CH3: A Mixed Workload Benchmark
for Scalable NoSQL

Mehnaz Tabassum Mahin'f, Bo-Chun Wang?, Kamini Jagtiani’*, Michael Carey??, and Keshav Murthy?
1University of California, Riverside, 2Couchbase, Inc., 3University of California, Irvine
'mmahi004 @ucr.edu

Abstract—Database management systems that support hybrid
workload (i.e., HTAP or HOAP) first arose in the relational world.
Such hybrid data management support in the document database
of the NoSQL world is also gaining popularity in both commercial
and research arenas. The CH2 benchmark was proposed in
2021 to evaluate such hybrid NoSQL platforms. In addition to
the operational and analytical services, full-text search is a key
component of NoSQL platforms that provides search engine-like
query processing capability on JSON documents. In this paper,
we present CH3, a mixed workload benchmark for evaluating
scalable NoSQL platforms with OLTP, OLAP, and full-text search
(FTS) workloads. Like CH2, the CH3 benchmark borrows from
and extends both TPC-C and TPC-H. However, CH3 generates
meaningful text contents and includes necessary FTS indexes
and relevant FTS queries on these indexes to handle the FTS
workload. This paper presents the required extensions from CH2
to address the FTS workload, the detailed design of CH3, and
the performance results by running the CH3 benchmark against
Couchbase Server (that offers Query, Analytics, and Search
services). The results provide insight into the performance of
Search Service, the performance isolation among OLTP, OLAP
and FTS workloads, and the horizontal scalability of Couchbase
Server as well as the effectiveness of CH3 for evaluating a mixed
workload performance of such NoSQL platforms.

Index Terms—benchmark, NoSQL, OLTP, OLAP, full-text
search

I. INTRODUCTION

Traditionally, operational (OLTP) and analytical (OLAP)
processing are categorized as two separate workloads, with
each running on their own separate infrastructures. OLTP sys-
tems serve transaction-oriented applications and provides high
availability and low latency to a large number of users. OLAP
systems analyze large amounts of business data for a relatively
small number of users. Both systems play vital role to the day-
to-day operations of enterprises and organizations. To address
the pressing need for timely analytics, and bridge OLTP and
OLAP in a single infrastructure, database system architectures
with hybrid data management support — referred to as HTAP
(Hybrid Transactional/Analytical Processing [1]) or HOAP
(Hybrid Operational/Analytical Processing [2]) support — have
gained traction in both industry and research. Originating in
the relational world, hybrid platforms are commonly linked to
other concurrent high-end server technology trends; columnar
storage and main-memory data management are two of the
technologies that are often assumed to be part of that picture.

TThis work was done while Mehnaz Tabassum Mahin was interning at
Couchbase, Inc.
¥This work was done while Kamini Jagtiani was at Couchbase, Inc.

Traditional relational database systems are designed for
strict consistency and data control; thus they tend to fall
short of the agility, flexibility, and scalability demands of
today’s new applications that support millions of interactions
with end-users. This has led to the emergence of the new
generation of data management systems known as NoSQL
systems [3]. Couchbase Server [4] and MongoDB [5] are
two examples of document databases, sub-category of such
NoSQL systems. NoSQL systems aim to scale incrementally
and horizontally on clusters of computers as well as to reduce
the mismatch between the applications’ view of data and
its persisted view, thus enabling the players — ranging from
application developers to DBAs and data analysts as well —
to work with their data in its natural form. In this paper, we
focus on NoSQL systems and aim to explore key aspects of
NoSQL platforms’ support for HOAP ! and search engine-like
full-text search.

In the relational world, TPC-C [6] and TPC-H [7] are
two standard benchmarks, where TPC-C is for transactional
query processing performance and TPC-H is for analytical
processing performance. In 2011, a mixed workload CH-
benCHmark [8] was introduced in the DBTest workshop,
it measures the performance by combining a transactional
workload based on TPC-C and a corresponding TPC-H-
equivalent analytical workload. For the NoSQL world, a mixed
workload, CH2 [9] was introduced in the TPCTC conference
in 2021. It is based on extending and improving the original
CH-benCHmark. It evaluates hybrid NoSQL platforms with
operational and analytical workloads.

It is to be noted that both TPC-C and TPC-H, and even CH2,
mainly focus on numeric, date/time, and simple string fields;
and text fields are not queried in these existing benchmarks.
However, Full-Text Search (FTS) is an important service of
NoSQL platforms that provides a Google-like search capability
on JSON documents. A benchmark has yet to be proposed
to evaluate FTS workload performance for scalable NoSQL
systems. In this paper, we propose a new benchmark for
evaluating a mixed workload performance with operational,
analytical, and FTS in the document database world.

The remainder of the paper is structured as follows: Sec-
tion II briefly studies related works on HTAP systems along
with existing SQL and NoSQL benchmarks. Section III dis-

I'we prefer the term HOAP over HTAP in the context of NoSQL, as
it seems less tied to strict ACID transactions and columnar, main-memory
technology presumptions.

cusses an overview of Couchbase Server and its approach to
supporting HOAP and FTS. Section IV describes the CH3
benchmark design details. Section V presents the performance
results obtained by running our benchmark on a Couchbase
Server cluster with different workload settings. Section VI
concludes the paper with a summary of the CH3 benchmark
and the results.

II. RELATED WORK

We briefly review related work on HTAP/HOAP and
database benchmarks.

A. HTAP (HOAP)

As mentioned in Section I, the relational database world has
witnessed an emergence of HTAP capabilities in a number of
vendors’ systems in recent years as well as growing research
interest related to HTAP. Noteworthy HTAP offerings include
such systems as HyPer [10] (born in research, but now owned
by and used in Tableau) and SAP-HANA [11]. Other signifi-
cant commercial relational HTAP offerings include DB2 BLU
from IBM [12], Oracle’s dual-engine main-memory database
solution [13], and the real-time analytical processing capabili-
ties now found in Microsoft’s SQL Server [14]. As an example
on the research side, a recent paper introduced and explored
the concept of adaptive HTAP and how to manage the core
and memory resources of a powerful (scale-up) many-core
NUMA server running a mixed main-memory workload [15].
Snowflake has recently announced Unistore [16] running both
transactional and analytical data in a single platform.

