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Abstract

In this note we present a solution of N = 4, d = 7 gauged supergravity which is holographically dual to 
a co-dimension two defect living in a six dimensional SCFT. The solution is obtained by double analytic 
continuation of a two charge supersymmetric black hole solution. The condition that no conical deficits are 
present in the bulk and on the boundary is satisfied by a one parameter family of solutions for which some 
holographic observables are computed.
 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The construction and study of extended conformal defects is an important subject in the in-
vestigation of superconformal field theories (SCFT). Defects are characterized by the broken and 
preserved symmetries. In a d-dimensional SCFT, a p-dimensional conformal defect preserves a 
SO(p, 2) × SO(d − p) subgroup of the SO(d, 2) conformal group. The first factor is the con-
formal symmetry acting on the world volume of the defect and the second factor is the rotational 
symmetry in the transverse directions, which acts like a global symmetry on the degrees of free-
dom localized on the defect.

If the SCFT has a holographic dual it is interesting to look for the holographic description of 
such defects, which fall into two categories: First, a brane is placed in the bulk spacetime which 

* Corresponding author.
E-mail address: gutperle@physics.ucla.edu (M. Gutperle).

https://doi.org/10.1016/j.nuclphysb.2022.115969
0550-3213/ 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2022.115969&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.nuclphysb.2022.115969
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/4.0/
mailto:gutperle@physics.ucla.edu
https://doi.org/10.1016/j.nuclphysb.2022.115969
http://creativecommons.org/licenses/by/4.0/


M. Gutperle and N. Klein Nuclear Physics B 984 (2022) 115969

ends on the boundary at the p dimensional defect [1,2]. In a probe approximation the gravita-
tional back reaction of such the brane is neglected, but the embedding is determined by solving 
the world volume equations of motion or the BPS-condition following from world volume kappa 
symmetry [3]. Second, a fully back reacted solution of the supergravity can be constructed us-
ing an ansatz of AdS and sphere factors warped over a base space (which can be a line or 
a Riemann surface with boundary). Solutions can either be constructed in lower dimensional 
gauged supergravities [4,5] and in favorable circumstances be uplifted ten or eleven dimensions, 
or alternatively solutions can be constructed in ten or eleven dimensions where the solution is 
constructed by a warped product of AdS (and sphere factors) over a base manifold. For exam-
ple in [6–9] the base manifold is a non compact Riemann surface with boundary and solutions 
preserve half the supersymmetry, in [10,11] the base manifolds are higher dimensional Kaehler-
Einstein spaces and the amount of preserved supersymmetries is reduced. A careful analysis of 
the uplifted solutions would be needed to investigate a possible relation to the solutions [10,11].

The former solutions are easier to obtain but the later are more general and in many cases give 
a top down understanding of the defects as backreacted solutions of intersecting brane systems, 
which allow us to identify the gauge theories, often of quiver type, which flow to the SCFTs.

In this note we consider the holographic description of p = 4 dimensional defects in d = 6
dimensional SCFTs. We construct solutions in a truncation of maximal SO(5) gauged super-
gravity in seven dimensions with U(1) × U(1) gauge symmetry. These solutions are related by 
a double analytic continuation to extremal supersymmetric black hole solutions. They are also 
closely related to compactifications of the seven dimensional theory on spindles - two dimen-
sional compact surfaces with conical deficits which have been studied extensively in the past 
two years (see e.g. [12–20]). Both constructions start with a ansatz AdS5 × S1 warped over a 
real coordinate. For the spindle solution the real coordinate takes values on a compact interval 
and the circle closes off at either end of the interval where there are conical singularities. The 
spindle solutions correspond to novel compactifications dual to four dimensional SCFTs where 
supersymmetry is preserved not by a topological twist but due to a novel mechanism.

In our case the real coordinate takes values on a half-line. The S1 closes off at the end of 
the half line and the AdS5 × S1 decompactifies at infinity to an asymptotic AdS7 space. The 
solution therefore describes a holographic dual conformal a four dimensional defect living inside 
a six dimensional SCFT. One of the main results of the present paper is that for the two charge 
extremal solution we find a one parameter family of completely regular solutions where there is 
no conical deficit at the location where the circle closes off.

