H, (4) FTS and TPC-C streams,

(5) FTS and TPC-H streams, (6) FTS and CH2 streams. For

these settings, we vary the number of both FTS and operational

streams equally as 1, 2, 4, 16, 32, 64, 96, 128, and consider

0-1 number of analytical stream.

C. Initial Benchmark Results

Our initial goal is to investigate Couchbase Server’s perfor-

mance isolation for CH3’s mixed workload, FTS performance

and scalability of workloads. To measure the performance with

CH3 workload, operational, analytical, and FTS clients were

run concurrently until the analytical client running the 22 an-

alytical queries completed one full loop. For a FTS client, we

executed 25% simple, 35% non-analytic, and 40% advanced

FTS queries as long as the analytical client completed the loop.

In case of 0 analytical stream, operational and FTS clients

were run concurrently for a certain duration.

Figure 7 shows the results that reveal about Couchbase

Server’s FTS and analytical query performance. Figure 7(a)

shows the throughput for the FTS queries in Queries per hour

(Qph) by varying the number of operational and FTS streams

equally from 1, 2 to 128 with our different workload settings.

We can see that the FTS queries’ throughput exhibit a textbook

performance increase as the number of streams is increased.

There are two key observations in this graph. The first one is

the expected scalability of FTS workload for a variable number

of streams. The second is the FTS workload isolation with or

without running operational and analytical queries.

Figure 7(b) shows the geometric mean of the 22 analytical

queries’ average response times in seconds vs. the number

of streams. Here, we vary the number of operational and FTS

streams equally from 1, 2 to 128 for these results. From this set

of results, we can observe the analytical workload performance

isolation which is not affected while the number of operational

and FTS streams is increased on the x-axis.

Now, we discuss the NewOrder transaction results with our

different workload settings. Figure 8(a) shows the NewOrder

throughput in transactions per minute (tpm) running a mixed

workload with 0-1 analytical client and varying the number

of operational and FTS streams equally from 1, 2 to 128.

We can observe the throughput increasing linearly at the

beginning and then reaching a plateau when the resources are

saturated. Also, the throughput exhibits the same patterns and

trends for all different workload settings. Figure 8(b) shows

the corresponding average response times in milliseconds for

the NewOrder transactions. The response times are linearly

proportional to the number of streams. So, we can observe

that these two graphs are pairwise identical and also depict the

performance isolation of operational workload with different

workload settings.

The results discussed in this section clearly show the

effective performance isolation of Couchbase Server cluster

components with a mixed workload of operational, analytical

and FTS streams. Also, one can notice the scalability of

its architecture when faced with a need to support more



 0×100

 1×105

 2×105

 3×105

 4×105

 5×105

 6×105

 7×105

 8×105

 9×105

 1×106

 0  20  40  60  80  100  120  140

F
T
S
 Q

u
e
ri
e
s 

T
h
ro

u
g
h
p
u
t 

(Q
p
h
)

Number of Streams

FTS

FTS + TPC-H

FTS + CH2

FTS + TPC-C

(a)

 0

 10

 20

 30

 40

 50

1 2 4 8 16 32 64 96 128

C
H

2
 Q

u
e
ri
e
s 

G
e
o
m

. 
M

e
a
n
 (

se
c)

Number of Streams

FTS + TPC-H

FTS + CH2

CH2

(b)

Fig. 7. (a) FTS Queries Throughput (Qph) and (b) CH2 Queries Geometric Mean (sec)., varying the number of streams.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  20  40  60  80  100  120  140

N
e
w

O
rd

e
r 

T
h
ro

u
g
h
p
u
t 

(t
p
m

)

Number of Streams

FTS + CH2

FTS + TPC-C

TPC-C

CH2

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  20  40  60  80  100  120  140

N
e
w

O
rd

e
r 

A
v
g
. 
R
e
sp

. 
T
im

e
 (

m
s)

Number of Streams

FTS + CH2

FTS + TPC-C

TPC-C

CH2

(b)

Fig. 8. NewOrder Throughput (tpm) and (b) NewOrder Average Response Time (ms), varying the number of streams.

operational or FTS users.