Stepping back, one sees that R&D in the relational HTAP
world has focused largely on in-memory scenarios for rel-
atively “small” operational databases. Now that multi-core
servers with very large main memories are available, and
given the degree of compression enabled by columnar storage,
it is possible for main memory to hold much or even all
of an enterprises’ operational business data. As a result,
most current HTAP database offerings rely on main-memory
database technology. And, as would then be expected, the
focus of these offerings is on single-server architectures — i.e.,
on scaling up rather than scaling out.

In contrast, to the relational world, providing HOAP for
scalable NoSQL document databases brings different problems
that require different solutions. To scale document databases
while providing HOAP, the focus needs to be on Big Data —
and flexible, schema-less data. In addition, NoSQL systems
and applications have somewhat different transactional con-
sistency needs [3]. Data timeliness is equally important in the
NoSQL world, but there is less of a need to focus on reducing
or eliminating ACID transaction interference and more of a
need to focus on the successful provision of performance
isolation at the level of a cluster’s physical resources.

B. Benchmarks

Many benchmarks have been developed to evaluate the
performance of relational database systems under different
application scenarios [17]. The most notable are the TPC-x

benchmarks developed by the Transaction Processing Council
(TPC). These include TPC-C [6] for transaction processing
as well as TPC-H [7] and TPC-DS [18] for decision support
and analytics. There has also been a variety of benchmarks
proposed and employed in the NoSQL world, including
YCSB [19] for key-value store workloads, BigFUN [20]
for Big Data management platform operations’ performance,
MongoDB’s adaptation of TPC-C to evaluate NoSQL transac-
tional performance [5], and a philosophically similar NoSQL
adaptation [21] of TPC-H to evaluate Big Data analytics
performance, to name a few of the NoSQL and Big Data
benchmarks.

To evaluate HTAP systems, an especially noteworthy effort
was the mixed workload CH-benCHmark [8]. This benchmark
resulted from a Dagstuhl workshop attended by a group of
database query processing and performance experts drawn
from both companies and universities. The CH-benCHmark
combines ideas and operations from TPC-C and TPC-H
in order to bridge the gap between the established single-
workload benchmark suites of TPC-C, for OLTP, and TPC-H,
for OLAP, thus providing a foundation for mixed workload
performance evaluation. The original paper included results
from applying the benchmark to PostgreSQL with all data in
memory and a read-committed transaction isolation level. The
CH-benCHmark gained some traction for HTAP use, having
been used to assess the performance of a new HTAP system
and its scheduler [15].

A first step to assess HOAP for scalable NoSQL sys-
tems was reported in [22]. It investigated the performance
isolation in Couchbase Server (6.6) by mixing concurrent
TPC-C NewOrder transactions with a stream of join/group-
by/top-K queries. For the NoSQL world, a mixed workload
benchmark, CH2 [9] was more recently introduced in the
TPCTC conference. CH2 is based on extending and improving
the original CH-benCHmark on Couchbase Server (7.0) for
NoSQL systems and borrows and adapts both TPC-C and
TPC-H ideas.

None of these existing benchmarks consider the full-text
search (FTS) workload which is, now-a-days, a vital service
of document databases. To the best of our knowledge, our
paper presents the first mixed workload benchmark proposed
to evaluate HOAP and FTS for scalable NoSQL systems.

III. COUCHBASE SERVER

Couchbase Server is a highly scalable document-oriented
database management system [4]. With a shared-nothing ar-
chitecture, it exposes a fast key-value store with a managed
cache for sub-millisecond data operations, secondary indexing
for fast querying, and two high performance complementary
query engines [23] for executing declarative SQL-like N1QL?
queries. It also includes support for full-text search.

Figure 1 lists Couchbase Server’s major components. Ar-
chitecturally, the system is organized as a set of services that
are deployed and managed as a whole on a Couchbase Server

2N1QL is short for Non-1NF Query Language.

SDK SDK
[Cown::Ie] [(KV, FTS,] [(KV, FTS, J NaQL (SQL++)
Query) Query)
— "4
[bata][bata M Query] [Index] [search J[Analyﬁ:s] [Eventing]
Service Service Service Service Service Service Service

Couchbase Cluster]

Fig. 1. Major Couchbase Server Components

Full-text
Service

Query

Analytics
Service

Service Service

Service Service Query
Service
Index Index
Service Service

Analytics |

Fig. 2. Multi-Dimensional Scaling (MDS)

cluster. Physically, a cluster is a group of nodes operating in
a peer-to-peer topology, and the services on each node can
be managed as required. Nodes can be added or removed
through a rebalance process that redistributes the data across
the cluster’s nodes. This can increase or decrease the CPU,
memory, disk, or network capacity of a cluster. The ability
to dynamically scale the cluster and map services to sets of
nodes is referred to as Multi-Dimensional Scaling (MDS).
Figure 2 shows how MDS might enable a small Couchbase
Server cluster to have 2 nodes shared by its Data and Index
Services, 2 nodes for the Query Service, 1 node for the Full-
Text Search Service, and 2 nodes for the Analytics Service.

A key aspect of Couchbase Server’s architecture is the man-
ner in which data changes are communicated across services.
An internal Database Change Protocol (DCP) continuously
notifies all services of the changes to documents managed by
the Data Service in Figure 1.