The structure of this note is as follows. In section 2 we describe the seven dimensional gauged 
supergravity and the relevant solutions which are obtained from double analytic continuation 
of black hole solutions. In section 3 we perform a regularity analysis based on the absence of 
conical singularities in the bulk and boundary and obtain a one parameter family of regular 
solutions, as well as solutions with conical singularities in the bulk related to spindles which 
have been actively investigated recently. In section 4 we perform some holographic calculations 
using the regular solutions, in particular we calculate the on-shell action of the solution, as well 
as the expectation value of the stress tensor and conserved R-symmetry currents. In section 5
we briefly discuss the uplift of the solution to eleven dimensions which is used to identify the 
R-symmetry currents of the six dimensional SCFT to which the seven dimensional gauge fields 
are dual. We close with a discussion of our results and leave some details of calculations to an 
appendix.

2



M. Gutperle and N. Klein Nuclear Physics B 984 (2022) 115969

2. 7-dim gauged supergravity

We consider a truncation of maximal N = 4, SO(5) gauged supergravity in seven dimensions 
[21] with U(1) × U(1) gauge symmetry and two scalars [22–24]. There exists a consistent up-
lift of the seven dimensional solutions to eleven dimensional supergravity [22]. The solutions 
we consider are double analytic solutions of charged non-rotating black hole solutions [23,24], 
where the S5 factor is replaced by a AdS5 factor and the time coordinate is replaced by a space-
like compact circle coordinate. The black hole solution depends on a non-extremality parameter 
and two charges. The extremal solution preserves either half or a quarter of the thirty-two super-
symmetries of the gauged supergravity theory for one or two nonzero charges respectively [24]. 
It was shown in [13] that the analytically continued extremal solutions also preserve the same 
amount of supersymmetry.

We follow the conventions of [13] to facilitate a comparison with their analysis. The action 
for the bosonic fields of U(1) × U(1) gauged supergravity in seven dimensions is given by

S = − 1
16πGN

∫
d7x

√−g
(
R − g2

cV (φ) − 1
2

2∑

i=1

∂µφi∂
µφi − 1

4
e
√

2φ1+
√

2
5 φ2F 2

1

− 1
4
e
−

√
2φ1+

√
2
5 φ2F

2
2

)
(2.1)

where Fi = dAi, i = 1, 2 and the potential for the scalar fields is given by

V (φ) = 2g2
c e

−
√

2
5 φ2

(
− 8 + e

√
10φ2 − 8e

√
5
2 φ2 cosh

φ1√
2

)
(2.2)

The solution given in [13] can be expressed in term of the following functions

hi(y) = y2 + qi, i = 1,2

P(y) = h1(y)h2(y)

Q(y) = −y3 − µy + g2
ch1(y)h2(y) (2.3)

and is given by

ds2 =
(
yP (y)

) 1
5
{
ds2

AdS5
+ y

4Q(y)
dy2 + Q(y)

P (y)
dz2

}

Ai =





√
1 − µ

qi
qi

hi(y)
+ αi



dz, i = 1,2

eφ1 =
(

h1(y)

h2(y)

) 1√
2
, eφ2 = (h1(y)h2(y))

1√
10

y
2
√

2
5

(2.4)

It is easy to verify that the equations of motion following from the variation of the action (2.1)
are satisfied for such a solution. Here q1, q2 are related to the charges and µ is a non-extremality 
parameter which we set to µ = 0. This choice corresponds to a supersymmetric solution as in 
[13]. We will also set gc = 1 for simplicity. For these choices the solution with q1 = q2 = 0
corresponds to a unit radius AdS7, using AdS5 × S1 slicing coordinates.
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3. Regularity analysis

In this section we present the conditions that regularity imposes on the solution. The analysis 
follows the general strategy employed in other cases of holographic description of defects [25–
27]. It is also closely related to the construction of holographic calculations of Renyi-entropies 
[28,29], compactifications on spindles [12–15] and related constructions [30,31].