VI. CONCLUSION

Database management systems with hybrid workload sup-

port ± HTAP or HOAP ± first appeared in the relational world,

where they are often linked to server technology trends such

as columnar storage and memory-rich, many-core, scale-up

server technology. Such hybrid data management support in

the document database of the NoSQL world is also being

attracted in both industry and research sectors. In addition

to the operational and analytical services, full-text search is

a key component of NoSQL platforms that provides Google-

like search capability on JSON documents. In this paper, we

introduced CH3, a benchmark for evaluating scalable NoSQL

platforms with a mixed workload ± operational (OLTP), ana-

lytical (OLAP), and full-text search (FTS). In this effort, we

designed CH3 in such a way that it supports meaningful FTS

workload as well as OLTP and OLAP workloads. Like CH2,

the CH3 benchmark borrows from and extends both TPC-C

and TPC-H. However, CH3 generates meaningful text contents

and includes necessary FTS indexes and relevant FTS queries

on these indexes to handle the FTS workload. We studied the

performance of a scalable NoSQL platform, Couchbase Server,

that offers Query, Analytics, and Search services, by running

the CH3 benchmark. The performance results provide insight

into the performance of Search Service, the performance

isolation among OLTP, OLAP and FTS workloads, and the

horizontal scalability of Couchbase Server. It also exhibits

the importance of CH3 for evaluating a mixed workload

performance of NoSQL platforms.

ACKNOWLEDGMENTS

The authors wish to thank Abhinav Dangeti of Couchbase

Full-Text Search team who has provided technical assistance

related to the new FTS features. They would also like to thank

Peter Reale of Couchbase, Inc. for assisting with the Zip code

population dataset.

REFERENCES

[1] Wikipedia contributors, ªHybrid transactional/analytical processing Ð
Wikipedia, the free encyclopedia,º 2020, [Online; accessed 19-October-
2020]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=
Hybrid transactional/analytical processing&oldid=981969658

[2] 451 Research, ªHybrid processing enables new use cases (business
impact brief),º 2018, https://www.intersystems.com/isc-resources/
wp-content/uploads/sites/24/Hybrid Processing Enables New Use
Cases-451Research.pdf [Online; accessed 19-October-2020].



[3] P. J. Sadalage and M. Fowler, NoSQL Distilled: A Brief Guide to the

Emerging World of Polyglot Persistence. Upper Saddle River, NJ:
Addison-Wesley, 2013.

[4] D. Borkar et al., ªHave your data and query it too: From key-value
caching to big data management,º in Proc. ACM SIGMOD Conf. ACM,
2016, pp. 239±251.

[5] A. Kamsky, ªAdapting TPC-C benchmark to measure performance of
multi-document transactions in MongoDB,º PVLDB, vol. 12, no. 12, pp.
2254±2262, 2019.

[6] F. Raab, ªTPC-C - The standard benchmark for online transaction
processing (OLTP),º in The Benchmark Handbook for Database and

Transaction Systems (2nd Edition), J. Gray, Ed. Morgan Kaufmann,
1993.

[7] M. PÈoss and C. Floyd, ªNew TPC benchmarks for decision support and
web commerce,º SIGMOD Record, vol. 29, no. 4, pp. 64±71, 2000.

[8] R. L. Cole et al., ªThe mixed workload CH-benCHmark,º in Proc.

Fourth Int’l. Workshop on Testing Database Systems, DBTest. ACM,
2011, pp. 1±6.