The Data Service is the foundation for document manage-
ment. It provides caching, persistence, and inter-node replica-
tion. The document data model is JSON. Documents are stored
in containers called buckets. A “bucket” contains related docu-
ments, similar to a database in a relational database (RDBMS).
There is no explicitly defined schema, so the “schema” for
documents is based on the application code and captured in
the structure of each stored document. Developers can add
new objects and properties at any time by deploying new
application code that stores new JSON data without having
to also make and deploy corresponding changes to a static
schema. As of Couchbase Server 7.0 or higher, documents
within a bucket reside in collections (similar to RDBMS
tables) that can be grouped together logically using scopes
(similar to RDBMS schemas).

The Indexing, Search, and Query Services coordinate via
DCP to provide document database management functionality
that supports high volumes of low-latency queries and up-

O

©[%]
O o Data Warehouse = Data Lake
i v
= e S5
Apps : ¢ 7 1 ‘5
Data Service Analytics Service LL]
BlViz Data Science

Fig. 3. Analytics Service in Couchbase Server

dates for JSON documents. The Indexing Service provides
global secondary indexing for the data managed by the Data
Service. The Search Service provides richer text indexing to
support a wide range of possible search engine-like querying,
i.e., full-text search (FTS); plus a set of APIs for search-
oriented applications that prefer to interact with this service
directly. The Query Service ties this all together by exposing
Couchbase Server’s database functionality through N1QL [24],
[25], a declarative, SQL-based query language that relaxes
the rigid INF and strongly-typed schema demands of the
relational SQL standard. As of Couchbase Server 7.0 or higher,
NI1QL supports SQL-style, multi-document, multi-statement
transactions using a combination of optimistic and pessimistic
concurrency control. A series of N1QL DML statements can
be grouped into an atomic transaction whose effects span the
Query, Indexing, Search and Data Services. We discuss details
of Couchbase Server’s Search Service in Section III-A.

The Analytics Service complements the Query Service by
supporting more expensive ad-hoc analytical queries (e.g.,
large joins and aggregations) over JSON document collections.
Figures 3(a) and 3(b) show its role in Couchbase Server. The
Data and Query Services provide low-latency key-value-based
and query-based access to their data. Their design point is
operational; they support many users making well-defined,
programmatic requests that tend to be small and inexpensive.
In contrast, the Analytics Service focuses on ad hoc and
analytical requests; it has fewer users posing larger, more
expensive N1QL queries against a real-time shadow copy of
the same JSON data. The Query service has a largely point-to-
point/RPC-based query execution model; the Analytics Service
employs partitioned parallelism under the hood, using parallel
query processing to bring all of the resources of the Analytics
nodes to bear on each query [23].

The Eventing Service offers an Event-Condition-Action
based framework that provides near real-time handling of data
changes in the Couchbase cluster.

So what about HOAP? As Figures 3(a) and 3(b) try to
indicate, operational data in Couchbase Server is available for
analysis as soon as it is created; analysts always see fresh
application data thanks to DCP. They can immediately pose
questions about operational data, in its natural data model,
reducing the time to insight from days or hours to seconds.
There are several differences between this approach and HTAP
in the relational world. One is scale: The Analytics Service can
be scaled out horizontally on a shared-nothing cluster [23],
and it can be scaled independently (Figure 2). It maintains a

Tokenizer 6’
Token fiters) 3 >) =
L

Text Analyzer

JSON
documents

Inverted Index Database

Couchbase FTS Engine

Fig. 4. Search Service in Couchbase Server

real-time shadow copy of operational data that an enterprise
wants to analyze; the copy is because Analytics is deployed on
its own nodes with their own storage to provide performance
isolation for the operational and analytical workloads. Another
difference relates to technology: Couchbase Analytics is not an
in-memory solution. It is designed to handle a large volume of
NoSQL documents — documents whose individual value and
access frequency would not warrant the cost of a memory-
resident solution, but whose aggregated content can still be
invaluable for decision-making.

A. Couchbase Search Service

The Search Service in Couchbase Server supports language-
aware searching by analyzing textual and other contents of
JSON documents and building multi-purposed FTS indexes
within a Couchbase bucket. The indexes created and used by
the Search Service are designed to provide scores to the search
results based on their relevancy and to handle FTS workloads
very efficiently. These indexes are entirely separate from and
different to those of the Indexing Service.

Figure 4 shows the major components of the Couchbase
Server Search Service. The FTS engine handles text indexing
for JSON documents. It analyzes the ingested data from the
server using the text analyzer 3, builds an inverted index for the
analyzed contents, and stores into the FTS database. The text
analyzer, consisting of a tokenizer and token filters, breaks
down the raw text into a list of words, referred as tokens.
These tokens are more suitable for indexing in the database
and searching documents. Depending on the definition of the
tokenizer and token filters, different tokens are generated.
Consider a sample text: “Jurassic Park”. The whitespace token
filter breaks the sample text into tokens when a whitespace is
found, and outputs “jurassic”, “park” as tokens. In contrast, the
edge-n-gram token filter forms n-grams of specified length. If
the minimum length is 3 and maximum length is 5, then it
generates “jur”, “jura”, “juras”, “sic”, “ssic”, “assic” “par”,
“park”, “ark” as tokens. Other commonly used token filters
include to_lower, stop_en, stemmer, etc. The to_lower token
filter converts all characters to lowercase; while the stop_en
token filter removes unnecessary tokens for FTS, e.g., “is”,
“and”, “or”, “the”, etc. The stemmer token filter transforms
tokens following the Porter Stemming Algorithm [26]; for

CLINT3

3The details on the text analyzers in Couchbase Server can be found at
https://docs.couchbase.com/server/current/fts/fts-index-analyzers.html

example, it transforms both “feels” and “feeling” tokens as
“feel”.