In [13] the solution presented in section 2 was used to construct a AdS5 compactification 
of seven dimensional supergravity on a two dimensional compact space, a so-called spindle. 
A spindle is topologically a two sphere with two conical deficits at the north and south poles 
respectively. A spindle exists if the function Q(y), defined in (2.3) has two real zeros and in 
between the zeros both Q(y) and P(y) are positive. The regularity, supersymmetry and the 
quantization of the deficit angle coming from a consistent interpretation of the uplift to eleven 
dimensions impose conditions on the parameters of the solution which were worked out in [13].

In our case the two dimensional space will be non-compact and we will look at the region 
from the largest positive zero of Q(y) to infinity, which is a region where Q is positive. In the 
following we will investigate the regularity conditions imposed on the solution. For convenience 
we write out the functions which determined the regularity (recall we have set µ = 0).

Q(y) = −y3 + (y2 + q1)(y
2 + q2) = y4 − y3 + (q1 + q2)y

2 + q1q2

P(y) = (y2 + q1)(y
2 + q2) (3.1)

As y → ∞ we approach an asymptotic AdS7 region, with a six dimensional boundary. In this 
limit the metric takes the form

lim
y→∞ds2 = yds2

AdS5
+ ydz2 + 1

4y2 dy2 + · · ·

= dρ2

4ρ2 + 1
ρ

(
ds2

AdS5
+ dz2

)
+ · · · (3.2)

where we defined the Fefferman-Graham coordinate ζ as y = 1/ρ and the dots denote sub-
leading terms in y and ρ, which are determined in appendix A. The metric is asymptotic to 
AdS7. Since the z direction parameterizes a circle, the holographic boundary of the asymptotic 
AdS space is of the form AdS5 × S1. The six dimensional metric on the boundary is given by

ds2
6 = dr2 − dt2 − ∑3

i=1 dx2
i

r2 + dz2

= 1
r2

(
dζ 2 − dt2 −

3∑

i=1

dx2
I + r2dz2

)
(3.3)

which is conformal to R1,5 if the coordinate z has periodicity 2π . For a different periodicity 
of z the boundary has a conical singularity at r = 0. In the standard formulation of AdS/CFT 
the boundary theory does not have dynamical gravity and hence a co-dimension two defect does 
not induce a conical deficit, as a cosmic string would in a gravitational theory. Consequently 
the condition of the absence of a conical deficit on the boundary fixes the periodicity of the S1

coordinate z to be 2π .
We now seek conditions on q1, q2 such that there is at least one positive zero and that it is not 

a double zero. Once we have such a y+, we can guarantee that in the range [y+, ∞) both metric 
functions Q(y) > 0 and P(y) > y3 > 0 are positive and the metric is regular. An important 
quantity for the nature of the zeros of Q is the discriminant
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Fig. 1. Sign of the discriminant (3.4) of the polynomial Q(y) in the (q1, q2) plane. The dark gray region is excluded.

D =q1q2

(
16(q4

1 + q4
2 ) − 4(q3

1 + q3
2 ) − 64(q3

1q2 + q1q
3
2 ) + 96q2

1q2
2 + 132(q2

1q2 + q1q
2
2 )

− 27q1q2

)
(3.4)

Note that the vanishing of the discriminant implies the presence of a real double zero and for 
D > 0 we have either four or no real zeros whereas for D < 0 we have two real and two complex 
conjugate roots. We show a plot of the sign of the discriminant as a function of q1, q2 in Fig. 1, 
where locus of vanishing discriminant is represented by the blue curve and regions of positive 
discriminant are shaded gray.

We can use Descartes’ rule of signs to show that in the region with either one or both q1 and 
q2 negative, we have two real roots in the (white) region where D < 0 and four real roots in the 
(gray) region where D > 0. In the region where both q1, q2 are positive we have two real zeros 
in the white region where D < 0 and no real zeros in the (dark gray) region, where D > 0. This 
implies that the dark gray region of charges is excluded since Q(y) is never zero here and we 
will produce a naked singularity when y goes to zero and the Ricci scalar diverges.

Note that if y = y0 is a double zero the metric will approach the following form near y =
y0 + ρ

ds2 ∼ (y0P(y0)
1
5

(
ds2

AdS5
+ y0

γρ2 dρ2 + γρ2

P(y0)
dz2

)
(3.5)

where γ = 1
2Q′′(y) |y=y0 . This produces a singularity at ρ = 0. (We will see that we will never 

have to worry about this case for q1, q2 which satisfy the other regularity conditions.)