[9] M. Carey, D. Lychagin, M. Muralikrishna, V. Sarathy, and T. Westmann,
ªCH2: A Hybrid Operational/Analytical Processing Benchmark for
NoSQL,º in Performance Evaluation and Benchmarking: 13th TPC

Technology Conference, TPCTC 2021, Copenhagen, Denmark, August

20, 2021, Revised Selected Papers. Springer-Verlag, 2021, p. 62±80.
[10] A. Kemper and T. Neumann, ªHyper: A hybrid OLTP&OLAP main

memory database system based on virtual memory snapshots,º in 2011

IEEE 27th Int’l. Conf. on Data Engineering, 2011, pp. 195±206.
[11] N. May, A. BÈohm, and W. Lehner, ªSAP HANA - the evolution of an in-

memory DBMS from pure OLAP processing towards mixed workloads,º
in Proc. BTW 2017, 17. Fachtagung des GI-Fachber. DBIS, MÈarz 2017,

Stuttgart, Germany, 2017.
[12] V. Raman et al., ªDB2 with BLU acceleration: So much more than just

a column store,º PVLDB, vol. 6, no. 11, pp. 1080±1091, 2013.
[13] T. Lahiri et al., ªOracle database in-memory: A dual format in-memory

database,º in 2015 IEEE 31st Int’l. Conf. on Data Engineering, 2015,
pp. 1253±1258.

[14] P. Larson et al., ªReal-time analytical processing with SQL server,º
PVLDB, vol. 8, no. 12, pp. 1740±1751, 2015.

[15] A. Raza et al., ªAdaptive HTAP through elastic resource scheduling,º
in Proc. ACM SIGMOD Conf. ACM, 2020, pp. 2043±2054.

[16] (2022) Snowflake Unistore. [Online]. Available: https://www.snowflake.
com/en/data-cloud/workloads/unistore/

[17] J. Gray, Ed., The Benchmark Handbook for Database and Transaction

Systems (1st Edition). Morgan Kaufmann, 1991.
[18] M. PÈoss et al., ªTPC-DS, taking decision support benchmarking to the

next level,º in Proc. ACM SIGMOD Conf. ACM, 2002, pp. 582±587.
[19] B. F. Cooper et al., ªBenchmarking cloud serving systems with YCSB,º

in Proc. 1st ACM Symp. on Cloud Computing, SoCC 2010, Indianapolis,

Indiana, USA, June 10-11, 2010. ACM, 2010, pp. 143±154.
[20] P. Pirzadeh, M. Carey, and T. Westmann, ªBigFUN: A performance

study of big data management system functionality,º in 2015 IEEE Int’l.

Conf. on Big Data, 2015, pp. 507±514.
[21] P. Pirzadeh, M. Carey, and T. Westmann, ªA performance study of big

data analytics platforms,º in 2017 IEEE Int’l. Conf. on Big Data, 2017,
pp. 2911±2920.

[22] Y. Tian, M. Carey, and I. Maxon, ªBenchmarking HOAP for scalable
document data management: A first step,º in 2020 IEEE Int’l. Conf. on

Big Data, 2020, pp. 2833±2842.
[23] M. A. Hubail et al., ªCouchbase Analytics: NoETL for scalable NoSQL

data analysis,º PVLDB, vol. 12, no. 12, pp. 2275±2286, 2019.
[24] D. Chamberlin, SQL++ for SQL Users: A Tutorial. Couchbase, Inc.

(Available via Amazon.com.), 2018.
[25] D. Chamberlin, ªComparing Two SQL-Based Approaches for Querying

JSON: SQL++ and SQL:2016,º White Paper, Couchbase, Inc., 2019.
[26] (2006) Porter Stemming Algorithm. [Online]. Available: https:

//tartarus.org/martin/PorterStemmer/
[27] (2017) Flipkart eCommerce Inventory Dataset. [Online]. Available:

https://data.world/promptcloud/product-details-on-flipkart-com


	Introduction
	Related Work
	HTAP (HOAP)
	Benchmarks

	Couchbase Server
	Couchbase Search Service

	CH3 Benchmark Design
	Benchmark Schema
	Benchmark Data
	Benchmark Indexes
	Benchmark Queries

	CH3 Benchmark Results
	Benchmark Implementation
	Benchmark Configuration(s)
	Initial Benchmark Results

	Conclusion
	References