In Couchbase Server, there are some pre-constructed ana-
lyzers, including keyword, simple, standard, etc. The keyword
analyzer creates a single token representing the entire input;
while the standard and English analyzers apply the Unicode
tokenizer and fo_lower and stop_en token filters. Along with
these token filters, English analyzer uses the stemmer token
filter. As a result, the standard analyzer generates “‘jurassic”,
“park” as tokens while the English analyzer generates “‘jurass”,
“park” as tokens for the above mentioned sample text. Apart
from these predefined analyzers and filters, one can create
custom token filters and analyzers in Couchbase Server. To
run a FTS query on a FTS index, the analyzer specified for a
query needs to be the same as specified in the FTS index. If
no analyzer is specified in the query, the analyzer used for the
corresponding FTS index is used. Note that the non-analytic
FTS queries do not support any text analyzers on the query
texts.

IV. CH3 BENCHMARK DESIGN

When we undertook the effort reported here, we aimed to
explore several key aspects of NoSQL platforms’ support for
HOAP together with search engine-like full-text search. To
investigate the multi-dimensional scaling and measure the per-
formance of a 3-part mixed workload with operational (OLTP),
analytical (OLAP) and Full-Text Search (FTS) queries, here
we introduce a new benchmark, CH3. We extended the CH2
framework [9] for CH3. In this extended benchmark, our goal
was to more fully explore the performance of NoSQL plat-
forms, including (1) workload isolation among OLTP, OLAP
and FTS, (2) scaling of sub-workloads, and (3) performance
of the full-text search service. These were of interest because
most NoSQL systems are designed to scale out horizontally on
shared-nothing clusters and their initial design points for query
processing have been OLTP-oriented, i.e., they are gener-
ally built to support high-concurrency/low-latency operational
workloads as opposed to more complex data analytics and
search engine-like full-text search workloads.

So far we have investigated the CH3 benchmark on a
Couchbase Server cluster. However, CH3 is not specific to
Couchbase Server; rather it can also be implemented on other
NoSQL platforms that support query, analytics and full-text
search services. The rest of this section discusses details of
the CH3 benchmark.

A. Benchmark Schema

The CH3 schema is adapted from the CH2 schema, which in
turn is a modified version of the original CH-benCHmark [8]
schema adapted for the NoSQL world. Figure 5 shows the
CH2/CH3 schema. It summarizes the 9 tables and relationships
of the standard relational TPC-C schema. This schema models
businesses which “must manage, sell, or distribute products or
services” [6] and it follows a continuous scaling model.

The Order and Order-Line tables of TPC-C were combined
in CH2 by having Order-Line inlined as arrays inside of the

Warehouse 10 o District
w/ AN Wx10

. 1
1
. 1
. 1
. 1
| 100k :
y
| (s _ 1 TPCC
| w: %30k 1
1 L !
1 w :
1
It Order-Li 1
=" i .
I !
I_ _______________ hl
1
G .
1
: : Borrowed
1 from
- G
1
1
1
1 -R i
L —— ,'
Fig. 5. CH2/CH3 Schema.
TABLE 1
CH2/CH3 COLLECTIONS [9] AND EXAMPLE SIZES WITH W = 1,000
WAREHOUSES.
Collection Collection Size (W=1000)
Warehouse 1,000
District 10,000
History 30,000,000
NewOrder 9,000,000
Stock 100,000,000
Customer 30,000,000
Orders (Order-Line) 30,000,000 (300,000,000)
Item 100,000
Supplier 10,000
Nation 62
Region 5

Orders collection, and it retains the other 7 tables from TPC-
C. No other nesting changes were made to the TPC-C schema,
as doing so would involve over-nesting and would be a poor
database design for such use cases[5], [21]. Like the CH-
benCHmark, in addition to adopting the nested order modi-
fication and TPC-C’s scaling rules, CH2 borrows 3 TPC-H
tables with some modifications as additional CH2 collections
to support a TPC-H-equivalent analytical workload. Following
CH, CH2 borrows Supplier and Region, both unchanged, from
the TPC-H schema, along with a slightly modified version
of Nation. The modifications in collections from TPC-C are
highlighted and the collections borrowed from TPC-H are
indicated in Figure 5.

In the CH3 benchmark, we use all of the collections from
CH2 for the operational and analytical workloads. For the
FTS workload, we mainly focused our extensions on the
collections with meaningful text fields, and so, considered all
collections except Warehouse, New-Order, Nation and Region.
Note that, like CH and CH2, the CH3 benchmark database
size is scalable based on the number of warehouses (W) and
it adopts the TPC-C scaling rules.

Table I lists the CH2/CH3 collections and gives an example
of their scaling by listing their 1,000-warehouse cardinalities.
Orders are nested with an average of 10 Order-Line items in
each. The line separates the modified TPC-C collections (top)
from the three CH (and CH2/CH3) additions (bottom).

B. Benchmark Data

While designing the CH3 benchmark, we first encountered
a major problem — the text fields in CH2 are just space-
filling gibberish (as in TPC-C, TPC-H, and CH). To execute
any FTS queries, we needed human-readable and meaningful
texts so that we can execute meaningful FTS queries. One
way to address this problem would have been to use a real-
world dataset with a TPC-C-like schema. However, we found
it difficult to find a real-world dataset which follows the TPC-
C schema. As a next idea, we considered using FakerJS 4 for
generating some fake datasets, especially for the text fields.
Though Faker]JS could serve our purpose to some extent, it
fails to generate meaningful item names and data, and there is
no correlation among city, state and zip code values. Instead,
we ended up borrowing field values from an eCommerce
inventory dataset from Flipkart [27] and a worldwide zip
code population dataset alongside Faker]JS. Overall, the CH3
database generator is a modified version of the CH2 data
generator which now supports OLTP, OLAP and FTS queries.