5



M. Gutperle and N. Klein Nuclear Physics B 984 (2022) 115969

Now we assume that we are in the allowed region of the q1, q2 plane and consider the y → y+
limit where y+ is the largest positive zero of the function Q(y). Letting y = y+ + ρ, we have 
that

Q(y) ≈ Q′(y+)ρ

P(y) ≈ P(y+) = (Q(y+) + y3
+) = y3

+ (3.6)

Plugging these into the metric (2.4) and defining the new radial coordinate r = ρ
1
2 , we obtain

(
yP (y)

) 1
5
( y

4Q(y)
dy2 + Q(y)

P (y)
dz2

)
∼ y

9
5
+

Q′(y+)

(
dr2 +

(
Q′(y+)

y2
+

)

r2dz2
)

(3.7)

As discussed above the absence of a conical deficit on the boundary fixes the periodicity of z to 
be 2π .

Q′(y+)

y2
+

= 1
n

(3.8)

gives us the metric on a which is regular everywhere except at the location y = y+ where the 
circle shrinks to zero size, where there is a conical deficit angle 2π(1 − 1

n ).
Using the explicit form of Q, we obtain the following constraint on the charges:

y+
(

4y2
+ − (3 + 1

n
)y+ + 2(q1 + q2)

)
= 0 (3.9)

Note that the value of the largest root y+ also depends on the charges q1, q2 and the resulting 
expression does not have a compact explicit expression. It is however clear that the condition will 
constrain the charges q1, q2 to lie on a one dimensional curve, which depends on the value of 
the conical deficit. In Fig. 2 we illustrate the curves of allowed charges for the case n = 1 which 
corresponds to a completely nonsingular spacetime, and n = 2, 3 which corresponds to spaces 
with conical deficits π and 2

3π respectively.
We note that there is no completely regular solution (i.e. a solution without conical deficit at 

the boundary or in the bulk) with one of the q1 and q2 charges set to zero. Hence all completely 
regular solutions preserve eight of the thirty two supersymmetries of the AdS7 vacuum of the 
gauged supergravity Consequently, the dual four dimensional defect preserves N = 1, d = 4
superconformal symmetry. A solution preserving N = 2, d = 4 supeconformal symmetry would 
necessarily have a conical deficit in the seven dimensional spacetime.

We can choose that constant αi in the expression for the gauge fields Ai, i = 1, 2 such that the 
gauge field vanishes at y = y+, where the circle shrinks to zero size. In contrast to the compact 
spindle case, this does not impose any additional conditions since there is only one value of y
instead of two, where the circle shrinks.

4. Holographic calculations

The solutions describe holographic co-dimension two defects in the six dimensional SCFT. 
In this section we calculate some holographic observables and discuss the implications for the 
defects imposed by regularity constraints. As discussed in section 3 the solution approaches 
AdS7 asymptotically where the six dimensional boundary is AdS5 × S1. While the boundary 
is conformal to R1,5, it is simpler to work with the AdS5 × S1 form of the boundary which is 
natural given the metric (2.4). All holographic calculations can be mapped to a flat boundary 
using the conformal mapping described in section 3.
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Fig. 2. Allowed charges for different values of conical deficits: n = 1 (red) is the completely regular solution and conical 
singularities with n = 2 (green) and n = 3 (orange).

4.1. On shell action

To evaluate the on shell action we have to add a Gibbons-Hawking term to the action (2.1)
which is needed for a good variational principle. Using the trace of the Einstein equation the 
on-shell action can be expressed as

Son−shell = − 1
16πGN

∫

M

√−g
(2

5
V − 1

10
e
√

2φ1+
√

2
5 φ2F 2

1 − 1
10

e
−

√
2φ1+

√
2
5 φ2F 2

2

)

+ 1
8πGN

∫

∂M

√
−h( (4.1)

The Gibbons-Hawking term is obtained from the trace of the second fundamental form

(µν = −1
2

(
∇µnν + ∇νnµ

)
(4.2)

Here hab is the induced metric and nµ is the outward pointing normal vector at the cut-off surface. 
For the solution discussed in the paper we choose the cutoff surface at large y = yc. Furthermore 
since the spacetime closes off at the larges zero y+ of Q(y), the integral of the coordinate y in 
the action (4.1) is on y ∈ [y+, yc]. The on-shell action becomes

Son−shell = VolAdS5

16πGN

(
− 10y3

c + 10y2
c − 6(q1 + q2)yc − 4

5
(q1 + q2)
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− 2q1q2

5y+
− 6(q1 + q2)y+

5
− 2y3

+ + 4
5

q2
1

q1 + y2
+

+ 4
5

q2
2

q2 + y2
+

)
+ o(y−1

c )

(4.3)

Here VolAdS5 is the regularized volume of AdS5. The regularized on shell action is divergent in 
the limit yc → ∞ which removes the cutoff. In order to get a finite renormalized action we have 
to add covariant counter terms at the cutoff surface [32–35]

Sct = 1
8πGN

∫

y=yc

√
−h

(
W(φ1,φ2) + 1

8
R[h] + 1

64
(R[h]abR[h]ab − 3

10
R[h]2)

)

= VolAdS5

16πGN

(
10y3

c − 10y2
c + 6(q1 + q2)yc + 5

8

)
+ o(y−1

c ) (4.4)

Here R[h]ab, R[h] are the Ricci tensor and scalar respectively calculated from the induced metric 
at the cutoff surface. W(φ) is the superpotential

W(φ1,φ2) = e
2
√

2
5 φ2 + 2e

− 1√
2
φ1+ 1√

10
φ2 + 2e

− 1√
2
φ1− 1√

10
φ2 (4.5)

Which is related to the scalar potential defined in (2.2) by

V = 2
∑

i=1,2

(
∂W

∂φi

)2

− 6
5
W 2 (4.6)

The renormalized action is the given by

Sren = lim
yc→∞

(
Son−shell + Sct

)

= VolAdS5

16πGN

(5
8

− 4
5
(q1 + q2) − 2

5
q1q2

y+
− 6

5
(q1 + q2)y+ − 2y3

+ + 4
5

q2
1

q1 + y2
+

+ 4
5

q2
2

q2 + y2
+

)
(4.7)

and when we include the relationship between the qi’s and y+ implied by Q(y+) = 0, we obtain 
a remarkably simple result:

Sren = VolAdS5

16πGN

(5
8

− 2y2
+
)

(4.8)

As discussed above, our solutions describe holographic co-dimension 2 defects. In particular, 
when q1, q2 = 0 (y+ = 1), we just obtain the AdS7 vacuum which must be subtracted in order to 
identify the quantity above with the expectation value of the defect.

Sren − Sren|q1,q2=0 = VolAdS5

8πGN

(
1 − y2

+
)

(4.9)

Note that the volume of AdS5 has to be regularized and will contain a scheme independent 
logarithmic divergent term. We interpret the coefficient (4.9) as a central charge [37] associated 
with the four dimensional defect.
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4.2. Stress tensor and currents

The expectation value of the renormalized holographic stress tensor was derived in [33,35,36]
and can be obtained from the renormalized action

〈Tab〉ren = 2
√

det(g(0))

∂Sren

∂gab
(0)

(4.10)

Where g(0) is the asymptotic boundary metric in Fefferman-Graham coordinates.

ds2 = dρ2

4ρ2 + 1
ρ

gab(x,ρ)dxadxb (4.11)

with

gab(x,ρ) = g(0),ab + ρg(2),ab + ρ2g(2),ab + ρ3g(3),ab + h(3),abρ
3 logρ + · · · (4.12)

Here the asymptotic boundary is at ρ = 0. We defer the details of the calculation to the ap-
pendix A but note one of the features of the expansion (4.12) is the absence of the logarithmic 
term, i.e. we find h(3),ab vanishes. The final result for the expectation value of the stress tensor is

〈Tab〉rendxadxb = hDdsAdS2
5
− 5hDds2

S1, hD =
( 1

18
− 2

15
(q1 + q2)