Table II indicates the major changes in the CH3 database
generator from the CH2 data generator. Note that we did not
modify c_last of Customer in order to maintain compliance
with the database population requirement of TPC-C (Clause
4.3.2.3). Also, the text fields for the collections, not men-
tioned in Table II, are directly adapted from CH2 in CH3.
Figure 6 shows some examples of how the CH3 benchmark
documents in the Item and District collections differ from the
corresponding CH2 documents. One can see that the numeric
fields in the example documents of the Item and District
collections are same in both CH2 and CH3, and the text
fields differ in CH3 from CH2 as mentioned in the table. The
CH2 data generator generates i_data and i_name fields
as space-filling and meaningless texts while the CH3 data
generator borrows values from the eCommerce Flipkart dataset
for these fields and provides some meaningful texts. Similarly,
the text values of the District document in CH2 are also
meaningless. In contrast, in CH3, values are borrowed from
the Zip code population dataset for d_city, d_state,
d_zip fields, and FakerJS is used to generate d_street_1
and d_street_2 field values of the District document.
These meaningful texts allow us to execute meaningful FTS
queries on the CH3 documents.

C. Benchmark Indexes

In Couchbase Server, every Full-Text Search is performed
via a user-created Full Text Index that contains the targets
on which searches are to be performed. These targets are
values derived from the textual and other contents of docu-
ments within a specified bucket or collections within a scope.

“https://github.com/faker-js/faker

TABLE II
CH3 DATABASE GENERATOR USING VALUES FROM REAL DATASETS AND FAKERJS PYTHON LIBRARY.

Source of field values Collection(s) Field(s) Comments on generated data
Zip code population Warehouse W—C}ty’ w_state, w_z1pb The _zip values do not comply with the database
District d_city, d_state, d_zip] .
dataset) : population requirement of TPC-C (Clause 4.3.2.7).
Customer c_city, c_state, c_zip
eCommerce Tnventor Both of the fields are truncated to meet the length
. y Item i_name, 1i_data requirements of TPC-C and support the adaptation
dataset (Flipkart) .
of TPC-C queries.
Warehouse w_street_1, w_street_2
District d_street_1, d_street_2 Tlslisaetﬁ:ldb dzri n(z/talcl(l)é:elated with the _city,
Customer c_street_1, c_street_2 - r —21P o
The c_data field is a paragraph containing text
FakerJS python library Customer c_data, c_first, c_phone about the profile creation date, username, job_title,
company, email and website url of each customer.
History h_data These values meet the length requirements of
Stock s_data TPC-C.
Supplier su_address, su_phone
{ {
"i_data": "luwpheubaxzvighjucpccqgc "i_data": "Brand: Women Material: PU
fnhuouogciahtycggdttk", Closure: Zip\nDescripti..",
"i_id": 10003, "i_id": 10003,
"i_im_id": 3903, </:> "i_im_id": 3903,
"i_name": "rwpdxigerwokocf", "i_name": "Edel Shoulder Bag",
"i_price": 20.31 "i_price": 20.31
An Item document in CH2 An Item document in CH3
{ {
"d_city": "jkgkfzjrnht", "d_city": "Alva",
"d_id": 5, "d_id": 5,
"d_name": "ilnlryd", "d_name": "HM_district_5",
"d_next_o_id": 3001, "d_next_o_id": 3001,
"d_state": "1lu", "d_state": "wy",
"d_street_1": "gouifvenhyihu", ﬁ "d_street_1": "8822 Campbell Spur",
"d_street_2": "ydenbupwiuzer", "d_street_2": "Apt. 469",
"d_tax": 0.1842, "d_tax": 0.1842,
"d_w_id": 1, "d_w_id": 1,
"d_ytd": 30000, "d_ytd": 30000,
"d_zip": "399811111" "d_zip": "82711"
} }

A District document in CH2

A District document in CH3

Fig. 6. Examples of showing differences between CH2 and CH3 documents.

Documents can also be grouped by the user across multiple
buckets/scopes.

The CH3 data are stored in a single scope ch3 in a bucket
called bench in the Data Service, so we focused on creating
Full Text Indexes in the Search Service within that scope.
We used the Full-Text Search REST API for creating these
indexes where a JSON document (the body of the REST
request) contains the definition of an index. We created 3
indexes on single collections and 3 indexes across multiple
collections within the bucket/scope 3: (1) customerFTSI on
Customer, (2) itemFTSI on Item, (3) ordersFTSI on Orders,
(4) ngramFTSI on History and Stock, (5) nonAnalyticFTSI on

5The FTS index definitions for the CH3 benchmark are available at https:
//github.com/couchbaselabs/ch3

Customer, Stock and Supplier, and (6) multiCollectionFTSI on
Customer, District and Orders collections.

For CH3, we considered different text analyzers like key-
word, English, edge-n-gram analyzers, etc. in different FTS
indexes. The customerFTSI index uses keyword and English
text analyzers on different fields to index the documents.
Specifically we applied the keyword analyzer on the c_first
field in the Customer collection so that it forces exact matches
and preserves characters such as spaces during indexing the
documents. The other indexed fields in customerFTSI follow
the English analyzer. Similarly, the nonAnalyticFTSI index
uses keyword and English text analyzers on different fields.
We considered the default standard analyzer for the indexed
fields in itemFTSI, ordersFTSI, and multiCollectionFTSI in-

dexes. In contrast, the ngramFTSI index uses a customized
token analyzer using an edge-n-gram token filter to index the
documents.

D. Benchmark Queries

To design the mixed workload of CH3, we included all
the operational and analytical queries from CH2 without any
modifications against the CH3 benchmark data. These queries
are expressed in NIQL (i.e., SQL++), a SQL-like query
language that considers nested data. In addition to the CH2
queries, we have included 20 FTS queries. We pose the FTS
queries in JSON format so as to execute them via the Search
Service of Couchbase Server. When running FTS queries in
NIQL format, the queries are sent to the Query Service,
rerouted to the Search Service to fetch the results, and the
results are returned from the Query Service to the client node.
To maintain better isolation, we decided to send the FTS
queries in JSON format so that operational and FTS queries
can be run separately by the Query Service and Search Service
components, respectively.

In Couchbase Server, the Full-Text Search Service allows
us a wide range of query options, including match queries,
match-phrase queries, range queries, non-analytic queries,
compound queries, etc. Match and match-phrase FTS queries
can analyze their input texts and perform fuzzy and/or prefix
matches. The fuzziness of a query can be specified so that
the scope of the matches can be constrained to a particular
level of exactitude. In contrast, non-analytic FTS queries do
not support analysis on their query texts and will return only
exact matches. Fuzziness, regular expressions, wildcards, etc.,
can be specified for a non-analytic query. Range queries can
find documents containing a value in the specified field within
the specified range, where the specified range can be either of
a date, numeric or term range. Compound queries are designed
to accept multiple queries simultaneously, and return either the
conjunction of results from the result-sets of all child queries,
or a disjunction.

We designed the 20 FTS queries in CH3 so that together
they cover all of supported FTS query types in Couchbase
Server. We categorized these FTS queries into Simple, Ad-
vanced, and Non-analytic queries. Among the 20 FTS queries,
6 are simple queries, 8 are advanced queries and 6 are non-
analytic queries. Simple queries are simple match and match-
phrase queries, whereas compound queries and relatively com-
plex match queries are categorized as advanced queries.

Table III shows examples of a simple FTS query and an
advanced FTS query in JSON format. The name of collections
and corresponding FTS indexes on which we can execute FTS
queries are also mentioned along with the queries in the table.
The left query is a simple query that is basically a range query
searching for a range of dates from the Orders collection, and
the corresponding FTS index named ordersFTSI indexes the
o_entry_d field of the Orders collection. The right query
is an advanced query that finds documents with matching
terms from two fields of two collections, i.e., documents that
match the given terms in the h_data field of the History and

the s_data field of the Stock collection. The corresponding
FTS index named ngramFTSI indexes both h_data and
s_data fields of the History and Stock collections based on
a customized token analyzer using an edge-n-gram token filter
of min length 3 and max length 7.

Note that as the number of results obtained for a FTS
query can be large at times, we can limit how many results to
fetch starting at which offset by specifying size and from
parameters in the FTS query. As a result, in response to a
FTS query, size + from number of results are fetched and
size number of results are returned starting at offset from.

V. CH3 BENCHMARK RESULTS

In this section, we report the performance results from
implementing and running our mixed workload CH3 bench-
mark on a 6-node Couchbase Server cluster. Our primary
focus here is to use CH3 to explore several key aspects of
NoSQL platforms, including (1) performance isolation among
OLTP, OLAP and FTS workloads, (2) the scalability of their
architectures with mixed workloads, and (3) full-text search
service performance.

A. Benchmark Implementation

To implement the CH3 benchmark’s mixed workload, we
started with the CH2 adaptation of CMU’s py-tpcc benchmark
system, the same package recently used by MongoDB [5].
We then modified CH2’s data generator following the earlier
description, added FTS indexes and queries in JSON, and
finally added a CH3 driver for Couchbase Server to meet our
mixed workload requirements ©.

The CH3 data resides in a scope called ch3 in a bucket
called bench in the Data Service (in JSON document form).
The required indexes to support the operational queries and
updates were created in the bench bucket in the Data Service.
In contrast, the required FTS indexes to support the FTS
workload were created in the bench bucket in the Search Ser-
vice. For these experiments, we generated a 1,000-warehouse
instance of CH3. The cardinalities of the CH3 collections are
thus consistent with the example numbers shown in Table I.

Each operational, analytical, or FTS user is simulated by a
stream running on a client node of the configured Couchbase
Server cluster. Each stream consistently sends query requests
to the system. 0-128 streams send TPC-C operations to the
Query Service, 0-128 streams send FTS query requests to
the Search Service, with 0 or 1 stream sending analytical
queries to the Analytics Service. These stream counts simulate
a typical business model with more front-end users (either
running OLTP or FTS queries) than data analysts.

B. Benchmark Configuration(s)

As mentioned earlier, we ran our CH3 benchmark imple-
mentation on a cluster consisting of 6 nodes. Hardware-wise,
the cluster was comprised of 5 nodes, each with 24 vCPUs,
64GB of memory, and up to 10 Gbps of network bandwidth,

The software artifacts associated with this paper’s benchmark are avail-
able at https://github.com/couchbaselabs/ch3

TABLE III
A SIMPLE FTS QUERY (LEFT) AND AN ADVANCED FTS QUERY (RIGHT)

Collection: Orders
FTS Index: ordersFTSI

Collections: History, Stock
FTS Index: ngramFTSI

{
"explain": false,
"fields": [
wen
]I
"highlight": {},
"query": {
"start": "2015-01-01",
"end": "2016-10-30",
"field": "o_entry_d"
}I
"size": 5,
"from": O
}

{
"explain":
"fields": [

wyn

false,

]I
"highlight": {},

"query": {
"disjuncts": [
"match": "Expert opinion",
"field": "h_data"
"match": "international policy",
"field": "s_data"
]
"size": 5,
"from": 0

}

forming the Couchbase Server cluster. Moreover, there is one
client node with 48 vCPUs, 64GB of memory, one 480GB
SSD, and up to 10 Gbps of network bandwidth that was used
to run the client workload driver. The nodes running a Data,
Index, Query, and Search Service utilized one 1TB SSD drive,
while the nodes running the Analytics Service utilized two
1TB SSDs drives uniformly for enhanced query parallelism.

We show the results with six different workload settings: (1)
only FTS streams, (2) only TPC-C streams, (3) CH2 streams,
i.e. both TPC-C and TPC-H, (4) FTS and TPC-C streams,
(5) FTS and TPC-H streams, (6) FT'S and CH2 streams. For
these settings, we vary the number of both FTS and operational
streams equally as 1, 2, 4, 16, 32, 64, 96, 128, and consider
0-1 number of analytical stream.