)
(4.13)

which is traceless, indicating a vanishing six dimensional trace anomaly, which is in accordance 
with the absence of a logarithmic term in (4.12). The coefficient hD can be called the defect’s 
conformal dimension in analogy with other defects such as surface defects in four dimensions 
[38–40].1

The gauge fields are dual to conserved currents and from the asymptotic behavior of Ai given 
in (2.4), we can read off the source and expectation value using the standard AdS/CFT dictionary.

lim
ρ→0

Ai =
(
qiρ

4 + · · ·
)
dz, i = 1,2 (4.14)

which implies that there is no source for the conserved currents and the expectation value of the 
currents is given by

〈Ji〉 = qidz (4.15)

Since the currents are dual to the U(1) × U(1) R-symmetry, we have a non-vanishing holonomy 
around the S1. Recall that the regularity conditions derived in section 3 constrain the charges and 
hence the holonomies to a one parameter family.

Another holographic observable which can be calculated is the entanglement entropy in the 
presence of a defect (see e.g. [42–45]). General arguments relate this quantity to the ones already 
calculated in this section [46,47].

5. Uplift to 11 dimensions

The seven dimensional solutions presented in section 2 can be uplifted to solutions of eleven 
dimensional supergravity [13,22]

1 See [41] for an in depth discussion of anomalies for co-dimension two conformal defects.
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ds2
11 = *

1
3 ds2

7 + *− 2
3

(
e
−

√
8
5 φ2dµ2

0 + e
φ1√

2
+ φ2√

10 (dµ2
1 + µ2

1(dφ1 + A1)
2)

+ e
− φ1√

2
+ φ2√

10 (dµ2
2 + µ2

2(dφ2 + A2)
2)

)
(5.1)

Where * is defined as

* = e

√
8
5 φ2µ2

0 + e
− φ1√

2
− φ2√

10 µ2
1 + e

φ1√
2
− φ2√

10 µ2
2 (5.2)

The coordinates φi , i = 1, 2 are angular coordinates with periodicity 2π and the coordinates µi

satisfy the constraint 
∑2

i=0 µ2
i = 1. The four form antisymmetric tensor flux is given by

∗11F4 =
(

2
2∑

a=0

(X2
aµ

2
a − *Xa) + *Xa

)
vol7 + 1

2

2∑

a=0

1
Xa

(∗7dXa) ∧ d(µ2
a)

+ 1
2

2∑

a=1

1
X2

a

d(µ2
a) ∧ (dφa + Aa) ∧ ∗7Fa (5.3)

Here ∗11 is the Hodge dual with respect to the eleven dimensional metric (5.1) whereas ∗7
and vol7 are the Hodge dual and volume with of to the seven dimensional metric (2.4) respec-
tively. Note that the AdS7 vacuum solution q1 = q2 = 0 gives the AdS7 × S4 solution of eleven 
dimensional supergravity, dual to the vacuum of the six dimensional SCFT. Since the gauge 
fields Ai, i = 1, 2 twist the two angular coordinates φi in the metric (5.1) we can identify the 
gauge fields as dual to U(1) × U(1) R-symmetry currents inside the SO(5) R-symmetry of the 
N = (0, 2) six dimensional SCFT.

6. Discussion

In this note we constructed holographic solutions of N = 4, d = 7 gauged supergravity which 
describe four dimensional defects living inside a six-dimensional SCFT. The solutions are closely 
related to AdS5 compactifications on spindles of the same theory [13]. The main difference 
lies in the fact that the two dimensional space transverse to the AdS5 factor is compact in the 
spindle case, whereas in our case the space is non-compact and the solution has an asymptotic 
AdS7 boundary. Consequently instead of describing a holographic dual for a four dimensional 
CFT, our solutions are holographic to a four dimensional super conformal defects living inside 
a six dimensional SCFT. For the spindle [13] the two dimensional space is a sphere with two 
conical singularities at the north and south pole, which is a compact space. The main result of 
the present paper is that for the two charge extremal solutions it is possible to find completely 
regular solutions without any conical deficits in the bulk or on the asymptotic boundary. These 
solutions form a one parameter family in the space of extremal solutions and a quarter of the 
supersymmetries of the AdS7 vacuum. Another class of solutions are the “half-spindle” solutions 
of [30,31] where the two dimensional space has the topology of a punctured disk with one conical 
singularity in the center and smeared M5-brane sources. It is possible to also have solutions 
with conical singularity in the bulk with have a non-compact space with the topology of the 
punctured plane. In particular if we set one of the charges to zero there will always have a conical 
singularity, however the amount of supersymmetry is now doubled and the uplifted solutions fall 
into the (local) M-theory solutions with AdS5 factors, such as [48–50]. It would be interesting 
to see whether its possible how to incorporate solutions with a noncompact direction leading to 
an asymptotic AdS7 boundary and hence describing a four dimensional defect embedded in a 
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six dimensional SCFT. The uplift and embedding of these theories will also be helpful to argue 
for the integer quantization of the conical deficits, which is not possible from a purely seven 
dimensional point of view.