C. Initial Benchmark Results

Our initial goal is to investigate Couchbase Server’s perfor-
mance isolation for CH3’s mixed workload, FTS performance
and scalability of workloads. To measure the performance with
CH3 workload, operational, analytical, and FTS clients were
run concurrently until the analytical client running the 22 an-
alytical queries completed one full loop. For a FTS client, we
executed 25% simple, 35% non-analytic, and 40% advanced
FTS queries as long as the analytical client completed the loop.
In case of O analytical stream, operational and FTS clients
were run concurrently for a certain duration.

Figure 7 shows the results that reveal about Couchbase
Server’s FTS and analytical query performance. Figure 7(a)
shows the throughput for the FTS queries in Queries per hour
(Qph) by varying the number of operational and FTS streams
equally from 1, 2 to 128 with our different workload settings.
We can see that the FT'S queries’ throughput exhibit a textbook

performance increase as the number of streams is increased.
There are two key observations in this graph. The first one is
the expected scalability of FT'S workload for a variable number
of streams. The second is the FTS workload isolation with or
without running operational and analytical queries.

Figure 7(b) shows the geometric mean of the 22 analytical
queries’ average response times in seconds vs. the number
of streams. Here, we vary the number of operational and FTS
streams equally from 1, 2 to 128 for these results. From this set
of results, we can observe the analytical workload performance
isolation which is not affected while the number of operational
and FTS streams is increased on the z-axis.

Now, we discuss the NewOrder transaction results with our
different workload settings. Figure 8(a) shows the NewOrder
throughput in transactions per minute (tpm) running a mixed
workload with O-1 analytical client and varying the number
of operational and FTS streams equally from 1, 2 to 128.
We can observe the throughput increasing linearly at the
beginning and then reaching a plateau when the resources are
saturated. Also, the throughput exhibits the same patterns and
trends for all different workload settings. Figure 8(b) shows
the corresponding average response times in milliseconds for
the NewOrder transactions. The response times are linearly
proportional to the number of streams. So, we can observe
that these two graphs are pairwise identical and also depict the
performance isolation of operational workload with different
workload settings.

The results discussed in this section clearly show the
effective performance isolation of Couchbase Server cluster
components with a mixed workload of operational, analytical
and FTS streams. Also, one can notice the scalability of
its architecture when faced with a need to support more

1x106

< ox105 | 7
C gx105 |- 4
=
3 7x105 |- -
S 5
S 6x105 |- -
£ 5x10° - E
E ax105 | 1
Q0 5
S 3x105 - FTS —— ||
& 2x105 FTS + TPC-H —A—
n . FTS + CH2 ||
[1x10 FTS + TPC-C —y—
0x100 E 1 1 T T
0 20 40 60 80 100 120 140
Number of Streams

(a)

50 T T T T T T T T T
o FTS + TPC-H —
k) FTS + CH2
= 40| CH2 == |
3 - -
= e S T = T T —
g 30 .
o
&
w 20 - 4
g
g
S 10+ 4
[
5

0

1 2 4 8 16 32 64 96
Number of Streams

(b)

128

Fig. 7. (a) FTS Queries Throughput (Qph) and (b) CH2 Queries Geometric Mean (sec)., varying the number of streams.

3500 T T T T T T
g 3000 + -—’—’/A'_'K:‘ -
5 2500 F = .
= 4
oy
S 2000 .
<] b
£ 1500 |- .
S 1000 | FTS + CH2 H
g L FTS + TPC-C —y—
o 500 TPC-C —— H
= 0' 4 CH2

0 20 40 60 80 100 120 140

Number of Streams
(a)

— 8000 T T T T T T
w
E 7000 | / .
[0}
£ 6000 |- §
l_
a 5000 .
)
Q —~
& 4000 - .
3 3000 1) / 1
[} B e FTS + CH2 ||
‘OE 2000 // FTS + TPC-C —¥—
S 1000 =¥ TPC-C —— ||
9] - CH2
= 0 1 1 1 1 I I

0 20 40 60 80 100 120 140

Number of Streams
(b)

Fig. 8. NewOrder Throughput (tpm) and (b) NewOrder Average Response Time (ms), varying the number of streams.

operational or FTS users.

VI. CONCLUSION

Database management systems with hybrid workload sup-
port — HTAP or HOAP - first appeared in the relational world,
where they are often linked to server technology trends such
as columnar storage and memory-rich, many-core, scale-up
server technology. Such hybrid data management support in
the document database of the NoSQL world is also being
attracted in both industry and research sectors. In addition
to the operational and analytical services, full-text search is
a key component of NoSQL platforms that provides Google-
like search capability on JSON documents. In this paper, we
introduced CH3, a benchmark for evaluating scalable NoSQL
platforms with a mixed workload — operational (OLTP), ana-
Iytical (OLAP), and full-text search (FTS). In this effort, we
designed CH3 in such a way that it supports meaningful FTS
workload as well as OLTP and OLAP workloads. Like CH2,
the CH3 benchmark borrows from and extends both TPC-C
and TPC-H. However, CH3 generates meaningful text contents
and includes necessary FTS indexes and relevant FTS queries
on these indexes to handle the FTS workload. We studied the
performance of a scalable NoSQL platform, Couchbase Server,

that offers Query, Analytics, and Search services, by running
the CH3 benchmark. The performance results provide insight
into the performance of Search Service, the performance
isolation among OLTP, OLAP and FTS workloads, and the
horizontal scalability of Couchbase Server. It also exhibits
the importance of CH3 for evaluating a mixed workload
performance of NoSQL platforms.

ACKNOWLEDGMENTS

The authors wish to thank Abhinav Dangeti of Couchbase
Full-Text Search team who has provided technical assistance
related to the new FTS features. They would also like to thank
Peter Reale of Couchbase, Inc. for assisting with the Zip code
population dataset.

REFERENCES

[1] Wikipedia contributors, “Hybrid transactional/analytical processing —
Wikipedia, the free encyclopedia,” 2020, [Online; accessed 19-October-
2020]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=
Hybrid_transactional/analytical_processing&oldid=981969658

[2] 451 Research, “Hybrid processing enables new use cases (business
impact brief),” 2018, https://www.intersystems.com/isc-resources/
wp-content/uploads/sites/24/Hybrid_Processing_Enables_New_Use_
Cases-451Research.pdf [Online; accessed 19-October-2020].

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]
[15]
[16]
(17]
[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]
[26]

[27]

P. J. Sadalage and M. Fowler, NoSQL Distilled: A Brief Guide to the
Emerging World of Polyglot Persistence. ~ Upper Saddle River, NJ:
Addison-Wesley, 2013.

D. Borkar et al., “Have your data and query it too: From key-value
caching to big data management,” in Proc. ACM SIGMOD Conf. ACM,
2016, pp. 239-251.

A. Kamsky, “Adapting TPC-C benchmark to measure performance of
multi-document transactions in MongoDB,” PVLDB, vol. 12, no. 12, pp.
2254-2262, 2019.

F. Raab, “TPC-C - The standard benchmark for online transaction
processing (OLTP),” in The Benchmark Handbook for Database and
Transaction Systems (2nd Edition), J. Gray, Ed. Morgan Kaufmann,
1993.

M. Péss and C. Floyd, “New TPC benchmarks for decision support and
web commerce,” SIGMOD Record, vol. 29, no. 4, pp. 64-71, 2000.

R. L. Cole et al., “The mixed workload CH-benCHmark,” in Proc.
Fourth Int’l. Workshop on Testing Database Systems, DBTest. ~ACM,
2011, pp. 1-6.

M. Carey, D. Lychagin, M. Muralikrishna, V. Sarathy, and T. Westmann,
“CH2: A Hybrid Operational/Analytical Processing Benchmark for
NoSQL,” in Performance Evaluation and Benchmarking: 13th TPC
Technology Conference, TPCTC 2021, Copenhagen, Denmark, August
20, 2021, Revised Selected Papers. Springer-Verlag, 2021, p. 62-80.
A. Kemper and T. Neumann, “Hyper: A hybrid OLTP&OLAP main
memory database system based on virtual memory snapshots,” in 2011
IEEE 27th Int’l. Conf. on Data Engineering, 2011, pp. 195-206.

N. May, A. Bohm, and W. Lehner, “SAP HANA - the evolution of an in-
memory DBMS from pure OLAP processing towards mixed workloads,”
in Proc. BTW 2017, 17. Fachtagung des GI-Fachber. DBIS, Mdirz 2017,
Stuttgart, Germany, 2017.

V. Raman et al., “DB2 with BLU acceleration: So much more than just
a column store,” PVLDB, vol. 6, no. 11, pp. 1080-1091, 2013.

T. Lahiri et al., “Oracle database in-memory: A dual format in-memory
database,” in 2015 IEEE 31st Int’l. Conf. on Data Engineering, 2015,
pp. 1253-1258.

P. Larson et al.,, “Real-time analytical processing with SQL server,”
PVLDB, vol. 8, no. 12, pp. 1740-1751, 2015.

A. Raza et al., “Adaptive HTAP through elastic resource scheduling,”
in Proc. ACM SIGMOD Conf. ACM, 2020, pp. 2043-2054.

(2022) Snowflake Unistore. [Online]. Available: https://www.snowflake.
com/en/data-cloud/workloads/unistore/

J. Gray, Ed., The Benchmark Handbook for Database and Transaction
Systems (1st Edition). Morgan Kaufmann, 1991.

M. Poss et al., “TPC-DS, taking decision support benchmarking to the
next level,” in Proc. ACM SIGMOD Conf. ACM, 2002, pp. 582-587.
B. F. Cooper et al., “Benchmarking cloud serving systems with YCSB,”
in Proc. 1st ACM Symp. on Cloud Computing, SoCC 2010, Indianapolis,
Indiana, USA, June 10-11, 2010. ACM, 2010, pp. 143-154.

P. Pirzadeh, M. Carey, and T. Westmann, “BigFUN: A performance
study of big data management system functionality,” in 2015 IEEE Int’l.
Conf. on Big Data, 2015, pp. 507-514.

P. Pirzadeh, M. Carey, and T. Westmann, “A performance study of big
data analytics platforms,” in 2017 IEEE Int’l. Conf. on Big Data, 2017,
pp. 2911-2920.

Y. Tian, M. Carey, and I. Maxon, “Benchmarking HOAP for scalable
document data management: A first step,” in 2020 IEEE Int’l. Conf. on
Big Data, 2020, pp. 2833-2842.

M. A. Hubail et al., “Couchbase Analytics: NoETL for scalable NoSQL
data analysis,” PVLDB, vol. 12, no. 12, pp. 2275-2286, 2019.

D. Chamberlin, SQL++ for SQL Users: A Tutorial. ~Couchbase, Inc.
(Available via Amazon.com.), 2018.

D. Chamberlin, “Comparing Two SQL-Based Approaches for Querying
JSON: SQL++ and SQL:2016,” White Paper, Couchbase, Inc., 2019.
(2006) Porter Stemming Algorithm. [Online]. Available: https:
/Mtartarus.org/martin/PorterStemmer/

(2017) Flipkart eCommerce Inventory Dataset. [Online]. Available:
https://data.world/promptcloud/product-details-on-flipkart-com

	Introduction
	Related Work
	HTAP (HOAP)
	Benchmarks

	Couchbase Server
	Couchbase Search Service

	CH3 Benchmark Design
	Benchmark Schema
	Benchmark Data
	Benchmark Indexes
	Benchmark Queries

	CH3 Benchmark Results
	Benchmark Implementation
	Benchmark Configuration(s)
	Initial Benchmark Results

	Conclusion
	References