The asymptotic boundary of the spacetime is AdS5 ×S1 which is conformal to R1,5 under this 
map the circle parameterizes the angular direction of the transverse R2. Since our solution has a
non-vanishing expectation value of the U(1) × U(1) R-symmetry currents we can interpret the 
defect as a homolomy defect for the R-symmetry currents. Examples of such defects have been 
constructed for free field theories [51–55]. For surface defects in four dimensional N = 4 SYM 
such defects can be related to probe brane and fully back reacted LLM geometries [56–58] and 
some observables were matched in [40]. It would be interesting to see whether such a relation 
exists for four dimensional defects in the six dimensional SCFT, in particular whether there is a 
field theory analogue of the regularity condition relating the two charges or holonomies that we 
found. We leave these interesting questions for future work.

CRediT authorship contribution statement

Both authors contributed equally to this work.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal rela-
tionships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

The work of M. G. was supported, in part, by the National Science Foundation under grant 
PHY-19-14412. The authors are grateful to the Mani L. Bhaumik Institute for Theoretical 
Physics for support.

Appendix A. Calculation of holographic stress tensor

In this section we calculate the expectation value of the holographic stress tensor following 
[35]. The metric (2.4) has the following large y expansion

ds2 =
( 1
y2 + 1

y3 + 5 − 4(q1 + q2)

5y4 + · · ·
)dy2

4

+
(
y + q1 + q2

5y
+ −2q2

1 − 2q2
2 + q1q2

25y3 + · · ·
)
ds2

AdS5

+
(
y + q1 + q2

5y
+ 4q1 + 4q2

5y2 + −2q2
1 − 2q2

2 + q1q2

25y3 + · · ·
)
dz2 (A.1)

where the dots denote terms which go faster to zero in the limit y → ∞. The following coordinate 
transformation brings the metric into Fefferman-Graham form

11
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y = 1
ρ

+ 1
2

+ 5 − 16(q1 + q2)

80
ρ − q1 + q2

30
ρ2 + o(ρ3) (A.2)

Which takes the following form

ds2 = dρ2

4ρ2 + 1
ρ

gab(x,ρ)dxadxb

gab(x,ρ) = g(0),ab + ρg(2),ab + ρ2g(4),ab + ρ3g(6),ab + h(6),abρ
3 logρ + · · · (A.3)

The gab the takes the following form in Fefferman-Graham coordinates

gab(x,ρ)dxadxb =
(

1 + 1
2
ρ + 1

16
ρ2 − 2q1 + 2q2

15
ρ3 + · · ·

)
ds2

AdS5

+
(

1 − 1
2
ρ + 1

16
ρ2 + 2(q1 + q2)

3
ρ3 + · · ·

)
dz2 (A.4)

From which we can read off the g(i),ab, i = 0, 2, 4, 5. Note that there is no term logarithmic in 
ρ and hence h(6),ab = 0 for the solution considered in this paper. The expectation value of the 
holographic stress tensor is then given by

〈Tab〉 = g(6),ab − A(6),ab + 1
24

Sab (A.5)

Where A6 and S are expressed in terms of g(0), g(2), g(4) and their derivatives. Explicit expres-
sions can be found in [35] and evaluating them for our background gives

〈Tab〉rendxadxb =
( 1

18
− 2

15
(q1 + q2)

)
dsAdS2

5
+

(
− 5

18
+ 2

3
(q1 + q2)

)
dz2 (A.6)
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